CN115142062B - 一种自清洁复合sers基底及其制备方法 - Google Patents

一种自清洁复合sers基底及其制备方法 Download PDF

Info

Publication number
CN115142062B
CN115142062B CN202210502956.6A CN202210502956A CN115142062B CN 115142062 B CN115142062 B CN 115142062B CN 202210502956 A CN202210502956 A CN 202210502956A CN 115142062 B CN115142062 B CN 115142062B
Authority
CN
China
Prior art keywords
substrate
copper
self
based graphene
rectangular pyramid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210502956.6A
Other languages
English (en)
Other versions
CN115142062A (zh
Inventor
张景然
王博涵
石广丰
张心明
李俊烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202210502956.6A priority Critical patent/CN115142062B/zh
Publication of CN115142062A publication Critical patent/CN115142062A/zh
Application granted granted Critical
Publication of CN115142062B publication Critical patent/CN115142062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种自清洁复合SERS基底及其制备方法,包括:在铜基石墨烯基底表面制备出四棱锥坑的阵列结构;将ZnO薄膜沉积在铜基石墨烯基底的四棱锥坑的阵列结构表面;将金纳米粒子溅射至ZnO薄膜的表面以获得自清洁复合SERS基底。与现有技术相比,本发明制得的复合SERS基底能实现自清洁功能,克服了传统SERS基底可回收性差的缺点,提高了SERS基底拉曼检测效率。

