WO2021010385A1 - 鶏糞飼料製造方法および鶏糞飼料製造装置 - Google Patents

鶏糞飼料製造方法および鶏糞飼料製造装置 Download PDF

Info

Publication number
WO2021010385A1
WO2021010385A1 PCT/JP2020/027323 JP2020027323W WO2021010385A1 WO 2021010385 A1 WO2021010385 A1 WO 2021010385A1 JP 2020027323 W JP2020027323 W JP 2020027323W WO 2021010385 A1 WO2021010385 A1 WO 2021010385A1
Authority
WO
WIPO (PCT)
Prior art keywords
chicken manure
septic tank
processing furnace
feed
thermal decomposition
Prior art date
Application number
PCT/JP2020/027323
Other languages
English (en)
French (fr)
Inventor
利光 加来野
貴徳 岩切
Original Assignee
株式会社加来野製作所
株式会社ノーブル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社加来野製作所, 株式会社ノーブル filed Critical 株式会社加来野製作所
Publication of WO2021010385A1 publication Critical patent/WO2021010385A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/26Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless

Definitions

  • the present invention relates to a chicken manure feed production method and a chicken manure feed production apparatus for processing chicken manure into feed.
  • Chicken manure discharged from poultry farms has become a problem.
  • Chicken manure is usually treated as fertilizer (see, for example, Patent Document 1) or incinerated (see, for example, Patent Document 2), but attempts have also been made to use chicken manure as feed.
  • Patent Document 3 water is added to chicken manure to produce a mixture, and the produced mixture is screened and fermented by mixing fermenting bacteria with the residue remaining on the sieve to produce feed. Have been described.
  • an object of the present invention is to provide a chicken manure feed production method and a chicken manure feed production apparatus capable of processing chicken manure and safely converting it into feed.
  • the method for producing chicken manure feed of the present invention is characterized in that chicken manure is thermally decomposed and incinerated in a processing furnace without supplying oxygen.
  • thermal decomposition of chicken manure proceeds and ashing occurs.
  • the ash after thermal decomposition contains a large amount of calcium and becomes aseptic, so that it can be used as feed.
  • the thermal decomposition be carried out at 500 to 600 ° C. for 2 to 3 hours.
  • the ash after thermal decomposition becomes sufficiently sterile, and a feed that is sterile and contains a large amount of calcium can be obtained.
  • thermally decomposing at 500 ° C. or higher urea in chicken manure is decomposed, and the feed does not contain nitrogen. If the temperature is lower than 500 ° C., sterilization may be insufficient by thermal decomposition for 2 to 3 hours, and it is necessary to lengthen the thermal decomposition time. Further, when the temperature exceeds 600 ° C., the calcium content is decomposed, so that the calcium content in the feed is reduced.
  • the chicken manure feed production apparatus of the present invention includes a processing furnace having a pyrolysis section that thermally decomposes chicken manure without supplying oxygen. According to the chicken manure feed production apparatus of the present invention, since the hypoxic state is maintained in the treatment path, the thermal decomposition of chicken manure proceeds, and ash containing a large amount of calcium that can be used as feed can be obtained.
  • a feed containing a large amount of calcium that can be used as feed can be obtained due to the configuration in which chicken manure is thermally decomposed and incinerated in the processing furnace without supplying oxygen.
  • FIG. 7 is a sectional view taken along line VII-VII of FIG.
  • FIG. 8 is a cross-sectional view taken along the line IX-IX of FIG.
  • FIG. 8 is a cross-sectional view taken along the line XX of FIG. It is a top view of the primary septic tank.
  • FIG. 20 is a cross-sectional view taken along the line XXI-XXI of FIG.
  • FIG. 1 is a front view of the chicken manure feed production apparatus according to the embodiment of the present invention
  • FIG. 2 is a plan view
  • FIG. 3 is a plan view of a processing furnace
  • FIG. 4 is a vertical sectional view of a drying portion
  • FIG. 5 is V of FIG.
  • FIG. 6 is a view taken along the line VI of FIG. 4
  • FIG. 7 is a vertical sectional view of the thermal decomposition portion
  • FIG. 8 is a sectional view of VII-VII of FIG. 7
  • FIG. 9 is a sectional view of IX-IX of FIG.
  • FIG. 10 is a cross-sectional view taken along the line XX of FIG.
  • the chicken manure feed production device 1 comprises a processing furnace 2 for processing chicken manure, a purification device 3 for purifying exhaust gas generated in the processing furnace, and chicken manure. It has an automatic transfer device 4 that automatically transfers to the processing furnace 2 and an automatic control panel 5.
  • the processing furnace 2 has a cylindrical shape, and has a drying section 2A for drying chicken manure supplied by the automatic transport device 4 at the upper part and a thermal decomposition section 2B for thermally decomposing the chicken manure dried in the drying section 2A at the lower part. Have.
  • the upper cover 20 of the processing furnace 2 has an inlet 21 for charging chicken manure and two exhaust gas suction ports 22 for sucking exhaust gas (smoke exhaust) generated in the processing furnace 2. And are provided.
  • a charging device 40 which will be described later, is connected to the charging port 21, and chicken manure is automatically charged into the processing furnace 2.
  • the drying portion 2A has an outer wall 50 and an inner wall 51.
  • the space between the outer wall 50 and the inner wall 51 is a space portion 52 in which water supply and drainage are automatically performed.
  • a receiving plate 53 for receiving the chicken manure input from the inlet 21 and guiding it to the central portion of the drying portion 2A is provided.
  • a receiving bar 54 and a stirring bar 55 which are of a two-stage upper and lower type are provided.
  • the receiving bar 54 is formed by extending a plurality of rods diagonally downward from the inner wall 51 toward the central portion of the drying portion 2A.
  • the stirring bar 55 extends diagonally upward from the rotating shaft 56 extending in the vertical direction to the central portion of the drying portion 2A toward the upper part of the receiving bar 54.
  • the rotary shaft 56 is rotationally driven by a drive device 23 provided on the upper cover 20 of the processing furnace 2, and the stirring bar 55 rotates together with the rotary shaft 56.
  • the upper and lower two-stage receiving bars 54 are provided so as to be staggered in length in a plan view, and the stirring bars 55 are provided at positions different by 90 ° in a plan view. This prevents chicken manure from falling straight down the upper and lower tiers.
  • the drive device 23 is driven by a geared motor 24 provided on the upper cover 20.
  • the rotation speed of the stirring bar 55 (rotating shaft 56) is controlled by a driving device 23, a geared motor 24, and an inverter (not shown).
  • thermometers 57A and 57B are provided at the upper part and the lower part of the drying portion 2A, respectively.
  • the thermometers 57A and 57B are connected to the automatic control panel 5.
  • a rostrum 60 and an automatic ignition device 61 that automatically ignites the chicken manure on the rostrum 60 so as to continue thermal decomposition are provided below the thermal decomposition section 2B. ..
  • Refractory cement is provided in the wall portion 62A of the thermal decomposition portion 2B. Refractory cement is also provided on the bottom 62B.
  • the inside of the wall portion 62A on the rostrum 60 is covered with the expanded metal 63.
  • a heat exchange pipe 64 is spirally provided on the upper portion of the thermal decomposition section 2B.
  • Thermometers 58A, 58B, and 58C are provided at the upper, middle, and lower parts of the pyrolysis unit 2B, respectively.
  • the thermometers 58A, 58B, 58C are connected to the automatic control panel 5.
  • the chicken manure that has fallen from the drying portion 2A is heated from the lower part of the rostrum 60 by the automatic ignition device 61 for a certain period of time to start thermal decomposition. Then, the chicken manure dried in the drying portion 2A intermittently falls onto the rostrum 60 substantially uniformly, and thermal decomposition is continued on the rostrum 60. Pyrolyzed chicken manure in a low oxygen state is carbonized and becomes magnetic ash, which falls downward from the grid of Rostle 60.
  • inspection doors 65 and 66 are provided at the upper and lower positions of the rostrum 60, respectively.
  • the inspection door 65 is provided with a viewing window 65A.
  • the viewing window 65A makes it possible to check the internal condition of the thermal decomposition unit 2B.
  • the inspection door 66 is provided with a small window 66A. It is possible to take out the magnetic ash at the bottom of the rostrum 60 from the inspection door 66. Further, even while the chicken manure feed production device 1 is in operation, magnetic ash can be sucked and collected from the small window 66A using an electric suction tool.
  • the purification device 3 uses a septic water tank 7 in which water 70 is stored and a gas reservoir 71 is formed at the upper portion, a primary septic tank 8 for primary purifying the exhaust gas sucked from the treatment furnace 2, and gas purified by the primary septic tank 8. It has a secondary septic tank 9 for secondary purification and a circulation septic tank 10 for circulating and purifying the gas purified by the secondary septic tank 9.
  • FIG. 11 is a plan view of the primary septic tank 8
  • FIG. 12 is a front view of FIG. 11
  • FIG. 13 is a right side view of FIG.
  • the primary septic tank 8 is a box-shaped object provided in the upper part of the septic water tank 7 and the lower surface is opened to the upper part of the septic water tank 7 and connected.
  • the two inlets 80 of the primary septic tank 8 and the two exhaust gas inlets 22 of the processing furnace 2 are connected by a flue 11, respectively.
  • the primary septic tank 8 includes a nozzle 81 that injects water from the upper part of the processing furnace 2 through the flue 11 and a pump 82 that sucks water 70 from the septic water tank 7 and supplies it to the nozzle 81 (FIG. 1). (See FIG. 2), a pipe 83 that sucks gas from the gas reservoir 71 of the septic water tank 7 and returns it to the primary septic tank 8, and an electric blower 84 provided in the middle of the pipe 83.
  • the nozzle 81 is a conical nozzle that injects water 70 in a conical shape.
  • the nozzle 81 is provided sideways in the primary septic tank 8.
  • FIG. 14 is a plan view of the secondary septic tank 9
  • FIG. 15 is a front view of FIG. 14
  • FIG. 16 is a right side view of FIG.
  • the secondary septic tank 9 is a cylindrical object provided in the upper part of the septic water tank 7 and whose lower surface is opened and connected to the upper part of the septic water tank 7.
  • the inflow port 90 of the secondary septic tank 9 and the suction port 72 provided on the upper wall of the septic water tank 7 are connected by a pipe 91.
  • An electric blower 92 is provided in the middle of the pipe 91.
  • the secondary septic tank 9 has a nozzle 93 that injects water from the gas reservoir 71 of the septic water tank 7 to the gas sucked by the electric blower 92 through the pipe 91, and a nozzle 93 that sucks water 70 from the septic water tank 7 to the nozzle 93.
  • a pump 94 for supplying is provided.
  • the nozzle 93 is a conical nozzle that injects water 70 in a conical shape.
  • the nozzles 93 are provided in the secondary septic tank 9 upward and in two upper and lower stages.
  • FIG. 17 is a plan view of the circulation septic tank 10
  • FIG. 18 is a front view of FIG. 17,
  • FIG. 19 is a right side view of FIG.
  • the circulation septic tank 10 is a cylindrical object provided in the upper part of the septic water tank 7 and whose lower surface is opened to the upper part of the septic water tank 7 and connected.
  • the circulation septic tank 10 is provided between the secondary septic tank 9 and the return pipe 12.
  • the return pipe 12 is a pipe that sends the gas that has passed through the secondary septic tank 9 and the circulation septic tank 10 into the processing furnace 2.
  • the return pipe 12 is connected to the suction port 104.
  • An electric blower 13 for sending gas to the processing furnace 2 is provided in the middle of the return pipe 12.
  • the inflow port 100 of the circulation septic tank 10 and the suction port 95 of the secondary septic tank 9 are connected by a pipe 101.
  • the suction port 95 of the secondary septic tank 9 is formed in the lower part of the secondary septic tank 9 below the nozzle 93 so as to suck the gas that has passed through the secondary septic tank 9.
  • the circulation septic tank 10 has a nozzle 102 that sucks gas from the secondary septic tank 9 through the pipe 101 by the suction force of the electric blower 13 provided in the middle of the return pipe 12 and injects water to the sucked gas, and a septic water tank.
  • a pump 103 that sucks up water 70 from 7 and supplies it to the nozzle 102 is provided.
  • the nozzle 102 is a conical nozzle that injects water 70 in a conical shape.
  • the nozzles 102 are provided in the circulation septic tank 10 upward and in two upper and lower stages.
  • the suction port 104 of the return pipe 12 is formed in the lower part of the circulation septic tank 10 below the nozzle 102 so as to suck the gas that has passed through the circulation septic tank 10.
  • the return pipe 12 is connected to a gas discharge pipe 6 provided in the space below the rostrum 60 in the processing furnace 2.
  • the gas discharge pipe 6 discharges the gas sent by the return pipe 12 substantially evenly into the space below the rostrum 60 in the processing furnace 2.
  • the gas discharge pipe 6 has a ring-shaped portion 67 in which the steel pipe is arranged in a ring shape centered on the central portion of the processing furnace 2 in a plan view, and the central portion of the processing furnace 2 in which the steel pipe is viewed in a plan view. It has a linear portion 68 arranged linearly toward the direction of the pipe and a suction port 69A to which the return pipe 12 is connected.
  • the ring-shaped portion 67 is provided with a plurality of openings 67A formed diagonally upward on the central portion side of the processing furnace 2 at predetermined intervals in the circumferential direction of the ring shape.
  • the linear portion 68 has holes 68A and 68B formed diagonally upward on both the left and right sides in the extension direction of the linear portion 68, respectively, in the extension direction of the linear portion 68. There are multiple units at predetermined intervals.
  • the ring-shaped portion 67 is connected to air suction ports 69B, 69C, 69D with cocks for sucking air from three directions around the processing furnace 2.
  • the air suction ports 69B, 69C, and 69D with cocks are opened only when the magnetic ash is taken out, and are always closed when the chicken manure feed production apparatus 1 is operated.
  • the automatic transfer device 4 has a charging device 40 that automatically loads chicken manure from the upper part of the processing furnace 2, and a transport conveyor 41 that transports chicken manure to the loading device 40.
  • FIG. 20 is an enlarged front view of the loading device 40 portion
  • FIG. 21 is a sectional view taken along line XXI-XXI of FIG.
  • the charging device 40 is connected to the upper part of the processing furnace 2 and has a tubular portion 42 for charging chicken manure supplied from above into the processing furnace 2 and an upper and lower tubular portion 42.
  • a pair of dampers 43A and 43B that are provided at predetermined intervals and open and close inside the tubular portion 42.
  • the dampers 43A and 43B are moved back and forth inside the tubular portion 42 by the air cylinders 44A and 44B, respectively.
  • the pair of upper and lower dampers 43A and 43B alternately open and close the inside of the tubular portion 42 at regular time intervals.
  • a screw conveyor, a bucket conveyor, a belt conveyor, or the like can be used as the conveyor 41 .
  • the conveyor 41 is provided horizontally or inclined.
  • the transfer amount of the transfer conveyor 41 can be freely controlled by a geared motor, an inverter, or the like.
  • the chicken manure is supplied to the transport conveyor 41, and is supplied above the loading device 40 by the transport conveyor 41.
  • the chicken manure supplied from above the charging device 40 is charged into the processing furnace 2 in a fixed amount by alternately opening and closing a pair of upper and lower dampers 43A and 43B at regular time intervals.
  • the chicken manure put into the processing furnace 2 is dried by the heat rising from the pyrolysis section 2B in the drying section 2A. At this time, the chicken manure is dried while being stirred by the stirring bar 55 that rotates on the upper and lower two-stage receiving bar 54. Further, since the temperature measured by the thermometers 57A and 57B provided at the upper part and the lower part of the drying unit 2A is displayed on the automatic control panel 5, the temperature is controlled based on the displayed temperature. Further, in the chicken manure feed production apparatus 1 of the present embodiment, it is possible to obtain warm air by residual heat by automatically sucking and exhausting air into the space 52 between the outer wall 50 and the inner wall 51 of the drying portion 2A. It has become. It is also possible to obtain hot water by residual heat by automatically supplying and draining water to the space portion 52.
  • the chicken manure dried by the drying section 2A intermittently falls onto the rostrum 60 in the pyrolysis section 2B almost uniformly.
  • the dropped chicken manure is heated from the lower part of the rostrum 60 for a certain period of time by the automatic ignition device 61 and is thermally decomposed.
  • the air suction ports 69B, 69C, and 69D with cocks are always operated in a closed state, and the low oxygen state is maintained in the pyrolysis section 2B, so that the chicken manure in the pyrolysis section 2B shifts to oxidation (combustion). No, thermal decomposition proceeds.
  • the automatic control panel 5 displays the temperatures measured by the thermometers 58A, 58B, and 58C provided at the upper, middle, and lower parts of the pyrolysis unit 2B, respectively. Based on the displayed temperatures, the temperature is displayed. Temperature control is performed so that the thermal decomposition temperature of chicken manure is 500 to 600 ° C.
  • the oxygen molecules in the low oxygen state do not combine with the carbon molecules in combustion (oxidation), but collide with the molecular structure of chicken manure (organic matter) that started combustion by ignition in a translational state.
  • the potential energy of is converted into thermal energy, and thermal ion decomposition (molecular dynamics with chemical reaction) begins near the critical temperature (low temperature plasma state) peculiar to each organic substance.
  • thermal ion decomposition molecular dynamics with chemical reaction
  • oxygen molecules that were not involved in this thermal ion decomposition attract each other by the van der Waals force of the oxygen molecule and the potential energy of the wall of the substance in the process of gradual incineration of organic substances by thermal ion decomposition.
  • oxygen molecules are confined inside in a state of being arranged in a grid pattern (ladder shape) in an electromagnetic field generated in a plasma state. This produces a magnetic ash with ferromagnetism.
  • the heat generated in the pyrolysis part 2B rises to the drying part 2A and is used for drying the chicken manure in the drying part 2A, so that it is not necessary to dry the chicken manure in advance and it is efficient. It can be thermally decomposed and incinerated. As described above, the thermal decomposition temperature of chicken manure is 500 to 600 ° C., and the thermal decomposition time per batch is 2 to 3 hours. The ash after thermal decomposition contains a large amount of calcium and becomes aseptic, so that it can be used as feed.
  • the chicken manure feed production apparatus 1 of the present embodiment it is possible to obtain hot water by residual heat by automatically supplying and draining water to the heat exchange pipe 64. If it is not necessary to dry the chicken manure, the drying portion 2A may be omitted.
  • the exhaust gas in the processing furnace 2 is sent from the exhaust gas suction port 22 at the upper part of the processing furnace 2 to the purification device 3 through the flue 11. At this time, the exhaust gas generated in the processing furnace 2 is prevented from flowing back to the charging device 40 by alternately opening and closing the pair of upper and lower dampers 43A and 43B of the charging device 40.
  • the water 70 of the septic water tank 7 is sucked up by the pump 82 and injected from the nozzle 81 in a conical shape at a pressure of 0.2 to 0.3 MPa.
  • the exhaust gas is rapidly cooled, decomposed and purified, and the water 70 in contact with the exhaust gas falls into the purified water tank 7.
  • the gas in the gas reservoir 71 of the purified water tank 7 is sucked up by the electric blower 84 from the suction port 83A and sent to the primary septic tank 8 through the pipe 83.
  • the water 70 is repeatedly injected from the nozzle 81 in the primary septic tank 8 with respect to the exhaust gas, the pressure rise of the gas pool portion 71 is suppressed, and the concentration of the exhaust gas is lowered.
  • the gas in the gas reservoir 71 of the purified water tank 7 is sucked up by the electric blower 92 from the suction port 72 and sent to the secondary septic tank 9 through the pipe 91.
  • the water 70 of the septic water tank 7 is sucked up by the pump 94, and is ejected from the upper and lower two-stage nozzles 93 at a pressure of 0.2 to 0.3 MPa in a conical shape.
  • the gas sent to the secondary septic tank 9 is decomposed, smokeless, and odorless, and then sent from the suction port 95 to the circulation septic tank 10.
  • the water 70 jetted from the nozzle 93 falls from the lower part of the secondary septic tank 9 into the purified water tank 7.
  • the gas that has passed through the secondary septic tank 9 is sucked up from the suction port 95 to the pipe 101 by an electric blower 13 (see FIG. 1) provided in the middle of the return pipe 12 and circulated. It is sent to the septic tank 10.
  • the water 70 of the septic water tank 7 is sucked up by the pump 103, and is injected in a conical shape at a pressure of 0.2 to 0.3 MPa from the upper and lower two-stage nozzles 102.
  • the gas sent to the circulation septic tank 10 is decomposed, smokeless, and odorless, and then sent from the suction port 104 to the return pipe 12.
  • the water 70 jetted from the nozzle 102 falls from the lower part of the circulation septic tank 10 into the purified water tank 7.
  • the circulation septic tank 10 may be omitted, and the secondary septic tank 9 may be directly sent to the return pipe 12.
  • the gas sent to the return pipe 12 enters the gas discharge pipe 6 from the suction port 69A, and goes diagonally upward from the openings 68A and 68B of the linear portions 68 and the openings 67A of the ring-shaped portions 67 into the space below the rostrum 60. It is discharged almost evenly toward.
  • the purification gas supplied from the suction port 69A is smokeless, odorless, and has a low oxygen concentration, and a low oxygen state is maintained in the processing furnace 2, so that the chicken manure in the thermal decomposition section 2B is thermally decomposed. Progresses. All the above operations are automatically controlled by the automatic control panel 5.
  • the exhaust gas generated in the processing furnace 2 is discharged from the upper part of the processing furnace 2 through the flue 11 to the primary septic tank 8, the septic water tank 7, the secondary septic tank 9, and the circulation septic tank 10. Since the exhaust gas is completely returned to the processing furnace 2 through the return pipe 12, the exhaust gas is not released to the atmosphere and there is no environmental pollution. Further, since the purifying gas passing through the openings 67A, 68A, 68B and the suction port 69A of the gas discharge pipe 6 is smokeless and odorless, soot generation and adhesion are prevented, and maintenance is not required.
  • the water 70 in the purified water tank 7 is purified by using a coagulant in a separately provided reserve tank (not shown) and circulated, so that replacement is not necessary.
  • the purification gas having a low oxygen concentration which is smokeless and odorless, is discharged substantially evenly to the space below the rostrum 60 in the processing furnace 2.
  • the amount of oxygen in the thermal decomposition section 2B of the processing furnace 2 becomes uniform, and chicken manure is uniformly and efficiently thermally decomposed in the thermal decomposition section 2B.
  • the chicken manure in the thermal decomposition section 2B can be thermally decomposed evenly and efficiently.
  • the present invention is useful as a chicken manure feed production method and a chicken manure feed production apparatus for treating chicken manure and converting it into feed. Suitable as an apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Food Science & Technology (AREA)
  • Fodder In General (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

鶏糞を処理して安全に飼料化することが可能な鶏糞飼料製造方法および鶏糞飼料製造装置の提供。 酸素を供給することなく処理炉(2)内で鶏糞を熱分解して灰化する。処理路(2)内では低酸素状態が維持されるので、鶏糞の熱分解が進行し、灰化する。この熱分解後の灰はカルシウム分を多く含み、無菌状態となるため、飼料として利用することが可能である。

Description

鶏糞飼料製造方法および鶏糞飼料製造装置
 本発明は、鶏糞を処理して飼料化する鶏糞飼料製造方法および鶏糞飼料製造装置に関する。
 養鶏場から排出される鶏糞の処理が問題となっている。鶏糞は通常、肥料として処理される(例えば、特許文献1参照。)か、焼却処理される(例えば、特許文献2参照。)が、鶏糞を飼料として利用する試みもなされている。例えば、特許文献3には、鶏糞に水を加えて混合物を生成し、生成された混合物を篩選別して篩上に残留する残渣物に発酵菌を混合して発酵させることによって飼料を生成することが記載されている。
特開2002-160986号公報 特開2004-37062号公報 特開2008-142022号公報
 特許文献3に記載の方法では、残渣物に発酵菌を混合して発酵させることにより、残渣物に含まれる水分や栄養分を栄養源として増殖させるものであるため、残渣物に有害菌が含まれている場合には飼料として使用することができず、安全性に問題がある。
 そこで、本発明においては、鶏糞を処理して安全に飼料化することが可能な鶏糞飼料製造方法および鶏糞飼料製造装置を提供することを目的とする。
 本発明の鶏糞飼料製造方法は、酸素を供給することなく処理炉内で鶏糞を熱分解して灰化することを特徴とする。本発明の鶏糞飼料製造方法では、処理路内で低酸素状態が維持されるので、鶏糞の熱分解が進行し、灰化する。この熱分解後の灰はカルシウム分を多く含み、無菌状態となるため、飼料として利用することが可能である。
 熱分解は、500~600℃で2~3時間を行うことが望ましい。これにより、熱分解後の灰は十分に無菌状態となり、無菌でカルシウム分を多く含む飼料が得られる。また、500℃以上で熱分解することで鶏糞中の尿素が分解され、窒素分が含まれない飼料となる。なお、500℃未満とする場合には2~3時間の熱分解では滅菌が不十分となる可能性があり、熱分解時間を長くする必要がある。また、600℃超とする場合には、カルシウム分が分解されてしまうため、飼料中のカルシウム分が少なくなる。
 本発明の鶏糞飼料製造装置は、酸素を供給することなく鶏糞を熱分解する熱分解部を有する処理炉を含むものである。本発明の鶏糞飼料製造装置によれば、処理路内で低酸素状態が維持されるので、鶏糞の熱分解が進行し、飼料として利用可能なカルシウム分を多く含む灰が得られる。
 酸素を供給することなく処理炉内で鶏糞を熱分解して灰化する構成により、飼料として利用することが可能なカルシウム分を多く含む飼料が得られる。
本発明の実施の形態における鶏糞飼料製造装置の正面図である。 図1の鶏糞飼料製造装置の平面図である。 処理炉の平面図である。 乾燥部の縦断面図である。 図4のV矢視図である。 図4のVI矢視図である。 熱分解部の縦断面図である。 図7のVII-VII断面図である。 図8のIX-IX断面図である。 図8のX-X断面図である。 一次浄化槽の平面図である。 図11の一次浄化槽の正面図である。 図11の一次浄化槽の右側面図である。 二次浄化槽の平面図である。 図14の二次浄化槽の正面図である。 図14の二次浄化槽の右側面図である。 循環浄化槽の平面図である。 図17の循環浄化槽の正面図である。 図17の循環浄化槽の右側面図である。 投入装置部分を拡大した正面図である。 図20のXXI-XXI断面図である。
 1 鶏糞飼料製造装置
 2 処理炉
 2A 乾燥部
 2B 熱分解部
 3 浄化装置
 4 自動搬送装置
 5 自動制御盤
 6 ガス吐出管
 7 浄化水槽
 8 一次浄化槽
 9 二次浄化槽
 10 循環浄化槽
 11 煙道
 12 返送配管
 13 電動送風機
 20 上部カバー
 21 投入口
 22 排ガス吸入口
 23 駆動装置
 24 ギヤードモータ
 40 投入装置
 41 搬送コンベア
 42 筒状部
 43A,43B ダンパー
 44A,44B エアシリンダ
 50 外壁
 51 内壁
 52 空間部
 53 受け板
 54 受けバー
 55 攪拌バー
 56 回転軸
 57A,57B,58A,58B,58C 温度計
 60 ロストル
 61 自動着火装置
 62A 壁部
 62B 底部
 63 エキスパンドメタル
 64 熱交換用パイプ
 65 点検扉
 65A 窓
 66 点検扉
 66A 小窓
 67 リング状部
 67A 開孔
 68 直線状部
 68A,68B 開孔
 69A 吸入口
 69B,69C,69D コック付き空気吸入口
 70 水
 71 ガス溜まり部
 72 吸込口
 80 流入口
 81 ノズル
 82 ポンプ
 83 配管
 83A 吸込口
 84 電動送風機
 90 流入口
 91 配管
 92 電動送風機
 93 ノズル
 94 ポンプ
 95 吸込口
 100 流入口
 101 配管
 102 ノズル
 103 ポンプ
 104 吸込口
 図1は本発明の実施の形態における鶏糞飼料製造装置の正面図、図2は平面図、図3は処理炉の平面図、図4は乾燥部の縦断面図、図5は図4のV矢視図、図6は図4のVI矢視図、図7は熱分解部の縦断面図、図8は図7のVII-VII断面図、図9は図8のIX-IX断面図、図10は図8のX-X断面図である。
 図1および図2に示すように、本発明の実施の形態における鶏糞飼料製造装置1は、鶏糞を処理する処理炉2と、処理炉内で発生した排ガスを浄化する浄化装置3と、鶏糞を処理炉2内へ自動的に搬送する自動搬送装置4と、自動制御盤5とを有する。処理炉2は、円筒状であり、上部に自動搬送装置4により供給される鶏糞を乾燥する乾燥部2Aを、下部に乾燥部2Aにおいて乾燥された鶏糞を熱分解する熱分解部2Bを、それぞれ有する。
 図3および図4に示すように、処理炉2の上部カバー20には、鶏糞を投入する投入口21と、処理炉2内で発生した排ガス(排煙)を吸入する2つの排ガス吸入口22とが設けられている。投入口21には、後述する投入装置40が接続され、鶏糞が処理炉2内に自動的に投入されるようになっている。
 乾燥部2Aは外壁50と内壁51とを有する。外壁50と内壁51との間の空間は自動的に給排水が行われる空間部52となっている。乾燥部2A内には、投入口21から投入される鶏糞を受けて乾燥部2Aの中央部へ導くための受け板53が設けられている。また、乾燥部2A内には、上下2段式とした受けバー54および攪拌バー55が設けられている。
 受けバー54は、複数の棒体を内壁51から乾燥部2Aの中央部へ向けて斜め下方に延設したものである。攪拌バー55は乾燥部2Aの中央部に上下方向に延設された回転軸56から受けバー54の上部へ向けて斜め上方へ延設したものである。回転軸56は処理炉2の上部カバー20上に設けられた駆動装置23によって回転駆動され、この回転軸56とともに攪拌バー55は回転する。図5および図6に示すように、上下2段式の受けバー54は平面視で長さが互い違いとなるように設けられ、攪拌バー55は平面視で90°異なる位置に設けられている。これにより、鶏糞が上段および下段を真っ直ぐに落下しないようにしている。
 駆動装置23は上部カバー20上に設けられたギヤードモータ24により駆動される。攪拌バー55(回転軸56)は、駆動装置23、ギヤードモータ24およびインバータ(図示せず。)により回転速度が制御される。また、乾燥部2Aの上部および下部にはそれぞれ温度計57A,57Bが設けられている。温度計57A,57Bは、自動制御盤5に接続されている。
 図7に示すように、熱分解部2Bの下部にはロストル60と、ロストル60上の鶏糞の熱分解が継続するように自動的に着火する自動着火装置61(図8参照。)とを有する。熱分解部2Bの壁部62A内には耐火セメントが設けられている。底部62B上にも耐火セメントが設けられている。ロストル60上の壁部62Aの内側はエキスパンドメタル63で覆われている。熱分解部2Bの上部には、熱交換用パイプ64が螺旋状に設けられている。熱分解部2Bの上部、中部および下部にはそれぞれ温度計58A,58B,58Cが設けられている。温度計58A,58B,58Cは、自動制御盤5に接続されている。
 乾燥部2Aから落下した鶏糞は、ロストル60下部より自動着火装置61により一定時間加熱され、熱分解を開始する。そして、乾燥部2Aにおいて乾燥された鶏糞は、断続的にロストル60上にほぼ均一に落下し、ロストル60上で熱分解が継続される。低酸素状態で熱分解された鶏糞は炭化され、磁性灰となってロストル60の格子の目から下方へ落下する。
 また、熱分解部2Bの正面には、ロストル60の上下位置にそれぞれ点検扉65,66が設けられている。点検扉65には覗き窓65Aが設けられている。覗き窓65Aにより、熱分解部2Bの内部の状況を確認することが可能である。また、点検扉66には小窓66Aが設けられている。点検扉66よりロストル60下部の磁性灰を取り出すことが可能である。また、鶏糞飼料製造装置1の運転中であっても小窓66Aから電動吸入工具を用いて磁性灰を吸入採取することが可能となっている。
 次に、浄化装置3について説明する。浄化装置3は、水70が貯留され、上部にガス溜まり部71が形成される浄化水槽7と、処理炉2から吸入した排ガスを一次浄化する一次浄化槽8と、一次浄化槽8により浄化したガスを二次浄化する二次浄化槽9と、二次浄化槽9により浄化したガスを循環浄化する循環浄化槽10とを有する。
 図11は一次浄化槽8の平面図、図12は図11の正面図、図13は図11の右側面図である。図11~図13に示すように、一次浄化槽8は浄化水槽7の上部に設けられ、下面が浄化水槽7の上部に開放されて接続された箱状物である。一次浄化槽8の2つの流入口80と処理炉2の2つの排ガス吸入口22とは、それぞれ煙道11により接続されている。
 また、一次浄化槽8は、処理炉2の上部から煙道11を通じて流入する排ガスに対して水を噴射するノズル81と、浄化水槽7から水70を吸い上げてノズル81へ供給するポンプ82(図1および図2参照。)と、浄化水槽7のガス溜まり部71からガスを吸い上げて一次浄化槽8へ戻す配管83と、配管83の途中に設けられた電動送風機84とを備える。ノズル81は、充円錐状に水70を噴射する充円錐ノズルである。ノズル81は、一次浄化槽8内に横向きに設けられている。
 図14は二次浄化槽9の平面図、図15は図14の正面図、図16は図14の右側面図である。図14~図16に示すように、二次浄化槽9は浄化水槽7の上部に設けられ、下面が浄化水槽7の上部に開放されて接続された円筒状物である。二次浄化槽9の流入口90と浄化水槽7の上壁に設けられた吸込口72とは配管91により接続されている。配管91の途中には電動送風機92が設けられている。
 また、二次浄化槽9は、浄化水槽7のガス溜まり部71から配管91を通じて電動送風機92により吸い上げたガスに対して水を噴射するノズル93と、浄化水槽7から水70を吸い上げてノズル93へ供給するポンプ94とを備える。ノズル93は、充円錐状に水70を噴射する充円錐ノズルである。ノズル93は、二次浄化槽9内に上向きかつ上下2段に設けられている。
 図17は循環浄化槽10の平面図、図18は図17の正面図、図19は図17の右側面図である。図17~図19に示すように、循環浄化槽10は浄化水槽7の上部に設けられ、下面が浄化水槽7の上部に開放されて接続された円筒状物である。循環浄化槽10は二次浄化槽9と返送配管12との間に設けられる。返送配管12は二次浄化槽9および循環浄化槽10を通過したガスを処理炉2内へ送り込む配管である。返送配管12は吸込口104に接続されている。返送配管12の途中には、ガスを処理炉2へ送り込むための電動送風機13が設けられている。
 循環浄化槽10の流入口100と二次浄化槽9の吸込口95とは配管101により接続されている。二次浄化槽9の吸込口95は、二次浄化槽9を通過したガスを吸い込むようにノズル93よりも下方の二次浄化槽9下部に形成されている。循環浄化槽10は、返送配管12の途中に設けられた電動送風機13の吸引力により配管101を通じて二次浄化槽9よりガスを吸い上げ、この吸い上げたガスに対して水を噴射するノズル102と、浄化水槽7から水70を吸い上げてノズル102へ供給するポンプ103とを備える。ノズル102は、充円錐状に水70を噴射する充円錐ノズルである。ノズル102は、循環浄化槽10内に上向きかつ上下2段に設けられている。
 返送配管12の吸込口104は、循環浄化槽10を通過したガスを吸い込むようにノズル102よりも下方の循環浄化槽10下部に形成されている。返送配管12は、処理炉2内のロストル60の下方空間に設けられたガス吐出管6に接続されている。ガス吐出管6は、返送配管12により送り込まれるガスを処理炉2内のロストル60の下方空間へ略均等に吐出するものである。ガス吐出管6は、図8に示すように、鋼管を平面視で処理炉2の中央部を中心とするリング状に配置したリング状部67と、鋼管を平面視で処理炉2の中央部へ向かって直線状に配置した直線状部68と、返送配管12が接続される吸入口69Aとを有する。
 リング状部67には、図9に示すように、処理炉2の中央部側の斜め上方に向かって形成された開孔67Aを、リング状の円周方向に所定間隔で複数備えている。直線状部68には、図10に示すように、直線状部68の延長方向に向かって左右両側の斜め上方に向かってそれぞれ形成された開孔68A,68Bを、直線状部68の延長方向に所定間隔で複数備えている。また、リング状部67には、処理炉2の周囲の3方向から空気を吸入するためのコック付き空気吸入口69B,69C,69Dが接続されている。コック付き空気吸入口69B,69C,69Dは、磁性灰を取り出すときのみ開き、鶏糞飼料製造装置1の運転の際は常時閉じた状態とする。
 次に、自動搬送装置4について説明する。自動搬送装置4は、鶏糞を処理炉2の上部から自動的に投入する投入装置40と、鶏糞を投入装置40へ搬送する搬送コンベア41とを有する。図20は投入装置40部分を拡大した正面図、図21は図20のXXI-XXI断面図である。
 図20および図21に示すように、投入装置40は、処理炉2の上部に接続され、上方から供給される鶏糞を処理炉2内に投入する筒状部42と、筒状部42の上下に所定間隔で設けられ、筒状部42内を開閉する一対のダンパー43A,43Bを有する。ダンパー43A,43Bはそれぞれエアシリンダ44A,44Bによって筒状部42内部に進退動作させるものである。上下一対のダンパー43A,43Bは、筒状部42内を一定の時間間隔で交互に開閉する。
 搬送コンベア41は、スクリューコンベア、バケットコンベアやベルトコンベア等を使用することが可能である。搬送コンベア41は、水平または傾斜させて設けられる。搬送コンベア41の搬送量は、ギヤードモータやインバータ等により自由に制御することが可能である。
 次に、上記構成の鶏糞飼料製造装置1の動作について説明する。鶏糞は搬送コンベア41へ供給され、搬送コンベア41により投入装置40の上方へ供給される。投入装置40の上方から供給された鶏糞は、上下一対のダンパー43A,43Bが一定の時間間隔で交互に開閉することで、一定量ずつ処理炉2内へ投入される。
 処理炉2内へ投入された鶏糞は、乾燥部2Aにおいて熱分解部2Bから上昇する熱により乾燥される。このとき、鶏糞は、上下2段式の受けバー54上で回転する攪拌バー55により攪拌されながら乾燥される。また、自動制御盤5には、乾燥部2Aの上部および下部にそれぞれ設けられた温度計57A,57Bにより測定された温度が表示されるので、この表示された温度に基づき温度管理が行われる。また、本実施形態における鶏糞飼料製造装置1では、乾燥部2Aの外壁50と内壁51との間の空間部52に空気を自動的に吸排気することで、余熱により温風を得ることも可能となっている。なお、空間部52に水を自動的に給排水することで、余熱により温水を得ることも可能である。
 乾燥部2Aにより乾燥された鶏糞は、断続的に熱分解部2B内のロストル60上にほぼ均一に落下する。この落下した鶏糞は、自動着火装置61によってロストル60下部より一定時間加熱され、熱分解される。コック付き空気吸入口69B,69C,69Dは常時閉じた状態で運転され、熱分解部2B内は低酸素状態が維持されるので、熱分解部2B内の鶏糞は酸化(燃焼)に移行することなく、熱分解が進行する。すなわち、酸素濃度の薄い状態ではガスの大部分が窒素となり、熱分解部2B内は低酸素状態で燃焼が抑制され、熱分解(蒸し焼き状態)が進行する。なお、自動制御盤5には、熱分解部2Bの上部、中部および下部にそれぞれ設けられた温度計58A,58B,58Cにより測定された温度が表示されるので、この表示された温度に基づき、鶏糞の熱分解温度が500~600℃となるように温度管理が行われる。
 このとき、低酸素状態中の酸素分子は、燃焼(酸化)で炭素分子と化合することなく、着火により燃焼を始めた鶏糞(有機物)の分子構造体に並進状態で衝突することにより、衝突時のポテンシャルエネルギが熱エネルギに変換され、それぞれの有機物特有の臨界温度付近(低温プラズマ状態)で熱イオン分解(化学反応を伴う分子動力学)を始める。一方、この熱イオン分解に関わらなかった酸素分子は、有機物が熱イオン分解で徐々に灰化される過程で、酸素分子のファンデルワールス力とその物質の壁が持っているポテンシャルエネルギで互いに引き合うことにより、また、プラズマ状態で生起する電磁界中で酸素分子が格子状(梯子状)に整列した状態で内部に閉じ込められる。これにより、強磁性を持つ磁性灰が生成される。
 この鶏糞飼料製造装置1では、熱分解部2Bにおいて発生した熱が乾燥部2Aに上昇し、乾燥部2Aにおいて鶏糞の乾燥に利用されるので、鶏糞を事前に乾燥することが不要となり、効率よく熱分解処理し、灰化することが可能となっている。なお、前述のように、鶏糞の熱分解温度は500~600℃とし、1バッチ当たり熱分解の時間を2~3時間とする。この熱分解後の灰はカルシウム分を多く含み、無菌状態となるため、飼料として利用することができる。
 また、本実施形態における鶏糞飼料製造装置1では、熱交換用パイプ64に水を自動的に給排水することで、余熱により温水を得ることも可能となっている。なお、鶏糞の乾燥が不要な場合には、乾燥部2Aを省略した構成とすることも可能である。
 処理炉2内の排ガスは処理炉2の上部の排ガス吸入口22から煙道11を通じて浄化装置3へ送られる。このとき、処理炉2内で発生した排ガスは、投入装置40の上下一対のダンパー43A,43Bが交互に開閉することで、投入装置40への逆流が防止される。
 一次浄化槽8では、図11~図13に示すように、ポンプ82により浄化水槽7の水70が吸い上げられ、ノズル81から0.2~0.3MPaの圧力で充円錐状に噴射される。これにより、排ガスは急冷されるとともに分解されて浄化され、排ガスと接触した水70は浄化水槽7内へ落下する。また、浄化水槽7のガス溜まり部71のガスは、吸込口83Aから電動送風機84により吸い上げられ、配管83を通じて一次浄化槽8へ送られる。これにより、排ガスに対して繰り返し一次浄化槽8で水70がノズル81より噴射され、ガス溜まり部71の圧力上昇抑制と排ガスの濃度の低下が行われる。
 また、図14~図16に示すように、浄化水槽7のガス溜まり部71のガスは、吸込口72から電動送風機92により吸い上げられ、配管91を通じて二次浄化槽9へ送られる。二次浄化槽9では、ポンプ94により浄化水槽7の水70が吸い上げられ、上下2段のノズル93から0.2~0.3MPaの圧力で充円錐状に噴射される。これにより、二次浄化槽9へ送られたガスは分解、無煙、無臭化された後、吸込口95から循環浄化槽10へ送られる。また、ノズル93から噴射された水70は、二次浄化槽9の下部から浄化水槽7内へ落下する。
 図17~図19に示すように、二次浄化槽9を通過したガスは、返送配管12の途中に設けられた電動送風機13(図1参照。)によって吸込口95から配管101へ吸い上げられ、循環浄化槽10へ送られる。循環浄化槽10では、ポンプ103により浄化水槽7の水70が吸い上げられ、上下2段のノズル102から0.2~0.3MPaの圧力で充円錐状に噴射される。これにより、循環浄化槽10へ送られたガスは分解、無煙、無臭化された後、吸込口104から返送配管12へ送られる。また、ノズル102から噴射された水70は、循環浄化槽10の下部から浄化水槽7内へ落下する。なお、循環浄化槽10を省略し、二次浄化槽9から返送配管12へ直接送られる構成としても良い。
 返送配管12へ送られたガスは吸入口69Aからガス吐出管6内へ入り、ロストル60の下方空間へ直線状部68の開孔68A,68Bおよびリング状部67の開孔67Aから斜め上方へ向かって略均等に吐出される。この吸入口69Aから供給される浄化ガスは、無煙、無臭化された酸素濃度の低いガスであり、処理炉2内では低酸素状態が維持されるので、熱分解部2B内の鶏糞の熱分解が進行する。以上の動作は、自動制御盤5により全て自動制御される。
 以上のように、本実施形態における鶏糞飼料製造装置1では、処理炉2において発生した排ガスは処理炉2の上部から煙道11を通じて一次浄化槽8、浄化水槽7、二次浄化槽9および循環浄化槽10により浄化され、返送配管12を通じて処理炉2内へ全て戻されるので、排ガスは大気放出されることがなく、環境公害がない。また、ガス吐出管6の開孔67A,68A,68Bおよび吸入口69Aを通過する浄化ガスは無煙、無臭化されたものであるため、煤の発生と付着が防止され、メンテナンスは不要となる。
 また、排ガス中の炭素は水70とともに落下した浄化水槽7内で固形化し、タールとなるので、この浄化水槽7内のタールを回収して利用することが可能となる。なお、浄化水槽7内の水70は、別途設けられたリザーブタンク(図示せず。)内において凝集剤を用いて浄化され、循環するようになっており、交換は不要となっている。
 また、本実施形態における鶏糞飼料製造装置1では、ガス吐出管6により無煙、無臭化された酸素濃度の低い浄化ガスが処理炉2内のロストル60の下方空間へ略均等に吐出されるので、処理炉2の熱分解部2B内の酸素量が均等となり、熱分解部2B内において鶏糞が均等に効率良く熱分解される。これにより、熱分解部2B内の鶏糞をむらなく効率的に熱分解処理することが可能となっている。
 本発明は、鶏糞を処理して飼料化する鶏糞飼料製造方法および鶏糞飼料製造装置として有用であり、特に、鶏糞を処理して安全に飼料化することが可能な鶏糞飼料製造方法および鶏糞飼料製造装置として好適である。

Claims (3)

  1.  酸素を供給することなく処理炉内で鶏糞を熱分解して灰化することを含む鶏糞飼料製造方法。
  2.  前記熱分解は、500~600℃で2~3時間行うことを特徴とする請求項1記載の鶏糞飼料製造方法。
  3.  酸素を供給することなく鶏糞を熱分解する熱分解部を有する処理炉を含む鶏糞飼料製造装置。
PCT/JP2020/027323 2019-07-16 2020-07-14 鶏糞飼料製造方法および鶏糞飼料製造装置 WO2021010385A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019131379A JP2021013364A (ja) 2019-07-16 2019-07-16 鶏糞飼料製造方法および鶏糞飼料製造装置
JP2019-131379 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021010385A1 true WO2021010385A1 (ja) 2021-01-21

Family

ID=74210804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027323 WO2021010385A1 (ja) 2019-07-16 2020-07-14 鶏糞飼料製造方法および鶏糞飼料製造装置

Country Status (2)

Country Link
JP (1) JP2021013364A (ja)
WO (1) WO2021010385A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108634090A (zh) * 2018-04-23 2018-10-12 中国科学院成都生物研究所 一种真蛋白含量高的鸡粪发酵方法
CN114058473A (zh) * 2021-11-12 2022-02-18 江西普瑞丰生态科技有限公司 一种多功能高效畜禽粪便处理装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239082A (ja) * 1999-02-22 2000-09-05 Fuchii Toshio 炭化肥料の製造方法およびその装置
JP2002272293A (ja) * 2001-03-15 2002-09-24 Joichiro Tsuboi 鶏糞の乾燥処理法とその処理物質の再利用法
JP2002303409A (ja) * 2001-04-02 2002-10-18 Tokyo Yogyo Co Ltd 鶏糞の熱分解処理方法とその残渣を使用した特殊肥料と土壌改良材
JP2004034003A (ja) * 2002-07-08 2004-02-05 Chugai Ro Co Ltd 有機性廃棄物の処理方法
JP2010269308A (ja) * 2008-01-17 2010-12-02 Environmental Science Co Ltd 畜糞処理方法及び畜糞活用方法、有機物処理方法及び有機物活用方法、並びに建築資材及び当該建築資材を用いて建設した建築物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239082A (ja) * 1999-02-22 2000-09-05 Fuchii Toshio 炭化肥料の製造方法およびその装置
JP2002272293A (ja) * 2001-03-15 2002-09-24 Joichiro Tsuboi 鶏糞の乾燥処理法とその処理物質の再利用法
JP2002303409A (ja) * 2001-04-02 2002-10-18 Tokyo Yogyo Co Ltd 鶏糞の熱分解処理方法とその残渣を使用した特殊肥料と土壌改良材
JP2004034003A (ja) * 2002-07-08 2004-02-05 Chugai Ro Co Ltd 有機性廃棄物の処理方法
JP2010269308A (ja) * 2008-01-17 2010-12-02 Environmental Science Co Ltd 畜糞処理方法及び畜糞活用方法、有機物処理方法及び有機物活用方法、並びに建築資材及び当該建築資材を用いて建設した建築物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108634090A (zh) * 2018-04-23 2018-10-12 中国科学院成都生物研究所 一种真蛋白含量高的鸡粪发酵方法
CN114058473A (zh) * 2021-11-12 2022-02-18 江西普瑞丰生态科技有限公司 一种多功能高效畜禽粪便处理装置及其使用方法

Also Published As

Publication number Publication date
JP2021013364A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
JP7176720B2 (ja) 熱分解装置
US8043558B2 (en) Apparatus for the thermal treatment of organics materials and method therefor
JP2006274201A (ja) 連続減圧乾燥/炭化装置
WO2021010385A1 (ja) 鶏糞飼料製造方法および鶏糞飼料製造装置
JP3602504B2 (ja) 過熱蒸気を用いた熱処理設備
JP4539329B2 (ja) 減圧連続熱分解処理装置及び減圧連続熱分解方法
KR100557676B1 (ko) 유기성 폐기물 탄화방법 및 그 장치
JP5176016B2 (ja) 過熱水蒸気連続再資源化処理装置
JP2007075807A (ja) 有機物の連続再資源化装置及び排水処理装置
KR101853886B1 (ko) 유기성 폐기물의 악취 및 멸균 처리시스템
KR101179523B1 (ko) 하수 슬러지를 이용한 활성화 물질의 제조장치
KR20060064141A (ko) 열분해법에 의한 하수슬러지의 처리 장치 및 처리방법
CN106424112A (zh) 一种用于废盐精制的多级热脱附工艺及装备
AU2020371331B2 (en) Heat treatment apparatus
JP2009138089A (ja) 多段スクリュー炭化装置
KR102262101B1 (ko) 유기물의 건조 탄화 하이브리드시스템
JP4077811B2 (ja) 過熱蒸気を用いた熱処理設備
KR100473583B1 (ko) 음식물 쓰레기를 이용한 활성탄 제조장치 및 제조방법
KR20190004169A (ko) 하수슬러지 처리장치
KR101218127B1 (ko) 하수 슬러지를 이용한 활성화 물질의 제조방법
JP2002089811A (ja) 原料処理装置及び原料処理方法
JP4772213B2 (ja) 有機質廃棄物の連続炭化処理装置
JP2002115823A (ja) 廃棄物炭化装置
JP2003262316A (ja) 含水性有機物の加熱処理方法とその施設
KR100840910B1 (ko) 고효율 폐기물 재처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840140

Country of ref document: EP

Kind code of ref document: A1