CN103837517B - 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法 - Google Patents

金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法 Download PDF

Info

Publication number
CN103837517B
CN103837517B CN201410113809.5A CN201410113809A CN103837517B CN 103837517 B CN103837517 B CN 103837517B CN 201410113809 A CN201410113809 A CN 201410113809A CN 103837517 B CN103837517 B CN 103837517B
Authority
CN
China
Prior art keywords
substrate
rod array
zno
metallic film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410113809.5A
Other languages
English (en)
Other versions
CN103837517A (zh
Inventor
孙晔
尹永琦
于淼
刘潇
杨彬
曹文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201410113809.5A priority Critical patent/CN103837517B/zh
Publication of CN103837517A publication Critical patent/CN103837517A/zh
Application granted granted Critical
Publication of CN103837517B publication Critical patent/CN103837517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法,它涉及一种新型的用于高性能荧光增强的金属薄膜/ZnO纳米棒阵列基底设计方案及其制备工艺。本发明是为了满足现有ZnO纳米棒阵列荧光增强基底的荧光增强效果亟待进一步提高,进而促进其在生物传感和探测器件领域产业化应用的强烈需求。方法为:一、衬底的清洗;二、金属薄膜的制备;三、ZnO纳米棒阵列的制备;四、金属薄膜/ZnO纳米棒阵列荧光增强的检测。本发明应用于基础生物荧光传感探测、细胞成像、环境检测,医疗实时监测、光敏探测等器件应用领域。

Description

金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法
技术领域
本发明涉及一种纳米棒阵列荧光增强材料的制备方法。
背景技术
氧化锌(ZnO)是一种直接带隙宽禁带半导体材料,其禁带宽度为3.37eV,晶体结构为六方纤锌矿结构,具有光发射,化学传感,光催化,以及生物相容性等诸多优异性能。ZnO纳米材料被证实具有非常丰富的形貌结构,其中,在多种衬底表面可以制备出垂直于衬底表面具有c轴择优取向的ZnO纳米棒阵列,所包含的单根纳米棒呈六棱柱形貌,其直径和长度可以通过控制实验参数进行调控,十分利于微纳米器件的设计加工与性能优化。截止目前,ZnO纳米棒阵列已经在光发射器件,光敏或气敏传感器,紫外光探测器,场发射器件,太阳能电池等领域有着非常重要的应用。
生物荧光探针探测是目前被广泛采用的一种用于生物探测和传感的技术,在基础生物医学研究和实际医学诊疗领域都有着广泛应用。已有报道表明,ZnO纳米棒阵列可以作为一种基底显著增强待测荧光分子的荧光信号,进而用于高灵敏度生物分子检测。例如,对ZnO纳米棒阵列作为荧光增强基底可以实现皮摩尔量级之下DNA分子的探测。除了ZnO纳米棒阵列所具有的大的比表面积和良好的生物相容性等优点,ZnO纳米棒独特的六棱柱形貌所形成的光学腔被认为在荧光信号增强中起到了重要作用,ZnO纳米棒六棱柱侧面的全反射效应会引导进入ZnO纳米棒内部的荧光信号更多地经由纳米棒上端面出射,进而大大增强在纳米棒阵列正上方探测器采集到的荧光信号的强度,实现高灵敏度的荧光信号检测。
ZnO纳米棒阵列具有制备工艺简单,成本低等优势,作为荧光增强基底在生物探测器和传感器领域有着广阔的应用前景,但是现有ZnO纳米棒阵列荧光增强基底的荧光增强效果较差,有待提升。
发明内容
本发明的目的是为了解决现有ZnO纳米棒阵列荧光增强基底的荧光增强效果差的技术问题,提供了一种金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法。
金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法按照以下步骤进行:
一、衬底的清洗:分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对平面衬底进行超声清洗5~60min;
二、金属薄膜的制备;利用磁控溅射,以及离子沉积、热蒸发法、脉冲激光沉积法、或电化学法在平面衬底表面上制备均匀的金属薄膜;
三、ZnO纳米棒阵列的制备:利用水热法、脉冲激光衬底法、化学气相沉积法或热传输法在经过步骤二处理的平面衬底上得到ZnO纳米棒阵列,即得金属薄膜/氧化锌纳米棒阵列荧光增强材料。
步骤一所述的平面衬底为硅片、石英片、玻璃片、PMMA、PTFE或蓝宝石片。
步骤二中所述金属薄膜为银薄膜、金薄膜、铂金薄膜、钯金薄膜、铝薄膜或铜薄膜。
步骤二中所述金属薄膜的厚度大于2nm。
本发明的有益效果在于金属薄膜/氧化锌纳米棒阵列荧光增强材料相对于单一的ZnO纳米棒阵列提升了5~1000倍的荧光增强效果,进而可应用于超高灵敏度的生物传感器和探测器。
附图说明
图1是实验一中步骤二制备的Ag薄膜原子力显微镜图;
图2是实验一中步骤四制备的Ag薄膜上合成的具有c轴择优取向的ZnO纳米棒阵列的X射线衍射图;
图3是实验一中步骤四制备的Ag薄膜上合成的具有c轴择优取向的ZnO纳米棒阵列的正面图
图4是实验一中步骤四制备的生长在Ag薄膜上ZnO纳米棒阵列SEM图的截面图;
图5是实验一中步骤四制备的生长在Si衬底(左)和生长在Ag薄膜(右)上ZnO纳米棒阵列SEM图的俯视图;
图6是在Si衬底和Ag薄膜上合成的ZnO纳米棒阵列经过罗丹明荧光素染色后的荧光图像。
图7是在Si衬底和Ag薄膜上合成的ZnO纳米棒阵列经过罗丹明荧光素染色后的荧光信号的定量分析图,图中a表示生长在Ag薄膜上ZnO纳米棒阵列经过罗丹明荧光素染色后的荧光信号的定量分析图,b表示生长在Si衬底上ZnO纳米棒阵列经过罗丹明荧光素染色后的荧光信号的定量分析图
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法按照以下步骤进行:
一、衬底的清洗:分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对平面衬底进行超声清洗5~60min;
二、金属薄膜的制备;利用磁控溅射,以及离子沉积、热蒸发法、脉冲激光沉积法、或电化学法在平面衬底表面上制备均匀的金属薄膜;
三、ZnO纳米棒阵列的制备:利用水热法、脉冲激光衬底法、化学气相沉积法或热传输法在经过步骤二处理的平面衬底上得到ZnO纳米棒阵列,即得金属薄膜/氧化锌纳米棒阵列荧光增强材料。
本实施方式中金属薄膜/氧化锌纳米棒阵列荧光增强材料的检测方法如下:
将金属薄膜/氧化锌纳米棒阵列荧光增强材料浸入浓度为10-1mol/L~10-15mol/L荧光素染料的溶液中,浸泡5~60min后取出,通过清洗去除多余荧光探针,干燥后利用荧光显微镜对荧光信号进行定量分析,并与没有制备于金属薄膜上的ZnO纳米棒阵列的荧光增强效果进行比较;所述的生物荧光素染料为罗丹明、异硫氰酸荧光素、花青素、赫克斯特、藻红蛋白、多甲藻叶绿素蛋白、AlexaFluor系列染料、无机半导体量子点或具有荧光特性的金纳米团簇。荧光素染料的溶液中的溶剂为去离子水、无水乙醇或磷酸盐缓冲液。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一所述的平面衬底为硅片、石英片、玻璃片,PMMA,PTFE,或蓝宝石片。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是步骤二中所述金属薄膜为银薄膜、金薄膜、铂金薄膜、钯金薄膜、铝薄膜或铜薄膜。其它与具体实施方式一或二之一相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤二中所述金属薄膜的厚度大于2nm。其它与具体实施方式一至三之一相同。
采用下述实验验证本发明效果:
实验一:
金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法按照以下步骤进行:
一、衬底的清洗:采用单晶<100>取向Si为衬底,分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对衬底进行超声清洗20min;
二、用磁控溅射法制备Ag金属薄膜:将Ag靶材和经过步骤一处理的覆盖掩膜板的Si衬底装入磁控溅射装置的生长腔内,通入纯度为99.99%的氩气,保持工作气压为1Pa,调节射频功率为100W,进行薄膜沉积,生长温度为20℃,生长时间为20min,得到具有Ag薄膜的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:
将ZnO磁控溅射陶瓷靶材和经过步骤二处理的Si衬底去除掩膜板,装入磁控溅射装置生长腔内,衬底加热至400℃,通入流量比例为1:4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为2min,得到具有ZnO籽晶层的Ag薄膜衬底;
四、ZnO纳米棒阵列的制备:
将具有ZnO籽晶层的Ag薄膜衬底放入浓度为0.1mol/L的六水硝酸锌和六次甲基四胺组成的前驱体反应溶液中,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,在85℃干燥后获得具有<002>取向的ZnO纳米棒阵列,其直径为90~600nm,即得金属薄膜基底/氧化锌纳米棒阵列荧光增强材料,所述前驱体反应溶液中六水硝酸锌与六次甲基四胺摩尔比为1﹕1。
对本试验步骤二制备的Ag薄膜进行原子力显微镜扫描,结果如图1所示;由图1可知Ag纳米颗粒分布非常均匀,纳米颗粒的直径分布为100nm;
对本实验步骤四制备的Ag薄膜上生长的ZnO纳米棒进行X射线衍射表征,结果如图2所示;由图2可知,具有<002>取向的ZnO纳米棒合成在具有<111>和<200>取向的Ag薄膜上。
对本试验步骤四制备的Ag薄膜上生长的ZnO纳米棒阵列进行扫描电子显微镜扫描,由图3可知,生长在Ag薄膜上的纳米棒,直径为50~600nm。由图4可知,Ag薄膜的厚度为340nm,纳米棒的长度为840nm;
对本试验步骤四制备的模板化Ag薄膜上生长的ZnO纳米棒阵列进行扫描电子显微镜扫描,由图5可知,生长在Si衬底(左侧)和生长在Ag薄膜(右侧)上的纳米棒阵列,都均匀垂直于衬底表面,直径差异明显。
金属薄膜/氧化锌纳米棒阵列荧光增强材料的荧光增强检测:稀释罗丹明荧光素染料至10-6mol/L,然后将属薄膜基底/氧化锌纳米棒阵列荧光增强材料浸泡在溶液中,浸泡30min后取出,清洗去除残余荧光探针,干燥后利用荧光显微镜对荧光信号进行探测,结果如图6所示,图6为使用LeicaAF软件对546nm的光源激发下的浓度为10-6mol/L罗丹明的荧光图像,图7为对荧光图像的强度分析,可知,罗丹明在Ag薄膜上生长的纳米棒的荧光强度是在Si衬底上生长的纳米棒的60倍左右。
实验二:
金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法按照以下步骤进行:
一、衬底的清洗:采用单晶<100>取向Si为衬底,分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对衬底进行超声清洗20min;
二、用磁控溅射法制备Ag金属薄膜:将Ag靶材和经过步骤一处理的覆盖掩膜板的Si衬底装入磁控溅射装置的生长腔内,通入纯度为99.99%的氩气,保持工作气压为1Pa,调节射频功率为100W,进行薄膜沉积,生长温度为20℃,生长时间为20min,得到具有Ag薄膜的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:
将ZnO磁控溅射陶瓷靶材和经过步骤二处理的Si衬底装入磁控溅射装置生长腔内,衬底加热至400℃,通入流量比例为1:4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为2min,得到具有ZnO籽晶层的Ag薄膜衬底;
四、ZnO纳米棒阵列的制备:
将具有ZnO籽晶层的Ag薄膜衬底放入浓度为0.1mol/L的六水硝酸锌和六次甲基四胺组成的前驱体反应溶液中,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,在85℃干燥后获得具有<002>取向的ZnO纳米棒阵列,其直径为90~600nm,即得金属薄膜/氧化锌纳米棒阵列荧光增强材料,所述前驱体反应溶液中六水硝酸锌与六次甲基四胺摩尔比为1﹕1。
金属薄膜/氧化锌纳米棒阵列荧光增强材料的荧光增强检测:稀释异硫氰酸荧光素至20μg/L,然后将金属薄膜基底/氧化锌纳米棒阵列荧光增强材料浸泡在溶液中,浸泡30min后取出,清洗去除残余荧光探针,干燥后利用荧光显微镜对荧光信号进行探测。
实验三:
金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法按照以下步骤进行:
一、衬底的清洗:采用单晶<100>取向Si为衬底,分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对衬底进行超声清洗20min;
二、用热蒸发法制备Au金属薄膜:将Au和经过步骤一处理的Si衬底装入装置的蒸镀腔内,抽真空至2×10-3Pa,蒸发时间为30s,得到具有Au薄膜的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:
将ZnO磁控溅射陶瓷靶材和经过步骤二处理的Si衬底装入磁控溅射装置生长腔内,衬底加热至400℃,通入流量比例为1:4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为2min,得到具有ZnO籽晶层的Au薄膜衬底;
四、ZnO纳米棒阵列的制备:
将具有ZnO籽晶层的Ag薄膜衬底放入浓度为0.1mol/L的六水硝酸锌和六次甲基四胺组成的前驱体反应溶液中,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,在85℃干燥后获得具有<002>取向的ZnO纳米棒阵列,其直径为90~600nm,即得金属薄膜基底/氧化锌纳米棒阵列荧光增强材料,所述前驱体反应溶液中六水硝酸锌与六次甲基四胺摩尔比为1﹕1。
金属薄膜/氧化锌纳米棒阵列荧光增强材料的荧光增强检测:稀释罗丹明至10-6mol/L,然后将金属薄膜基底/氧化锌纳米棒阵列荧光增强材料浸泡在溶液中,浸泡30min后取出,清洗去除残余荧光探针,干燥后利用荧光显微镜对荧光信号进行探测。

Claims (3)

1.金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法,按照以下步骤进行:
一、衬底的清洗:采用单晶<100>取向Si为衬底,分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对衬底进行超声清洗20min;
二、用磁控溅射法制备Ag金属薄膜:将Ag靶材和经过步骤一处理的覆盖掩膜板的Si衬底装入磁控溅射装置的生长腔内,通入纯度为99.99%的氩气,保持工作气压为1Pa,调节射频功率为100W,进行薄膜沉积,生长温度为20℃,生长时间为20min,得到具有Ag薄膜的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:
将ZnO磁控溅射陶瓷靶材和经过步骤二处理的Si衬底去除掩膜板,装入磁控溅射装置生长腔内,衬底加热至400℃,通入流量比例为1:4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为2min,得到具有ZnO籽晶层的Ag薄膜衬底;
四、ZnO纳米棒阵列的制备:
将具有ZnO籽晶层的Ag薄膜衬底放入浓度为0.1mol/L的六水硝酸锌和六次甲基四胺组成的前驱体反应溶液中,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,在85℃干燥后获得具有<002>取向的ZnO纳米棒阵列,其直径为90~600nm,即得金属薄膜基底/氧化锌纳米棒阵列荧光增强材料,所述前驱体反应溶液中六水硝酸锌与六次甲基四胺摩尔比为1﹕1。
2.金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法,按照以下步骤进行:
一、衬底的清洗:采用单晶<100>取向Si为衬底,分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对衬底进行超声清洗20min;
二、用磁控溅射法制备Ag金属薄膜:将Ag靶材和经过步骤一处理的覆盖掩膜板的Si衬底装入磁控溅射装置的生长腔内,通入纯度为99.99%的氩气,保持工作气压为1Pa,调节射频功率为100W,进行薄膜沉积,生长温度为20℃,生长时间为20min,得到具有Ag薄膜的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:
将ZnO磁控溅射陶瓷靶材和经过步骤二处理的Si衬底装入磁控溅射装置生长腔内,衬底加热至400℃,通入流量比例为1:4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为2min,得到具有ZnO籽晶层的Ag薄膜衬底;
四、ZnO纳米棒阵列的制备:
将具有ZnO籽晶层的Ag薄膜衬底放入浓度为0.1mol/L的六水硝酸锌和六次甲基四胺组成的前驱体反应溶液中,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,在85℃干燥后获得具有<002>取向的ZnO纳米棒阵列,其直径为90~600nm,即得金属薄膜/氧化锌纳米棒阵列荧光增强材料,所述前驱体反应溶液中六水硝酸锌与六次甲基四胺摩尔比为1﹕1。
3.金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法,按照以下步骤进行:
一、衬底的清洗:采用单晶<100>取向Si为衬底,分别采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ的去离子水和99.5wt%甲醇对衬底进行超声清洗20min;
二、用热蒸发法制备Au金属薄膜:将Au和经过步骤一处理的Si衬底装入装置的蒸镀腔内,抽真空至2×10-3Pa,蒸发时间为30s,得到具有Au薄膜的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:
将ZnO磁控溅射陶瓷靶材和经过步骤二处理的Si衬底装入磁控溅射装置生长腔内,衬底加热至400℃,通入流量比例为1:4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为2min,得到具有ZnO籽晶层的Au薄膜衬底;
四、ZnO纳米棒阵列的制备:
将具有ZnO籽晶层的Ag薄膜衬底放入浓度为0.1mol/L的六水硝酸锌和六次甲基四胺组成的前驱体反应溶液中,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,在85℃干燥后获得具有<002>取向的ZnO纳米棒阵列,其直径为90~600nm,即得金属薄膜基底/氧化锌纳米棒阵列荧光增强材料,所述前驱体反应溶液中六水硝酸锌与六次甲基四胺摩尔比为1﹕1。
CN201410113809.5A 2014-03-25 2014-03-25 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法 Active CN103837517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410113809.5A CN103837517B (zh) 2014-03-25 2014-03-25 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410113809.5A CN103837517B (zh) 2014-03-25 2014-03-25 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法

Publications (2)

Publication Number Publication Date
CN103837517A CN103837517A (zh) 2014-06-04
CN103837517B true CN103837517B (zh) 2016-08-03

Family

ID=50801233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410113809.5A Active CN103837517B (zh) 2014-03-25 2014-03-25 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法

Country Status (1)

Country Link
CN (1) CN103837517B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190451B (zh) * 2014-07-30 2016-08-24 中国矿业大学 一种磷酸银薄膜的制备方法
CN105203511A (zh) * 2015-09-14 2015-12-30 东南大学 一种具有荧光增强效果的基底的制备方法
CN106290270B (zh) * 2016-07-22 2019-01-18 浙江大学 一种基于u型金属阵列结构的荧光增强结构及系统
CN108906077A (zh) * 2018-07-02 2018-11-30 合肥萃励新材料科技有限公司 一种Pd-Cu修饰的氧化锌合成方法
CN111441022A (zh) * 2020-04-20 2020-07-24 上海纳米技术及应用国家工程研究中心有限公司 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用
CN114216876B (zh) * 2021-08-23 2023-08-11 南开大学 一种表面增强红外基底制备及纳米柱阵列偏离角检测方法
CN114577776B (zh) * 2022-03-01 2022-10-28 哈尔滨工业大学 一种检测液体中新型冠状病毒Spike蛋白的SERS芯片的制备方法和使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070614A (zh) * 2007-05-30 2007-11-14 北京科技大学 一种单晶氧化锌纳米柱阵列及其制备方法
KR20090059993A (ko) * 2007-12-07 2009-06-11 창원대학교 산학협력단 산화아연 나노선 배열 기반 전계방출 소자
CN102092774A (zh) * 2010-12-28 2011-06-15 电子科技大学 一种氧化锌纳米线阵列的制备方法
US8324703B2 (en) * 2007-04-30 2012-12-04 University Of Maryland Approach to contacting nanowire arrays using nanoparticles
CN102863012A (zh) * 2012-09-26 2013-01-09 深圳大学 氧化锌纳米钉的合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324703B2 (en) * 2007-04-30 2012-12-04 University Of Maryland Approach to contacting nanowire arrays using nanoparticles
CN101070614A (zh) * 2007-05-30 2007-11-14 北京科技大学 一种单晶氧化锌纳米柱阵列及其制备方法
KR20090059993A (ko) * 2007-12-07 2009-06-11 창원대학교 산학협력단 산화아연 나노선 배열 기반 전계방출 소자
CN102092774A (zh) * 2010-12-28 2011-06-15 电子科技大学 一种氧化锌纳米线阵列的制备方法
CN102863012A (zh) * 2012-09-26 2013-01-09 深圳大学 氧化锌纳米钉的合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Highly Sensitive Biomolecular Fluorescence Detection Using Nanoscale ZnO Platforms;Adam Dorfman等;《Langmuir》;20060421;第22卷;第4890-4895页 *
Inhibition of fluorescence enhancement of benzimidazole derivative on doping ZnO with Cu and Ag;C. Karunakaran等;《Journal of Photochemistry and Photobiology A: Chemistry》;20120817;第247卷;第16-23页 *
氧化锌-银复合纳米粒子的制备:吸收光谱和荧光光谱;陈四海等;《物理化学学报》;19950430;第11卷(第4期);第365-368页 *

Also Published As

Publication number Publication date
CN103837517A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN103837517B (zh) 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法
Van Hieu Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures
Naik et al. Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method
Chen et al. A novel upconversion luminescence derived photoelectrochemical immunoassay: ultrasensitive detection to alpha-fetoprotein
CN104181143A (zh) 一种高稳定性表面增强拉曼基片及其制备方法
CN109580583A (zh) 一种致密型表面增强拉曼光谱基底及其制备方法与应用
CN103668140B (zh) 一种微纳米枝状银超亲水薄膜的制备方法及表面增强拉曼衬底应用
CN104777135B (zh) 一种全波长局域等离子体谐振传感器及其制备方法
CN108845004A (zh) 一种光电流二氧化碳传感器
Neykova et al. ZnO hedgehog-like structures for control cell cultivation
CN108776156A (zh) 一维α-Fe2O3纳米棒的制备方法及基于α-Fe2O3纳米棒的丙酮传感器
Chang et al. Optimizing pyramidal silicon substrates through the electroless deposition of Ag nanoparticles for high-performance surface-enhanced Raman scattering
Krasovska et al. Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method/Labi Sakārtotu Zno Nanocauruļu Kopu Iegūšana, Izmantojot Hidrotermālo Metodi
CN107331717A (zh) 一种有机‑无机纳米线及其制备方法和有机‑无机光探测器及其制备方法
Savu et al. Influence of hydrothermal synthesis conditions and device configuration on the photoresponse of UV sensors based on ZnO nanorods
CN110937582B (zh) 一种硒化锌纳米线及其作为表面增强拉曼散射基底的应用
Behera et al. Temporal wetting property of “Micro” versus “Nano” rods of ZnO grown using the pressure dependent aqueous solution method
CN110132936A (zh) 一种Al/Ag层状纳米结构的大面积SERS基底、制备方法及应用
Hashim et al. Characterization of zinc oxide thin film for pH detector
CN112525963A (zh) 一种基于ZnO纳米材料的电化学生物传感器及其进行葡萄糖浓度检测的方法
Tsai et al. Enhanced Detection of Ethanol in a Humid Ambient Using Al 2 O 3-Doped Cactus-Like ZnO Nanoflowers With Gold Nanoparticles
Tao et al. Glucose oxidase embedded ZnO nanowires/ferrocenyl-alkanethiol array for efficient glucose-sensing application
CN103789765A (zh) 斜角法在硅基片上形成Ag/ZnO核壳结构的方法
CN103274353A (zh) 大面积表面增强拉曼活性基底的倾斜生长制备方法
Sun et al. Study on the Rapid Preparation of Zinc Oxide Nanotubes by Galvanostatic Etching

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant