CN113865477B - 一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用 - Google Patents

一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN113865477B
CN113865477B CN202111146468.8A CN202111146468A CN113865477B CN 113865477 B CN113865477 B CN 113865477B CN 202111146468 A CN202111146468 A CN 202111146468A CN 113865477 B CN113865477 B CN 113865477B
Authority
CN
China
Prior art keywords
carbon nano
carbon
film
cup
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111146468.8A
Other languages
English (en)
Other versions
CN113865477A (zh
Inventor
慕春红
郭新鹏
刘泽军
朱涛
宁婧
李雨哲
简贤
尹良君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111146468.8A priority Critical patent/CN113865477B/zh
Publication of CN113865477A publication Critical patent/CN113865477A/zh
Application granted granted Critical
Publication of CN113865477B publication Critical patent/CN113865477B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用,制备方法包括以下步骤:将催化剂置于惰性气体环境中,然后向其中通入碳源气体,高温环境下反应30‑50min,得到碳包覆催化剂材料;将碳包覆催化剂材料用酸溶液进行清洗,得到碳纳米杯;将碳纳米杯和碳纳米管分散于分散剂溶液中,超声处理,得到碳纳米杯/碳纳米管分散液;将成膜剂与制得的碳纳米杯/碳纳米管分散液混合后磁力搅拌,得混合物,将混合物进行制膜并固化,即可。该柔性应变薄膜可有效解决现有的薄膜存在的随着拉伸强度的变化灵敏度改变过于明显的问题。

