CN111455339B - 用于高吸收比材料的垂直碳纳米管阵列的制备方法 - Google Patents
用于高吸收比材料的垂直碳纳米管阵列的制备方法 Download PDFInfo
- Publication number
- CN111455339B CN111455339B CN202010441415.8A CN202010441415A CN111455339B CN 111455339 B CN111455339 B CN 111455339B CN 202010441415 A CN202010441415 A CN 202010441415A CN 111455339 B CN111455339 B CN 111455339B
- Authority
- CN
- China
- Prior art keywords
- substrate
- carbon nanotube
- nanotube array
- buffer layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种垂直碳纳米管阵列的制备方法,包括以下步骤:(1)于基体表面依次镀上缓冲层和催化剂层,所述缓冲层为Al2O3膜层,所述催化剂层为铁膜层、钴膜层或镍膜层;(2)将镀有缓冲层和催化剂层的基体置于化学气相沉积反应腔体中,通入碳源,于650‑900℃条件下进行反应,直至在催化剂层表面析出并形成所述垂直碳纳米管阵列。本发明的垂直碳纳米管阵列的制备方法工艺难度较小,可达到进行生长垂直碳纳米管阵列的要求,设计数十微米的VACNTs可达到理想的超黑高吸收效果。
Description
技术领域
本发明涉及垂直碳纳米管阵列技术,特别涉及一种用于高吸收比材料的垂直碳纳米管阵列的制备方法。
背景技术
垂直碳纳米管阵列(VACNTs),由碳纳米管制成,可吸收照射其上的99.96%的光线。碳纳米管是完全由碳原子构成,由单层石墨烯以某一方向为轴,卷曲360°形成的无缝中空管,垂直碳纳米管阵列由于独特的微纳米结构,使得入射光在阵列间多次散射,最终被碳原子吸收,导致垂直碳纳米管阵列具有很低的反射率。
理想中的高吸收比涂层应该能够完美吸收从各个方向发射的可见光,能与之媲美的只有黑洞和黑体。参见《飞航导弹》于2012年第2版中90页,李璟,郭朝邦.NASA工程师制备出一种可吸收多波段的超黑材料,经过科研人员的不懈努力,终于发现通过采用纳米结构的碳材料可以在可见光全波段吸收率方面取得很好的效果,其吸收率可高达99%以上。其中垂直碳纳米管阵列效果更为显著,因此选择将垂直碳纳米管阵列作为可见光高吸收涂层的研究方向。
目前,大多高吸收材料(超黑材料)存在适用光谱范围窄,反射光空间分布不均匀,适用温度范围小等缺点,以及大面积超黑涂层的加工难度较高的难题。
发明内容
本发明所要解决的技术问题是:提供一种垂直碳纳米管阵列的制备方法,可降低制备工艺的难度。
为了解决上述技术问题,本发明采用的技术方案为:
一种垂直碳纳米管阵列的制备方法,包括以下步骤:
(1)于基体表面依次镀上缓冲层和催化剂层,所述缓冲层为Al2O3膜层,所述催化剂层为铁膜层、钴膜层或镍膜层;
(2)将镀有缓冲层和催化剂层的基体置于化学气相沉积反应腔体中,通入碳源,于650-900℃条件下进行反应,直至在催化剂层表面析出并形成所述垂直碳纳米管阵列。
本发明的有益效果在于:
本发明通过上述步骤(1)-(2)的设计,先利用例如磁控溅射或原子层沉积等镀覆工艺,在基体上依次镀覆缓冲层和催化剂层,然后利用CVD反应,碳源在650-900℃的高温条件下裂解转化为碳原子,碳原子扩散到基体上并进入催化剂层中的催化剂颗粒中直至饱和,饱和后的碳原子在催化剂层表面析出并形成所述垂直碳纳米管阵列。上述工艺实施难度较小,可较容易获得纳米级的催化剂层及缓冲层,达到进行生长垂直碳纳米管阵列的要求。
附图说明
图1为本发明实施例一的垂直碳纳米管阵列的制备方法中Al2O3薄膜的数据拟合图;
图2为本发明实施例一的垂直碳纳米管阵列的制备方法中Fe+Al2O3薄膜的数据拟合图;
图3为本发明实施例一的垂直碳纳米管阵列的表面的SEM照片;
图4为本发明实施例一的垂直碳纳米管阵列截面的SEM照片;
图5为本发明实施例一的垂直碳纳米管阵列截面局部放大的SEM照片;
图6为本发明实施例一的垂直碳纳米管阵列的拉曼光谱;
图7为本发明实施例一的垂直碳纳米管阵列在250-1250nm波段的反射率图表。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
本发明最关键的构思在于:解决大面积超黑涂层的加工难题。
请参照图1以及图2,本发明的垂直碳纳米管阵列的制备方法,包括以下步骤:
(1)于基体表面依次镀上缓冲层和催化剂层;
(2)将镀有缓冲层和催化剂层的基体置于化学气相沉积反应腔体中,通入碳源,于650-900℃条件下进行反应,直至在催化剂层表面析出并形成所述垂直碳纳米管阵列。
从上述描述可知,本发明的有益效果在于:
本发明通过上述步骤(1)-(2)的设计,先利用例如磁控溅射或原子层沉积等镀覆工艺,在基体上依次镀覆缓冲层和催化剂层,然后利用CVD反应,碳源在650-900℃的高温条件下裂解转化为碳原子,碳原子扩散到基体上并进入催化剂层中的催化剂颗粒中直至饱和,饱和后的碳原子在催化剂层表面析出并形成所述垂直碳纳米管阵列。上述工艺实施难度较小,可较容易获得纳米级的催化剂层及缓冲层,达到进行生长垂直碳纳米管阵列的要求。
进一步的,步骤(1)中,采用下述方法将缓冲层镀于基体上:将基体置于5×10-5Pa的真空条件下,采用磁控溅射方法先进行预溅射30min,然后进行反应溅射4min。
进一步的,采用乙醇、丙酮和去离子水依次对基体进行超声清洗,然后烘干,再进行预溅射。
进一步的,步骤(1)中,采用下述方法将催化剂层镀于缓冲层上:将镀有缓冲层的基体置于5×10-5Pa的真空条件下,采用磁控溅射方法先进行预溅射30min,然后进行反应溅射16min。
进一步的,还包括测控步骤,所述测控步骤为:采用椭偏仪对镀有缓冲层和催化剂层的基体进行精准测量,测量并分析制得的缓冲层和/或催化剂层的厚度以及成分信息。
进一步的,所述基体的材质为硅,所述缓冲层为Al2O3膜层,所述催化剂层为铁膜层、钴膜层或镍膜层。
进一步的,所述基体的厚度为725±5μm。
进一步的,所述缓冲层的厚度为16.72±5nm。
进一步的,所述催化剂层的厚度为2.62±5nm。
本发明的实施例一为:
本实施例的垂直碳纳米管阵列的制备方法主要按下述两个步骤中进行:
步骤1:通过磁控溅射或原子层沉积方法在基体表面依次镀上缓冲层和催化剂层;
其中,缓冲层薄膜和催化剂薄膜的具体制备如下:
基体表面沉积的薄膜由缓冲层薄膜和催化剂薄膜组成。采用的缓冲层为Al2O3薄膜,采用的催化剂薄膜为铁薄膜。磁控溅射工艺可以采用现有的磁控溅射设备进行。
缓冲层薄膜制备所用衬底为P<100>单面抛光硅片,厚度约为725μm,采用乙醇、丙酮、去离子水依次超声清洗,然后烘干备用。然后在硅片表面上沉积氧化铝薄膜,具体的,采用磁控溅射制备薄膜,靶材为铝靶。反应溅射之前,使用分子泵将腔室的真空度预抽到约5×10-5Pa。由质量流量计控制氩气的流量。预溅射30分钟后,开始反应溅射,溅射时间为4min。进而在基体上成功镀上缓冲层。
接下来在已沉积氧化铝薄膜的硅片表面沉积铁薄膜,采用磁控溅射制备薄膜,靶材为铁靶。反应溅射之前,使用分子泵将腔室的真空度预抽到约5×10-5Pa。由质量流量计控制氩气的流量。预溅射30分钟后,开始反应溅射,溅射时间为16min。进而在基体上成功镀上催化剂层。
可增设测控步骤,具体的,采用的分析表征方法主要是椭偏仪,利用椭偏仪对纳米薄膜(缓冲层和催化剂层)进行精准测量,可以测量并分析实验中制备的缓冲层和催化剂层的薄膜厚度并反映薄膜的成分信息。
步骤2:再将镀有缓冲层和催化剂层后的基体放入CVD反应腔体中,通入碳源。于750℃下,碳源裂解转化为碳原子,碳原子扩散到基体上并进入催化剂颗粒中,饱和后碳原子将在催化剂表面析出并形成碳纳米管。CVD反应可采用现有的WACVD沉积设备进行。
碳纳米管通常是通过化学气相沉积法制备,化学气相沉积法是制备定向生长碳纳米管的最佳途径。它是通过以烃类或一氧化碳为原料催化裂解出碳,并在金属催化剂上长出碳纳米管。基体上铁薄膜在还原气氛下经750℃左右的热处理,在纳米效应、表面张力和奥斯瓦尔德成熟的共同作用下形成纳米催化颗粒。碳源分子在铁纳米颗粒作用下裂解产生碳原子,经过表面吸附、扩散、溶解、重排并达到饱和后析出形成碳纳米管。
本发明的实施例二为:
本实施例的垂直碳纳米管阵列的制备方法,仅“CVD反应以合成纳米管的温度为650℃”与实施例一不同,其他均与实施例一相同。
本发明的实施例三为:
本实施例的垂直碳纳米管阵列的制备方法,仅“CVD反应以合成纳米管的温度为900℃”与实施例一不同,其他均与实施例一相同。
本发明的实施例四为:
本实施例的垂直碳纳米管阵列的制备方法,仅“CVD反应以合成纳米管的温度为800℃”与实施例一不同,其他均与实施例一相同。
本发明的实施例五为:
本实施例的垂直碳纳米管阵列的制备方法,仅“采用的催化剂薄膜为钴薄膜”与实施例一不同,其他均与实施例一相同。
本发明的实施例六为:
本实施例的垂直碳纳米管阵列的制备方法,仅“采用的催化剂薄膜为镍薄膜”与实施例一不同,其他均与实施例一相同。
制得的垂直碳纳米管阵列的特性表征
(一)厚度表征:
以实施例一为代表,通过椭偏仪测量实施例一制得的垂直碳纳米管阵列中的Al2O3、Fe+Al2O3薄膜的光学数据,这些光学数据是其特有的参数。将这些光学数据与数据库中现有的Al2O3、Fe+Al2O3薄膜的数据进行拟合,如图1-2示。从图1-2中所示拟合结果得出Al2O3薄膜厚度为16.72nm、Fe膜厚度为2.62nm。由表征结果可知溅射所得的Fe薄膜厚度达到了纳米尺度,在纳米效应、表面张力和奥斯瓦尔德成熟的作用下,薄膜在750℃可熔化形成纳米催化颗粒,因此该催化剂薄膜达到了进行生长垂直碳纳米管阵列的要求。
(二)形貌及成分表征:
图3-6为所制备垂直碳纳米管阵列的扫描电镜(SEM)图以及Raman光谱图。从图3可以看出垂直碳纳米管阵列表面的碳纳米管之间团聚缠绕,结构也十分疏松,留下较大的空隙;图4中可以看出碳纳米管在基底表面上垂直生长且排列得很紧密,阵列的高度达到约100μm;对图4中的阵列进行局部放大,从图5中可以看出阵列还是较为稀疏;图6为垂直碳纳米管阵列的拉曼光谱,从中可以看出垂直碳纳米管阵列在约1325cm-1(D峰)处以及约1580cm-1(G峰)处有两个主峰。D、G峰分别代表石墨烯结构的杂化缺陷和sp2杂化,因此I(G)/I(D)的比值可以被用来表示垂直碳纳米管阵列的石墨烯化的程度,比值越大则其石墨化越高。通过分析,VACNTs的I(G)/I(D)为1.93,石墨烯化程度较高。
(三)垂直碳纳米管阵列的光吸收性质测试
图7表示碳纳米管阵列在250-1250nm波段的反射率,从图7中可以看出,碳纳米管阵列大部分反射率大约在1%附近,由于光基本不透过碳纳米管阵列,所以其吸收率高达99%。其中垂直碳纳米管阵列在可见光波段的吸收率可达到99.5%。这些结果表明垂直碳纳米管阵列在可见光波段具备很好的吸收性质。
此时结合现有的技术(Wang X J,Flicker J D,Lee B J,et al.Visible andnear-infrared radiative properties of vertically aligned multi-walled carbonnanotubes.Nano.Technol[J].2009,20,215704;以及Shi H,Ok J G,Won Baac H,etal.Low density carbon nanotube forest as an index-matched and near perfectabsorption coating[J].Applied Physics Letters,2011,99(21):207402)的报道,垂直碳纳米管阵列的体积比约为3%,所以其与空气形成的等效介质的折射率约为1.02,与空气非常接近,所以入射光在等效介质层几乎不会被反射而是进入介质层内。sp2杂化的碳-碳键对光子又具有一定的吸收效果,使得其消光系数约为0.04。光作为电磁波,有电磁波的能量波动方程:
式中,E代表振幅(振幅正比于能量),E0代表初始振幅,k是消光系数,λ是波长,i是复数,ω是角频率,t是时间,n是折射率,x是传播距离。
根据波动方程可知,光能量的衰减与传播距离、消光系数和波长相关。以吸收波长λ=1000nm为例计算,一个光程X=λ/2πk≈3.98μm时,其能量衰减为原来的1/e,即能量呈指数衰减。由于VNCNTs的特有的阵列纳米结构,光进入阵列后会进行多次折射,5次折射后(传播距离小于5个光程约20μm)其能量衰减为原来的1/e5≈0.007,也就是吸收可达99.3%,本试验实际获得99.1%,非常接近理论值。所以,数十微米的VACNTs可达到理想的超黑高吸收效果。
综上所述,本发明针对垂直碳纳米管阵列的可控制备和可见光吸收性质进行改进设计,采用溅射工艺与WACVD方法制备了垂直碳纳米管阵列,其在可见光波段的吸收率高达99.5%,并通过电镜观察,发现垂直碳纳米管阵列的结构很疏松。垂直碳纳米管阵列与空气组成的等效介质的折射率与空气非常接近,所以入射光线从空气进入等效介质基本不会被反射,而是在碳纳米管之间多次的折射,碳纳米管的消光系数k很小但不等于零,使得VACNTs对光具有很好的吸收效果。通过理论模型计算可知,设计数十微米的VACNTs可达到超过99%以上的吸收率。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (2)
1.一种垂直碳纳米管阵列的制备方法,其特征在于,包括以下步骤:
(1)于基体表面依次镀上缓冲层和催化剂层,所述缓冲层为Al2O3膜层,所述催化剂层为铁膜层;
(2)将镀有缓冲层和催化剂层的基体置于化学气相沉积反应腔体中,通入碳源,于750℃条件下进行反应,直至在催化剂层表面析出并形成ID/IG为1.93的所述垂直碳纳米管阵列;
步骤(1)中,采用下述方法将缓冲层镀于基体上:将基体置于5×10-5 Pa的真空条件下,采用磁控溅射方法先进行预溅射30min,然后进行反应溅射4min;
所述基体的厚度为725μm;
所述缓冲层的厚度为16.72nm;
所述催化剂层的厚度为2.62 nm;
采用乙醇、丙酮和去离子水依次对基体进行超声清洗,然后烘干,再进行预溅射;
步骤(1)中,采用下述方法将催化剂层镀于缓冲层上:将镀有缓冲层的基体置于5×10-5 Pa的真空条件下,采用磁控溅射方法先进行预溅射30min,然后进行反应溅射16min;
所述基体的材质为P<100>单面抛光硅片。
2.根据权利要求1所述的垂直碳纳米管阵列的制备方法,其特征在于,还包括测控步骤,所述测控步骤为:采用椭偏仪对镀有缓冲层和催化剂层的基体进行精准测量,测量并分析制得的缓冲层和/或催化剂层的厚度以及成分信息。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010441415.8A CN111455339B (zh) | 2020-05-22 | 2020-05-22 | 用于高吸收比材料的垂直碳纳米管阵列的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010441415.8A CN111455339B (zh) | 2020-05-22 | 2020-05-22 | 用于高吸收比材料的垂直碳纳米管阵列的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111455339A CN111455339A (zh) | 2020-07-28 |
CN111455339B true CN111455339B (zh) | 2022-07-01 |
Family
ID=71675145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010441415.8A Active CN111455339B (zh) | 2020-05-22 | 2020-05-22 | 用于高吸收比材料的垂直碳纳米管阵列的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111455339B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114381709A (zh) * | 2020-10-21 | 2022-04-22 | 北京振兴计量测试研究所 | 涂层、用途及制备方法 |
CN114644336B (zh) * | 2020-12-17 | 2024-04-16 | 清华大学 | 电子黑体结构的制备方法及电子黑体结构 |
CN114604855A (zh) * | 2022-03-14 | 2022-06-10 | 无锡东恒新能源科技有限公司 | 一种基于原子层沉积催化合成单壁碳纳米管的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101857460A (zh) * | 2010-05-20 | 2010-10-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | 纺丝用碳纳米管阵列的制备方法 |
CN103771389B (zh) * | 2013-12-20 | 2016-01-06 | 中国科学院上海硅酸盐研究所 | 管径均匀的碳纳米管阵列及其生长方法 |
CN103833001B (zh) * | 2014-01-03 | 2015-08-12 | 南京康众光电科技有限公司 | 一种船槽式图案结构生长的碳纳米管生长方法及其发射体 |
US10570016B2 (en) * | 2014-11-14 | 2020-02-25 | Toda Kogyo Corp. | Carbon nanotube and process for producing the carbon nanotube, and lithium ion secondary battery using the carbon nanotube |
FR3063493B1 (fr) * | 2017-03-01 | 2023-06-09 | Nawatechnologies | Procede de preparation d'une electrode comprenant un support en aluminium, des nanotubes de carbone alignes et un polymere organique electro-conducteur, ladite electrode et ses utilisations |
-
2020
- 2020-05-22 CN CN202010441415.8A patent/CN111455339B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111455339A (zh) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111455339B (zh) | 用于高吸收比材料的垂直碳纳米管阵列的制备方法 | |
Kaspar et al. | Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS | |
Lehman et al. | Carbon nanotube-based black coatings | |
He et al. | Oblique angle deposition and its applications in plasmonics | |
Liang et al. | Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids | |
Girard et al. | Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films | |
Ghodselahi et al. | Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs@ aC: H substrate | |
CN110952075B (zh) | 一种核壳型粉体超黑材料及其制备方法 | |
Li et al. | Graphene-coated Si nanowires as substrates for surface-enhanced Raman scattering | |
Devloo-Casier et al. | In situ synchrotron based x-ray techniques as monitoring tools for atomic layer deposition | |
Singhal et al. | Synthesis and characterizations of Au-C60 nanocomposite | |
CN104528709A (zh) | 一种强拉曼散射强度的石墨烯的制备方法 | |
Chang et al. | Investigation of defects in ultra-thin Al2O3 films deposited on pure copper by the atomic layer deposition technique | |
Rudskoy et al. | Gas-phase synthesis and control of structure and thickness of graphene layers on copper substrates | |
Ronoh et al. | Comprehensive characterization of different metallic thin films on highly oriented pyrolytic graphite substrate | |
Lv et al. | Controllable growth of few-layer niobium disulfide by atmospheric pressure chemical vapor deposition for molecular sensing | |
Shah et al. | Pyrolytic carbon coated black silicon | |
JP2009103571A (ja) | 近接場光散乱用プローブおよびその製造方法 | |
Acosta Gentoiu et al. | Morphology, microstructure, and hydrogen content of carbon nanostructures obtained by PECVD at various temperatures | |
CN103741122A (zh) | 一种制备光滑尖锐afm-ters针尖的化学镀方法 | |
Pan et al. | Ultrafast ion sputtering modulation of two-dimensional substrate for highly sensitive raman detection | |
Jain et al. | SPR based refractive index modulation of nanostructured SiO2 films grown using GLAD assisted RF sputtering technique | |
US9778197B2 (en) | Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy | |
CN212559473U (zh) | 一种垂直碳纳米管阵列 | |
Hu et al. | H2-dependent carbon dissolution and diffusion-out in graphene chemical vapor deposition growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |