WO2024066955A1 - 可循环利用的sers分子检测装置及其使用方法 - Google Patents

可循环利用的sers分子检测装置及其使用方法 Download PDF

Info

Publication number
WO2024066955A1
WO2024066955A1 PCT/CN2023/116965 CN2023116965W WO2024066955A1 WO 2024066955 A1 WO2024066955 A1 WO 2024066955A1 CN 2023116965 W CN2023116965 W CN 2023116965W WO 2024066955 A1 WO2024066955 A1 WO 2024066955A1
Authority
WO
WIPO (PCT)
Prior art keywords
sers
metal ring
thickness
detection device
thin glass
Prior art date
Application number
PCT/CN2023/116965
Other languages
English (en)
French (fr)
Inventor
王雷
王霞
赵秋玲
王茂榕
张清悦
Original Assignee
青岛科技大学
济南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学, 济南大学 filed Critical 青岛科技大学
Publication of WO2024066955A1 publication Critical patent/WO2024066955A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the invention relates to the field of spectrum detection, and in particular to a recyclable SERS molecule detection device and a use method thereof.
  • Raman scattering spectrum reflects the molecular vibration information and can realize the fingerprint recognition of various organic and inorganic molecules such as low-dimensional materials, pesticides, explosives, etc.
  • its signal intensity is generally weak.
  • some researchers proved that the rough surface of precious metals has a significant enhancement effect on the Raman scattering signal of its adsorbed molecules.
  • surface enhanced Raman scattering SERS
  • SERS surface enhanced Raman scattering
  • SERS substrates with large-area nanostructures require extremely expensive manufacturing costs.
  • Existing detection methods generally require the molecules to be adsorbed on the surface of the SERS substrate, and then the SERS spectra of the molecules to be tested on the surface are directly collected using a Raman spectrometer.
  • the molecules to be tested last time will inevitably remain on the surface of the SERS substrate, which will irreversibly contaminate the surface of the SERS substrate, making it non-reusable, and causing the cost of using the SERS substrate to increase dramatically, which seriously hinders its practical application. Therefore, it is of great technical value to find a SERS detection method and detection device that is clean-free and recyclable.
  • the present invention provides a recyclable SERS molecular detection device and a method for using the same.
  • the device includes two thin glass sheets, one of which has a precious metal nanofilm deposited on its surface to form a SERS substrate, and a metal ring is deposited on the edge of the SERS substrate through a coating process, and the metal ring cooperates with the SERS substrate to form a two-dimensional air cavity; the other thin glass sheet is inverted on the metal ring after absorbing and fixing the molecules to be measured, and the thickness of the molecule layer to be measured does not exceed the thickness of the metal ring, so as to leave an air gap between the molecule layer to be measured and the SERS substrate.
  • the SERS substrate is a functional surface based on (surface plasmon) electromagnetic field physical enhancement, and the surface structure of the SERS substrate includes but is not limited to a rough surface, micro-nano tips, and micro-nano slits.
  • the surface of the SERS substrate adopts a sub-10 nm gold and silver nanostructure.
  • the metal ring serves as a physical barrier layer at the edge, and constructs a two-dimensional air cavity with a nanometer-level thickness in the central area.
  • the thickness of the metal ring is the thickness of the two-dimensional air cavity, and its thickness is precisely controlled by the coating process of the metal ring.
  • the preferred thickness of the metal ring is 1 to 5 nm.
  • the coating process of the metal ring includes but is not limited to electron beam evaporation, magnetron sputtering coating and thermal evaporation.
  • the material type of the metal ring does not affect the function of the SERS substrate, and can be selected but not limited to single metals or alloys such as gold and silver, and can also be selected but not limited to oxides such as silicon dioxide and silicon, or inorganic non-metals, preferably materials with good chemical/structural stability.
  • the metal ring is a ring-shaped structure with uniform thickness, including but not limited to a circular ring and a square ring.
  • the role of the thin glass sheet carrying the molecules to be measured is to adsorb and fix the molecules to be measured, and together with the metal ring, control the gap size between the molecules to be measured and the SERS substrate.
  • the thin glass sheet should have a high transmittance so that the excitation light of the Raman spectrometer can irradiate the molecules to be measured without attenuation, so its material is preferably but not limited to quartz glass, silicate glass, etc.; the thickness is controlled between 0.1mm and 1mm to ensure that it has good transmittance and rigidity.
  • the entire device has certain requirements mainly on the longitudinal dimension, and there is no requirement for the lateral dimension of the SERS substrate.
  • the technology is applicable to both micrometer or millimeter-scale SERS substrates and large-area SERS substrates above centimeter level.
  • thin glass generally has good rigidity, which can ensure that the thickness of the two-dimensional air cavity is uniform everywhere in the in-plane direction.
  • the present invention has the following beneficial effects:
  • the detection device proposed in the present invention fundamentally avoids the irreversible contamination of the SERS substrate by the detected molecules, can realize the cleaning-free and recyclable use of the SERS substrate, greatly reduces the cost of use, and provides a revolutionary technology for the practical application of the SERS substrate.
  • the present invention also proposes a SERS-based molecular detection method, using the above-mentioned recyclable SERS molecular detection device, the steps are as follows:
  • Step 1 take one of the thin glass sheets and deposit a rough noble metal nanofilm on its surface to form a SERS substrate;
  • Step 2 using the baffle to continue depositing a metal ring of a preset thickness on the edge area of the precious metal nanofilm;
  • Step 3 attach the molecule to be measured tightly to the surface of another thin glass sheet, and then turn the thin glass sheet upside down on the metal ring so that the molecule to be measured is located in the two-dimensional air cavity and ensures that it does not contact the rough surface of the precious metal nanofilm;
  • Step 4 Let the excitation light of the Raman spectrometer be incident from top to bottom, and then the molecular SERS spectrum based on local electromagnetic field enhancement can be obtained;
  • Step 5 replace the thin glass sheet containing the solution of the molecules to be tested, and repeat Step 3 to Step 4 until all the molecules to be tested have been detected.
  • the molecules to be tested should be tightly attached to the surface of the thin glass sheet, and the thickness of the molecular layer to be tested should not exceed the thickness of the metal ring, so as to leave an air gap between the molecules to be tested and the SERS substrate.
  • the molecular attachment method in Step 3 preferably adopts the solvent evaporation method, that is, a relatively low concentration of the molecular solution to be tested is prepared and dripped onto the surface of the thin glass sheet, and an ultra-thin molecular layer to be tested is obtained after the solvent evaporates, and the thickness of the molecular layer to be tested is maintained at 0.1nm to 4nm.
  • the present invention has the following beneficial effects:
  • the detection method proposed in the present invention has no additional requirements on the configuration of the Raman spectrometer and the parameters such as the excitation wavelength, integration time, and excitation light power used. It is easy to operate, compatible with existing SERS substrates, has good universal applicability, and has broad application prospects.
  • FIG1 is an operation flow chart of a SERS-based molecular detection method provided in the specific embodiment of the present invention.
  • FIG2 is a schematic diagram (side view) of a recyclable SERS molecular detection device provided in the specific embodiment of the present invention.
  • FIG3 is a physical picture of the SERS substrate provided in Example 1 of the present invention, in which the upper area of the picture is sputtered with a gold nanofilm, and the lower area of the picture is free of a gold nanofilm;
  • FIG4 is a single-point SERS spectrum of the R6g molecule provided in Example 1 of the present invention.
  • FIG5 is the Raman spectrum mapping data of the R6g molecule provided in Example 1 of the present invention.
  • the present invention provides a recyclable SERS molecular detection device, the overall structure of which is shown in FIG2 , and the device comprises a glass substrate and an upper thin glass sheet 3, wherein a noble metal nanofilm is deposited on the surface of the glass substrate to form a SERS substrate 1, and a metal ring 2 is deposited on the edge area of the SERS substrate 1 through a coating process, and the metal ring 2 cooperates with the SERS substrate 1 to form a two-dimensional air cavity 6.
  • the upper thin glass sheet 3 adsorbs and fixes the molecules to be detected 4 and then is inverted on the metal ring 2.
  • the SERS substrate 1 is a functional surface based on the physical enhancement of the (surface plasmon) electromagnetic field.
  • the surface structure of the SERS substrate 1 includes but is not limited to a rough surface, a micro-nano tip, a micro-nano slit, etc. It is preferably a gold and silver nanostructure with a characteristic size of sub-10nm.
  • the thickness of the metal ring 2 is precisely controlled by the coating process, and the thickness is maintained between 1 and 5nm.
  • the coating process can adopt electron beam evaporation, magnetron sputtering coating, thermal evaporation and other processes.
  • the upper thin glass 3 is made of quartz glass, silicate glass and other materials, and the thickness is maintained between 0.1mm and 1mm to ensure its transmittance and rigidity.
  • the detection method proposed in the present invention is shown in FIG1 , comprising: (1) depositing a rough surface noble metal nanofilm on the surface of a glass substrate to form a SERS substrate 1; (2) depositing a rough surface noble metal nanofilm on the surface of a glass substrate with the aid of a baffle plate; A metal ring 2 of a preset thickness continues to be deposited on the edge area of the nanofilm; (3) a low concentration of the molecule solution to be tested is dropped onto the surface of the upper thin glass sheet 3.
  • the upper thin glass sheet 3 with the molecule 4 to be tested attached is turned upside down on the surface of the metal ring 2, so that the molecule 4 to be tested is located in the two-dimensional air cavity 6 and is ensured not to contact the rough surface of the precious metal nanofilm; (4) the excitation light of the Raman spectrometer is incident from top to bottom to obtain a molecular SERS spectrum based on local electromagnetic field enhancement; (5) the upper thin glass sheet 3 containing the molecule solution to be tested is replaced, and steps 3 to 4 are repeated until all the molecules to be tested are detected.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This example provides a molecular detection method based on SERS. By comparing with a blank substrate, the effectiveness of the detection method proposed by the present invention is illustrated. The specific steps are as follows:
  • FIG. 4 shows the complete Raman spectrum of the R6g molecule, and the characteristic peaks are very obvious, indicating that the R6g molecule has been attached to the sample, laying the foundation for the next step of mapping data collection.
  • FIG5 shows the Raman mapping data of the R6g molecules at the interface between the gold nanofilm and the blank glass.
  • the signal intensity at the top is significantly higher than that at the bottom (blank glass).
  • the gold nanofilm still shows a strong SERS enhancement function relative to the blank control group. In this process, the R6g molecules will not contaminate the SERS substrate 1.
  • the SERS molecular detection device proposed by the present invention can not only give full play to the Raman signal enhancement function of the SERS substrate, but also effectively avoid the contamination of the SERS substrate by the detected molecules, and the operation process is fast and convenient, which greatly reduces the use cost of the SERS substrate.
  • the present invention provides a revolutionary technology for the practical application and commercialization of the SERS substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了可循环利用的SERS分子检测装置及其使用方法,包括有两个薄片玻璃,其中一个薄片玻璃表面沉积贵金属纳米薄膜形成SERS基底,SERS基底的边缘区域通过镀膜工艺沉积形成有金属环,金属环与SERS基底配合形成二维空气腔;另一个薄片玻璃吸附固定待测分子后倒扣在金属环上,且待测分子层厚度不超过金属环的厚度。本发明提出的SERS分子检测装置从根本上避免了被测分子对SERS基底的不可逆污染,可实现SERS基底的免清洁可循环使用,极大地降低了使用成本,为SERS基底的实用化提供了一种变革性技术。