Description

一种自清洁复合SERS基底及其制备方法
技术领域
本发明涉及SERS基底制备领域,特别是一种自清洁复合SERS基底及其制备方法。
背景技术
表面增强拉曼散射(SERS)效应是指在特殊制备的一些金属良导体表面或溶胶中,在激发区域内,由于样品表面或近表面的电磁场的增强导致吸附分子的拉曼散射信号比普通拉曼散射(NRS)信号大大增强的现象。SERS增强主要包括化学增强(chemicalenhancement,CM)和电磁增强(electromagnetic enhancement,EM),其中电磁增强起主导作用。EM是受表面等离子体共振(Surface plasmon resonance,SPR)现象,引起局域电磁场增强。SERS光谱技术有效地克服了常规拉曼光谱灵敏度低的缺点,因而被广泛地应用于表面科学、分析科学和生物科学等各个领域。自SERS技术问世以来,SERS基底的制备成为该领域研究的主要方面之一。基底的材料和多种表面微纳结构的制备(如采用纳米压痕技术在基底表面制备微纳结构)已应用于制作SERS基底。然而传统SERS基底存在成本高、效率低、可回收性差等问题,限制了其实际应用。
发明内容
本发明的目的是要解决现有技术中存在的不足,提供一种自清洁复合SERS基底及其制备方法。
为达到上述目的,本发明是按照以下技术方案实施的:
一种自清洁复合SERS基底的制备方法,包括以下步骤:
S1、在铜基石墨烯基底表面制备出四棱锥坑的阵列结构;
S2、将ZnO薄膜沉积在铜基石墨烯基底的四棱锥坑的阵列结构表面;
S3、将金纳米粒子溅射至ZnO薄膜的表面以获得自清洁复合SERS基底。
进一步地,所述步骤S1具体包括:
铜基石墨烯基底表面使用乙醇清洗去除杂质,并置于微纳加工实验装置的高精度位移台上,再使用四棱锥金刚石针尖以预设的二维平面水平方向f1和二维垂直方向f2控制高精度位移台的进给量f1A、f2B以及针尖和铜基石墨烯基底之间的法向力Fz在铜基石墨烯表面上加工出四棱锥坑的阵列结构,f1A表示在f1方向中,两个待加工出的相邻四棱锥坑的预设间距为Aμm,f2B表示在f2方向中,两个待加工出的相邻四棱锥坑的预设间距为Bμm,A为3-4,B为3-5,法向力Fz=10mN。
进一步地,所述步骤S2具体包括:
S21、用吹气球去除四棱锥坑的阵列结构表面的杂质以及颗粒;
S22、打开原子层沉积系统的罗茨泵组合和分子泵将腔体抽真空至0.00001Torr;
S23、给腔体充气到常压下,迅速将清洗好的铜基石墨烯基底放入沉积室中并抽真空至0.00001Torr,然后关闭分子泵;
S24、设定管道温度为150℃、腔体温度为100℃、衬底温度为200℃,并热平衡两小时,以保证温度变化范围不超过设定温度值的±0.5℃;
S25、调节锌源二乙基锌和水源H2O两管路流量计的载气值,使工艺压力稳定在0.05Torr-0.07Torr,前驱体源的两管道载气值均设为30sccm;
S26、设置好前驱体源二乙基锌和H2O的暴露时间为150ms,多余反应物的吹扫时间为60s,运行程序,沉积氧化锌薄膜;
S27、待生长结束后,等待铜基石墨烯基底温度冷却至50℃以下,取出。
进一步地,所述步骤S3具体包括:
通过电子束蒸发系统(10kV,10-6mbar)在ZnO薄膜表面溅射金纳米粒子,其中电子束蒸发系统的压力设置为10-6mbar,高压电压为10kV,高压束电流为0.35A,溅射时间为10min。
优选地,所述A为3,B为3。
另外,本发明还提供了一种利用上述自清洁复合SERS基底的制备方法制得的自清洁复合SERS基底。
与现有技术相比,本发明采用维氏针尖法向力控制的方法在铜基石墨烯基底表面制备微纳结构,采用四棱锥针尖通过改变进给参数(f1、f2)及法向载荷对铜基石墨烯表面制备微纳阵列结构;随后,采用原子层沉积技术,以脉冲的形式将气相前驱体交替并反复地通入反应器中,在微纳结构表面发生化学吸附反应,在微纳结构表面沉积ZnO薄膜;最后,采用磁控溅射的方法将金纳米粒子溅射至ZnO薄膜的表面以获得自清洁复合SERS基底。本发明制得的复合SERS基底能实现自清洁功能,克服了传统SERS基底可回收性差的缺点,提高了SERS基底拉曼检测效率。
附图说明
图1为自清洁复合SERS基底的制备流程示意图。
图2为微纳加工实验装置在铜基石墨烯表面制备微纳结构的工作原理示意图。
图3为制备的加工参数为f13f23的铜基石墨烯表面微纳结构的原子力图。
图4为制备的加工参数为为f13f23的铜基石墨烯表面微纳结构的截面形貌图。
图5为制备的加工参数为f13f25的铜基石墨烯表面微纳结构的原子力图。
图6为制备的加工参数为f13f25的铜基石墨烯表面微纳结构的截面形貌图。
图7为制备的加工参数为f13f23的铜基石墨烯表面微纳结构的SEM形貌图。
图8为百草枯溶液在f13f23、f13f25、f14f25三组基底上的SERS光谱图。
图9为紫外光不同照射时间下SERS基底上百草枯的SERS光谱图。
图10为制备的SERS基底经过5个循环自清洗前后,其表面上的百草枯溶液的SERS光谱图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。此处所描述的具体实施例仅用于解释本发明,并不用于限定发明。
实施例1
如图1所示,本实施例的自清洁复合SERS基底的制备方法,具体步骤如下:
S1、在铜基石墨烯基底表面制备出四棱锥坑的阵列结构:
铜基石墨烯基底表面使用乙醇清洗去除杂质,并置于微纳加工实验装置的高精度位移台上,如图2所示,再使用四棱锥金刚石针尖以预设的二维平面水平方向f1和二维垂直方向f2控制高精度位移台的进给量f1A、f2B以及针尖和铜基石墨烯基底之间的法向力Fz在铜基石墨烯表面上加工出四棱锥坑的阵列结构,f1A表示在f1方向中,两个待加工出的相邻四棱锥坑的预设间距为Aμm,f2B表示在f2方向中,两个待加工出的相邻四棱锥坑的预设间距为Bμm,A为3,B为3,法向力Fz=10mN;为方便表达,铜基石墨烯基底在进行压痕处理时,在f1方向中,当两个相邻凹坑结构的预设间距为3μm时,简述为f13;在f2方向中,当两相邻结构的预设间距为3μm时,简述为f23,所以,在f1与f2方向上,两相邻凹坑结构预设间距都为3μm时,将其对应的拉曼增强结构名称简写为f13f23;
S2、将ZnO薄膜沉积在铜基石墨烯基底的四棱锥坑的阵列结构表面:
S21、用吹气球去除四棱锥坑的阵列结构表面的杂质以及颗粒;
S22、打开原子层沉积系统的罗茨泵组合和分子泵将腔体抽真空至0.00001Torr;
S23、给腔体充气到常压下,迅速将清洗好的铜基石墨烯基底放入沉积室中并抽真空至0.00001Torr,然后关闭分子泵;
S24、设定管道温度为150℃、腔体温度为100℃、衬底温度为200℃,并热平衡两小时,以保证温度变化范围不超过设定温度值的±0.5℃;
S25、调节锌源二乙基锌和水源H2O两管路流量计的载气值,使工艺压力稳定在0.06Torr,前驱体源的两管道载气值均设为30sccm;
S26、设置好前驱体源二乙基锌和H2O的暴露时间为150ms,多余反应物的吹扫时间为60s,运行程序,沉积氧化锌薄膜;
S27、待生长结束后,等待铜基石墨烯基底温度冷却至50℃以下,取出;
S3、将金纳米粒子溅射至ZnO薄膜的表面以获得自清洁复合SERS基底:
通过电子束蒸发系统(10kV,10-6mbar)在ZnO薄膜表面溅射金纳米粒子,其中电子束蒸发系统的压力设置为10-6mbar,高压电压为10kV,高压束电流为0.35A,溅射时间为10min。
实施例2
与实施例1的主要不同在于,A为3,B为5,法向力Fz=10mN;将其对应的拉曼增强结构名称简写为f13f25。
实施例3
与实施例1的主要不同在于,A为4,B为5,法向力Fz=10mN;将其对应的拉曼增强结构名称简写为f14f25。
使用原子力显微镜(AFM)对上述实施例1和实施例2制备得到的铜基石墨烯基底的四棱锥坑的阵列结构进行表征,得到原子力图像及其相应的截面图。其中图3为f13f23的原子力图像,图5为f13f25的原子力图像,从图中可以看出,在不同进给参数(f1、f2)下,阵列结构都具有良好的均匀性和周期性。并且由两组基底截面图(图4,图6)可以看出,单个结构保持着高度完整的四棱锥形状。其中,f13f23基底单一四棱锥坑的深度(H)为170.686nm,宽度(L)为3.033μm,f13f25单一四棱锥坑的深度(H)为225.443nm,宽度(L)为2.824μm。
为了更加清晰的观察SERS基底的形貌情况,使用扫描电子显微镜镜(SEM)对实施例1制备得到的铜基石墨烯基底的四棱锥坑的阵列结构进行表征,得到SEM图像。其中图7为f13f23的SEM图,由图可知,整体结构呈现出整齐的四棱锥状形貌排列。上述所制备的四棱锥坑的阵列结构能够使基底表面产生更多的热点,引起局域表面等离激元共振(LSPR)使局域电磁场增强,从而增强拉曼信号。
使用百草枯(浓度为10-6mol/L)探针分子对上述实施例1、实施例2、实施例3所制备的上述SERS基底的四棱锥坑的阵列结构进行拉曼强度检测,如图8,得到百草枯溶液的SERS光谱图。由图8可知,通过上述三组不同加工参数制备的微纳结构检测百草枯溶液的拉曼强度对比,f13f23结构的SERS基底拉曼增强效果最好。
实施例4
SERS基底的自清洁性能对实际的SERS光谱检测应用具有重要意义,为了验证本发明制备的自清洁复合SERS基底自清洁性能,本实施例选用百草枯溶液(浓度为10-6mol/L)作为探针分子,检测实施例1所制备的SERS基底的自清洁性能,具体步骤如下:
(1)将百草枯附着在所制备的SERS基底上,通过拉曼光谱仪测得百草枯溶液的SERS光谱图;
(2)将附着了百草枯溶液的SERS基底放置在氙灯(功率300W)下进行紫外光照射,每隔5min使用拉曼光谱仪检测百草枯的拉曼信号,得到百草枯溶液的SERS光谱图。图9为紫外光不同照射时间下百草枯的SERS光谱图,由图可知,随着光照时间的增加,百草枯的拉曼特征峰强度在不断减小,表明随着光催化反应不断进行,百草枯不断被分解,在经过紫外光照射25min后,百草枯溶液的拉曼特征峰完全消失,表明百草枯溶液被完全分解,证明所制备的自清洁复合SERS基底具有良好的自清洁性能;
(3)取上述经过自清洁过程的SERS基底,用去离子水和乙醇洗涤5次,烘箱60℃烘干,将百草枯溶液(浓度为10-6mol/L)重新吸附在SERS基底表面,检测百草枯溶液的SERS信号,为了研究SERS信号的重现性和稳定性,重复5次该步骤进行对比。图10为制备的SERS基底经过5次自清洗循环前后,其表面上百草枯溶液的SERS光谱图,由图可知,在紫外光照射25min后,百草枯溶液在SERS基底上没有表现出任何拉曼信号。然而,当SERS基底重新作为底物检测百草枯分子的SERS信号时,可以明显观察到百草枯溶液的强拉曼峰。此外,自清洗过程重复5次后,SERS基底上的百草枯溶液的SERS信号与新的SERS基底上检测到的信号一样强。测试结果表明,所制备的自清洁复合SERS基底具有良好的可重用性。
综上所述,本发明制得的复合SERS基底能实现自清洁功能,克服了传统SERS基底可回收性差的缺点,提高了SERS基底拉曼检测效率。
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。

Claims (4)

1.一种自清洁复合SERS基底的制备方法,其特征在于,包括以下步骤:
S1、在铜基石墨烯基底表面制备出四棱锥坑的阵列结构;
所述步骤S1具体包括:
铜基石墨烯基底表面使用乙醇清洗去除杂质,并置于微纳加工实验装置的高精度位移台上,再使用四棱锥金刚石针尖以预设的二维平面水平方向f1和二维垂直方向f2控制高精度位移台的进给量f1A、f2B以及针尖和铜基石墨烯基底之间的法向力Fz在铜基石墨烯表面上加工出四棱锥坑的阵列结构,f1A表示在f1方向中,两个待加工出的相邻四棱锥坑的预设间距为Aμm,f2B表示在f2方向中,两个待加工出的相邻四棱锥坑的预设间距为Bμm,A为3-4,B为3-5,法向力Fz=10mN;
S2、将ZnO薄膜沉积在铜基石墨烯基底的四棱锥坑的阵列结构表面;
所述步骤S2具体包括:
S21、用吹气球去除四棱锥坑的阵列结构表面的杂质以及颗粒;
S22、打开原子层沉积系统的罗茨泵组合和分子泵将腔体抽真空至0.00001Torr;
S23、给腔体充气到常压下,迅速将清洗好的铜基石墨烯基底放入沉积室中并抽真空至0.00001Torr,然后关闭分子泵;
S24、设定管道温度为150℃、腔体温度为100℃、衬底温度为200℃,并热平衡两小时,以保证温度变化范围不超过设定温度值的±0.5℃;
S25、调节锌源二乙基锌和水源H2O两管路流量计的载气值,使工艺压力稳定在0.05Torr-0.07Torr,前驱体源的两管道载气值均设为30sccm;
S26、设置好前驱体源二乙基锌和H2O的暴露时间为150ms,多余反应物的吹扫时间为60s,运行程序,沉积氧化锌薄膜;
S27、待生长结束后,等待铜基石墨烯基底温度冷却至50℃以下,取出;
S3、将金纳米粒子溅射至ZnO薄膜的表面以获得自清洁复合SERS基底。
2.根据权利要求1所述的自清洁复合SERS基底的制备方法,其特征在于,所述步骤S3具体包括:
通过电子束蒸发系统(10kV,10-6mbar)在ZnO薄膜表面溅射金纳米粒子,其中电子束蒸发系统的压力设置为10-6mbar,高压电压为10kV,高压束电流为0.35A,溅射时间为10min。
3.根据权利要求2所述的自清洁复合SERS基底的制备方法,其特征在于:所述A为3,B为3。
4.一种如根据权利要求1所述的自清洁复合SERS基底的制备方法制得的自清洁复合SERS基底。
CN202210502956.6A 2022-05-10 2022-05-10 一种自清洁复合sers基底及其制备方法 Active CN115142062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210502956.6A CN115142062B (zh) 2022-05-10 2022-05-10 一种自清洁复合sers基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210502956.6A CN115142062B (zh) 2022-05-10 2022-05-10 一种自清洁复合sers基底及其制备方法

Publications (2)

Publication Number Publication Date
CN115142062A CN115142062A (zh) 2022-10-04
CN115142062B true CN115142062B (zh) 2023-10-27

Family

ID=83406864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210502956.6A Active CN115142062B (zh) 2022-05-10 2022-05-10 一种自清洁复合sers基底及其制备方法

Country Status (1)

Country Link
CN (1) CN115142062B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116728909A (zh) * 2023-06-13 2023-09-12 中北大学 一种具有自清洁功能的高灵敏性复合sers基底及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237197A (zh) * 2014-07-30 2014-12-24 东南大学 一种氧化石墨烯-银纳米粒子-二氧化钛纳米管阵列材料及其制备方法与应用
CN105572100A (zh) * 2016-03-03 2016-05-11 张志刚 一种表面增强拉曼散射衬底及其制备方法
CN107543813A (zh) * 2017-08-22 2018-01-05 中国工程物理研究院化工材料研究所 一种表面增强拉曼有序复合阵列芯片的制备方法及其应用
CN108459003A (zh) * 2018-01-17 2018-08-28 安徽农业大学 一种银纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法
CN109440104A (zh) * 2018-10-16 2019-03-08 上海纳米技术及应用国家工程研究中心有限公司 超疏水表面sers基底的制备及产品和应用
CN110697650A (zh) * 2019-11-18 2020-01-17 长春理工大学 一种复合sers基底及其制备方法和应用
CN111441022A (zh) * 2020-04-20 2020-07-24 上海纳米技术及应用国家工程研究中心有限公司 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用
CN112051254A (zh) * 2020-08-24 2020-12-08 长春理工大学 一种拉曼增强结构及其制备方法和应用
CN112378893A (zh) * 2020-11-11 2021-02-19 长春理工大学 一种用于农药检测的复合sers基底的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460224B2 (en) * 2005-12-19 2008-12-02 Opto Trace Technologies, Inc. Arrays of nano structures for surface-enhanced Raman scattering
EP2113078A4 (en) * 2007-01-29 2013-04-17 Nanexa Ab ACTIVE SENSOR SURFACE AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237197A (zh) * 2014-07-30 2014-12-24 东南大学 一种氧化石墨烯-银纳米粒子-二氧化钛纳米管阵列材料及其制备方法与应用
CN105572100A (zh) * 2016-03-03 2016-05-11 张志刚 一种表面增强拉曼散射衬底及其制备方法
CN107543813A (zh) * 2017-08-22 2018-01-05 中国工程物理研究院化工材料研究所 一种表面增强拉曼有序复合阵列芯片的制备方法及其应用
CN108459003A (zh) * 2018-01-17 2018-08-28 安徽农业大学 一种银纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法
CN109440104A (zh) * 2018-10-16 2019-03-08 上海纳米技术及应用国家工程研究中心有限公司 超疏水表面sers基底的制备及产品和应用
CN110697650A (zh) * 2019-11-18 2020-01-17 长春理工大学 一种复合sers基底及其制备方法和应用
CN111441022A (zh) * 2020-04-20 2020-07-24 上海纳米技术及应用国家工程研究中心有限公司 一种sers增强的新冠病毒检测芯片的制备方法及其产品和应用
CN112051254A (zh) * 2020-08-24 2020-12-08 长春理工大学 一种拉曼增强结构及其制备方法和应用
CN112378893A (zh) * 2020-11-11 2021-02-19 长春理工大学 一种用于农药检测的复合sers基底的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Graphene isolated Au nanoparticle arrays with high reproducibilityfor high-performance surface-enhanced Raman scattering;Shicai Xua,et al.;《Sensors and Actuators B: Chemical》;全文 *
基于Cu/ZnO/Ag电荷转移基底的PAPT分子SERS光谱研究;毛竹,等;《光谱学与光谱分析》;第30卷(第11期);全文 *
马正先.《纳米氧化锌制备原理与技术》.中国轻工业出版社,2009,199. *

Also Published As

Publication number Publication date
CN115142062A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
Wang et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays
KR101448111B1 (ko) 표면 증강 라만 분광용 기판 및 이의 제조방법
CN104746049B (zh) 利用ald制备金属纳米间隙的表面增强拉曼散射基底的方法
CN103981488B (zh) 一种通过快速热处理制备氧化钒纳米颗粒阵列的方法
John et al. Use of atomic layer deposition to improve the stability of silver substrates for in situ, high‐temperature SERS measurements
CN115142062B (zh) 一种自清洁复合sers基底及其制备方法
CN1804122A (zh) 一种可移植超薄纳米孔金膜及其制备方法
CN111455339B (zh) 用于高吸收比材料的垂直碳纳米管阵列的制备方法
CN113567414A (zh) 一种zif8衍生半导体异质结-银sers基底及其制备方法和应用
CN109115746B (zh) 一种表面增强拉曼活性基底及其制备方法
CN102817006B (zh) 利用磁控溅射对原子力显微镜探针进行金膜修饰的方法
Hu et al. Preparation and SERS performance of gold nanoparticles-decorated patterned silicon substrate
CN111763935A (zh) 一种贵金属沉积在氧化钛薄膜的sers基底制备方法
CN112432938B (zh) 一种可重复使用的拉曼增强基底及其制备方法与应用
CN108823541B (zh) 一种表面增强拉曼散射活性基底的制备方法
CN108693166B (zh) 一种基于氮化铝纳米结构的表面增强拉曼散射基底的制造方法
CN112626473B (zh) 一种sers基底材料的制备方法以及sers基底材料
CN108362678B (zh) 一种利用中空Ag-Au合金复合结构微纳阵列检测三聚氰胺的方法
Liu et al. Detection and plasma assisted degradation of dye on reusable gold coated tungsten nanofuzz array surface-enhanced Raman scattering substrate
Hagger et al. Rapid single step atmospheric pressure plasma jet deposition of a SERS active surface
CN110412011B (zh) 一种氧化钼纳米片表面增强拉曼散射基底的制备方法
CN111982883A (zh) 一种石墨烯/银十六角星阵列拉曼增强基底及其制备方法
Fan et al. Large-area Co (OH) 2 nanoflower array films decorated with Ag nanoparticles as sensitive SERS substrates
CN112795870A (zh) 一种纳米链结构阵列的制备方法及应用
CN112176296A (zh) 一种自组装可调间隙的金纳米薄膜制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant