CN111441022A - 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用 - Google Patents
一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用 Download PDFInfo
- Publication number
- CN111441022A CN111441022A CN202010313913.4A CN202010313913A CN111441022A CN 111441022 A CN111441022 A CN 111441022A CN 202010313913 A CN202010313913 A CN 202010313913A CN 111441022 A CN111441022 A CN 111441022A
- Authority
- CN
- China
- Prior art keywords
- nano
- sers
- detection
- enhanced
- oscillating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/407—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Composite Materials (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供一种SERS增强的新冠病毒检测芯片的制备方法及其产品和应用,通过制备纳米银/纳米氧化锌/纳米金的SERS基底,从而增加荧光分子的发光强度。可以应用于新冠病毒的检测中,采用WHO公布的引物和探针,在SERS基底连接荧光探针,实现高灵敏检测,提高检测效率和准确度的同时降低了成本,可用于新型冠状病毒的快速应急检测。本发明制备的芯片大大增强了小分子的拉曼信号,光学强度高,检测灵敏度高,检测限低。本发明制备过程简单、反应易控制,稳定性好、可产业化,在新冠病毒的检测领域具有广泛的应用前景。
Description
技术领域
本发明属于纳米材料的功能化及芯片成型领域,涉及一种SERS增强的新冠病毒检测芯片的制备方法及其产品和应用,特别是涉及一种纳米银/纳米氧化锌/纳米金薄膜的制备,及其芯片的成型方法,该芯片可以应用于新冠病毒的检测领域。
背景技术
新型冠状病毒肺炎(COVID-19)疫情的快速蔓延,导致疑似感染者和密切接触者数量激增。尽早进行病毒检测,不仅可以使感染者获得及时治疗,降低死亡风险,还能有效控制传染源,通过隔离切断传播途径。为满足SARS-CoV-2 检测的需求,国内外企业和科研单位陆续研发出众多检测产品。截至2020年3月9日,获批的试剂盒就有15个。目前用于SARS-CoV-2 检测的方法主要有核酸检测法和免疫学检测法,核酸检测法是对病毒RNA 基因组进行检测,包括基因测序、荧光定量PCR、微滴式数字PCR (ddPCR)、基因芯片和环介导等温扩增(LAMP)等技术。免疫学检测法是对病毒抗原或人体免疫反应产生的特异性抗体进行检测,包括免疫色谱试纸条、酶联免疫吸附试验(ELISA)和化学发光免疫分析(CLIA)等技术。核酸检测阳性虽是疑似患者确诊的“金标准”,但其操作繁琐、耗时长,检测结果易受标本质量、病毒感染部位及表达量等众多因素影响,因而核酸单项检测不能满足疫情期间对疑似病例快速筛查的要求。血清特异性抗体是诊断病毒感染的另一关键证据,抗体协同核酸检测可用于辅助诊断和快速筛查。但是如何提高检测的灵敏度/特异度,降低假阴性/假阳性检测结果,仍具有一定的挑战。
发明内容
针对现有技术的不足,本发明目的在于提供一种SERS增强的新冠病毒检测芯片的制备方法。
本发明的另一目的在于:提供一种上述方法制备的SERS增强的新冠病毒检测芯片产品。
本发明的再一目的在于:提供一种上述产品的应用。
本发明的又一目的在于:提供一种上述产品的检测方法。
本发明目的通过下述方案实现:一种SERS增强的新冠病毒检测芯片的制备方法,通过制备纳米银/纳米氧化锌/纳米金的SERS基底,增加荧光分子的发光强度,包括如下步骤:
(1)磁控溅射法镀纳米银薄膜:选用N型硅片Si(111),分别经过丙酮和乙醇、去离子水、氢氟酸的浸泡与清洗;采用磁控溅射法镀纳米银薄膜,以纯银靶为靶源,真空度3×10-4-5×10-4 Pa,气源为99.99%纯氩气,溅射压强3-6 Pa,沉积速度 0.2-1 Å/s,制得厚度为5-50 nm的纳米银薄膜层的基片;
(2)原子层沉积技术沉积纳米氧化锌:通过原子层沉积技术在步骤(1)所述的纳米银薄膜表面沉积厚度为10-60 nm的纳米氧化锌基片,工艺条件为:将沉积室真空抽至15-20hPa,该基片加热至150-200℃,向沉积室中引入二乙基锌,用高纯氮气清洗沉积室并向沉积室中引入水蒸气,二乙基锌、高纯氮气、水蒸气在沉积室内暴露时间依次为1s、5s、1s、5s;
(3)纳米金颗粒生长:将上述步骤(2)基片浸泡在2-5nm的金颗粒溶液中,振荡2小时后去离子水清洗烘干,进一步浸泡在质量分数为5-25%的碳酸钾溶液中,振荡30分钟后再加入2-10毫升1%高氯酸金溶液,振荡2小时后加入20-200微升巯基乙酸,振荡1-2小时后清洗烘干,得到纳米银/纳米氧化锌/纳米金的芯片;
(4)荧光分子的连接:将制备的纳米银/纳米氧化锌/纳米金的芯片,浸泡在碱性水溶液中,加入等摩尔的1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS),再加入功能性荧光小分子,常温振荡30-120分钟,洗涤烘干,制备得到SERS增强的新冠病毒检测芯片。
其中,步骤(4)中,所述的碱性水溶液为三乙胺、三乙醇胺、吡啶、尿素中的一种。
在上述方案基础上,步骤(4)中,所述的功能性荧光小分子为异硫氰酸荧光橙红(FITC),罗丹明,磺基氰基-3-马来酰亚胺(cy)、梭基荧光素(FAM)、绿色荧光蛋白(VIC)中的一种。
本发明还提供了一种SERS增强的新冠病毒检测芯片,根据上述方法制备得到。
本发明也提供了一种根据权利要求4所述SERS增强的芯片在新冠病毒检测中的应用。
另外,本发明还提供了一种SERS增强的新冠病毒检测芯片的检测方法,包括下述步骤:
(1)将所述的SERS增强的新冠病毒检测芯片连接采用WHO公布的引物和探针,即OFR 1b基因特异性探针OFR 1b-P的5'端标记FAM,或E基因特异性探针upE-P2的5'端标记VIC,常温振荡30-120分钟;
(2)与新冠病毒的靶物质共培养:靶物质为灭活的新冠病人血样。
本发明芯片应用于新冠病毒的检测中,采用WHO公布的引物和探针,在SERS基底连接荧光探针,实现高灵敏检测,提高检测效率和准确度的同时降低了成本,可用于新型冠状病毒的快速应急检测。
本发明的优点在于:本发明制备的芯片大大增强了小分子的拉曼信号,光学强度高,检测灵敏度高,检测限低。本发明制备过程简单、反应易控制,稳定性好、可产业化,在新冠病毒的检测领域具有广泛的应用前景。
具体实施方式
以下通过具体的实施例对本发明的技术方案作进一步描述。以下的实施例是对本发明的进一步说明,而不限制本发明的范围。
实施例1
一种SERS增强的新冠病毒检测芯片,通过制备纳米银/纳米氧化锌/纳米金的SERS基底,增加荧光分子的发光强度,按如下步骤制备:
(1)磁控溅射法镀纳米银薄膜:选用N型硅片Si(111),分别经过丙酮和乙醇、去离子水、氢氟酸的浸泡与清洗;采用磁控溅射法镀纳米银薄膜,以纯银靶为靶源,真空度3×10-4Pa,气源为99.99%纯氩气,溅射压强3Pa,沉积速度1 Å/s,制得厚度为5nm的纳米银薄膜层的基片;
(2)原子层沉积技术沉积纳米氧化锌:通过原子层沉积技术在步骤(1)所述的纳米银薄膜表面沉积厚度为10nm的纳米氧化锌,工艺条件为:将沉积室真空抽至15hPa,该基片加热至150℃,向沉积室中引入二乙基锌,用高纯氮气清洗沉积室并向沉积室中引入水蒸气,二乙基锌、高纯氮气、水蒸气在沉积室内暴露时间依次为1s、5s、1s、5s,得到在银薄膜表面沉积厚度为10 nm的纳米氧化锌基片;
(3)纳米金颗粒生长:将上述步骤(2)基片浸泡在2nm的金颗粒溶液中,振荡2小时后去离子水清洗烘干,进一步浸泡在质量分数为5%的碳酸钾溶液中,振荡30分钟后再加入5毫升1%高氯酸金溶液,振荡2小时后加入40微升巯基乙酸,振荡1小时后清洗烘干,得到纳米银/纳米氧化锌/纳米金的芯片;
(4)荧光分子的连接:将制备的纳米银/纳米氧化锌/纳米金的芯片,浸泡在三乙胺水溶液中,加入等摩尔的EDC和NHS,再加入功能性荧光小分子FITC,常温振荡30分钟,洗涤烘干,制备得到一种SERS增强的新冠病毒检测芯片。
芯片检测FITC的光学强度比等量的FITC增加165%。
实施例2
一种SERS增强的新冠病毒检测芯片,与实施例1近似,按如下步骤制备:
(1)磁控溅射法镀纳米银薄膜:选用N型硅片Si(111),分别经过丙酮和乙醇、去离子水、氢氟酸的浸泡与清洗;采用磁控溅射法镀银薄膜,镀层厚度为25 nm,以纯银靶为靶源,真空度4×10-4 Pa,气源为99.99%纯氩气,溅射压强4Pa,沉积速度 0.5Å/s,制得厚度为25 nm的纳米银薄膜层的基片;
(2)原子层沉积技术沉积纳米氧化锌:通过原子层沉积技术在步骤(1)制备的银薄膜表面沉积厚度为20 nm的纳米氧化锌,其工艺在于:将沉积室真空抽至17 hPa,该基片加热至160℃,向沉积室中引入二乙基锌,用高纯氮气清洗沉积室并向沉积室中引入水蒸气,二乙基锌、高纯氮气、水蒸气在沉积室内暴露时间依次为1s、5s、1s、5s;
(3)纳米金颗粒生长:将上述基片浸泡在4纳米的金颗粒溶液中,振荡2小时后去离子水清洗烘干,进一步浸泡在质量分数为10%的碳酸钾溶液中,振荡30分钟后再加入2毫升1%高氯酸金溶液,振荡2小时后加入100微升巯基乙酸,振荡1小时后清洗烘干,得到纳米银/纳米氧化锌/纳米金的芯片;
(4)荧光分子的连接:将制备的纳米银/纳米氧化锌/纳米金的芯片,浸泡在三乙胺水溶液中,加入等摩尔的EDC和NHS,再加入功能性荧光小分子cy,常温振荡30分钟,洗涤烘干,制备得到SERS增强的新冠病毒检测芯片。
芯片检测cy的光学强度比等量的cy增加214%。
实施例3
一种SERS增强的新冠病毒检测芯片,与实施例1近似,按如下步骤制备:
(1)磁控溅射法镀纳米银薄膜:选用N型硅片Si(111),分别经过丙酮和乙醇、去离子水、氢氟酸的浸泡与清洗;采用磁控溅射法镀银薄膜,镀层厚度为25 nm,其工艺为:靶源为纯银靶,真空度5×10-4Pa,气源为99.99%纯氩气,溅射压强4Pa,沉积速度 0.5 Å/s,制得厚度为25 nm的纳米银薄膜层的基片;
(2)原子层沉积技术沉积纳米氧化锌:通过原子层沉积技术在步骤(1)所得的银薄膜表面沉积厚度为50 nm的纳米氧化锌,其工艺在于:将沉积室真空抽至20 hPa,基片加热至160℃,向沉积室中引入二乙基锌,用高纯氮气清洗沉积室并向沉积室中引入水蒸气,二乙基锌、高纯氮气、水蒸气在沉积室内暴露时间依次为1s、5s、1s、5s;
(3)纳米金颗粒生长:将上述步骤(2)得到的基片浸泡在2纳米的金颗粒溶液中,振荡2小时后去离子水清洗烘干,进一步浸泡在质量分数为25%的碳酸钾溶液中,振荡30分钟后再加入2毫升1%高氯酸金溶液,振荡2小时后加入100微升巯基乙酸,振荡1小时后清洗烘干,得到纳米银/纳米氧化锌/纳米金的芯片;
(4)将制备的银/氧化锌/金的芯片,浸泡在三乙胺水溶液中,加入等摩尔的EDC和NHS,再加入OFR 1b基因特异性探针,常温振荡30分钟,洗涤烘干,制备得到高SERS效应的芯片可以用于新冠病毒的检测。
Claims (6)
1.一种SERS增强的新冠病毒检测芯片的制备方法,其特征在于,通过制备纳米银/纳米氧化锌/纳米金的SERS基底,增加荧光分子的发光强度,包括如下步骤:
(1)磁控溅射法镀纳米银薄膜:选用N型硅片Si(111),分别经过丙酮和乙醇、去离子水、氢氟酸的浸泡与清洗;采用磁控溅射法镀纳米银薄膜,以纯银靶为靶源,真空度3×10-4-5×10-4 Pa,气源为99.99%纯氩气,溅射压强3-6 Pa,沉积速度 0.2-1 Å/s,制得厚度为5-50 nm的纳米银薄膜层的基片;
(2)原子层沉积技术沉积纳米氧化锌:通过原子层沉积技术在步骤(1)所述的纳米银薄膜表面沉积厚度为10-60 nm的纳米氧化锌基片,工艺条件为:将沉积室真空抽至15-20hPa,该基片加热至150-200℃,向沉积室中引入二乙基锌,用高纯氮气清洗沉积室并向沉积室中引入水蒸气,二乙基锌、高纯氮气、水蒸气在沉积室内暴露时间依次为1s、5s、1s、5s;
(3)纳米金颗粒生长:将上述步骤(2)基片浸泡在2-5nm的金颗粒溶液中,振荡2小时后去离子水清洗烘干,进一步浸泡在质量分数为5-25%的碳酸钾溶液中,振荡30分钟后再加入2-10毫升1%高氯酸金溶液,振荡2小时后加入20-200微升巯基乙酸,振荡1-2小时后清洗烘干,得到纳米银/纳米氧化锌/纳米金的芯片;
(4)荧光分子的连接:将制备的纳米银/纳米氧化锌/纳米金的芯片,浸泡在碱性水溶液中,加入等摩尔的1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS),再加入功能性荧光小分子,常温振荡30-120分钟,洗涤烘干,制备得到SERS增强的新冠病毒检测芯片。
2.根据权利要求1所述SERS增强的新冠病毒检测芯片的制备方法,其特征在于,步骤(4)中,所述的碱性水溶液为三乙胺、三乙醇胺、吡啶、尿素中的一种。
3.根据权利要求1或2所述SERS增强的新冠病毒检测芯片的制备方法,其特征在于,步骤(4)中,所述的功能性荧光小分子为异硫氰酸荧光橙红(FITC),罗丹明,磺基氰基-3-马来酰亚胺(cy)、梭基荧光素(FAM)、绿色荧光蛋白(VIC)中的一种。
4.一种SERS增强的新冠病毒检测芯片,其特征在于根据权利要求1-3任一所述方法制备得到。
5.一种根据权利要求4所述SERS增强的芯片在新冠病毒检测中的应用。
6.根据权利要求4所述一种SERS增强的新冠病毒检测芯片的检测方法,其特征在于,包括下述步骤:
(1)将所述的SERS增强的新冠病毒检测芯片连接采用WHO公布的引物和探针,即OFR 1b基因特异性探针OFR 1b-P的5'端标记FAM,或E基因特异性探针upE-P2的5'端标记VIC,常温振荡30-120分钟;
(2)与新冠病毒的靶物质共培养:靶物质为灭活的新冠病人血样。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010313913.4A CN111441022A (zh) | 2020-04-20 | 2020-04-20 | 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010313913.4A CN111441022A (zh) | 2020-04-20 | 2020-04-20 | 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111441022A true CN111441022A (zh) | 2020-07-24 |
Family
ID=71648329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010313913.4A Pending CN111441022A (zh) | 2020-04-20 | 2020-04-20 | 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111441022A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112326630A (zh) * | 2021-01-04 | 2021-02-05 | 中国工程物理研究院激光聚变研究中心 | 一种用于新型冠状病毒检测的sers芯片及其制备方法 |
CN113549712A (zh) * | 2021-09-22 | 2021-10-26 | 广州金域医学检验中心有限公司 | 基于拉曼光谱的新型冠状病毒核酸检测试剂盒及方法 |
CN114085930A (zh) * | 2022-01-21 | 2022-02-25 | 广州国家实验室 | 用于检测SARS-CoV-2核酸的SERS检测试剂盒及方法 |
CN114577776A (zh) * | 2022-03-01 | 2022-06-03 | 哈尔滨工业大学 | 一种检测液体中新型冠状病毒Spike蛋白的SERS芯片的制备方法和使用方法 |
CN115142062A (zh) * | 2022-05-10 | 2022-10-04 | 长春理工大学 | 一种自清洁复合sers基底及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050089901A1 (en) * | 2000-09-22 | 2005-04-28 | Porter Marc D. | Raman-active reagents and the use thereof |
US20100190661A1 (en) * | 2009-01-26 | 2010-07-29 | City University Of Hong Kong | Sers-active structure for use in raman spectroscopy |
CN103837517A (zh) * | 2014-03-25 | 2014-06-04 | 哈尔滨工业大学 | 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法 |
CN104746049A (zh) * | 2015-04-07 | 2015-07-01 | 南京大学 | 利用ald制备金属纳米间隙的表面增强拉曼散射基底的方法 |
CN107543813A (zh) * | 2017-08-22 | 2018-01-05 | 中国工程物理研究院化工材料研究所 | 一种表面增强拉曼有序复合阵列芯片的制备方法及其应用 |
CN109991207A (zh) * | 2019-04-25 | 2019-07-09 | 福建师范大学 | 一种用于检测酪氨酸酶的三明治结构的sers传感器及其制备和检测方法 |
-
2020
- 2020-04-20 CN CN202010313913.4A patent/CN111441022A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050089901A1 (en) * | 2000-09-22 | 2005-04-28 | Porter Marc D. | Raman-active reagents and the use thereof |
US20100190661A1 (en) * | 2009-01-26 | 2010-07-29 | City University Of Hong Kong | Sers-active structure for use in raman spectroscopy |
CN103837517A (zh) * | 2014-03-25 | 2014-06-04 | 哈尔滨工业大学 | 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法 |
CN104746049A (zh) * | 2015-04-07 | 2015-07-01 | 南京大学 | 利用ald制备金属纳米间隙的表面增强拉曼散射基底的方法 |
CN107543813A (zh) * | 2017-08-22 | 2018-01-05 | 中国工程物理研究院化工材料研究所 | 一种表面增强拉曼有序复合阵列芯片的制备方法及其应用 |
CN109991207A (zh) * | 2019-04-25 | 2019-07-09 | 福建师范大学 | 一种用于检测酪氨酸酶的三明治结构的sers传感器及其制备和检测方法 |
Non-Patent Citations (2)
Title |
---|
ANIL KUMAR PAL ET AL.: "Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection", 《SENSORS AND ACTUATORS B: CHEMICAL》 * |
程昊等: "种子介导法制备SERS基底Ag@Au及对阿莫西林的痕量检测", 《应用化工》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112326630A (zh) * | 2021-01-04 | 2021-02-05 | 中国工程物理研究院激光聚变研究中心 | 一种用于新型冠状病毒检测的sers芯片及其制备方法 |
CN112326630B (zh) * | 2021-01-04 | 2021-03-16 | 中国工程物理研究院激光聚变研究中心 | 一种用于新型冠状病毒检测的sers芯片及其制备方法 |
CN113549712A (zh) * | 2021-09-22 | 2021-10-26 | 广州金域医学检验中心有限公司 | 基于拉曼光谱的新型冠状病毒核酸检测试剂盒及方法 |
CN113549712B (zh) * | 2021-09-22 | 2022-03-08 | 广州金域医学检验中心有限公司 | 基于拉曼光谱的新型冠状病毒核酸检测试剂盒及方法 |
CN114085930A (zh) * | 2022-01-21 | 2022-02-25 | 广州国家实验室 | 用于检测SARS-CoV-2核酸的SERS检测试剂盒及方法 |
CN114085930B (zh) * | 2022-01-21 | 2022-04-12 | 广州国家实验室 | 用于检测SARS-CoV-2核酸的SERS检测试剂盒及方法 |
CN114577776A (zh) * | 2022-03-01 | 2022-06-03 | 哈尔滨工业大学 | 一种检测液体中新型冠状病毒Spike蛋白的SERS芯片的制备方法和使用方法 |
CN114577776B (zh) * | 2022-03-01 | 2022-10-28 | 哈尔滨工业大学 | 一种检测液体中新型冠状病毒Spike蛋白的SERS芯片的制备方法和使用方法 |
CN115142062A (zh) * | 2022-05-10 | 2022-10-04 | 长春理工大学 | 一种自清洁复合sers基底及其制备方法 |
CN115142062B (zh) * | 2022-05-10 | 2023-10-27 | 长春理工大学 | 一种自清洁复合sers基底及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111441022A (zh) | 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用 | |
Yi-Xian et al. | Application of aptamer based biosensors for detection of pathogenic microorganisms | |
Hun et al. | Functionalized fluorescent core-shell nanoparticles used as a fluorescent labels in fluoroimmunoassay for IL-6 | |
CN109932407B (zh) | 一种基于原位信号放大的夹心型前列腺特异性抗原光电化学检测方法 | |
CN111965231A (zh) | 一种用于病毒检测的半导体传感器及其制备方法与应用 | |
CN109030829A (zh) | 一种均相化学发光法检测犬il-6的定量试剂盒及其使用方法 | |
CN110606859B (zh) | 聚集诱导发光化合物、其制备方法及其检测病毒的应用 | |
US12050225B2 (en) | Ultra-fast and highly-sensitive chemiluminescent immunoassay method for detecting thyroid stimulating hormone | |
CN108872608A (zh) | 一种用于检测犬瘟热病毒抗体的时间分辨荧光免疫试剂盒 | |
CN114923968A (zh) | 一种检测新冠病毒核壳蛋白的光电化学生物传感器的制备方法及应用 | |
CN109856076B (zh) | 检测细胞的组合物及检测方法 | |
Shen et al. | Bovine serum albumin-protected gold nanoclusters for sensing of SARS-CoV-2 antibodies and virus | |
CN101712866A (zh) | 具有可见光激发性能的纳米铕荧光微粒及其制备和应用 | |
CN110632060B (zh) | 基于光子晶体增强电化学发光的寨卡病毒检测试剂盒及其制备方法 | |
CN202583209U (zh) | 一种胃蛋白酶原ⅰ光激发化学发光检测试剂盒 | |
Pang et al. | Sensitive Dual-Signal ELISA Based on Specific Phage-Displayed Double Peptide Probes with Internal Filtering Effect to Assay Monkeypox Virus Antigen | |
CN108872609A (zh) | 一种用于检测犬细小病毒抗体的时间分辨荧光免疫试剂盒 | |
CN102654501A (zh) | 一种胃蛋白酶原ⅱ的光激发化学发光检测方法及试剂盒 | |
US20240319186A1 (en) | Nanowire-based immunofluorescence kit for detecting sars coronavirus 2 antibody, and use thereof | |
WO2023082544A1 (zh) | 一种检测covid-19抗体的血糖生物传感器 | |
CN102279172A (zh) | 一种检测手足口病病原的纳米探针芯片及其应用方法 | |
CN112730832B (zh) | 一种covid-19抗原检测卡、其制备方法和应用 | |
CN111830101B (zh) | 一种掺杂二茂铁甲酸的ZIF-8猝灭RuSi纳米微粒检测降钙素原的电化学发光传感器 | |
Liu et al. | Near-infrared responsive gold nanorods for highly sensitive colorimetric and photothermal lateral flow immuno-detection of SARS-CoV-2 | |
Feng et al. | An ultrasensitive electrochemiluminescence immunosensor for SARS-CoV-2 nucleocapsid protein detection based on signal amplification strategy of DMSN@ QDs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200724 |
|
RJ01 | Rejection of invention patent application after publication |