Description

一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制 备方法和应用
技术领域
本发明属于柔性材料和传感器技术领域,具体涉及一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用。
背景技术
随着柔性传感器技术的不断进步,可穿戴电子设备和电子皮肤技术在过去的十年间发展迅速。这当中,柔性应变感知作为柔性传感器技术重要的一部分,更是得到广泛研究,如今已经在工业生产、医疗诊断、智能机器人等领域得到了广泛应用。目前商业化的电子传感设备一般由无机电子材料制备而成,柔韧性、生物相容性较差。由于碳材料具有优异的力学性能、电学性能、低成本的制作工艺,使得其能够作为敏感材料在可穿戴传感器领域广泛应用,但由于单一的碳材料有部分的不足之处,所以,将不同碳材料复合可以集成碳材料各自的优势,形成具有独特性能的复合型碳材料,如碳纳米管-石墨烯、炭黑-碳纳米管、石墨烯-银纳米线等等,在智能电子和人体运动检测等领域有着广阔的应用前景。
现有技术中使用碳材料制成的应变薄膜在一定的弹性范围内具有较好的灵敏度,但是超过该弹性范围,导致其灵敏度严重下降,使得其应用受到限制。
发明内容
针对现有技术中存在的上述问题,本发明提供一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用,该柔性应变薄膜具有宽检测范围和良好的拉伸应变灵敏度,并且可有效解决现有的薄膜存在的随着拉伸强度的变化灵敏度改变过于明显的问题,可应用于可穿戴智能设备和垫子皮肤等领域。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜的制备方法,包括以下步骤:
(1)将催化剂置于惰性气体环境中,然后向其中通入碳源气体,高温环境下反应30-50min,得到碳包覆催化剂材料;
(2)将步骤(1)中的碳包覆催化剂材料用酸溶液进行清洗,得到碳纳米杯;
(3)将步骤(2)中的碳纳米杯和碳纳米管分散于分散剂溶液中,超声处理,得到碳纳米杯/碳纳米管分散液;
(4)将成膜剂与步骤(3)中制得的碳纳米杯/碳纳米管分散液混合后磁力搅拌,得混合物,将混合物进行制膜并固化,即可。
进一步地,步骤(1)中催化剂为氧化镁或氧化锌。
进一步地,步骤(1)中高温环境为650-800℃。
进一步地,步骤(3)中分散剂为环己烷或丙酮。
进一步地,步骤(4)中成膜剂为聚二甲基硅氧烷。
进一步地,步骤(4)中碳纳米管为多壁碳纳米管或单壁碳纳米管。
进一步地,步骤(4)中磁力搅拌时间为4-6h。
进一步地,步骤(4)中先对混合物进行去泡处理,然后再进行制膜固化,去泡处理的具体过程为:将混合物置于真空环境中,静置1h以上即可。
进一步地,制得的碳纳米管/碳纳米杯复合结构的柔性应变薄膜中碳纳米管的质量占比为1-3%,碳纳米管与碳纳米杯之间的质量比为1-2:1-2。
本发明所产生的有益效果为:
本发明提供一种碳纳米管/碳纳米杯复合结构的柔性应变薄膜可被应用于柔性应变传感器中,可实现大范围高灵敏的应变捕捉,该柔性膜既有较大的应变检测范围(0~50%),又具有较大的灵敏度(最大可达68),在未来的可穿戴传感器领域具有巨大的应用价值。
本发明中的薄膜中存在点线接触,即碳纳米杯(零维量子点)和碳纳米管(一维量子线)之间的接触,碳纳米杯的添加对碳纳米管间的缠结网络起到了连接作用,能有效削弱卸载应力过程中的残余应力与导电网络复原力间的竞争机制。将碳纳米杯和碳纳米管同时加入制成薄膜,当薄膜产生拉伸变形后,碳纳米杯和碳纳米管之间的连接并不会削弱,因此,在较大的拉伸变形后依然具有较高的灵敏度。
附图说明
图1为实施例2中制得的柔性薄膜的SEM断面图;
图2为实施例2中制得的柔性薄膜的Raman图;
图3为实施例2中制得的柔性薄膜的应变灵敏度测试图;
图4为实施例1-3中不同填料比的柔性薄膜的应变灵敏度测试图;
图5为实施例2中制得的柔性薄膜的应变动态响应测试图;
图6为实施例2中制得的柔性薄膜的重复应变响应测试图。
具体实施方式
下面结合附图对本发明的具体实施方式做详细的说明。
实施例1
一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜,其制备方法包括以下步骤:
步骤1、称取氧化锌置于化学气相沉积设备的管式炉腔体中,然后通入惰性气体将炉中腔体的空气排空;
步骤2、再向其中通入乙炔气体,反应40min,然后用30%的硝酸溶液清洗氧化锌,得到碳纳米杯;
步骤3、将步骤2所得的0.05g碳纳米杯和0.1g商业化多壁碳纳米管混合于5ml环己烷溶液中,通过超声处理30min,得到良好分散的碳纳米管/碳纳米杯环己烷溶液;
步骤4、将聚二甲基硅氧烷与步骤3的碳纳米管/碳纳米杯环己烷溶液混合,在常温下磁力搅拌5h以上,使填料充分混合;
步骤5、将步骤4所得溶液置于真空环境中静置1h,去除气泡;
步骤6、将平滑玻璃于无水乙醇中超声30min,然后将步骤5所得的溶液滴涂于模板上,再使用刮刀刮涂以控制薄膜厚度为1mm;
步骤7、将步骤6所得薄膜置于电热鼓风干燥箱中固化,再从模板上剥离,降至室温后于薄膜两端刮涂上导电银浆使铜丝粘附于薄膜;
步骤8、将步骤7所得的薄膜再次置于电热鼓风干燥箱中固化,得到碳纳米管/碳纳米杯复合结构的柔性应变薄膜。
实施例2
一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜,其制备方法包括以下步骤:
步骤1、称取氧化锌置于化学气相沉积设备的管式炉腔体中,然后通入惰性气体将炉中腔体的空气排空;
步骤2、再向其中通入乙炔气体,反应30min,然后用30%的硝酸溶液清洗氧化锌,得到碳纳米杯;
步骤3、将步骤2所得的0.1g碳纳米杯和0.1g商业化多壁碳纳米管混合于8ml丙酮溶液中,通过超声处理30min,得到良好分散的碳纳米管/碳纳米杯丙酮溶液;
步骤4、将聚二甲基硅氧烷与步骤3的碳纳米管/碳纳米杯丙酮溶液混合,在常温下磁力搅拌5h以上,使填料充分混合;
步骤5、将步骤4所得溶液置于真空环境中静置1h,去除气泡;
步骤6、将平滑玻璃于无水乙醇中超声30min,然后将步骤5所得的溶液滴涂于模板上,再使用刮刀刮涂以控制薄膜厚度为1mm;
