WO2021010352A1 - ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材 - Google Patents

ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材 Download PDF

Info

Publication number
WO2021010352A1
WO2021010352A1 PCT/JP2020/027152 JP2020027152W WO2021010352A1 WO 2021010352 A1 WO2021010352 A1 WO 2021010352A1 JP 2020027152 W JP2020027152 W JP 2020027152W WO 2021010352 A1 WO2021010352 A1 WO 2021010352A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclined portion
upper blade
punching
blank material
shape
Prior art date
Application number
PCT/JP2020/027152
Other languages
English (en)
French (fr)
Inventor
淳 新田
隆 安富
亮 田畑
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021533056A priority Critical patent/JP7288212B2/ja
Priority to EP20839586.3A priority patent/EP3998123A4/en
Priority to CN202080049620.8A priority patent/CN114080280B/zh
Priority to KR1020227000186A priority patent/KR20220017475A/ko
Priority to US17/626,321 priority patent/US20220241838A1/en
Publication of WO2021010352A1 publication Critical patent/WO2021010352A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/34Perforating tools; Die holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/14Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/16Shoulder or burr prevention, e.g. fine-blanking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D15/00Shearing machines or shearing devices cutting by blades which move parallel to themselves
    • B23D15/06Sheet shears
    • B23D15/08Sheet shears with a blade moved in one plane, e.g. perpendicular to the surface of the sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • B23D35/001Tools for shearing machines or shearing devices; Holders or chucks for shearing tools cutting members

Definitions

  • the present invention is a punching shear device with shear angles on metal plates such as iron, aluminum, titanium, magnesium and alloys used in automobiles, home appliances, building structures, ships, bridges, construction machinery, various plants, penstocks, etc.
  • metal plates such as iron, aluminum, titanium, magnesium and alloys used in automobiles, home appliances, building structures, ships, bridges, construction machinery, various plants, penstocks, etc.
  • a blank material manufacturing method a shape determination method, a shape determination program, a blank material manufacturing apparatus, and a blank material.
  • a work material 1 On a metal plate (hereinafter referred to as a work material 1) of an automobile, a home electric appliance, a building structure, etc., after the work material 1 is placed on a punching die (also referred to as a die) 3 as shown in FIG.
  • a punching die also referred to as a die 3 as shown in FIG.
  • the punched surface 8 of the work piece 1 after the punching process has a sagging 4 formed by the work material 1 being entirely pushed by the punching punch 2 and a punching punch.
  • the material 1 to be processed is pulled into the clearance between 2 and the punching die 3 (hereinafter, when it is described as "clearance", it means the clearance between the punch and the die) and is formed by being locally stretched. It is composed of a sheared surface 5, a fracture surface 6 formed by breaking the workpiece 1 drawn into the clearance between the punching punch 2 and the punching die 3, and a burr 7 generated on the back surface of the workpiece 1. ..
  • the width of the work material 1 is as shown in FIG. 3 in order to reduce the punching load required for punching the work material 1 and the noise generated during the punching of the work material 1.
  • a punching punch having an upper blade 10 (inclined blade in the case of FIG. 3) inclined with respect to a direction, that is, a cutting line direction (also referred to as a punching direction) of the work material 1 on the bottom surface is used.
  • a punching load is locally applied to the workpiece 1, and the workpiece 1 is located from one end side to the other end in the width direction. It is possible to cut sequentially over the sides, which reduces the punching load.
  • Patent Documents 1 and 2 describe that in punching shearing with a punching punch having an inclined blade on the bottom surface, which can reduce punching load and noise, the elongation is equal to or higher than that when a punching punch having a flat blade on the bottom surface is used.
  • a punching shear device with a shear angle that can ensure flangeability is disclosed.
  • Patent Document 1 describes a work material after cutting a part of the work material in a shear angle punching device including a punch having an upper blade inclined with respect to the cutting direction and a die having a lower blade.
  • a partial plate reverse presser is provided at a position facing the punch, and the partial plate reverse presser has a shear angle, which is an inclined partial plate reverse presser whose inclination angle in the cutting line direction is the same as the inclination angle in the cutting direction of the punch.
  • the punching device is disclosed.
  • Patent Document 2 has a punch having an upper blade having a horizontal portion partially in the cutting line direction and an inclined portion in a portion other than the horizontal portion, and a die having a lower blade.
  • a shear angle punching shear device in which the horizontal portion of the upper blade is arranged above a part or all of the planned extension flange portion in molding after cutting the work material.
  • Patent Document 3 discloses a punching method for punching a work material by using a punch and a die having a recess formed in a cross section parallel to the punching direction by a linear or curved shear angle at the cutting edge. ing.
  • Patent Document 4 a welded portion and a work material having a heat-affected zone around the welded portion are formed by using a flat portion and a punch having a protruding portion protruding toward the work material side from the flat portion.
  • the work material Prior to cutting the work material, the work material is positioned with respect to the punch at a position where shearing of at least one of the heat-affected zone or the welded part by the protruding portion is started, and the punch and the die are relative to each other in this positioning state. It discloses a method of moving and shearing and cutting across a weld in a work piece.
  • the present invention has been made in view of the above-mentioned problems, and in punching shearing with a punching punch having an inclined blade on the bottom surface, which can reduce a punching load and noise, a punching punch having a flat blade on the bottom surface. It is an object of the present invention to provide a punching process method, a press-molded product manufacturing method, an upper blade shape determination program, and a shear angle optimization method, which can stably secure stretch flangeability equal to or higher than that in the case of using.
  • the shape of the shear angle has an effect on the decrease and variation in the stretch flangeability.
  • the shape of the shear angle that provides good stretch flangeability and the shape of the shear angle that shows a decrease or variation in stretch flangeability are different to the extent that it is difficult to visually judge, but these should be distinguished in advance. Therefore, it was found that good stretch flangeability can be stably obtained.
  • the present invention has been further studied, and the gist thereof is as follows.
  • the upper blade is composed of a first inclined portion, a second inclined portion, and a third inclined portion provided in order in the cutting line direction of the metal plate, and the angle of the first inclined portion with respect to the metal plate in the cutting line direction.
  • a method for producing a blank material which comprises.
  • the maximum value of the second-order difference quotient J2 max, J3 n J2 n /
  • is defined, and the first point where the absolute value of J3 n becomes a threshold value ⁇ 2 or more is the boundary position between the first inclined portion and the second inclined portion.
  • the last point is the boundary position between the second inclined portion and the third inclined portion, and ⁇ 1 , ⁇ 2 , and ⁇ 3 are the first inclined portion, the second inclined portion, and the third inclined portion, respectively.
  • the tangent line at any point of the portion is the average value of the maximum value and the minimum value of the absolute value of the angle formed with the metal plate.
  • a method for producing a press-molded product which comprises performing press molding on a blank material obtained by the method for producing a blank material according to any one of (1) to (3) above to obtain a press-molded product.
  • a shape determination program comprising executing a step of determining that it is necessary to adjust the shear angle of the upper blade in a certain case.
  • a second calculation unit for obtaining ( ⁇ x) 2 , a third calculation unit for obtaining the maximum value J2 max of the second-order difference quotient, and a fourth calculation unit for obtaining the type determination value J3 n J2 n /
  • the absolute value of J3 n is equal to or higher than a predetermined threshold value ⁇ 2 at one or both of the boundary between the second inclined portion and the first inclined portion and the boundary between the second inclined portion and the third inclined portion.
  • a blank material manufacturing apparatus comprising a determination unit for determining that it is necessary to adjust the shear angle of the upper blade when J3 n is positive.
  • a blank having a shear edge when the area ratio of the secondary shear plane shear facet entire range A 2, the central value of the curvature radius of the top view of the blank lines full range R, the shearing edge a two regions of width 5mm surrounded by a perpendicular line a drawn in the thickness direction of the inner, and a secondary shear plane area ratio of the region a is a 2/2 or less, the upper surface of area a
  • the elongation flange property is equal to or higher than that when a punching punch having a flat blade on the bottom surface is used. Can be stably secured.
  • FIG. 1 It is a figure which shows the structure of the punching die for the drum-shaped extension flange test used in the study of this invention, (a) is a perspective view, (b) is a front view, (c) is a side view. It is a figure which shows the shape of the punching part used in the study of this invention. It is a figure which shows the result of having investigated the fracture limit strain about the sample which punched using the punch with the shear angle of a different shape. It is a figure which shows typically the example of the stretch flange part, (a) is the figure which shows the blank (working material) before the flange up molding process, (b) is the figure which shows the member after the flange up molding process. ..
  • the present inventors diligently examined the relationship between the shapes of the four patterns of punches shown in FIG. 5 and the stretch flangeability of the punched surface 8 with respect to the work material 1 punched by the punched punch 2.
  • FIG. 5 shows the shape of the punch from the front view
  • FIGS. 5A to 5C are inclined blades having a first inclined portion, a second inclined portion, and a third inclined portion in the cutting line direction.
  • the first inclined portion has an angle ⁇ 1 with respect to the metal plate in the cutting line direction
  • the second inclined portion has an angle ⁇ 2 with respect to the metal plate in the cutting line direction
  • the third inclined portion has a metal in the cutting line direction. It forms an angle ⁇ 3 with respect to the plate.
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 are the maximum values of the absolute values of the angles formed by the tangents at arbitrary points of the first inclined portion, the second inclined portion, and the third inclined portion with the metal plate, respectively. It is the average value of the minimum values.
  • the first inclined portion, the second inclined portion, and the third inclined portion have a shape of being straight in the cutting line direction, and an arbitrary tangent line in the cutting line direction forms an angle with the metal plate in each inclined portion. Is constant.
  • (A) is a shape in which a horizontal portion is provided at the R shear angle and the reverse shear angle, and the shear angle first penetrates the work piece and the central horizontal portion finally penetrates (hereinafter, "TYPE").
  • TYPE a shape in which a horizontal portion is provided at the R shear angle and the reverse shear angle, and the shear angle first penetrates the work piece and the central horizontal portion finally penetrates.
  • (B) is a shape in which a horizontal portion is provided in a part of a shear angle inclined in one direction, and one of the shear angles first penetrates the work piece, then the central portion, and finally the other shear. The shape is such that the corners penetrate into the work material (hereinafter referred to as "TYPE-B").
  • (C) is a shape in which a horizontal portion is provided at the roof shear angle, and the central horizontal portion first penetrates the work piece and finally the shear angle (hereinafter referred to as "TYPE-C”).
  • (D) is a flat blade having no inclined portion (hereinafter referred to as "TYPE-1").
  • TYPE-A For TYPE-A, TYPE-B, and TYPE-C, four types of punches with different horizontal widths and shear angles were prepared.
  • Punches of these shapes were punched using the punching die for drum-shaped stretch flange test shown in FIG.
  • the blank line was common at R30 mm and the opening angle ⁇ 120 ° in the top view, only the punch was replaced, and the shear angle and the pattern of the horizontal portion were changed.
  • the center position of the second inclined portion of the punch in the cutting line direction is arranged so as to correspond to the center position of the blank line.
  • the 13 types of drum-shaped test punches shown in Table 1 were prepared and punched with a 60-ton crank press.
  • the test material was JSC980Y with a thickness of 1.4 mm, and the punching clearance was constant at 12.6% of the plate thickness of the work material.
  • FIG. 8 illustrates the results of Table 1.
  • Group 1 shows the test results for TYPE-A-1, TYPE-B-1, and TYPE-C-1 in Table 1
  • Group 2 shows TYPE-A-2, TYPE-B-2, and TYPE- in Table 1.
  • Test results for C-2 group 3 shows the results of the tests for TYPE-A-3, TYPE-B-3, and TYPE-C-3 in Table 1
  • group 4 shows the results of the test for TYPE-A-4 in Table 1.
  • TYPE-B-4, TYPE-C-4 is TYPE-C-4.
  • Xx-y on the horizontal axis of the graph (X is any of A, B, and C, and x and y are numerical values) means the y-th test result of TYPE-X-x.
  • the horizontal line in the graph is the average value of TYPE-1, and the bar is the result of two tests for each of the four types of samples TYPE-A, TYPE-B, and TYPE-C.
  • the vertical axis of the graph is the breaking limit strain.
  • the side bend test device has a pair of arms rotatably attached to fulcrums at different positions, and a ruled line or a marking point is marked on the upper surface or the lower surface at the tip of the arm. It has a pair of grips that fix the upper and lower surfaces of both ends of the test piece together with the arms, and a load applying means that applies a load to the rear ends of the pair of arms, and the pair of arms is a leg. The parts are configured to intersect each other. Then, a load is applied to the rear end by the load applying means, and the tips of the pair of arms move in opposite directions and separate from each other around the fulcrum, so that the arms and the grip are fixed. It has a function of imparting tension and bending deformation to the end face in the plate thickness direction at the central portion in the longitudinal direction of the test piece.
  • the upper and lower surfaces of both ends of the test piece in which a ruled line or a reference point is marked on the upper surface or the lower surface are formed by the arm portion and the grip portion at the tips of the pair of arms, respectively.
  • a load is applied to the rear ends of the pair of arms by the load applying means to apply tension and bending deformation so that the end face in the plate thickness direction at the central portion in the longitudinal direction of the test piece is widened, and the storage means.
  • the strain when the crack penetrated in the plate thickness direction of the end face of the test piece observed by the first observing means was observed by the second observing means. Calculated based on borders or gauge points.
  • the breaking strain may be smaller than that in the case of using the flat blade, that is, the stretch flangeability may be lowered.
  • TYPE-C that is, the upper blade has the shape of (c), and the horizontal part of the upper blade is punched in advance so as not to be punched by the punch that first penetrates the work material.
  • the inclined portion that first penetrates into the work material may be the inclined portion on both sides of the horizontal portion as in TYPE-A, or only the inclined portion on one side of the horizontal portion as in TYPE-B. You may.
  • the upper blade of the punch has a TYPE-C shape
  • only the horizontal part of the upper blade penetrates near the center of the planned extension flange at the beginning of punching.
  • the horizontal portion of the upper blade does not have the effect of reducing the load due to the shear angle, it reaches a situation where it cannot easily penetrate into the work piece, the formation of the fracture surface is delayed, and the shear surface ratio increases.
  • work hardening of the work material increases. Since this portion is the portion to which the tensile stress is most applied during the flange-up molding, the stretch flangeability is lowered.
  • TYPE-A has a larger breaking limit strain than TYPE-B.
  • the horizontal portion is cut with the inclined portions on both sides already cut off, while in the case of TYPE-B, the horizontal portion is cut with one inclined portion remaining.
  • the shape of the upper blade of the punch has a horizontal portion width of several tens of mm and a shear angle of about 1.0 °, so it is extremely difficult to visually determine the shape. Therefore, the shape of the upper blade is measured using a laser displacement meter, a contact-type three-dimensional shape measuring device, or the like. However, according to the present invention, the shape of the upper blade is measured by the following method. It is easily determined whether or not the shape of the blade is suitable for punching.
  • the two-dimensional data of the upper blade with an inclined punch measured by a laser displacement meter, a contact-type three-dimensional shape measuring device, or the like is input.
  • of the first-order difference quotient J1 n is larger than the predetermined threshold value ⁇ 1 for determining the horizontal part, it can be seen that the upper blade between the nth to n + 1th points of the point cloud is inclined. ..
  • the threshold value ⁇ 1 can be, for example, 0.1.
  • the second-order difference quotient J2 n (y n + 1 -2y n + y n-1) / ( ⁇ x) seek 2. Further, the maximum value J2 max of the second-order difference quotient is obtained.
  • the maximum value J2 max of the second-order difference quotient is the second-order difference quotient (y 3 -2y 2 + y 1 ) / ( ⁇ x) 2 to (y k -2y) obtained by changing n in the point cloud (x, y). k-1 + y k-2 ) / ( ⁇ x) The maximum value up to 2 .
  • the type determination value J3 n J2 n /
  • is obtained.
  • the inclined portion is a shape inclined downward (direction close to the workpiece) relative to the horizontal section, if the sign is positive J3 n, ramps If it is shape inclined upward (direction close to the workpiece) relative to the horizontal section, the sign of the J3 n, can determine the inclination direction of the inclined portion.
  • the shape used in the present invention is the shape of TYPE-A as shown in FIG. 5A. That is, at one or both of the boundary between the second inclined portion and the first inclined portion and the boundary between the second inclined portion and the third inclined portion, the absolute value of J3 n is equal to or more than the predetermined threshold value ⁇ 2 and J3. If n is positive, it is necessary to adjust the shear angle of the upper blade.
  • the flowchart of this determination is shown in FIG.
  • the shape of the punch is determined by causing a computer or the like to execute an upper blade shape determination program that performs such processing. Specific determination examples are shown in FIGS. 12 to 16.
  • FIG. 12A shows the punch shapes (x, y) and J1 n
  • FIG. 12B shows the punch shapes (x, y) and J3 n
  • the absolute value of J3 n is greater than [delta] 2
  • the sign of the J3 n is negative (
  • the shape of the punch is determined to be TYPE-A.
  • the absolute value of J3 n is larger than ⁇ 2 at the other end, and the sign of J3 n is positive (
  • the shape of the punch is determined to be TYPE-B.
  • the shape of the punch is determined to be TYPE-C.
  • FIG. 16 is a pattern in which TYPE-A, TYPE-B, and TYPE-C are mixed.
  • the punch has such a shape, it is conceivable to use it so that the shapes of TYPE-B and TYPE-C do not hit the planned extension flange where the end face property of the punched surface is the most problematic, but the processing is stable. It is preferable not to use it in consideration of sex.
  • the value of J3 n is stable with respect to the change of the value of ⁇ x, and the absolute values of J1 n and J2 n need not be highly accurate. That is, in the punch shape determination by this algorithm, it is not necessary to examine ⁇ x in advance and examine the influence on J1 n and J2 n , and it is possible to easily determine the punch shape without considering the measurement accuracy. it can.
  • the punch determined to be TYPE-B or TYPE-C cannot be used as it is, but if the shear angle is optimized by processing the upper blade and adjusted to the shape of TYPE-A, TYPE- It can be used in the same way as a punch determined to be A.
  • the shape of the upper blade after processing is determined again using the above determination method.
  • the punching shear device 15 with a shear angle includes at least a punching punch 2, a punching die 3, and a holding plate 9.
  • the punching punch 2 is provided with an upper blade 10 on the bottom surface thereof, and the upper blade 10 has a first inclined portion 12a, a second inclined portion 11, and a third inclined portion 12c in the width direction.
  • the second inclined portion is parallel to the cutting line direction.
  • the first inclined portion 12a and the third inclined portion 12b function as so-called shear angles.
  • the shapes of the first inclined portion 12a and the third inclined portion 12b are first covered by both ends (first inclined portion and third inclined portion) as shown in FIG. 5A.
  • a shape that invades the processed material and finally the central portion (second inclined portion) can be applied, and the shapes shown in (b) and (c) are not applied.
  • the punch 2 is configured to be movable in the direction P shown in FIG.
  • the end of the punching die 3 located in the longitudinal direction of the upper surface functions as the lower blade 3a, and the upper blade 10 of the punching punch 2 is located above the lower blade 3a.
  • the shapes of the side surface 2b on the lower end side of the punch 2 for punching and the side surface 3b on the upper end side of the punching die 3 correspond to each other, and any shape can be provided between the side surface 2b and the side surface 3b. It is configured to provide a clearance.
  • the lower blade 3a may be configured to be able to cut an open cross section in order to enable blank processing, or may be configured to be able to cut a closed cross section in order to enable hole processing.
  • a work material 1 is placed on the upper surface of the punching die 3, and the work material 1 placed in this way is sandwiched between the upper surface of the punching die 3 and the lower surface of the pressing plate 9. It will be.
  • the second inclined portion 11 of the upper blade 10 is a part of the work material 1, and the punching punch 2 described above is applied to a part or all of the planned extension flange portion 22 in which the end surface property of the punching surface 8 is the most problematic. It is preferable to arrange the second inclined portion 11 of the above.
  • the work material 1 is placed on the punching die 3, and then the work material 1 is sandwiched between the upper surface of the punching die 3 and the lower surface of the pressing plate 9. After that, the punching punch 2 having the upper blade 10 is pushed in from above the workpiece 1 toward the lower side indicated by the direction P. After that, by being sandwiched between the lower blade 3a and the upper blade 10, a shearing force acts on the work material 1, so that the work material 1 is cut and punched into a predetermined shape.
  • first inclined portion 12a and the third inclined portion 12b are inclined in the width direction, a punching load is locally applied to the work material 1 at the time of punching to cut the work material 1. Will be done. Since the punching load is locally applied, the required punching load can be reduced and the noise can be reduced as compared with the punching punch 2 using a flat blade having a flat bottom surface.
  • the second inclined portion 11 does not locally apply a punching load, but is punched by the second inclined portion 11 having a small inclination. Since the surface 8 is less likely to bend in the width direction, the punched surface 8 becomes uniform and the stretch flangeability is improved. Further, since the work material 1 is punched by the first inclined portion 12a and the third inclined portion 12b over a certain range before being punched by the second inclined portion 11, it is punched by the second inclined portion 11. The range to be punched is smaller than that of the punching punch 2 having a flat blade on the entire bottom surface, and as a result, the punching load required even when punching by the second inclined portion 11 can be reduced, and the noise can also be reduced. ..
  • the second inclined portion 11 is provided in a part of the upper blade 10, and the first inclined portion 12a and the third inclined portion 12b are provided in the portion other than the second inclined portion 11.
  • the length L1 of the upper blade 10 in the width direction (cutting line direction) of the second inclined portion 11 is preferably 10 to 60% of the length L2 in the width direction of the work piece 1, preferably 20 to 50%. More preferably, 30-40% is even more preferable.
  • the work material is formed by the first inclined portion 12a and the third inclined portion 12b around the second inclined portion 11. 1 tends to bend in the width direction, the non-uniformity of the punched surface 8 and work hardening increase, and the effect of the present invention that the stretch flangeability is improved becomes difficult to obtain.
  • the absolute values ⁇ 1 and ⁇ 3 of the angles in the width direction of the first inclined portion 12a and the third inclined portion 12b of the upper blade 10 to which the present invention is applied are the first as long as they are in the range of 0.5 to 5.0 °. 2 There is almost no effect on the work hardening amount and the fracture surface shape non-uniformity of the portion punched by the inclined portion 11.
  • the absolute values ⁇ 1 and ⁇ 3 of the angles of the first inclined portion 12a and the third inclined portion 12b exceed 5.0 °, the effect of reducing the press load and reducing noise becomes large, but the inclined blade 10 strikes.
  • the fracture surface properties (work hardening, non-uniformity of the fracture surface) of the punched surface 8 of the punched portion are deteriorated. Therefore, the absolute values ⁇ 1 and ⁇ 3 of the angles of the first inclined portion 12a and the third inclined portion 12b are preferably 0.5 to 5.0 °. Further, ⁇ 1 and ⁇ 3 may be different from each other as long as they are within the above range.
  • the metal plate used as the material to be processed in the present invention is not particularly limited, and a metal plate such as iron, aluminum, titanium, magnesium, or an alloy thereof can be punched.
  • the plate thickness is not particularly limited, but is suitable for processing a metal plate of 0.5 to 4.0 mm. Further, edge cracking in stretch flange molding is likely to occur when a high-strength steel sheet is press-formed to obtain a press-molded product, and is therefore particularly effective for processing a steel sheet having a tensile strength of 590 MPa or more.
  • the blank obtained by the above method has a sheared end face 31 as shown in FIG.
  • the sheared end face includes a sheared surface 32 and a secondary sheared surface 33.
  • the secondary sheared surface 33 may have a divided shape as shown in (a), or may have a continuous shape as shown in (b).
  • the area ratio of the secondary sheared surface 33 in the entire range of the sheared end face 31 is A2 and the center value of the radius of curvature in the top view of the entire blank line range is R, then in the plate thickness direction in the sheared end face 31 A region A having a width of 5 mm surrounded by two drawn perpendicular lines, the area ratio of the secondary shear surface 33 in the region A is A2 / 2 or less, and the radius of curvature in the top view of the region A is R.
  • the radius of curvature of the blank line in the top view is obtained every 1 mm from the end of the blank line.
  • the radius of curvature is ⁇ .
  • the area A in the figure is for explaining the range of the area A.
  • the stretch flangeability of the blank tends to decrease, and when the ratio of the secondary shear surface 33 is large, the decrease becomes remarkable. If the ratio of the secondary sheared surface 33 is low in a region where the radius of curvature of the blank line is small, that is, in a portion where deformation is concentrated, a decrease in stretch flangeability can be suppressed.
  • the area ratio of the shear surface 32 in the region A is preferably 80% or less, more preferably 70% or less, and further preferably 60% or less of the area ratio of the shear end surface 31 excluding the region A.
  • the change in the area ratio of the shear surfaces 32 in the plate width direction of the region A is within ⁇ 20%.
  • the area ratio of the sheared surface 32 in the plate width direction of the region A is obtained every 1 mm from the end of the region A, and the change is obtained.
  • the change in the sheared surface 32 is more preferably within ⁇ 15%, and even more preferably within ⁇ 10%.
  • the width of such a region A is more preferably large, more preferably a width of 7 mm satisfying the above-mentioned conditions, and further preferably a width of 10 mm satisfying the above-mentioned conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Punching Or Piercing (AREA)

Abstract

本発明は、平坦刃を底面に有する打ち抜き用パンチを用いた場合と同等以上の伸びフランジ性を安定して確保できる打抜き加工方法を提供することを課題とする。本発明の打ち抜き加工方法は、切断線に対し一部に水平部を有し、水平部を除く部分は傾斜部からなる上刃を有するパンチと、下刃を有するダイとを備える打抜きせん断装置を用いて金属板に打抜き加工を施す方法であって、打抜き加工に用いる上刃は、打抜き加工の際に傾斜部が最初に金属板に接触する形状であることを特徴とする。

Description

ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材
 本発明は、自動車、家電製品、建築構造物、船舶、橋梁、建設機械、各種プラント、ペンストック等で用いられる鉄、アルミニウム、チタン、マグネシウムおよびこれら合金等の金属板にシャー角付き打ち抜きせん断装置で打ち抜き加工を施し、その後プレス成形を施すブランク材の製造方法、プレス成形品の製造方法に関し、さらに、ブランク材の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材に関する。
 自動車、家電製品、建築構造物等の金属板(以下、被加工材1という。)には、図1のように打ち抜き用ダイ(ダイともいう)3上に被加工材1を載置した後に、打ち抜き用パンチ2(パンチともいう)を図1に示す矢印方向に押し込むことにより、被加工材1を打ち抜く打ち抜き加工が施されることが多い。
 図2に示すように、打ち抜き加工が施された後の被加工材1の打ち抜き面8は、被加工材1が打ち抜き用パンチ2により全体的に押し込まれて形成されるダレ4、打ち抜き用パンチ2と打ち抜き用ダイ3のクリアランス内(以下特に記載がなく“クリアランス”と表記した場合は、パンチとダイのクリアランスをいう。)に被加工材1が引き込まれ局所的に引き伸ばされて形成されるせん断面5、打ち抜き用パンチ2と打ち抜き用ダイ3のクリアランス内に引き込まれた被加工材1が破断して形成される破断面6、および被加工材1の裏面に生じるバリ7によって構成される。
 通常、この打ち抜き加工時においては、被加工材1の打ち抜きに要する打ち抜き荷重や、被加工材1の打ち抜き時に発生する騒音の低減のために、図3に示すような、被加工材1の幅方向、即ち被加工材1の切断線方向(打ち抜き方向ともいう)に対して傾斜した上刃10(図3の場合は傾斜刃)をその底面に有する打ち抜き用パンチを使用する。この打ち抜き用パンチ2は、上刃10が切断線方向に傾斜しているため、被加工材1に局部的に打ち抜き荷重を負荷し、被加工材1を幅方向に位置する一端側から他端側に亘って順次切断することができ、これにより打ち抜き荷重が低減することになる。
 しかし、このような傾斜刃10を底面に有する打ち抜き用パンチ2に使用した場合、その底面が平坦な打ち抜き用パンチ2によって打ち抜いた被加工材1よりも伸びフランジ性が劣る。これは、傾斜刃10によって幅方向に亘って順次被加工材1を切断するため被加工材1がその幅方向に撓むことと、打ち抜き時に被加工材1が長手方向に向けて過大に湾曲することにより、底面が平坦な平坦刃を有する打ち抜き用パンチ2によるものと比べて打ち抜き面8の加工硬化や端面性状の荒れが大きくなることが原因であると思われる。
 特許文献1及び2には、打ち抜き荷重や騒音を低減可能な、傾斜刃を底面に有する打ち抜き用パンチによる打ち抜きせん断加工において、平坦刃を底面に有する打ち抜き用パンチを用いた場合と同等以上の伸びフランジ性を確保できるシャー角付き打ち抜きせん断装置を開示している。
 具体的には、特許文献1は、切断方向に対し傾斜した上刃を有するパンチと、下刃を有するダイを備えるシャー角付き打ち抜き装置において、被加工材の一部を切断後に、被加工材を押さえる部分板逆押さえをパンチと対向する位置に設け、部分板逆押さえは、切断線方向の傾斜角がパンチの切断方向の傾斜角と同じである傾斜付き部分板逆押さえであるシャー角付き打ち抜き装置を開示している。
 特許文献2は、図4に示すように、切断線方向に対し一部に水平部を有し、水平部を除く部分は傾斜部からなる上刃を有するパンチと、下刃を有するダイとを備え、上刃の水平部が、被加工材の切断後の成形における伸びフランジ予定部の一部又は全部の上方に配置されるシャー角付き打ち抜きせん断装置を開示している。
 特許文献3は、刃先に直線状または曲線状のシャー角により、打ち抜き方向と平行な断面で凹状に形成された凹部を有するパンチ及びダイを用いて、被加工材を打ち抜く打ち抜き加工方法を開示している。
 特許文献4は、溶接部、及びその周りに熱影響部がある被加工材を、平坦部と、平坦部よりも被加工材側へ向けて突出した突出部を有するパンチを用い、平坦部による被加工材の切断に先行して突出部による熱影響部又は溶接部の少なくとも一方の剪断が開始される位置に被加工材をパンチに対して位置決めし、この位置決め状態でパンチとダイとを相対移動して、被加工材における溶接部を横断するように剪断して切断する方法を開示している。
特許第5042935号公報 特許第5042936号公報 特開2010-36195号公報 国際公開2017/057466号
 前記の特許文献1~4の方法によれば、傾斜刃を底面に有する打ち抜き用パンチによる打ち抜きせん断加工において、平坦刃を底面に有する打ち抜き用パンチを用いた場合と同等以上の伸びフランジ性を確保することができる。
 しかしながら、本発明者らの検討の結果、多数の加工を行ううちに、伸びフランジ性が低下する場合、不安定となる場合があることがわかった。
 本発明は、上述した問題点に鑑みてなされたものであり、打ち抜き荷重や騒音を低減可能な、傾斜刃を底面に有する打ち抜き用パンチによる打ち抜きせん断加工において、平坦刃を底面に有する打ち抜き用パンチを用いた場合と同等以上の伸びフランジ性を安定して確保できる打抜き加工方法、プレス成形品の製造方法、上刃形状判定プログラム、及びシャー角適正化方法を提供することを課題とする。
 本発明者らが鋭意検討した結果、伸びフランジ性の低下やばらつきには、シャー角の形状が影響していることがわかった。良好な伸びフランジ性が得られるシャー角の形状と、伸びフランジ性の低下やばらつきが見られるシャー角の形状は、目視で判断するのは難しい程度の違いであるが、これらを事前に見分けることで、良好な伸びフランジ性が安定して得られることがわかった。
 本発明はさらに検討を進めてなされたものであって、その要旨は、以下のとおりである。
 (1)上刃を有するパンチと下刃を有するダイを備える打抜きせん断装置を用いて、前記パンチと前記ダイの間に配した金属板に打ち抜き加工を施しブランク材を製造する方法であって、前記上刃は、前記金属板の切断線方向に順に設けられた第1傾斜部、第2傾斜部、第3傾斜部からなり、前記第1傾斜部の前記切断線方向における前記金属板に対する角度θ、前記第2傾斜部の前記切断線方向における前記金属板に対する角度θ、前記第3傾斜部の前記切断線方向における前記金属板に対する角度θが、θ≦θ/2、θ≦θ/2を満たし、前記打抜き加工の際に、前記第1傾斜部、及び前記第3傾斜部が前記金属板に接触した後、前記第2傾斜部が金属板に接触することを特徴とするブランク材の製造方法。
 ここで、上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)において、2階差分商J2=(yn+1-2y+yn-1)/(Δx)、2階差分商の最大値J2max、J3=J2/|J2max|を定義し、J3の絶対値があらかじめ定めた、閾値δ以上となる最初の点が前記第1傾斜部と前記第2傾斜部の境界位置であり、最後の点が前記第2傾斜部と前記第3傾斜部の境界位置であり、θ、θ、θは、それぞれ、前記第1傾斜部、前記第2傾斜部、及び前記第3傾斜部の任意の点における接線が、前記金属板となす角の絶対値の、最大値と最小値の平均値である。
 (2)前記第2傾斜部の前記切断線方向における前記金属板に対する角度θが、θ≦3.0°を満たすことを特徴とする前記(1)のブランク材の製造方法。
 (3)前記打抜き加工の前に、前記上刃の形状を判定する工程を含み、上刃の形状の判定結果に基づき、前記上刃のシャー角を調整する工程を含む前記(1)又は(2)のブランク材の製造方法。
 (4)前記(1)~(3)のいずれかのブランク材の製造方法で得られたブランク材にプレス成形を施し、プレス成形品を得ることを特徴とするプレス成形品の製造方法。
 (5)前記(3)のブランク材の製造方法において用いられる上刃の形状を判定する方法であって、上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)を入力するステップと、入力された点群(x,y)に対して、1階差分商J1=(yn+1-y)/Δxを求めるステップと、2階差分商J2=(yn+1-2y+yn-1)/(Δx)を求めるステップと、前記2階差分商の最大値J2maxを求めるステップと、タイプ判定値J3=J2/|J2max|を求めるステップと、前記第2傾斜部と前記第1傾斜部の境界、前記第2傾斜部と前記第3傾斜部の境界の一方又は両方において、J3の絶対値があらかじめ定めた、閾値δ以上であり、かつJ3が正である場合に、前記上刃のシャー角を調整する必要があると判定するステップを備えることを特徴とする形状判定方法。
 (6)前記(3)のブランク材の製造方法において用いられる上刃の形状を判定するプログラムであって、上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)を入力するステップと、入力された点群(x,y)に対して、1階差分商J1=(yn+1-y)/Δxを求めるステップと、2階差分商J2=(yn+1-2y+yn-1)/(Δx)を求めるステップと、前記2階差分商の最大値J2maxを求めるステップと、タイプ判定値J3=J2/|J2max|を求めるステップと、前記第2傾斜部と前記第1傾斜部の境界、前記第2傾斜部と前記第3傾斜部の境界の一方又は両方において、J3の絶対値があらかじめ定めた、閾値δ以上であり、かつJ3が正である場合に、前記上刃のシャー角を調整する必要があると判定するステップを実行させることを特徴とする形状判定プログラム。
 (7)前記(3)のブランク材の製造方法において用いられる製造装置であって、上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)を入力する入力部と、入力された点群(x,y)に対して、1階差分商J1=(yn+1-y)/Δxを求める第1算出部と、2階差分商J2=(yn+1-2y+yn-1)/(Δx)を求める第2算出部と、前記2階差分商の最大値J2maxを求める第3算出部と、タイプ判定値J3=J2/|J2max|を求める第4算出部と、前記第2傾斜部と前記第1傾斜部の境界、前記第2傾斜部と前記第3傾斜部の境界の一方又は両方において、J3の絶対値があらかじめ定めた、閾値δ以上であり、かつJ3が正である場合に、前記上刃のシャー角を調整する必要があると判定する判定部を備えることを特徴とするブランク材の製造装置。
 (8)せん断端面を有するブランク材であって、せん断端面全範囲の二次せん断面の面積率をA、ブランクライン全範囲の上面視における曲率半径の中央値をRとするとき、せん断端面内の板厚方向に引かれた2本の垂線で囲まれた幅5mmの領域Aであって、該領域Aにおける二次せん断面の面積率がA/2以下であり、領域Aの上面視における曲率半径がRの1/2以下である領域Aが存在することを特徴とするブランク材。
 (9)前記領域Aにおけるせん断面の面積率が、せん断端面全範囲から前記領域Aを除く領域のせん断面の面積率の80%以下であることを特徴とする前記(8)のブランク材。
 (10)前記領域Aの板幅方向におけるせん断面の面積率の変化が±20%以内であることを特徴とする前記(8)又は(9)のブランク材。
 本発明によれば、打ち抜き荷重や騒音を低減可能な、傾斜刃を底面に有する打ち抜き用パンチによる打ち抜きせん断加工において、平坦刃を底面に有する打ち抜き用パンチを用いた場合と同等以上の伸びフランジ性を安定的に確保することができる。
打ち抜き加工を模式的に示す図である。 打ち抜き面8の特徴を模式的に示す図である。 従来の傾斜刃による打ち抜き加工を模式的に示す図であり、(a)は、その正面立面図、(b)は、その側面図であって、(a)におけるA-A線断面図である。 切断線方向に対し一部に水平部を有する傾斜刃を適用した打ち抜きせん断装置を模式的に示す図であり、(a)は、その正面立面図、(b)は、その側面図であって、(a)におけるB-B線断面図である。 本発明の検討で用いたシャー角付きのパンチの形状を示す図である。 本発明の検討で用いた鼓形伸びフランジ試験用打抜き型の構成を示す図であり、(a)は斜視図、(b)は正面図、(c)は側面図である。 本発明の検討で用いた打ち抜き部の形状を示す図である。 形状の異なるシャー角付きパンチを用いて打抜き加工を行ったサンプルについて破断限界ひずみを調査した結果を示す図である。 伸びフランジ部の例を模式的に示す図であり、(a)は、フランジアップ成形加工前のブランク(被加工材)を、(b)は、フランジアップ成形加工後の部材を示す図である。 上刃の両端に水平部を含むパンチの形状を示す図である。 本発明におけるパンチの2次元形状データからパンチの形状タイプを判定するフローチャートである。 本発明におけるパンチの2次元形状データからパンチの形状タイプを判定した一例である。 本発明におけるパンチの2次元形状データからパンチの形状タイプを判定した他の例である。 本発明におけるパンチの2次元形状データからパンチの形状タイプを判定した他の例である。 本発明におけるパンチの2次元形状データからパンチの形状タイプを判定した他の例である。 本発明におけるパンチの2次元形状データからパンチの形状タイプを判定した他の例である。 本発明により得られるブランクのせん断面を説明する図である。
 はじめに、本発明を完成するに至った、本発明者らが行なった検討内容について説明する。
 本発明者らは、打ち抜き用パンチ2による打ち抜き加工が施された被加工材1について、図5に示す4パターンのパンチの形状と、打ち抜き面8の伸びフランジ性の関係について鋭意検討した。
 図5はパンチの正面視からの形状であり、(a)~(c)は切断線方向に順に、第1傾斜部、第2傾斜部、第3傾斜部を有する傾斜刃である。第1傾斜部は切断線方向において金属板に対して角度θをなし、第2傾斜部は切断線方向において金属板に対して角度θをなし、第3傾斜部は切断線方向において金属板に対して角度θをなす。
 ここで、上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)において、2階差分商J2=(yn+1-2y+yn-1)/(Δx)、2階差分商の最大値J2max、J3=J2/|J2max|を定義し、J3の絶対値があらかじめ定めた、閾値δ以上となる最初の点が第1傾斜部と第2傾斜部の境界位置であり、最後の点が第2傾斜部と第3傾斜部の境界位置である。
 また、θ、θ、θは、それぞれ、第1傾斜部、第2傾斜部、及び第3傾斜部の任意の点における接線が、金属板となす角の絶対値の、最大値と最小値の平均値である。図5の例では、第1傾斜部、第2傾斜部、第3傾斜部は切断線方向に直線となる形状であり、各傾斜部において切断線方向への任意の接線が金属板となす角は一定である。また、図5の例では、θ=θ、θ=0.0°である。
 (a)はRシャー角、逆シャー角に水平部が設けられた形状であり、シャー角が最初に被加工材に侵入し、中央の水平部が最後に侵入する形状である(以下「TYPE-A」という)。(b)は一方向に傾斜するシャー角の一部に水平部が設けられた形状であり、シャー角の一方が最初に被加工材に侵入し、その後、中央部、最後にもう一方のシャー角が被加工材に侵入する形状である(以下「TYPE-B」という)。(c)はルーフシャー角に水平部が設けられた形状であり、中央の水平部が最初に被加工材に侵入し、最後にシャー角が侵入する形状である(以下「TYPE-C」という)。(d)は傾斜部のない平坦刃である(以下「TYPE-1」という)。
 TYPE-A、TYPE-B、TYPE-Cについては、さらに、水平部の幅、及びシャー角を変化させた4種類の水準のパンチを用意した。
 これらの形状のパンチについて、図6に示す鼓型伸びフランジ試験用打抜き型を用い、打ち抜き加工を行った。ブランクラインは図7に示すように、上面視でR30mm、開き角θ120°で共通とし、パンチのみを交換し、シャー角と水平部のパターンを変更した。打ち抜き加工の際は、パンチの第2傾斜部の切断線方向中心位置が、ブランクラインの中心位置に相当する位置となるよう配置する。
 表1に示す13種類の鼓型試験用パンチを用意して60tonクランクプレス機で打抜き加工を施した。供試材は厚さ1.4mmのJSC980Yとし、打ち抜きクリアランスは、被加工材の板厚の12.6%で一定とした。
 打ち抜き後のサンプルについてサイドベンド試験を実施して破断限界ひずみを調査した。各サンプルについて2回の試験を行った結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図8は、表1の結果を図示したものである。グループ1は、表1のTYPE-A-1、TYPE-B-1、TYPE-C-1についての試験結果、グループ2は、表1のTYPE-A-2、TYPE-B-2、TYPE-C-2についての試験結果、グループ3は、表1のTYPE-A-3、TYPE-B-3、TYPE-C-3についての試験の結果、グループ4は、表1のTYPE-A-4、TYPE-B-4、TYPE-C-4についての試験結果である。グラフ横軸の「Xx-y」(XはA、B、Cのいずれか、x、yは数値)はTYPE-X-xのy回目の試験結果を意味する。グラフ中の横線はTYPE-1の平均値であり、棒は、TYPE-A、TYPE-B、TYPE-Cの4種類の各サンプルについての2回の試験結果である。グラフの縦軸は、破断限界ひずみである。
 サイドベンド試験の具体的な方法は、特開2009-145138号公報に開示されている。
 具体的には、サイドベンド試験装置は、それぞれ異なる位置の支点に回動自在に取り付けられた1対の腕部と、腕部の先端部において上面または下面に罫書き線または標点がマーキングされた試験片の両端部の上下面をそれぞれ腕部と共に固定する1対の把持部と、1対の腕部の後端に荷重を加える荷重付与手段を有し、1対の腕部は、脚部が互いに交差するように構成されている。そして、荷重付与手段により後端に荷重を加えて、それぞれ支点を中心として、1対の腕部の先端部がそれぞれ逆方向に移動して離れることにより、腕部と把持部とで固定された試験片の長手方向中央部における板厚方向の端面に引張及び曲げ変形を付与する機能を有する。
 そして、サイドベンド試験装置を用いて、上面または下面に罫書き線または標点がマーキングされた試験片の両端部の上下面を、1対の腕部の先端部において腕部と把持部でそれぞれ固定した後、荷重付与手段により1対の腕部の後端に荷重を加えて、試験片の長手方向中央部における板厚方向の端面が広げられるように引張及び曲げ変形を付与し、記憶手段により記憶した第一の観察手段で観察した画像に基づいて、第一の観察手段により観察した試験片の端面の板厚方向に割れが貫通したときの歪を、第二の観察手段で観察した罫書き線または標点に基づいて算出する。
 図8からわかるように、TYPE-Cの形状の場合、平坦刃を用いた場合よりも破断ひずみが小さくなる、すなわち、伸びフランジ性が低下することがあることが確認された。この結果からわかるように、TYPE-C、すなわち上刃が(c)の形状であり、上刃の水平部が最初に被加工材に侵入するパンチで打ち抜き加工を行わないように、事前にパンチの上刃の形状を確認することで、伸びフランジ性の低下を避けることができる。
 言い換えれば、TYPE-A、TYPE-Bのように、傾斜部が最初に被加工材に侵入するパンチを用いることにより、伸びフランジ性の低下を避けることができる。最初に被加工材に侵入する傾斜部は、TYPE-Aのように水平部の両側の傾斜部であってもよいし、TYPE-Bのように水平部の一方の側の傾斜部のみであってもよい。
 TYPE-Cにおいて伸びフランジ性が低下する原因は、以下のように考えられる。
 打抜き加工により、図9の(a)のような形状とした被加工材1に対してフランジアップ成形を行い、伸びフランジ予定部22を伸びフランジ部21とするときには、打ち抜き面8(切断面)に対して引張応力が加えられる。引張応力は伸びフランジ部21の中心で最も大きくなる。
 パンチの上刃がTYPE-Cの形状の場合、打抜き加工の最初に伸びフランジ予定部の中心付近に上刃の水平部のみが侵入する。このとき、上刃の水平部はシャー角による荷重低減効果を有しないため、容易には被加工材に侵入できない状況に至り、破断面の形成が遅延してせん断面比率が増加する。その結果、被加工材の加工硬化が大きくなる。この部分が、フランジアップ成形時に最も引張応力が加えられる部分となるため、伸びフランジ性が低下する。
 さらに、第2傾斜部の長さW、第1、第2、第3傾斜部の角度θ、θ、θを変えたパンチを用い、同様の打ち抜き加工を行い、打ち抜き後のサンプルについて破断限界ひずみを調査した。結果を表2、表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上の結果より、第2傾斜部の長さWは、W=3.0mmの場合破断限界ひずみ向上の効果が小さく、W≧5.0mmを満たすことが好ましいことがわかる。また、第1、第3傾斜部の角度が、θ=θ=5.0°の場合でも効果が得られるが、θ=θ=0.1°の場合、効果が小さいことがわかる。また、第2傾斜部の角度はθ≦1.0°を満たすことが好ましいことがわかる。さらに、第1(第3)傾斜部の角度と第2傾斜部の角度の差が小さいと効果が小さく、θ≦θ/2(θ≦θ/2)を満たすことが好ましいことがわかる。
 なお、表2からわかるように、W=5.0mmの場合、TYPE-AはTYPE-Bと比較して破断限界ひずみが大きくなっている。これは、TYPE-Aの場合、両側の傾斜部がすでに切り落とされた状態で水平部が切断されるが、一方、TYPE-Bの場合、片方の傾斜部が残った状態で水平部が切断されることに起因し、その結果、高い伸びフランジ性を確保できるWの範囲に差が生じたものと考えられる。すなわち、TYPE-Aは、TYPE-Bと比較して広い範囲で高い伸びフランジ性が確保でき、TYPE-Bと比較して優れていることがわかる。
 さらに、図10に示す、上刃の両端に水平部を含むパンチを用いて同様の試験を行った。2回の試験の結果、破断限界ひずみは0.22、0.21であり、破断限界ひずみ向上の効果は見られなかった。これは、シャー角による荷重低減効果を有しない水平部が最初に被加工材に侵入するためと考えられる。
 次に、このようなパンチの上刃の形状の判定方法の各ステップについて説明する。
 パンチの上刃の形状は、上で例示したように、水平部の幅が数十mm、シャー角が1.0°程度であるから、目視で形状を判定することは極めて困難である。したがって、レーザ変位計や接触式の三次元形状測定装置等を用いて上刃の形状を測定することとなるが、本発明によれば、以下の方法により、形状の測定データから、パンチの上刃の形状が、打ち抜き加工に適する形状であるか否かを簡便に判定する。
 はじめに、レーザ変位計や接触式の三次元形状測定装置等で測定した、パンチの傾斜した上刃の2次元データを入力する。2次元データは、k組の均等な間隔の切断線方向位置(x)と、各xに対応するパンチの移動方向への上刃の変位(y)の組からなる点群(x,y)である(n=1~k)。yは最初に被加工材に侵入する位置で最も小さく、離れるにつれて大きな値となる変位であって、y=0となるパンチの移動方向の位置は任意に設定してよい。
 次に、点群(x,y)(n=2~k-1)に対して、1階差分商J1=(yn+1-y)/Δxを求める。
 1階差分商J1nの絶対値|J1n|が水平部判定のあらかじめ定めた閾値δよりも大きければ、点群のn番目~n+1番目の間の上刃は傾斜していることがわかる。閾値δは、たとえば0.1とすることができる。続いて、2階差分商J2=(yn+1-2y+yn-1)/(Δx)を求める。さらに、2階差分商の最大値J2maxを求める。2階差分商の最大値J2maxは点群(x,y)の、nを変化させて求められる2階差分商(y-2y+y)/(Δx)から(y-2yk-1+yk-2)/(Δx)までの最大値である。
 続いて、タイプ判定値J3=J2/|J2max|を求める。J3の絶対値がタイプ判定の閾値δより大きいとき、n番目の点は上刃の形状が変化する位置に対応する。閾値δは1以下の値で必要に応じて任意に設定することができ、たとえば、δ=0.5とすることができる。
 このとき、J3の符号が負であれば、傾斜部は水平部に対して下方(被加工材に近い方向)に傾斜した形状であり、J3の符号が正であれば、傾斜部は水平部に対して上方(被加工材に近い方向)に傾斜した形状であると、J3の符号により、傾斜部の傾斜方向を判定できる。
 上述したとおり、本発明において用いる形状は、図5の(a)のようなTYPE-Aの形状である。すなわち、第2傾斜部と第1傾斜部の境界、第2傾斜部と第3傾斜部の境界の一方又は両方において、J3の絶対値があらかじめ定めた、閾値δ以上であり、かつJ3が正である場合には、上刃のシャー角を調整する必要がある
 この判定のフローチャートを図示すると、図11のようになる。このような処理を行う上刃形状判定プログラムをコンピュータ等に実行させることにより、パンチの形状が判定される。具体的な判定例を図12~16に示す。
 図12の(a)はパンチの形状(x,y)とJ1n、(b)はパンチの形状(x,y)とJ3nを示している。この例では、水平部(|J1n|<δ)の両端に、J3nの絶対値がδより大きく、J3nの符号が負である(|J3n|<δ2、J3n<0)点が存在する。この場合、パンチの形状はTYPE-Aと判断される。
 図13、及び14の例では、水平部(|J1n|<δ)の片端に、J3nの絶対値がδより大きく、J3nの符号が負である(|J3n|<δ2、J3n<0)点が存在し、もう一端にJ3nの絶対値がδより大きく、J3nの符号が正である(|J3n|<δ2、J3n>0)点が存在する。この場合、パンチの形状はTYPE-Bと判断される。
 図15の例では、水平部(|J1n|<δ)の両端に、J3nの絶対値がδより大きく、J3nの符号が正である(|J3n|<δ2、J3n>0)点が存在する。この場合、パンチの形状はTYPE-Cと判断される。
 図16の例は、TYPE-A、TYPE-B、TYPE-Cが混合するパターンである。パンチがこのような形状の場合、TYPE-B、及びTYPE-Cの形状が打ち抜き面の端面性状が最も問題となる伸びフランジ予定部に当たらないように使用することも考えられるが、加工の安定性を考慮して使用しないことが好ましい。
 本発明の判定方法において、J3nの値はΔxの値の変化に対して安定し、J1n、J2nの絶対値は高精度である必要はない。すなわち、本アルゴリズムによるパンチの形状判定においては、事前にΔxの精査、J1n及びJ2nへの影響検討は不要であり、測定精度を考慮することなく、容易にパンチの形状を判定することができる。
 なお、TYPE-B又はTYPE-Cと判定されたパンチは、そのままでは使用できないが、上刃を加工することによりシャー角を適正化し、TYPE-Aの形状となるように調整すれば、TYPE-Aと判定されたパンチと同様に使用することができる。加工後の上刃については、再度上記の判定方法を用いて形状の判定を行う。
 本発明で用いるシャー角付き打ち抜きせん断装置15の各構成要素について述べる。
 図4に示すように、シャー角付き打ち抜きせん断装置15は、少なくとも打ち抜き用パンチ2と、打ち抜き用ダイ3と、押さえ板9とを備える。打ち抜き用パンチ2は、その底面に上刃10が設けられており、この上刃10は、幅方向に第1傾斜部12a、第2傾斜部11、第3傾斜部12cを有する。図4では、第2傾斜部は切断線方向に平行である。
 第1傾斜部12a、第3傾斜部12bは、いわゆるシャー角として機能する。本発明において、第1傾斜部12a、第3傾斜部12bの形状は、上述したとおり、図5の(a)に示すような、両端(第1傾斜部、第3傾斜部)が最初に被加工材に侵入し、最後に中央部(第2傾斜部)が侵入する形状が適用でき、(b)、(c)に示すような形状は適用しない。打ち抜き用パンチ2は、図4に示す方向Pに向けて動作可能に構成されている。
 打ち抜き用ダイ3は、その上面の長手方向に位置する端部が下刃3aとして機能しており、この下刃3aの上方には、打ち抜き用パンチ2の上刃10が位置している。この打ち抜き用パンチ2の下端側の側面2bと、打ち抜き用ダイ3の上端側の側面3bとの形状は、対応した形状となっており、これら側面2bと側面3bとの間には、任意のクリアランスが設けられるよう構成される。この下刃3aは、ブランク加工を可能とするため、開断面を切断可能に構成されていてもよいし、穴加工を可能とするため、閉断面を切断可能に構成されていてもよい。
 打ち抜き用ダイ3の上面には、被加工材1が載置され、このように載置された被加工材1は、打ち抜き用ダイ3の上面と押さえ板9の下面との間で挟持されることになる。
 上刃10の第2傾斜部11は、被加工材1の一部であって、打ち抜き面8の端面性状が最も問題となる伸びフランジ予定部22の一部又は全部に前述した打ち抜き用パンチ2の第2傾斜部11を配置することが好ましい。
 次に、このような構成からなるシャー角付き打ち抜きせん断装置15を用いて、被加工材1を打ち抜く工程について説明する。
 まず、図4に示すように、被加工材1を打ち抜き用ダイ3上に載置した後、打ち抜き用ダイ3の上面と押さえ板9の下面とによって被加工材1を挟持する。この後、上刃10を有する打ち抜き用パンチ2を、被加工材1の上方より方向Pが示す下方に向けて押し込む。この後、下刃3aと上刃10との間に挟まれることにより被加工材1に対してせん断力が働くことにより、被加工材1は切断されて所定の形状に打ち抜かれることになる。
 ここで、第1傾斜部12aや第3傾斜部12bは、幅方向に傾斜しているため、打ち抜き時に被加工材1に対して局部的に打ち抜き荷重を負荷して、被加工材1を切断することになる。局部的に打ち抜き荷重が負荷されるため、底面が平坦な平坦刃による打ち抜き用パンチ2よりも、必要な打ち抜き荷重が低減でき、さらには騒音も低減できることになる。
 これに対して、第2傾斜部11は、第1傾斜部12a、第3傾斜部12bのように、局部的に打ち抜き荷重を付加しないものの、傾斜の小さい第2傾斜部11によって打ち抜かれた打ち抜き面8は、幅方向に撓みにくいため、打抜き面8が均一になり伸びフランジ性が向上することになる。また、被加工材1は、第2傾斜部11によって打ち抜かれる前に、ある程度の範囲に亘って第1傾斜部12a、第3傾斜部12bによって打ち抜かれているため、第2傾斜部11によって打ち抜かれる範囲は、底面全てが平坦刃の打ち抜き用パンチ2に比べて少なくなり、結果として、第2傾斜部11によって打ち抜く場合であっても必要となる打ち抜き荷重が低減でき、騒音も低減できることになる。
 即ち、本発明を適用した打ち抜き用パンチ2は、上刃10の一部に第2傾斜部11を設け、第2傾斜部11を除く部分に第1傾斜部12a、第3傾斜部12bを設けることにより、底面全てが平坦刃の打ち抜き用パンチと比較して、打ち抜き荷重及び騒音を低減しつつ、更には打抜き面を均一にして伸びフランジ性も向上させることが可能となる。
 上刃10の第2傾斜部11の幅方向(切断線方向)における長さL1は、被加工材1の幅方向の長さL2の10~60%とするのが好ましく、20~50%がより好ましく、30~40%がさらに好ましい。
 第2傾斜部11の長さL1が被加工材1の幅方向の長さL2の10%より短い場合、第2傾斜部11周辺の第1傾斜部12a、第3傾斜部12bによって被加工材1が幅方向に撓み易くなり、打ち抜き面8の不均一性や加工硬化が増大し、伸びフランジ性が向上するという本発明の効果が得られにくくなる。
 第2傾斜部11の長さL1が被加工材1の幅方向の長さL2の60%より長い場合、伸びフランジ加工が幅方向(切断線方向)の歪の集中により起こることから、伸びフランジ性が向上するという本発明の効果が得られにくくなる。
 ただし、これらの値は加工条件や被加工材1の材質によって変動する可能性があり、全ての場合でこの範囲を超えれば本発明の効果が得られないわけではない。
 本発明を適用した上刃10の第1傾斜部12a、第3傾斜部12bの幅方向における角度の絶対値θ、θは、0.5~5.0°の範囲であれば、第2傾斜部11によって打ち抜かれた部分の加工硬化量と破面形状不均一度にほとんど影響はない。
 第1傾斜部12a、第3傾斜部12bの角度の絶対値θ、θが5.0°を超えると、プレス荷重の軽減と低騒音化の効果は大きくなるが、傾斜刃10で打ち抜かれた部分の打ち抜き面8の破面性状(加工硬化、破面の不均一性)は悪くなる。したがって、第1傾斜部12a、第3傾斜部12bの角度の絶対値θ、θは0.5~5.0°とすることが好ましい。また、θ、θは、上記の範囲内であれば、それぞれ異なっていてもよい。
 本発明において被加工材となる金属板は特に限定されるものではなく、鉄、アルミニウム、チタン、マグネシウムおよびこれら合金等の金属板等に対して打ち抜き加工を行うことができる。板厚も特に制限されるものではないが、0.5~4.0mmの金属板の加工に好適である。また、伸びフランジ成形の縁割れは高強度の鋼板をプレス成形し、プレス成形品を得る場合に生じやすくなるので、特に、引張強度590MPa以上の鋼板の加工に有効である。
 上記の方法により得られたブランクは、図17のようなせん断端面31を有する。せん断端面にはせん断面32、二次せん断面33が含まれる。二次せん断面33は(a)のように分断された形状となることもあり、(b)のように連続した形状となることもある。
 せん断端面31には、せん断端面31全範囲の二次せん断面33の面積率をA2、ブランクライン全範囲の上面視における曲率半径の中央値をRとすると、せん断端面31内の板厚方向に引かれた2本の垂線で囲まれた幅5mmの領域Aであって、該領域Aにおける二次せん断面33の面積率がA2/2以下であり、領域Aの上面視における曲率半径がRの1/2以下である領域Aが存在する。ここで、ブランクラインの上面視における曲率半径は、ブランクラインの端から1mm毎に求めるものとする。ブランクラインが直線の場合の曲率半径は∞である。図中の領域Aは、領域Aの範囲を説明するためのものである。
 ブランクのせん断端面31に、二次せん断面33が存在すると、ブランクの伸びフランジ性が低下しやすく、二次せん断面33の比率が大きいと低下が顕著となる。ブランクラインの曲率半径の小さな領域、しなわち、変形の集中する箇所で二次せん断面33の割合が低くなれば、伸びフランジ性の低下を抑制することができる。
 また、領域Aにおけるせん断面32の面積率は、領域Aを除くせん断端面31の面積率の80%以下であれば好ましく、70%以下がより好ましく、60%以下がさらに好ましい。
 また、せん断面32の比率が不均一な場合も伸びフランジ性が低下しやすいため、領域Aの板幅方向におけるせん断面32の面積率の変化が±20%以内であることが好ましい。領域Aの板幅方向におけるせん断面32の面積率の変化は、領域Aの端から1mm毎にせん断面32の面積率を求め、その変化を求める。せん断面32の変化は±15%以内であればより好ましく、±10%以内であればさらに好ましい。
 このような領域Aの幅は大きければより好ましく、7mmの幅で上述の条件を満たせばより好ましく、10mmの幅で上述の条件を満たせばさらに好ましい。
 1 被加工材
 2 打ち抜き用パンチ
 3 打ち抜き用ダイ
 3a 下刃
 4 ダレ
 5 せん断面
 6 破断面
 7 バリ
 8 打ち抜き面
 9 押さえ板
 10 上刃
 11 第2傾斜部
 12a 第1傾斜部
 12b 第3傾斜部
 15 打ち抜きせん断装置
 21 伸びフランジ部
 22 伸びフランジ予定部
 31 せん断端面
 32 せん断面
 33 二次せん断面

Claims (10)

  1.  上刃を有するパンチと下刃を有するダイを備える打抜きせん断装置を用いて、前記パンチと前記ダイの間に配した金属板に打ち抜き加工を施しブランク材を製造する方法であって、
     前記上刃は、前記金属板の切断線方向に順に設けられた第1傾斜部、第2傾斜部、第3傾斜部からなり、
     前記第1傾斜部の前記切断線方向における前記金属板に対する角度θ、前記第2傾斜部の前記切断線方向における前記金属板に対する角度θ、前記第3傾斜部の前記切断線方向における前記金属板に対する角度θが、
      θ≦θ/2、
      θ≦θ/2
    を満たし、
     前記打抜き加工の際に、前記第1傾斜部、及び前記第3傾斜部が前記金属板に接触した後、前記第2傾斜部が金属板に接触する
    ことを特徴とするブランク材の製造方法。
     ここで、
     上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)において、
     2階差分商J2=(yn+1-2y+yn-1)/(Δx)、2階差分商の最大値J2max
    J3=J2/|J2max|を定義し、J3の絶対値があらかじめ定めた、閾値δ以上となる最初の点が前記第1傾斜部と前記第2傾斜部の境界位置であり、最後の点が前記第2傾斜部と前記第3傾斜部の境界位置であり、
     θ、θ、θは、それぞれ、前記第1傾斜部、前記第2傾斜部、及び前記第3傾斜部の任意の点における接線が、前記金属板となす角の絶対値の、最大値と最小値の平均値である。
  2.  前記第2傾斜部の前記切断線方向における前記金属板に対する角度θが、θ≦3.0°を満たすことを特徴とする請求項1に記載のブランク材の製造方法。
  3.  前記打抜き加工の前に、前記上刃の形状を判定する工程を含み、上刃の形状の判定結果に基づき、前記上刃のシャー角を調整する工程を含む請求項1又は2に記載のブランク材の製造方法。
  4.  請求項1~3のいずれか1項に記載のブランク材の製造方法で得られたブランク材にプレス成形を施し、プレス成形品を得ることを特徴とするプレス成形品の製造方法。
  5.  請求項3に記載のブランク材の製造方法において用いられる上刃の形状を判定する方法であって、
     上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)を入力するステップと、
     入力された点群(x,y)に対して、1階差分商J1=(yn+1-y)/Δxを求めるステップと、
     2階差分商J2=(yn+1-2y+yn-1)/(Δx)を求めるステップと、
     前記2階差分商の最大値J2maxを求めるステップと、
     タイプ判定値J3=J2/|J2max|を求めるステップと、
     前記第2傾斜部と前記第1傾斜部の境界、前記第2傾斜部と前記第3傾斜部の境界の一方又は両方において、J3の絶対値があらかじめ定めた、閾値δ以上であり、かつJ3が正である場合に、前記上刃のシャー角を調整する必要があると判定するステップ
    を備えることを特徴とする形状判定方法。
  6.  請求項3に記載のブランク材の製造方法において用いられる上刃の形状を判定するプログラムであって、
     上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)を入力するステップと、
     入力された点群(x,y)に対して、1階差分商J1=(yn+1-y)/Δxを求めるステップと、
     2階差分商J2=(yn+1-2y+yn-1)/(Δx)を求めるステップと、
     前記2階差分商の最大値J2maxを求めるステップと、
     タイプ判定値J3=J2/|J2max|を求めるステップと、
     前記第2傾斜部と前記第1傾斜部の境界、前記第2傾斜部と前記第3傾斜部の境界の一方又は両方において、J3の絶対値があらかじめ定めた、閾値δ以上であり、かつJ3が正である場合に、前記上刃のシャー角を調整する必要があると判定するステップ
    を実行させることを特徴とする形状判定プログラム。
  7.  請求項3に記載のブランク材の製造方法において用いられる製造装置であって、
     上刃の形状の、切断線方向位置(x)と、各xに対応するパンチの移動方向に沿って前記金属板から遠ざかる方向への上刃の変位(y)の組からなる点群(x,y)を入力する入力部と、
     入力された点群(x,y)に対して、1階差分商J1=(yn+1-y)/Δxを求める第1算出部と、
     2階差分商J2=(yn+1-2y+yn-1)/(Δx)を求める第2算出部と、
     前記2階差分商の最大値J2maxを求める第3算出部と、
     タイプ判定値J3=J2/|J2max|を求める第4算出部と、
     前記第2傾斜部と前記第1傾斜部の境界、前記第2傾斜部と前記第3傾斜部の境界の一方又は両方において、J3の絶対値があらかじめ定めた、閾値δ以上であり、かつJ3が正である場合に、前記上刃のシャー角を調整する必要があると判定する判定部
    を備えることを特徴とするブランク材の製造装置。
  8.  せん断端面を有するブランク材であって、
     せん断端面全範囲の二次せん断面の面積率をA、ブランクライン全範囲の上面視における曲率半径の中央値をRとするとき、
     せん断端面内の板厚方向に引かれた2本の垂線で囲まれた幅5mmの領域Aであって、該領域Aにおける二次せん断面の面積率がA/2以下であり、領域Aの上面視における曲率半径がRの1/2以下である領域Aが存在する
    ことを特徴とするブランク材。
  9.  前記領域Aにおけるせん断面の面積率が、せん断端面全範囲から前記領域Aを除く領域のせん断面の面積率の80%以下であることを特徴とする請求項8に記載のブランク材。
  10.  前記領域Aの板幅方向におけるせん断面の面積率の変化が±20%以内であることを特徴とする請求項8又は9に記載のブランク材。
PCT/JP2020/027152 2019-07-12 2020-07-10 ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材 WO2021010352A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021533056A JP7288212B2 (ja) 2019-07-12 2020-07-10 ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材
EP20839586.3A EP3998123A4 (en) 2019-07-12 2020-07-10 ROUGH MATERIAL PRODUCTION METHOD, PRESS FORMED ARTICLE PRODUCTION METHOD, SHAPE DETERMINATION METHOD, SHAPE DETERMINATION PROGRAM, ROUGH MATERIAL PRODUCTION APPARATUS, AND ROUGH MATERIAL
CN202080049620.8A CN114080280B (zh) 2019-07-12 2020-07-10 坯料的制造方法及装置、冲压成型品的制造方法、形状判定方法及程序、以及坯料
KR1020227000186A KR20220017475A (ko) 2019-07-12 2020-07-10 블랭크재의 제조 방법, 프레스 성형품의 제조 방법, 형상 판정 방법, 형상 판정 프로그램, 블랭크재의 제조 장치, 및 블랭크재
US17/626,321 US20220241838A1 (en) 2019-07-12 2020-07-10 Method for producing blank, method for producing press-formed part, method for judging shape, program for judging shape, apparatus for producing blank, and blank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130421 2019-07-12
JP2019130421 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010352A1 true WO2021010352A1 (ja) 2021-01-21

Family

ID=74210961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027152 WO2021010352A1 (ja) 2019-07-12 2020-07-10 ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材

Country Status (6)

Country Link
US (1) US20220241838A1 (ja)
EP (1) EP3998123A4 (ja)
JP (1) JP7288212B2 (ja)
KR (1) KR20220017475A (ja)
CN (1) CN114080280B (ja)
WO (1) WO2021010352A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318918U (ja) * 1989-07-04 1991-02-25
JP2009022986A (ja) * 2007-07-20 2009-02-05 Nippon Steel Corp 破面測定機能を備えた打ち抜き装置
JP2009145138A (ja) 2007-12-12 2009-07-02 Nippon Steel Corp サイドベンド試験装置及び試験方法
JP2009172609A (ja) * 2008-01-21 2009-08-06 Nippon Steel Corp 伸びフランジ割れの評価方法
JP2010036195A (ja) 2008-07-31 2010-02-18 Nippon Steel Corp 凹部を有するパンチによる打ち抜き加工方法
JP5042935B2 (ja) 2007-07-30 2012-10-03 新日本製鐵株式会社 シャー角付き打ち抜き装置
JP5042936B2 (ja) 2007-07-30 2012-10-03 新日本製鐵株式会社 シャー角付き打ち抜きせん断装置
WO2018066663A1 (ja) * 2016-10-05 2018-04-12 新日鐵住金株式会社 プレス成形品の製造方法および製造装置
WO2019064922A1 (ja) * 2017-09-26 2019-04-04 Jfeスチール株式会社 変形限界の評価方法、割れ予測方法及びプレス金型の設計方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042936Y2 (ja) 1971-05-29 1975-12-08
JPS5042935Y2 (ja) 1971-06-29 1975-12-08
JPS56134026A (en) * 1980-03-25 1981-10-20 Tsubakimoto Chain Co Blanking method
EP2662160A4 (en) * 2011-01-07 2017-01-25 Murata Machinery, Ltd. Punch die of a punch press, die for deepening cutting, and method of forming long holes in a plate
JP5224203B1 (ja) 2012-07-11 2013-07-03 大日本印刷株式会社 タッチパネルセンサ、タッチパネル装置および表示装置
KR101837873B1 (ko) * 2013-11-13 2018-03-12 신닛테츠스미킨 카부시키카이샤 강판의 펀칭용 공구 및 펀칭 방법
WO2017057466A1 (ja) * 2015-09-28 2017-04-06 新日鐵住金株式会社 プレス金型による切断加工方法
CN109641294B (zh) * 2016-09-02 2021-06-11 日本制铁株式会社 剪切加工方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318918U (ja) * 1989-07-04 1991-02-25
JP2009022986A (ja) * 2007-07-20 2009-02-05 Nippon Steel Corp 破面測定機能を備えた打ち抜き装置
JP5042935B2 (ja) 2007-07-30 2012-10-03 新日本製鐵株式会社 シャー角付き打ち抜き装置
JP5042936B2 (ja) 2007-07-30 2012-10-03 新日本製鐵株式会社 シャー角付き打ち抜きせん断装置
JP2009145138A (ja) 2007-12-12 2009-07-02 Nippon Steel Corp サイドベンド試験装置及び試験方法
JP2009172609A (ja) * 2008-01-21 2009-08-06 Nippon Steel Corp 伸びフランジ割れの評価方法
JP2010036195A (ja) 2008-07-31 2010-02-18 Nippon Steel Corp 凹部を有するパンチによる打ち抜き加工方法
WO2018066663A1 (ja) * 2016-10-05 2018-04-12 新日鐵住金株式会社 プレス成形品の製造方法および製造装置
WO2019064922A1 (ja) * 2017-09-26 2019-04-04 Jfeスチール株式会社 変形限界の評価方法、割れ予測方法及びプレス金型の設計方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998123A4

Also Published As

Publication number Publication date
CN114080280B (zh) 2024-01-12
JPWO2021010352A1 (ja) 2021-01-21
US20220241838A1 (en) 2022-08-04
CN114080280A (zh) 2022-02-22
EP3998123A4 (en) 2023-01-04
EP3998123A1 (en) 2022-05-18
KR20220017475A (ko) 2022-02-11
JP7288212B2 (ja) 2023-06-07

Similar Documents

Publication Publication Date Title
JP4814851B2 (ja) 薄板プレス成形シミュレーションにおける伸びフランジ割れの推定方法
KR102345288B1 (ko) 변형 한계의 평가 방법, 균열 예측 방법 및 프레스 금형의 설계 방법
KR101539559B1 (ko) 프레스 성형용 금형 설계 방법, 프레스 성형용 금형
CN110997172B (zh) 金属板的剪切加工面上的变形极限的评价方法、裂纹预测方法以及压制模具的设计方法
JP6547920B2 (ja) 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
JP2009204427A (ja) プレス品のせん断縁における成形可否判別方法
US11684963B2 (en) Method and apparatus for producing outer panel having character line
KR20150043476A (ko) 스프링백량 평가 방법
WO2021010352A1 (ja) ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材
Yoshida et al. Evaluation and improving methods of stretch flangeability
Jiao et al. The effect of process parameters on web-warping in the flexible roll forming of UHSS
Thipprakmas et al. Analysis of bending mechanism and spring-back characteristics in the offset Z-bending process
JP2009051001A (ja) シャー角付き打ち抜きせん断装置
JP5493687B2 (ja) せん断加工条件の設定方法
JP2007307616A (ja) 金属板の剪断方法及び剪断工具及び剪断により得られた金属板加工品
JP5423574B2 (ja) 金属板の曲げ加工時の限界条件の決定方法及びプレス成形時の金属板の曲げ加工部の不具合の予測方法
Golovashchenko et al. Mechanism of fracture in sheet metal cutting processes and its effect on sheared edge stretchability
WO2013094183A1 (ja) プレス成形用金属板
JP5332925B2 (ja) 成形品の寸法精度に優れたプレス成形方法
JP6773255B1 (ja) 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法
EP4180145A1 (en) Burring processing method, method for manufacturing burring processed article, die for burring processing, burring processing device, and burring processed article
JP2022011080A (ja) 板材の曲げ端割れの評価方法
JP2019030899A (ja) 剪断加工方法
JP2006224122A (ja) 打ち抜き端面の成形性及び疲労特性に優れた、薄鋼板のブランク板
Phama et al. Twisting analysis of very thin metallic sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227000186

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021533056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020839586

Country of ref document: EP

Effective date: 20220214