Description

可循环利用的SERS分子检测装置及其使用方法 技术领域
本发明涉及光谱检测领域,具体涉及可循环利用的SERS分子检测装置及其使用方法。
背景技术
拉曼散射光谱反应了分子振动信息,可以实现低维材料、农药、爆炸物等各种有机无机分子的指纹识别,然而其信号强度一般较弱。上世纪七十年代,有学者证明,粗糙的贵金属表面对其吸附分子的拉曼散射信号有显著的增强作用。从此,表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)成为科学界和产业界密切关注的技术。现已证明,入射光波可以在贵金属纳米结构中激发局域表面等离子体共振,从而将局域空间电磁场增大多个数量级,进而增强其吸附分子的拉曼信号。这种带有纳米结构的具有SERS功能的表面一般被称为SERS基底。在过去几十年的研究中,金银等贵金属是最典型的SERS基底材料。近年来,利用先进的微纳加工手段可以制备含各种纳米结构的SERS基底,已实现飞摩尔级的分子检测以及单分子识别。
事实上,SERS基底的实用化与商业化仍面临诸多挑战。众所周知,带有大面积纳米结构的SERS基底,需要极其昂贵的制造成本。现有的检测方法,一般需要把待测分子吸附在SERS基底表面,然后用拉曼光谱仪直接采集表面待测分子的SERS光谱。然而,在这种检测模式下,前一次的被测分子会不可避免地残留在SERS基底表面,会不可逆地污染SERS基底表面,造成其不可重复使用,使SERS基底的使用成本剧增,严重阻碍了其实际应用。因此,寻找一种免清洁的可以循环使用的SERS检测方法及检测装置,具有重要的技术价值。
发明内容
为了解决上述现有技术中存在的技术问题,本发明提供可循环利用的SERS分子检测装置及其使用方法。
为实现上述目的,本发明提供如下技术方案:可循环利用的SERS分子检测 装置,包括有两个薄片玻璃,其中一个薄片玻璃表面沉积贵金属纳米薄膜形成SERS基底,SERS基底的边缘区域通过镀膜工艺沉积形成有金属环,金属环与SERS基底配合形成二维空气腔;另一个薄片玻璃吸附固定待测分子后倒扣在金属环上,且待测分子层厚度不超过金属环的厚度,以便在待测分子层与SERS基底之间留出空气隙。
作为本发明优选的技术方案,SERS基底为基于(表面等离激元)电磁场物理增强的功能表面,SERS基底的表面结构包括但不限于粗糙表面、微纳米尖端、微纳米狭缝。
作为本发明优选的技术方案,SERS基底的表面采用亚10nm的金银纳米结构。
作为本发明优选的技术方案,金属环的作用是作为边缘的物理阻隔层,在中心区域构建纳米级别厚度的二维空气腔。金属环的厚度即二维空气腔的厚度,其厚度由金属环的镀膜工艺精确控制,金属环的优选厚度为1~5nm。
作为本发明优选的技术方案,金属环的镀膜工艺包括但不限于电子束蒸镀、磁控溅射镀膜和热蒸镀。
作为本发明优选的技术方案,金属环的材料种类不影响SERS基底的功能,可选择但不限于金、银等单质金属或合金,也可选择但不限于二氧化硅、硅等氧化物或无机非金属,优选化学/结构稳定性好的材料。
作为本发明优选的技术方案,金属环为包括但不限于圆环、方环的厚度均匀的环状结构。
作为本发明优选的技术方案,载有待测分子的薄片玻璃的作用是吸附固定待测分子,并与金属环共同控制待测分子与SERS基底的间隙大小。该薄片玻璃应具有较高的透过率,以便拉曼光谱仪的激发光能够无衰减地照射至待测分子,因此其材质优选但不限于石英玻璃、硅酸盐玻璃等;厚度则控制在0.1mm~1mm之间,以保证其具有良好的透光率和刚度。
本发明中,整个装置主要在纵向尺寸上有一定要求,对于SERS基底的横向尺寸没有要求。换句话说,该技术既适用于微米或毫米级的SERS基底,也适用于厘米级以上的大面积SERS基底。其中一个关键原因是薄片玻璃一般具有良好的刚度,可以保证二维空气腔厚度在面内方向处处均匀。
与现有技术相比,本发明具有以下有益效果:
本发明提出的检测装置,从根本上避免了被测分子对SERS基底的不可逆污染,可实现SERS基底的免清洁可循环使用,极大地降低了使用成本,为SERS基底的实用化提供了一种变革性技术。
本发明还提出一种基于SERS的分子检测方法,采用上述提及的可循环利用的SERS分子检测装置,步骤如下:
Step1、取其中一个薄片玻璃在其表面沉积一层表面粗糙的贵金属纳米薄膜形成SERS基底;
Step2、借助挡板在贵金属纳米薄膜边缘区域继续沉积预设厚度的金属环;
Step3、将待测分子紧密附着于另一块薄片玻璃的表面,把薄片玻璃倒扣在金属环上,使测分子位于二维空气腔内,并保证其不与粗糙的贵金属纳米薄膜表面接触;
Step4、令拉曼光谱仪的激发光自上而下入射,即可获得基于局域电磁场增强的分子SERS光谱;
Step5、更换载有待测分子溶液的薄片玻璃,并重复步骤Step3~Step4,直至所有的待测分子被检测完毕。
待测分子应紧密附着于薄片玻璃表面,待测分子层厚度不能超过金属环的厚度,以便在待测分子与SERS基底之间留出空气隙。为达到此目的,Step3中分子附着方法优选采用溶剂蒸发法,即配置较低浓度的待测分子溶液并滴与薄片玻璃表面,待溶剂蒸发后获得超薄的待测分子层,待测分子层厚度保持在0.1nm~4nm。
与现有技术相比,本发明具备以下有益效果:
本发明提出的检测方法对拉曼光谱仪的配置及所用的激发波长、积分时间、激发光功率等参数没有任何额外要求,操作简单,可兼容现有的SERS基底,具有很好的普适应,应用前景广阔。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制,在附图中:
图1是本发明具体实施方式部分提供的一种基于SERS的分子检测方法的操作流程图;
图2是本发明具体实施方式部分提供的可循环利用的SERS分子检测装置的示意图(侧视图);
图3是本发明实施例1提供的SERS基底的实物图,图片上方区域溅射有金纳米薄膜,图片下方区域没有金纳米薄膜;
图4是本发明实施例1提供的R6g分子的单点SERS光谱;
图5是本发明实施例1提供的R6g分子的拉曼光谱mapping数据;
其中,1、SERS基底;2、金属环;3、上层薄片玻璃;4、待测分子;5、拉曼激发光;6、二维空气腔。
具体实施方式
下面将结合本发明的实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种可循环利用的SERS分子检测装置,其整体的结构如图2所示,该装置包括有玻璃基底和上层薄片玻璃3,其中,在玻璃基底表面沉积贵金属纳米薄膜形成SERS基底1,SERS基底1的边缘区域通过镀膜工艺沉积形成有金属环2,金属环2与SERS基底1配合形成二维空气腔6。上层薄片玻璃3则吸附固定待测分子4后倒扣在金属环2上。
其中,SERS基底1为基于(表面等离激元)电磁场物理增强的功能表面,SERS基底1的表面结构包括但不限于粗糙表面、微纳米尖端、微纳米狭缝等。优选为特征尺寸在亚10nm的金银纳米结构。金属环2的厚度由镀膜工艺精确控制,厚度保持在1~5nm之间。镀膜工艺则可采用电子束蒸镀、磁控溅射镀膜、热蒸镀等工艺。上层薄片玻璃3则石英玻璃、硅酸盐玻璃等材质,厚度则保持0.1mm~1mm之间,保证其透光率和刚度。
本发明提出的检测方法流程图如图1所示,包括:(1)在玻璃基底表面沉积一层表面粗糙的贵金属纳米薄膜形成SERS基底1;(2)借助挡板在贵金属 纳米薄膜边缘区域继续沉积预设厚度的金属环2;(3)将低浓度的待测分子溶液滴在上层薄片玻璃3表面,待溶剂蒸发完毕后,把附着有待测分子4的上层薄片玻璃3倒扣在金属环2表面,使待测分子4位于二维空气腔6内,并保证其不与粗糙的贵金属纳米薄膜表面接触;(4)令拉曼光谱仪的激发光自上而下入射,即可获得基于局域电磁场增强的分子SERS光谱;(5)更换载有待测分子溶液的上层薄片玻璃3,并重复步骤3~4,直至所有的待测分子被检测完毕。
以下为本发明典型但非限制性实施例:
实施例1:
本实施例提供了一种基于SERS的分子检测方法,通过与空白基底的对比,说明本发明所提出的检测方法有效性,具体的步骤如下:
1)准备一块厚度为0.17mm、横向尺寸为2cm×2cm的玻璃基底,分别用酒精、丙酮、去离子水清洗干净,利用离子溅射方法在其表面的一半面积区域沉积一层厚度为5nm的金纳米薄膜,其表面粗糙,带有SERS增强功能。玻璃基底表面的另一半区域为空白对照组,没有SERS增强功能。金纳米薄膜与空白玻璃对照组的面积近似相等,其分界线为直线。
2)利用离子溅射方法并借助一块方形挡板继续在1)中的玻璃基底的边缘镀一层3nm厚的金属方环。
3)将另一块厚度为0.17mm、横向尺寸为2cm×2cm的透明薄玻璃洗净作为上层薄片玻璃3,用滴管在其表面的正中心位置滴一滴浓度为10-8Mol/L的罗丹明(R6g)水溶液,在超净间静置,并自然晾干。把附着有R6g分子的上层薄片玻璃3倒扣在金属方环上,使之紧密贴合,且令R6g分子面向下方的金纳米薄膜(即SERS基底1)。R6g分子均匀分布在图3中图片所示的全部区域内。图3的黑色圆圈,标出了后期做拉曼mapping的信号采集区域。
4)用拉曼光谱仪采集R6g分子的指纹光谱。首先在金纳米薄膜区域任意取点获取R6g分子的拉曼光谱,证明样品表面确实附着有R6g分子,如图4所示。然后实施拉曼光谱mapping测量,光谱采集区域为80μm×80μm的正方形,并跨越金纳米薄膜与空白玻璃的分界线,以便对比两者的拉曼光谱信号强度。光谱测量所用的激发光波长为633nm,激光功率为3.4mW,积分时间为5s,聚焦物 镜的倍率为50×。
本实施例中,图4给出了R6g分子的完整拉曼光谱,特征峰十分明显,表明R6g分子已附着在了样品上,为下一步mapping数据采集奠定了基础。
本实施例中,图5给出了金纳米薄膜与空白玻璃交界区域R6g分子的拉曼mapping数据。显然,上方(金纳米薄膜)的信号强度明显高于下方(空白玻璃)。这表明,虽然吸附在薄玻璃上的R6g分子并不与金纳米薄膜(即SERS基底1)直接接触,但金纳米薄膜相对于空白对照组仍然显示出强烈的SERS增强功能。在该过程中,R6g分子不会对SERS基底1造成污染。
综合上述实施例可以看出,本发明提出的的SERS分子检测装置既能发挥SERS基底的拉曼信号增强功能,又能有效地避免被测分子对SERS基底的污染,并且操作流程快捷方便,极大降低了SERS基底的使用成本。本发明为SERS基底的实用化与商业化提供了一种变革性技术。
申请人申明,本发明通过上述实例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所述技术领域的技术人员应该明了,对本发明的任何改进,对本发明原料的等效变换及辅助成分的添加、具体条件和方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 可循环利用的SERS分子检测装置,其特征在于,包括有两个薄片玻璃,其中一个薄片玻璃表面沉积贵金属纳米薄膜形成SERS基底,SERS基底的边缘区域通过镀膜工艺沉积形成有金属环,金属环与SERS基底配合形成二维空气腔;另一个薄片玻璃吸附固定待测分子后倒扣在金属环上,且待测分子层厚度不超过金属环的厚度。
  2. 根据权利要求1所述的可循环利用的SERS分子检测装置,其特征在于,SERS基底的表面结构包括但不限于粗糙表面、微纳米尖端、微纳米狭缝。
  3. 根据权利要求2所述的可循环利用的SERS分子检测装置,其特征在于,SERS基底的表面采用亚10nm的金银纳米结构。
  4. 根据权利要求1所述的可循环利用的SERS分子检测装置,其特征在于,金属环的厚度为1~5nm。
  5. 根据权利要求4所述的可循环利用的SERS分子检测装置,其特征在于,金属环的镀膜工艺包括但不限于电子束蒸镀、磁控溅射镀膜和热蒸镀。
  6. 根据权利要求5所述的可循环利用的SERS分子检测装置,其特征在于,金属环包括但不限于单质贵金属或合金,还包括但不限于二氧化硅、硅等氧化物或无机非金属。
  7. 根据权利要求6所述的可循环利用的SERS分子检测装置,其特征在于,金属环为包括但不限于圆环、方环的厚度均匀的环状结构。
  8. 根据权利要求1所述的可循环利用的SERS分子检测装置,其特征在于,载有待测分子的薄片玻璃厚度为0.1mm~1mm,材质包括但不限于石英玻璃、硅酸盐玻璃。
  9. 一种基于SERS的分子检测方法,采用如权利要求1至8任一所述的可循环利用的SERS分子检测装置,其特征在于,步骤如下:
    Step1、取其中一个薄片玻璃在其表面沉积一层表面粗糙的贵金属纳米薄膜形成SERS基底;
    Step2、借助挡板在贵金属纳米薄膜边缘区域继续沉积预设厚度的金属环;
    Step3、将待测分子紧密附着于另一块薄片玻璃的表面,把薄片玻璃倒扣在金属环上,使测分子位于二维空气腔内,并保证其不与粗糙的贵金属纳米薄膜表面接触;
    Step4、令拉曼光谱仪的激发光自上而下入射,即可获得基于局域电磁场增强的分子SERS光谱;
    Step5、更换载有待测分子溶液的薄片玻璃,并重复步骤Step2~Step3,直至所有的待测分子被检测完毕。
  10. 根据权利要求9所述的一种基于SERS的分子检测方法,其特征在于,Step3中分子附着方法采用溶剂蒸发法,待溶剂蒸发后获得的待测分子层厚度保持在0.1nm~4nm。
PCT/CN2023/116965 2022-09-27 2023-09-05 可循环利用的sers分子检测装置及其使用方法 WO2024066955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211184945.4A CN115561224A (zh) 2022-09-27 2022-09-27 可循环利用的sers分子检测装置及其使用方法
CN202211184945.4 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024066955A1 true WO2024066955A1 (zh) 2024-04-04

Family

ID=84742530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116965 WO2024066955A1 (zh) 2022-09-27 2023-09-05 可循环利用的sers分子检测装置及其使用方法

Country Status (2)

Country Link
CN (1) CN115561224A (zh)
WO (1) WO2024066955A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115561224A (zh) * 2022-09-27 2023-01-03 青岛科技大学 可循环利用的sers分子检测装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033518A (ja) * 2009-08-04 2011-02-17 Toray Res Center:Kk 表面増強ラマン分光分析方法
CN107313046A (zh) * 2017-05-12 2017-11-03 北京邮电大学 一种sers基底及其制备方法
CN109440104A (zh) * 2018-10-16 2019-03-08 上海纳米技术及应用国家工程研究中心有限公司 超疏水表面sers基底的制备及产品和应用
CN109470681A (zh) * 2017-09-08 2019-03-15 清华大学 一种分子检测方法
CN113670890A (zh) * 2021-07-12 2021-11-19 山东师范大学 一种针尖增强拉曼装置
CN115561224A (zh) * 2022-09-27 2023-01-03 青岛科技大学 可循环利用的sers分子检测装置及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033518A (ja) * 2009-08-04 2011-02-17 Toray Res Center:Kk 表面増強ラマン分光分析方法
CN107313046A (zh) * 2017-05-12 2017-11-03 北京邮电大学 一种sers基底及其制备方法
CN109470681A (zh) * 2017-09-08 2019-03-15 清华大学 一种分子检测方法
CN109440104A (zh) * 2018-10-16 2019-03-08 上海纳米技术及应用国家工程研究中心有限公司 超疏水表面sers基底的制备及产品和应用
CN113670890A (zh) * 2021-07-12 2021-11-19 山东师范大学 一种针尖增强拉曼装置
CN115561224A (zh) * 2022-09-27 2023-01-03 青岛科技大学 可循环利用的sers分子检测装置及其使用方法

Also Published As

Publication number Publication date
CN115561224A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
JP6198957B2 (ja) 表面増強ラマン分光用基板及びその製造方法
TWI490474B (zh) 表面增強拉曼光譜(sers)感測基板及其製造方法
WO2024066955A1 (zh) 可循环利用的sers分子检测装置及其使用方法
JP5500571B2 (ja) 試験片,該試験片の製造方法
Yang et al. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics
JP2011075348A (ja) 試験片の製造方法
Fu et al. Superhydrophobic nanostructured copper substrate as sensitive SERS platform prepared by femtosecond laser pulses
CN103443601A (zh) 表面增强拉曼散射的装置和方法
CN110208245B (zh) 一种纸基柔性表面增强拉曼散射效应基片及其制备方法
JP2006349463A (ja) 表面増強ラマン分光分析用治具及びその製造方法
Tagliabue et al. Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films
Zhang et al. A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation
TWI500921B (zh) 光學感測晶片
Sun et al. SERS-active Ag–Al alloy nanoparticles with tunable surface plasmon resonance induced by laser ablation
US8520202B2 (en) Asymmetrical-nanofinger device for surface-enhanced luminescense
CN110361362B (zh) 一种基于介质纳米天线生物传感器、制备方法及应用
JP2002277397A (ja) 分子センサおよびラマン分光分析法
JP2010286397A (ja) 紫外近接場光学顕微鏡
CN108593624B (zh) 选择性增强的多波长金属等离子共振结构及其制备方法
Salah et al. Graphene and its influence in the improvement of surface plasmon resonance (spr) based sensors: a review
CN116183581A (zh) 一种基于微球聚光特性的sers基底及其制备方法
CN112986171B (zh) 一种等离激元共振增强基底及其制备方法和应用
CN113753845A (zh) 一种角度不敏感的反射型等离子体结构色的制备方法
CN202710478U (zh) 表面增强拉曼散射基底
CN113185144A (zh) 一种海胆状有序微纳阵列结构的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870195

Country of ref document: EP

Kind code of ref document: A1