步骤7、将步骤6所得薄膜置于电热鼓风干燥箱中固化,再从模板上剥离,降至室温后于薄膜两端刮涂上导电银浆使铜丝粘附于薄膜;
步骤8、将步骤7所得的薄膜再次置于电热鼓风干燥箱中固化,得到碳纳米管/碳纳米杯复合结构的柔性应变薄膜。
实施例3
一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜,其制备方法包括以下步骤:
步骤1、称取氧化锌置于化学气相沉积设备的管式炉腔体中,然后通入惰性气体将炉中腔体的空气排空;
步骤2、再向其中通入乙炔气体,反应35min,然后用30%的硝酸溶液清洗氧化锌,得到碳纳米杯;
步骤3、将步骤2所得的0.2g碳纳米杯和0.1g商业化多壁碳纳米管混合于10ml环己烷溶液中,通过超声处理30min,得到良好分散的碳纳米管/碳纳米杯环己烷溶液;
步骤4、将聚二甲基硅氧烷与步骤3的碳纳米管/碳纳米杯环己烷溶液混合,在常温下磁力搅拌5h以上,使填料充分混合;
步骤5、将步骤4所得溶液置于真空环境中静置1h,去除气泡;
步骤6、将平滑玻璃于无水乙醇中超声30min,然后将步骤5所得的溶液滴涂于模板上,再使用刮刀刮涂以控制薄膜厚度为1mm;
步骤7、将步骤6所得薄膜置于电热鼓风干燥箱中固化,再从模板上剥离,降至室温后于薄膜两端刮涂上导电银浆使铜丝粘附于薄膜;
步骤8、将步骤7所得的薄膜再次置于电热鼓风干燥箱中固化,得到碳纳米管/碳纳米杯复合结构的柔性应变薄膜。
对比例1
一种含碳纳米管的柔性应变薄膜,其制备方法包括以下步骤:
步骤1、将0.1g商业化多壁碳纳米管混合于8ml丙酮溶液中,通过超声处理30min,得到良好分散的碳纳米管丙酮溶液;
步骤2、将聚二甲基硅氧烷与步骤1的碳纳米管丙酮溶液混合,在常温下磁力搅拌5h以上,使填料充分混合;
步骤3、将步骤2所得溶液置于真空环境中静置1h,去除气泡;
步骤4、将平滑玻璃于无水乙醇中超声30min,然后将步骤3所得的溶液滴涂于模板上,再使用刮刀刮涂以控制薄膜厚度为1mm;
步骤5、将步骤4所得薄膜置于电热鼓风干燥箱中固化,再从模板上剥离,降至室温后于薄膜两端刮涂上导电银浆使铜丝粘附于薄膜;
步骤6、将步骤5所得的薄膜再次置于电热鼓风干燥箱中固化,得到碳纳米管/碳纳米杯复合结构的柔性应变薄膜。
对比例2
一种含碳纳米杯结构的柔性应变薄膜,其制备方法包括以下步骤:
步骤1、称取氧化锌置于化学气相沉积设备的管式炉腔体中,然后通入惰性气体将炉中腔体的空气排空;
步骤2、再向其中通入乙炔气体,反应30min,然后用30%的硝酸溶液清洗氧化锌,得到碳纳米杯;
步骤3、将步骤2所得的0.1g碳纳米杯混合于8ml丙酮溶液中,通过超声处理30min,得到良好分散的碳纳米杯丙酮溶液;
步骤4、将聚二甲基硅氧烷与步骤3的碳纳米杯丙酮溶液混合,在常温下磁力搅拌5h以上,使填料充分混合;
步骤5、将步骤4所得溶液置于真空环境中静置1h,去除气泡;
步骤6、将平滑玻璃于无水乙醇中超声30min,然后将步骤5所得的溶液滴涂于模板上,再使用刮刀刮涂以控制薄膜厚度为1mm;
步骤7、将步骤6所得薄膜置于电热鼓风干燥箱中固化,再从模板上剥离,降至室温后于薄膜两端刮涂上导电银浆使铜丝粘附于薄膜;
步骤8、将步骤7所得的薄膜再次置于电热鼓风干燥箱中固化,得到碳纳米杯复合结构的柔性应变薄膜。
试验例
检测过程如下:通过东莞市智取精密仪器有限公司的ZQ-990试验机设定和获取力的数据,通过KEITHLEY吉时利2450系列数字原表获取电阻的数据。首先将待测试膜以无应变的初始状态安置于试验机上,再用电脑上的测试软件设定好拉伸速度、循环次数、拉伸范围等参数,其中拉伸速度始终保持为10mm/min。待测试结束后,通过测试软件获取测试数据,再由Origin制图软件将数据以图片形式呈现出来,具体结果见附图。
图1为本发明获得的实施例2中薄膜的SEM形貌表征,表明碳纳米杯与碳纳米管较好的分散在了聚二甲基硅氧烷中,展示了碳纳米杯/碳纳米管混合填料导电薄膜的断面SEM图像,图中的圆圈代表碳纳米杯,箭头代表碳纳米管。由于碳纳米杯较低的长径比,碳纳米杯与碳纳米杯之间的接触方式为点接触。由于碳纳米管较高的长径比,碳纳米管与碳纳米管之间的接触方式为桥连网络接触。碳纳米杯与碳纳米管之间的接触为点线接触的网络结构。
图2为本发明获得实施例2的Raman图,由图可知PDMS的拉曼特征峰,在1350cm-1、1580cm-1附近的峰分别对应为碳材料的D峰与G峰,ID/IG比值为1.17。
图3为本发明所获得的对比例1中薄膜的应变灵敏度测试图,由图可知纯碳纳米管的导电网络薄膜应变响应的线性度良好,但灵敏度较差,在低检测范围内灵敏度只有1.22,在20~50%的高检测范围内,灵敏度只有3.05。这是由于碳纳米管较高的长径比导致碳管之间的桥连网络不易受到应变的影响。对比例2中仅含有0.1g碳纳米杯的薄膜中由于碳纳米杯之间的距离较大,使得碳纳米杯之间无法形成导电通路,因此,对比例2中的薄膜是绝缘的,无法使用。
图4为本发明获得的碳纳米管/碳纳米杯复合结构的柔性应变薄膜的不同填料比的应变灵敏度测试图。结合对比例1的纯碳纳米管基薄膜和对比例2的纯碳纳米杯基薄膜,前者检测范围大,但灵敏度很小;后者则由于碳纳米杯添加量过小导致薄膜绝缘。对于碳纳米管、碳纳米杯的混合结构来说,在碳纳米管与碳纳米杯比例为2:1(实施例1)薄膜中,由于碳纳米杯的量相对较少,导电网络之间的点接触较少,所以薄膜的性能倾向于纯碳纳米管薄膜的性能,拥有较大的检测范围,但应变灵敏度较低。当碳纳米管与碳纳米杯的比例为1:2(实施例3)时,由于碳纳米杯增多,导电网络之间的点接触增多,应变灵敏度提高,但可检测范围只有0~20%。当碳纳米管与碳纳米杯比例为1:1(实施例2)时,薄膜既有较大的检测范围(0~50%),又表现出优秀的应变灵敏度(最大可达68)。
图5为实施例2所制备碳纳米管/碳纳米杯复合结构的柔性应变薄膜的应变动态响应测试图,即碳纳米管与碳纳米杯的质量比例为1:1,可以看出薄膜的灵敏度衰减较小,说明薄膜具有良好的机械性能。
图6为实施例2的重复应变响应测试图,即对碳纳米管和碳纳米杯质量比为1:1的薄膜在20%应变条件下实施2000次重复加载-卸载应变实验。在最初的几次循环中,电阻变化率的最大值逐渐减小,这主要是由于在拉伸的过程中,薄膜的导电网络重组致使形成了额外导电路径。

Claims (7)

1.一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜的制备方法,其特征在于,包括以下步骤:
(1)将催化剂置于惰性气体环境中,然后向其中通入碳源气体,高温环境下反应30-50min,得到碳包覆催化剂材料;
(2)将步骤(1)中的碳包覆催化剂材料用酸溶液进行清洗,得到碳纳米杯;
(3)将步骤(2)中的碳纳米杯和碳纳米管分散于分散剂溶液中,超声处理,得到碳纳米杯/碳纳米管分散液;碳纳米管为多壁碳纳米管或单壁碳纳米管;
(4)将成膜剂与步骤(3)中制得的碳纳米杯/碳纳米管分散液混合后磁力搅拌4-6h,得混合物,将混合物进行制膜并固化,即可;制得的碳纳米管/碳纳米杯复合结构的柔性应变薄膜中碳纳米管的质量占比为1-3%,碳纳米管与碳纳米杯之间的质量比为1-2:1-2。
2.如权利要求1所述的含碳纳米管/碳纳米杯复合结构的柔性应变薄膜的制备方法,其特征在于,步骤(1)中所述催化剂为氧化镁或氧化锌。
3.如权利要求1所述的含碳纳米管/碳纳米杯复合结构的柔性应变薄膜的制备方法,其特征在于,步骤(1)中高温环境为650-800℃。
4.如权利要求1所述的含碳纳米管/碳纳米杯复合结构的柔性应变薄膜的制备方法,其特征在于,步骤(3)中分散剂为环己烷或丙酮。
5.如权利要求1所述的含碳纳米管/碳纳米杯复合结构的柔性应变薄膜的制备方法,其特征在于,步骤(4)中成膜剂为聚二甲基硅氧烷。
6.一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜,其特征在于,采用权利要求1-5中任一项所述方法制备获得。
7.根据权利要求6中所述的含碳纳米管/碳纳米杯复合结构的柔性应变薄膜在应变传感器中的应用方法。
CN202111146468.8A 2021-09-28 2021-09-28 一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用 Active CN113865477B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111146468.8A CN113865477B (zh) 2021-09-28 2021-09-28 一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111146468.8A CN113865477B (zh) 2021-09-28 2021-09-28 一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113865477A CN113865477A (zh) 2021-12-31
CN113865477B true CN113865477B (zh) 2022-10-14

Family

ID=78992333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111146468.8A Active CN113865477B (zh) 2021-09-28 2021-09-28 一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113865477B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012011892U1 (de) * 2012-12-12 2014-03-13 Tutech Innovation Gmbh Kohlenstoffnanomaterial
CN106871775B (zh) * 2017-02-13 2020-08-21 电子科技大学 碳系材料-高分子聚合物应变敏感薄膜及制备方法
CN110511569B (zh) * 2019-07-25 2021-06-04 复旦大学 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法
CN112980022B (zh) * 2021-04-25 2022-05-03 电子科技大学 一种多孔碳胶囊基/聚二甲基硅氧烷复合柔性膜及其制备方法和应用

Also Published As

Publication number Publication date
CN113865477A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
Xu et al. Wearable CNT/Ti3C2T x MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring
US10550240B2 (en) Carbon material-polymer strain sensitive film and its preparation method
CN109115266B (zh) 一种可穿戴多功能柔性传感器及其制备方法
CN107540869B (zh) 一种聚合物泡沫基多级碳纳米复合压敏材料的制备方法
Yang et al. Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes
US10883814B2 (en) Highly stretchable strain sensor for human motion monitoring
Li et al. Scalable fabrication of flexible piezoresistive pressure sensors based on occluded microstructures for subtle pressure and force waveform detection
CN112229317A (zh) 具有大变形性能及其监测功能的柔性传感膜及其制备方法
Zhu et al. A gill-mimicking thermoelectric generator (TEG) for waste heat recovery and self-powering wearable devices
CN111944167A (zh) 一种导电水凝胶及其制备方法和应用
CN111504527A (zh) 一种海胆状氧化物基复合膜仿生压力传感器及其制备方法
Yang et al. Ultra-sensitive, stretchable, and bidirectional wearable strain sensor for human motion detection
CN113865477B (zh) 一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用
Viannie et al. Electrical and mechanical properties of flexible multiwalled carbon nanotube/poly (dimethylsiloxane) based nanocomposite sheets
CN112980022B (zh) 一种多孔碳胶囊基/聚二甲基硅氧烷复合柔性膜及其制备方法和应用
CN113514176A (zh) 一种基于3d打印的低温可拉伸柔性应力传感器及制备方法
CN110863352B (zh) 一种基于双组份聚氨酯线的高可拉伸柔性应变传感器及其制备方法
CN110551308A (zh) 一种利用生物质材料制备柔性应变传感器的方法
CN110330747B (zh) 一种大应变超弹性pva/mcnts水凝胶的制备方法及应用
CN113831562B (zh) 一种含有碳纳米杯基的柔性传感器薄膜及其制备方法和应用
Zhang et al. Fabrication of polydimethylsiloxane/graphene flexible strain sensors by using the scraping and coating method
Shan et al. Conductive film with flexible and stretchable capability for sensor application and stealth information transmission
CN117470086A (zh) 基于碳纳米管原位生长碳纳米纤维的多孔柔性应变传感器
CN114907613B (zh) 碳纳米管/聚多巴胺-还原氧化石墨烯/三维互联多孔硅橡胶复合材料及其制备方法和应用
Mahato et al. Flexible piezo-resistive strain sensors using all-polydimethylsiloxane based hybrid nanocomposites for wearable electronics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant