CN109440104A - 超疏水表面sers基底的制备及产品和应用 - Google Patents

超疏水表面sers基底的制备及产品和应用 Download PDF

Info

Publication number
CN109440104A
CN109440104A CN201811202166.6A CN201811202166A CN109440104A CN 109440104 A CN109440104 A CN 109440104A CN 201811202166 A CN201811202166 A CN 201811202166A CN 109440104 A CN109440104 A CN 109440104A
Authority
CN
China
Prior art keywords
substrate
preparation
sers substrate
hydrophobic surface
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811202166.6A
Other languages
English (en)
Other versions
CN109440104B (zh
Inventor
何丹农
卢静
李砚瑞
金彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201811202166.6A priority Critical patent/CN109440104B/zh
Publication of CN109440104A publication Critical patent/CN109440104A/zh
Application granted granted Critical
Publication of CN109440104B publication Critical patent/CN109440104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及到一种超疏水表面SERS基底的制备及产品和应用,将硅片/玻片基底清洁处理,通过加入适量酸溶液调整质量比范围为1:1.1‑1:1.4的硝酸锌和六亚甲基四胺混合溶液的pH值至5.4‑6.2后;将处理的基片放入其中,在80‑100℃条件下油浴反应后取出,乙醇清洗后在50℃下烘干;将烘干的基底放入磁控溅射系统,沉积一定厚度的金/银纳米薄膜,即可获得有超疏水表面结构的SERS基底。本发制备的超疏水SERS基底可以在无需额外清理的条件下用于不同分子的快速检测,对SERS基底在实际环境中的应用具有重要意义。

Description

超疏水表面SERS基底的制备及产品和应用
技术领域
本发明属于表面分析和纳米结构制备领域,具体涉及到一种超疏水表面SERS基底的制备及产品和应用。
背景技术
SERS(Surface-enhanced Raman scattering)中文意义为表面增强拉曼散射。SERS技术能够用极低浓度的分子探测,因而在环境监测、食品安全、生物医药等领域具有广泛的应用。基于贵金属粒子的SERS基底制备技术近些年得到了快速发展,不同金、银纳米颗粒及复合结构的成功制备,有效提升了SERS基底的灵敏度;制备技术的发展,使得大面积均匀的SERS基底制备成为可能。但SERS基底实际检测过程中,表面会有待检测分子的残留,会影响SERS基底再次使用时的“指纹”识别特征。基于此,具有自清洁能力的疏水表面在SERS基底制备中开始受到关注。
朱利等在ZL2016101279548中提供了一种疏水表面固相单层均匀SERS基底的制备方法,主要是通过将疏水材料硅烷化后再沉积上金属纳米颗粒,该方案主要改进了金属颗粒在疏水材料表面分布不均匀问题。
而在文献报导中,不少研究人员开始将仿生结构疏水表面与SERS基底制备结合起来,极大促进了可回收SERS基底的发展。王等采用激光烧蚀的方法在硅基底上构建疏水结构后沉积银纳米薄膜,获得的具有低黏附性超疏水表面的SERS基底,可探测浓度低至10-14M的罗丹明6G溶液,在乙醇溶液中浸泡后即可重复使用(Low-adhesive superhydrophobicsurface-enhanced Raman spectroscopy substrate fabricated by femtosecond laserablation for ultratrace molecular detection,J. Mater. Chem. B, 2017,5, 777-784)。高等采用电化学沉积法,在铜箔上制备了具有疏水结构的Cu(OH)2纳米针阵列,在吸附了银纳米颗粒进一步修饰后,获得了具有再次使用前免洗特性的SERS基底。(Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable andsensitive SERS sensing in real environment, Sensors and Actuators B 267(2018) 129–135)。
但上述制备的疏水表面SERS基底的技术方案,制备工艺复杂、可重复性较差,在批量生产和大范围内使用上存在较多问题。
发明内容
针对超疏水表面SERS基底制备技术工艺复杂、可重复性差的问题,本发明的目的在于提供一种超疏水表面SERS基底的制备方法。
本发明的再一目的在于:提供一种上述方法制备的超疏水表面SERS基底产品。
本发明的又一目的在于:提供一种上述产品的应用。
本发明目的通过下述方案实现:一种超疏水表面SERS基底的制备方法,通过在硅片/玻璃基底表面构建纳米结构ZnO形成疏水表面后溅射金/银纳米薄膜的方式得到超疏水表面SERS基底,包括如下步骤:
1)对硅片/玻璃片基底进行清洗及预处理,具体包括:用丙酮、乙醇、去离子水依次超声清洗后在浓盐酸浸泡,取出后用去离子水冲洗干净,氮气枪吹干;
2)配置生成疏水结构的反映溶液:具体包括:按1:1.1-1:1.4物质量比称取硝酸锌和六亚钾基四铵,加入去离子水后搅拌生成混合溶液,加入适量酸溶液调整缓和溶液的pH值5.4-6.2,包括5.4、5.5、5.6、5.7、5.8、5.9、6.0、6.1、6.2;
3)将步骤1)中预处理过的基底放入步骤2)所获得的混合溶液,在80-100℃油浴反应后取出,用乙醇清洗后烘干,得干燥后的基底;
4) 将步骤3)中干燥后的基底放入磁控溅射系统,溅射一定厚度的金/银纳米薄膜,即可获得超疏水表面SERS基底。
其中,步骤1)中的超声清洗时间为10分钟,浓盐酸浸泡时间不少于20分钟。
步骤2)中混合溶液中硝酸锌的浓度为1.25mM。
步骤2)中调节混合溶液pH值的酸溶液为盐酸、硝酸、硫酸、氢氟酸。
步骤3)中油浴反应时间为1.5-2小时;烘干温度控制在40-60°C。
步骤4)中金/银纳米薄膜的厚度为10-20nm。
本发明提供一种超疏水表面SERS基底,根据上述任一所述方法制备得到。
本发明提供一种超疏水表面SERS基底在拉曼检测中的应用。
与现有的技术方案相比,本发明的有益效果为:
本发明通过在硅片/玻璃基底表面构建纳米结构ZnO形成疏水表面后溅射金/银纳米薄膜的方式,获得了能够可回收使用的具有超疏水表面结构的SERS基底。该疏水SERS基底可以在无需额外清理的条件下用于不同分子的快速检测,且制备方法简单,工艺易控,对大规模制备适用于各种实际环境的疏水SERS基底具有重要作用。
附图说明
图1为实施例2交替测试罗丹明溶液(10-7mol/L)和液晶5CB分子的拉曼谱图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
1)将购买的玻片切割为2cm*2cm的基片,用丙酮、乙醇、去离子水依次分别超声清洗10分钟取出,在浓盐酸中浸泡20分钟后取出,用去离子水冲洗干净后高纯氮气吹干备用;
2)称取0.5mmol硝酸锌和0.7mmol六亚甲基四胺,加如40mL去离子水搅拌形成混合溶液,加入适量硝酸调整溶液PH值为5.4-6.2之间,更优的为5.8;
3)将步骤1中预处理过的玻片放入步骤2中制成的混合溶液中,在80℃下油浴反应1.5小时后取出,乙醇清洗后在60°C下烘干;
4)将步骤3中干燥后的基底放入磁控溅射系统,溅射20纳米厚的银纳米薄膜。即可获得超疏水表面SERS基底。
实施例2
1)将购买的硅片切割为2cm*2cm的基片,用丙酮、乙醇、去离子水依次分别超声清洗10分钟取出,在浓盐酸中浸泡20分钟后取出,用去离子水冲洗干净后用、高纯氮气吹干备用;
2)称取0.5mmol硝酸锌和0.6mmol六亚甲基四胺,加如40mL去离子水搅拌形成混合溶液,加入适量氢氟酸调整溶液PH值在5.4-6.2之间,更优的为5.8;.
3)将步骤1中预处理过的玻片放入步骤2中制成的混合溶液中,在90℃下油浴反应2小时后取出,乙醇清洗后50℃烘干;
4)将步骤3中干燥后的基底放入磁控溅射系统,溅射15纳米厚的银纳米薄膜。即可获得超疏水表面SERS基底。
实施例3
1)将购买的玻片切割为2cm*2cm的基片,用丙酮、乙醇、去离子水依次分别超声清洗10分钟取出,在浓盐酸中浸泡20分钟后取出,用去离子水冲洗干净后用、高纯氮气吹干备用;
2)称取0.5mmol硝酸锌和0.55mmol六亚甲基四胺,加如40mL去离子水搅拌形成混合溶液,加入适量盐酸调整溶液PH值在5.4-6.2之间, 更优的为5.8;
3)将步骤1中预处理过的玻璃基底放入步骤2中制成的混合溶液中,在100℃温度的油浴中反应1.5小时后取出,乙醇清洗后40℃烘干;
4)将步骤3中干燥后的基底放入磁控溅射系统,溅射20纳米度的金纳米薄膜,即可获得超疏水表面SERS基底。
实施例4
1)将购买的硅片切割为2cm*2cm的基片,用丙酮、乙醇、去离子水依次分别超声清洗10分钟取出,在浓盐酸中浸泡20分钟后取出,用去离子水冲洗干净后用、高纯氮气吹干备用;
2)称取0.5mmol硝酸锌和0.65mmol六亚甲基四胺,加如40mL去离子水搅拌形成混合溶液,加入适量氢氟酸调整溶液PH值在5.4-6.2之间, 更优的为5.8;
3)将步骤1中预处理过的玻璃基底放入步骤2中制成的混合溶液中,在80℃温度的油浴中反应2小时后取出,乙醇清洗后60℃烘干;
4)将步骤3中干燥后的基底放入磁控溅射系统,溅射15纳米厚的金纳米薄膜,即可获得超疏水表面SERS基底。
实施例5
1)将购买的波片切割为2cm*2cm的硅片,用丙酮、乙醇、去离子水依次分别超声清洗10分钟取出,在浓盐酸中浸泡20分钟后取出,用去离子水冲洗干净后用、高纯氮气吹干备用;
2)称取0.5mmol硝酸锌和0.65mmol六亚甲基四胺,加如40mL去离子水搅拌形成混合溶液,加入适量硫酸调整溶液PH值在5.4-6.2之间,更优的为5.8;
3)将步骤1中预处理过的玻璃基底放入步骤2中制成的混合溶液中,在85℃下油浴中1.5小时后取出,乙醇清洗后50℃烘干。
4)将步骤3中干燥后的基底放入磁控溅射系统,溅射10纳米厚的银纳米薄膜。即可获得超疏水表面SERS基底。
实施例6
将购买的硅片切割为2cm*2cm的硅片,用丙酮、乙醇、去离子水依次分别超声清洗10分钟取出,在浓盐酸中浸泡20分钟后取出,用去离子水冲洗干净后用、高纯氮气吹干备用;
2)称取0.5mmol硝酸锌和0.55mmol六亚甲基四胺,加如40mL去离子水搅拌形成混合溶液,加入适量氢氟酸调整溶液PH值在5.4-6.2之间, 更优的为5.8;
3)将步骤1中预处理过的玻璃基底放入步骤2中制成的混合溶液中,在85℃下油浴反应2小时后取出,乙醇清洗后50℃下烘干。
4) 将步骤3中干燥后的基底放入磁控溅射系统,溅射10纳米厚的金纳米薄膜,即可获得超疏水表面SERS基底。

Claims (9)

1.一种超疏水表面SERS基底的制备方法,通过在硅片/玻璃基底表面构建纳米结构ZnO形成疏水表面后溅射金/银纳米薄膜的方式得到超疏水表面SERS基底,包括如下步骤:
1) 对硅片/玻璃片基底进行清洗及预处理,包括:用丙酮、乙醇、去离子水依次超声清洗后在浓盐酸浸泡,取出后用去离子水冲洗干净,氮气枪吹干;
2)配置生成疏水结构的反映溶液,包括:按质量比范围为1:1.1-1:1.4称取硝酸锌和六亚钾基四铵,加入去离子水后搅拌生成混合溶液,加入适量酸溶液调整混合溶液的pH值至5.4-6.2;
3)将步骤1)中预处理过的基底放入步骤2)获得的混合溶液中,在80-100℃油浴反应后取出,用乙醇清洗后烘干,得干燥后的基底;
4)将步骤3)干燥后的基底放入磁控溅射系统,溅射一定厚度的金/银纳米薄膜,即可获得超疏水表面SERS基底。
2.根据权利要求1所述的制备方法,其特征在于步骤1)中的超声清洗时间为10分钟,浓盐酸浸泡时间不少于20分钟。
3.根据权利要求1所述的制备方法,其特征在于步骤2)中,所述的混合溶液中硝酸锌的浓度为1.25mM。
4.根据权利要求1或3所述的制备方法,其特征在于步骤2)中调节混合溶液pH值的酸溶液为盐酸、硝酸、硫酸、氢氟酸。
5.根据权利要求4所述的制备方法,调整混合溶液的pH值至5.8。
6.根据权利要求1所述的制备方法,其特征在于:步骤3)中油浴反应时间为1.5-2小时;烘干温度控制在40-60°C。
7.根据权利要求1所述的制备方法,其特征在于:步骤4)中金/银纳米薄膜的厚度为10-20nm。
8.一种超疏水表面SERS基底,其特征在于根据权利要求1-7任一所述方法制备得到。
9.一种根据权利要求8所述超疏水表面SERS基底在拉曼检测中的应用。
CN201811202166.6A 2018-10-16 2018-10-16 超疏水表面sers基底的制备及产品和应用 Active CN109440104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811202166.6A CN109440104B (zh) 2018-10-16 2018-10-16 超疏水表面sers基底的制备及产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811202166.6A CN109440104B (zh) 2018-10-16 2018-10-16 超疏水表面sers基底的制备及产品和应用

Publications (2)

Publication Number Publication Date
CN109440104A true CN109440104A (zh) 2019-03-08
CN109440104B CN109440104B (zh) 2021-03-19

Family

ID=65545635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811202166.6A Active CN109440104B (zh) 2018-10-16 2018-10-16 超疏水表面sers基底的制备及产品和应用

Country Status (1)

Country Link
CN (1) CN109440104B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058894A (zh) * 2022-08-17 2022-09-16 江苏金呢工程织物股份有限公司 一种抗水解性干燥网用纺织助剂
CN115142062A (zh) * 2022-05-10 2022-10-04 长春理工大学 一种自清洁复合sers基底及其制备方法
WO2024066955A1 (zh) * 2022-09-27 2024-04-04 青岛科技大学 可循环利用的sers分子检测装置及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094089A1 (en) * 2007-01-29 2008-08-07 Nanexa Ab Active sensor surface and a method for manufacture thereof
CN102156117A (zh) * 2011-03-22 2011-08-17 中国科学院长春应用化学研究所 一种用于表面增强拉曼散射的基底及其制备方法
CN103030095A (zh) * 2011-09-30 2013-04-10 中国科学院合肥物质科学研究院 修饰有银纳米颗粒的氧化锌纳米棒阵列及其制备方法和用途
CN104297224A (zh) * 2014-09-26 2015-01-21 中国工程物理研究院化工材料研究所 一种sers基底材料及其热点激发方法与表征
CN105928924A (zh) * 2016-04-25 2016-09-07 上海交通大学 一种金银复合纳米颗粒sers基底的制备方法
CN108459003A (zh) * 2018-01-17 2018-08-28 安徽农业大学 一种银纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法
CN108459004A (zh) * 2018-01-17 2018-08-28 安徽农业大学 一种银和金纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094089A1 (en) * 2007-01-29 2008-08-07 Nanexa Ab Active sensor surface and a method for manufacture thereof
CN102156117A (zh) * 2011-03-22 2011-08-17 中国科学院长春应用化学研究所 一种用于表面增强拉曼散射的基底及其制备方法
CN103030095A (zh) * 2011-09-30 2013-04-10 中国科学院合肥物质科学研究院 修饰有银纳米颗粒的氧化锌纳米棒阵列及其制备方法和用途
CN104297224A (zh) * 2014-09-26 2015-01-21 中国工程物理研究院化工材料研究所 一种sers基底材料及其热点激发方法与表征
CN105928924A (zh) * 2016-04-25 2016-09-07 上海交通大学 一种金银复合纳米颗粒sers基底的制备方法
CN108459003A (zh) * 2018-01-17 2018-08-28 安徽农业大学 一种银纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法
CN108459004A (zh) * 2018-01-17 2018-08-28 安徽农业大学 一种银和金纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐来林等: ""微-纳米复合结构ZnO薄膜的制备及其浸润性的研究"", 《功能材料》 *
陶强: ""花状ZnO纳米棒阵列的制备、生长机制及SERS应用"", 《中国博士学位论文全文数据库·工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142062A (zh) * 2022-05-10 2022-10-04 长春理工大学 一种自清洁复合sers基底及其制备方法
CN115142062B (zh) * 2022-05-10 2023-10-27 长春理工大学 一种自清洁复合sers基底及其制备方法
CN115058894A (zh) * 2022-08-17 2022-09-16 江苏金呢工程织物股份有限公司 一种抗水解性干燥网用纺织助剂
WO2024066955A1 (zh) * 2022-09-27 2024-04-04 青岛科技大学 可循环利用的sers分子检测装置及其使用方法

Also Published As

Publication number Publication date
CN109440104B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN109440104A (zh) 超疏水表面sers基底的制备及产品和应用
Yang et al. Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish
Xu et al. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect
CN108152264B (zh) 一种纳米间隙可控的硅基阵列的制备方法及其应用
CN112499581A (zh) 一种表面增强拉曼散射衬底的制备方法
CN106346016B (zh) 银/石墨烯复合薄膜的制备方法及在紫外探测器中的应用
CN107543813A (zh) 一种表面增强拉曼有序复合阵列芯片的制备方法及其应用
CN106596505A (zh) 一种检测农药的表面增强拉曼散射基底及其制备方法和应用
CN106077697B (zh) 一种分级结构的银纳米花簇/银微米片的制备方法及其应用
CN109342387B (zh) 一种基于纳米银胶表面拉曼增强检测酮康唑的方法
CN110082341A (zh) 基于纳米球刻蚀的sers基底制备及其在爆炸物tnt检测中的应用
Mishra et al. Surface plasmon resonance based fiber optic sensor for the detection of CrO 4 2− using Ag/ITO/hydrogel layers
CN105928924A (zh) 一种金银复合纳米颗粒sers基底的制备方法
Ouyang et al. A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring
Hou et al. Preparation of SERS active filter paper for filtration and detection of pesticides residue from complex sample
CN110146485B (zh) 金三角凹坑阵列材料及其制备方法和用途
Chen et al. Convenient self-assembled PDADMAC/PSS/Au@ Ag NRs filter paper for swift SERS evaluate of non-systemic pesticides on fruit and vegetable surfaces
CN110054791A (zh) MOFs-贵金属有序复合材料及其制备方法和应用
Gao et al. SERS-active vertically aligned silver/tungsten oxide nanoflakes for ultrasensitive and reliable detection of thiram
Zhang et al. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice
Guo et al. Flexible Au@ AgNRs/MAA/PDMS-based SERS sensor coupled with intelligent algorithms for in-situ detection of thiram on apple
Samavati et al. Optical fiber sensor for glycoprotein detection based on localized surface plasmon resonance of discontinuous Ag-deposited nanostructure
Ding et al. TiO 2 compact layer induced charge transfer enhancement in a three-dimensional TiO 2–Ag array SERS substrate for quantitative and multiplex analysis
CN110108697B (zh) 表面增强拉曼散射微纳芯片及其制备方法、应用和拉曼光谱测试系统
CN109112601B (zh) 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant