WO2021009862A1 - ステータ、モータ、圧縮機、及び空気調和機 - Google Patents

ステータ、モータ、圧縮機、及び空気調和機 Download PDF

Info

Publication number
WO2021009862A1
WO2021009862A1 PCT/JP2019/028036 JP2019028036W WO2021009862A1 WO 2021009862 A1 WO2021009862 A1 WO 2021009862A1 JP 2019028036 W JP2019028036 W JP 2019028036W WO 2021009862 A1 WO2021009862 A1 WO 2021009862A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
motor
compressor
refrigerant
Prior art date
Application number
PCT/JP2019/028036
Other languages
English (en)
French (fr)
Inventor
勇二 廣澤
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021532614A priority Critical patent/JPWO2021009862A1/ja
Priority to US17/617,152 priority patent/US20220239168A1/en
Priority to AU2019457513A priority patent/AU2019457513B2/en
Priority to CN201980098023.1A priority patent/CN114072987A/zh
Priority to PCT/JP2019/028036 priority patent/WO2021009862A1/ja
Priority to EP19937698.9A priority patent/EP4002646A4/en
Publication of WO2021009862A1 publication Critical patent/WO2021009862A1/ja
Priority to JP2023175995A priority patent/JP2024009926A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a motor stator.
  • a refrigerant containing 1,1,2-trifluoroethylene is used as the refrigerant of the compressor (see, for example, Patent Document 1).
  • the refrigerant may expand and the cylinder in the compressor may break down. As a result, the compressor may fail.
  • An object of the present invention is to solve the above-mentioned problems and to make it difficult for a compressor to fail.
  • the stator according to one aspect of the present invention is A stator located outside the rotor of a motor located inside a compressor used with a refrigerant containing a substance that causes a disproportionation reaction.
  • the yoke part Equipped with N teeth parts
  • Each of the N tooth portions has a tooth tip surface facing the rotor.
  • the motor according to another aspect of the present invention With the stator It includes the rotor arranged inside the stator.
  • the compressor according to another aspect of the present invention With a closed container With the compression device arranged in the closed container, It includes the motor that drives the compression device.
  • the air conditioner according to another aspect of the present invention is With the compressor Equipped with a heat exchanger.
  • FIG. 1 It is sectional drawing which shows typically the internal structure of the motor provided with the stator which concerns on Embodiment 1 of this invention. It is a block diagram which shows the structure of a drive device. It is a perspective view which shows the structure of the divided iron core part schematicly. It is a top view which shows schematic structure of the stator core. It is sectional drawing which shows typically the structure of the divided iron core part. It is a top view which shows the structure of the iron core part roughly. It is a perspective view which shows the structure of the iron core part roughly. It is sectional drawing which shows roughly the structure of a rotor. It is a figure which shows the structure of the tooth part. It is sectional drawing which shows the other example of a motor schematically.
  • FIG. 1 It is sectional drawing which shows the other example of a motor schematicly. It is a top view which shows the example of a metal member schematically. It is a figure which shows another example of a rotor. It is a graph which shows the relationship between the rotation angle of a rotor, and the internal pressure in a cylinder. It is a graph which shows the relationship between the opening angle ratio [%] and torque ripple rate [%] when a motor is driven below a rated torque. It is a figure which shows the magnetic flux density in the stator core when a motor is driven with a rated torque or less. It is a figure which shows the magnetic flux density in the stator core when the motor is driven by the torque larger than the rated torque.
  • Embodiment 1 In the xyz Cartesian coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis A1 of the motor 1, and the x-axis direction (x-axis) is orthogonal to the z-axis direction (z-axis).
  • the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
  • the axis A1 is the center of rotation of the rotor 3.
  • the axis A1 also indicates the center of the stator 2.
  • the direction parallel to the axis A1 is also referred to as "axial direction of motor 1", “axial direction of rotor 3", or simply "axial direction”.
  • the radial direction is the radial direction of the rotor 3 or the stator 2, and is the direction orthogonal to the axis A1.
  • the xy plane is a plane orthogonal to the axial direction.
  • the arrow D1 indicates the circumferential direction centered on the axis A1.
  • the circumferential direction of the rotor 3 or the stator 2 is also simply referred to as "circumferential direction”.
  • FIG. 1 is a cross-sectional view schematically showing an internal structure of a motor 1 provided with a stator 2 according to a first embodiment of the present invention.
  • the motor 1 has a stator 2 and a rotor 3.
  • the motor 1 is, for example, a permanent magnet embedded motor.
  • the motor 1 is, for example, a motor arranged in a compressor used together with a refrigerant containing a substance having a property of causing a disproportionation reaction.
  • the above-mentioned refrigerant may contain 1 wt% or more of a substance having a property of causing a disproportionation reaction.
  • the above-mentioned refrigerant may be a refrigerant composed only of a substance having a property of causing a disproportionation reaction. That is, the proportion of the substance having a property of causing a disproportionation reaction in the above-mentioned refrigerant may be 1 wt% to 100 wt%.
  • the substance that causes a disproportionation reaction is, for example, 1,1,2-trifluoroethylene or 1,2-difluoroethylene.
  • the above-mentioned refrigerant may contain 1 wt% or more of 1,1,2-trifluoroethylene.
  • the above-mentioned refrigerant may be a refrigerant composed only of 1,1,2-trifluoroethylene. That is, the above-mentioned refrigerant may contain 1,1,2-trifluoroethylene in an amount of 1 wt% to 100 wt%.
  • the above-mentioned refrigerant may contain 1 wt% or more of 1,2-difluoroethylene.
  • the above-mentioned refrigerant may be a refrigerant composed only of 1,2-difluoroethylene. That is, the above-mentioned refrigerant may contain 1 wt% to 100 wt% of 1,2-difluoroethylene.
  • the above-mentioned refrigerant may be a mixture of 1,1,2-trifluoroethylene and difluoromethane (also referred to as R32).
  • R32 a mixture containing 40 wt% of 1,1,2-trifluoroethylene and 60 wt% of R32 can be used as the refrigerant.
  • R32 of this mixture may be replaced with another substance.
  • a mixture of 1,1,2-trifluoroethylene and other ethylene-based fluorohydrocarbons may be used as the refrigerant.
  • ethylene-based fluorocarbon hydrocarbons include fluoroethylene (also referred to as HFO-1141), 1,1-difluoroethylene (also referred to as HFO-1132a), and trans-1,2-difluoroethylene (“HFO-1132 (E)). ) ”), And cis-1,2-difluoroethylene (also referred to as“ HFO-1132 (Z) ”) can be used.
  • R32 is 2,3,3,3-tetrafluoropropene (also referred to as R1234yf), trans-1,3,3,3-tetrafluoropropene (also referred to as “R1234ze (E)”), cis-1,3, 3,3-Tetrafluoropropene (also referred to as “R1234ze (Z)”), 1,1,1,2-tetrafluoroethane (also referred to as R134a), 1,1,1,2,2-pentafluoroethane (R125) It may be replaced with any of (also referred to as).
  • R32 may be replaced with a mixture consisting of any two or more of R32, R1234yf, R1234ze (E), R1234ze (Z), R134a, and R125.
  • the stator 2 has a stator core 2a formed in an annular shape and a coil 27 wound around the stator core 2a.
  • the stator 2 is formed in an annular shape in the circumferential direction about the axis A1 (that is, the center of rotation of the rotor 3).
  • the stator 2 is arranged outside the rotor 3.
  • a rotor 3 is rotatably provided inside the stator 2.
  • An air gap of 0.3 mm to 1 mm is provided between the inner surface of the stator 2 and the outer surface of the rotor 3.
  • the stator 2 has a plurality of divided iron core portions 25a.
  • a plurality of divided iron core portions 25a are arranged in an annular shape in the circumferential direction centered on the axis A1, thereby forming the stator 2.
  • FIG. 2 is a block diagram showing the configuration of the drive device 101.
  • the motor 1 may have a drive device 101 shown in FIG.
  • the drive device 101 includes a converter 102 that rectifies the output of the power supply, an inverter 103 that supplies electric power to the stator 2 (specifically, the coil 27) of the motor 1, and a control device 50.
  • the coil 27 is a three-phase coil having a U phase, a V phase, and a W phase.
  • Power is supplied to the converter 102 from a power source that is an AC power source.
  • the converter 102 applies a voltage to the inverter 103.
  • the voltage applied from the converter 102 to the inverter 103 is also referred to as a "converter voltage”.
  • the bus voltage of the converter 102 is supplied to the control device 50.
  • the inverter 103 operates in a pulse width modulation control method (also referred to as a PWM control method).
  • the inverter voltage that drives the motor 1, that is, the voltage applied to the coil 27 of the motor 1 is generated by the PWM control method.
  • the coil 27 of the motor 1 is, for example, a three-phase coil.
  • the inverter 103 has at least one inverter switch corresponding to each phase, and each inverter switch has a set of switching elements (in the present embodiment, two switching elements).
  • the waveform of the inverter voltage is generated by controlling the on / off time ratio of the inverter switch corresponding to each phase.
  • a desired output waveform from the inverter 103 can be obtained.
  • the inverter switch is turned on in the inverter 103, a voltage is supplied from the inverter 103 to the coil 27, and the inverter voltage increases.
  • the inverter switch is off, the voltage supply from the inverter 103 to the coil 27 is cut off, and the inverter voltage drops.
  • the difference between the inverter voltage and the induced voltage is supplied to the coil 27, an electric motor current is generated, and a rotational force of the motor 1 is generated.
  • a desired output waveform from the inverter 103 can be obtained by controlling the on / off time ratio of the inverter switch so as to match the target motor current value.
  • the on / off timing of each inverter switch is determined based on the carrier wave.
  • the carrier wave is composed of a triangular wave having a constant amplitude.
  • the pulse width modulation period in the PWM control method is determined by the carrier frequency, which is the frequency of the carrier wave.
  • a predetermined carrier wave pattern or a predetermined carrier frequency is stored in the control device 50.
  • the control device 50 controls the carrier frequency and controls the on / off of each inverter switch. As a result, the control device 50 controls the output from the inverter 103 supplied to the coil 27.
  • the carrier frequency which is the frequency of the carrier wave, is also referred to as the "carrier frequency of the inverter 103". That is, the carrier frequency of the inverter 103 is the control frequency of the voltage applied to the coil 27, and the control device 50 controls the carrier frequency of the inverter 103.
  • the inverter 103 has three inverter switches (that is, six switching elements), but one of the three inverter switches, that is, U-phase and V-phase.
  • control for one inverter switch corresponding to the W phase will be described.
  • the control for one inverter switch can also be applied to the control for the other two inverter switches.
  • the control device 50 compares the voltage value of the carrier wave with the inverter output voltage command value.
  • the inverter output voltage command value is calculated, for example, in the control device 50 based on the target motor current value.
  • the inverter output voltage command value is set based on, for example, an operation instruction signal input to the control device 50 from a remote controller of a refrigerating and air-conditioning device such as an air conditioner.
  • the control device 50 When the voltage value of the carrier wave is smaller than the inverter output voltage command value, the control device 50 turns on the PWM control signal so that the inverter switch is turned on. When the voltage value of the carrier wave is equal to or higher than the inverter output voltage command value, the control device 50 turns off the PWM control signal so that the inverter switch is turned off. As a result, the inverter voltage approaches the target value.
  • control device 50 generates a PWM control signal based on the difference between the inverter output voltage command value and the carrier wave voltage value.
  • the control device 50 outputs a control signal such as an inverter drive signal based on the PWM control signal to the inverter 103, and controls the on / off of the inverter switch.
  • the inverter drive signal may be the same signal as the PWM control signal, or may be a signal different from the PWM control signal.
  • the inverter voltage is output from the inverter 103 when the inverter switch is on.
  • the inverter voltage is supplied to the coil 27, and the motor 1 generates an electric motor current (specifically, a U-phase current, a V-phase current, and a W-phase current).
  • the inverter voltage is converted into the rotational force of the motor 1 (specifically, the rotor 3).
  • the electric motor current is measured by a measuring instrument such as a current sensor, and a measurement result (for example, a signal indicating a current value) is transmitted to the control device 50.
  • the control device 50 is composed of, for example, a processor and a memory.
  • the control device 50 is a microcomputer.
  • the control device 50 may be composed of a processing circuit as dedicated hardware such as a single circuit or a composite circuit.
  • FIG. 3 is a perspective view schematically showing the structure of the split iron core portion 25a.
  • the stator 2 is composed of a plurality of divided iron core portions 25a.
  • Each divided iron core portion 25a has an iron core portion 21 which is a divided iron core, a first insulator 24a, a second insulator 24b, and a coil 27.
  • the coil 27 is not shown.
  • the first insulator 24a is combined with the stator core 2a (specifically, the iron core 21).
  • the first insulator 24a is provided at both ends of the stator core 2a in the axial direction.
  • the first insulator 24a may be provided at one end of the stator core 2a in the axial direction.
  • the first insulator 24a is an insulating resin.
  • the second insulator 24b is, for example, a thin PET (polyethylene terephthalate) film.
  • the thickness of the PET film is, for example, 0.15 mm.
  • the second insulator 24b covers the side surface of the teeth portion (teeth portion 22a described later) of the stator core 2a.
  • FIG. 4 is a plan view schematically showing the structure of the stator core 2a.
  • the stator core 2a has at least one yoke portion 21a and at least two tooth portions 22a.
  • the stator core 2a is composed of a plurality of iron cores 21. Therefore, each iron core portion 21 has a yoke portion 21a and a teeth portion 22a.
  • the stator core 2a is composed of nine iron cores 21.
  • the stator core 2a does not have to be divided into a plurality of iron cores 21.
  • the stator core 2a may be composed of a plurality of iron cores 21 integrated as one member.
  • the stator core 2a may be formed by laminating a plurality of annular materials (for example, electromagnetic steel plates).
  • the area surrounded by the two yoke portions 21a and the two teeth portions 22a is the slot portion 26.
  • the plurality of slot portions 26 are provided at equal intervals in the circumferential direction. In the example shown in FIG. 4, nine slot portions 26 are provided in the stator core 2a.
  • the stator core 2a has a plurality of tooth portions 22a, and the tooth portions 22a are adjacent to each other via the slot portion 26. Therefore, the plurality of teeth portions 22a and the plurality of slot portions 26 are arranged alternately in the circumferential direction.
  • the arrangement pitches of the plurality of tooth portions 22a in the circumferential direction that is, the widths of the slot portions 26 in the circumferential direction
  • the stator 2 has N divided iron core portions 25a (N is a natural number of 2 or more). Therefore, the stator 2 has N tooth portions 22a. In the example shown in FIG. 1, the stator 2 has nine divided iron core portions 25a. Therefore, in the example shown in FIG. 1, the stator 2 has nine tooth portions 22a.
  • FIG. 5 is a cross-sectional view schematically showing the structure of the divided iron core portion 25a.
  • Each divided iron core portion 25a insulates the yoke portion 21a, the teeth portion 22a located inside the yoke portion 21a in the radial direction, the coil 27, the first insulator 24a that insulates the stator core 2a, and the stator core 2a. It has a second insulator 24b and the like.
  • the teeth portion 22a is integrated with the yoke portion 21a as one member, but a teeth portion 22a formed separately from the yoke portion 21a may be attached to the yoke portion 21a.
  • the coil 27 is wound around the stator core 2a via the first insulator 24a and the second insulator 24b. Specifically, the coil 27 is wound around the teeth portion 22a. When a current flows through the coil 27, a rotating magnetic field is generated from the coil 27.
  • the coil 27 is, for example, a magnet wire.
  • the stator 2 has three phases, and the connection of the coil 27 is, for example, a Y connection (also referred to as a star connection) or a delta connection.
  • the number of turns and the wire diameter of the coil 27 are determined according to the rotation speed, torque, voltage specifications of the motor 1, the cross-sectional area of the slot portion 26, and the like.
  • the wire diameter of the coil 27 is, for example, 1.0 mm.
  • a coil 27 is wound around each tooth portion 22a of the stator core 2a, for example, for 80 turns. However, the wire diameter and the number of turns of the coil 27 are not limited to these examples.
  • the winding method of the coil 27 is, for example, centralized winding.
  • the coil 27 can be wound around the iron core portion 21 in a state before the iron core portions 21 are arranged in an annular shape (for example, a state in which the iron core portions 21 are linearly arranged).
  • the iron core portion 21 around which the coil 27 is wound (that is, the divided iron core portion 25a) is folded into an annular shape and fixed by welding or the like.
  • the coil 27 may be attached to each tooth portion 22a of the stator core 2a by distributed winding instead of centralized winding.
  • FIG. 6 is a plan view schematically showing the structure of the iron core portion 21.
  • FIG. 7 is a perspective view schematically showing the structure of the iron core portion 21.
  • the yoke portion 21a extends in the circumferential direction, and the teeth portion 22a extends inward in the radial direction of the stator core 2a (in the ⁇ y direction in FIG. 6). In other words, the teeth portion 22a protrudes from the yoke portion 21a toward the axis A1.
  • each tooth portion 22a has a main body portion 221a, a tooth tip portion 222a, and a tooth tip surface 223a.
  • the tooth tip portion 222a is provided at the tip of the tooth portion 22a (specifically, the end portion of the main body portion 221a) in the radial direction.
  • the main body 221a has equal widths along the radial direction.
  • the tooth tip portion 222a extends in the circumferential direction and is formed so as to spread in the circumferential direction.
  • the tooth tip surface 223a faces the rotor 3 in the motor 1. Specifically, the tooth tip surface 223a is the surface of the tooth tip portion 222a facing the rotor 3 in the motor 1.
  • the iron core portion 21 (for example, the yoke portion 21a) is provided with a fixing hole 24c for fixing the first insulator 24a.
  • the iron core portion 21 is composed of at least one sheet 28 (also referred to as a plate).
  • the iron core portion 21 is formed by laminating a plurality of sheets 28 in the axial direction (that is, the z-axis direction).
  • the sheet 28 is formed into a predetermined shape by press working (specifically, punching).
  • the sheet 28 is, for example, an electromagnetic steel plate.
  • the thickness of the sheet 28 is, for example, 0.01 mm to 0.7 mm. In the present embodiment, the thickness of the sheet 28 is 0.35 mm.
  • the sheet 28 is fixed to another adjacent sheet 28 by the caulking portion 24d.
  • FIG. 8 is a cross-sectional view schematically showing the structure of the rotor 3.
  • the rotor 3 includes a rotor core 31, a shaft 32, at least one permanent magnet 33, at least one magnet insertion hole 34, at least one flux barrier 35, at least one air hole 36, and at least one slit 38. And have.
  • the rotor 3 is rotatable about the axis A1.
  • the rotor 3 is rotatably arranged inside the stator 2.
  • the axis A1 is the center of rotation of the rotor 3 and is the axis of the shaft 32.
  • the rotor 3 is a permanent magnet embedded rotor.
  • the rotor core 31 has a plurality of magnet insertion holes 34 arranged in the circumferential direction of the rotor 3.
  • the magnet insertion hole 34 is a gap in which the permanent magnet 33 is arranged.
  • One permanent magnet 33 is arranged in each magnet insertion hole 34.
  • a plurality of permanent magnets 33 may be arranged in each magnet insertion hole 34.
  • the permanent magnet 33 arranged in the magnet insertion hole 34 is magnetized in the radial direction of the rotor 3 (that is, the direction orthogonal to the axis A1).
  • the number of magnet insertion holes 34 corresponds to the number of magnetic poles of the rotor 3.
  • the positional relationship of each magnetic pole is the same. In this embodiment, the number of magnetic poles of the rotor 3 is 6 poles. However, the number of magnetic poles of the rotor 3 may be 2 or more.
  • Nd-Fe-B permanent magnet a rare earth magnet containing neodymium (Nd), iron (Fe), and boron (B) (hereinafter referred to as "Nd-Fe-B permanent magnet") is applied to the permanent magnet 33.
  • the coercive force of the Nd-Fe-B permanent magnet has the property of decreasing with temperature.
  • a motor using an Nd rare earth magnet is used in a high temperature atmosphere of 100 ° C. or higher such as a compressor
  • the coercive force of the magnet deteriorates from about -0.5 to -0.6% / ⁇ K depending on the temperature. Therefore, it is necessary to add a Dy (dysprosium) element to increase the coercive force.
  • the coercive force improves almost in proportion to the content of the Dy element.
  • the upper limit of the atmospheric temperature of the motor is about 150 ° C.
  • the motor is used within a temperature rise range of about 130 ° C. with respect to 20 ° C.
  • the coercive force is reduced by 65%.
  • a coercive force of about 1100-1500 A / m is required to prevent demagnetization at the maximum load of the compressor.
  • the room temperature coercive force In order to guarantee the coercive force in an atmospheric temperature of 150 ° C., it is necessary to design the room temperature coercive force to be about 1800 to 2300 A / m.
  • the room temperature coercive force is about 1800 A / m.
  • the coercive force characteristic is improved, but the residual magnetic flux density characteristic is lowered.
  • the residual magnetic flux density decreases, the magnet torque of the motor decreases and the energizing current increases, so that the copper loss increases. Therefore, considering the efficiency of the motor, it is desired to reduce the amount of Dy added.
  • the rotor iron core 31 is formed by laminating a plurality of electromagnetic steel plates.
  • the thickness of each electrical steel plate of the rotor core 31 is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each electromagnetic steel plate of the rotor core 31 is 0.35 mm.
  • the electromagnetic steel plate of the rotor core 31 is fixed to other adjacent electromagnetic steel plates by caulking.
  • At least one slit 38 is formed on the outside of the magnet insertion hole 34 in the radial direction of the rotor 3.
  • a plurality of slits 38 are formed on the outside of the magnet insertion hole 34 in the radial direction of the rotor 3.
  • Each slit 38 is radially long.
  • the shaft 32 is connected to the rotor core 31.
  • the shaft 32 is fixed to the shaft hole 37 formed in the rotor iron core 31 by a fixing method such as shrink fitting or press fitting.
  • a fixing method such as shrink fitting or press fitting.
  • the flux barrier 35 is formed at a position adjacent to the magnet insertion hole 34 in the circumferential direction of the rotor 3. In other words, each flux barrier 35 is adjacent to the end of each magnet insertion hole 34 in the longitudinal direction of each magnet insertion hole 34.
  • the flux barrier 35 reduces the leakage flux.
  • the width of the thin portion between the flux barrier 35 and the outer peripheral surface of the rotor core 31 is, for example, 0.35 mm.
  • the air hole 36 is a through hole. For example, when the motor 1 is used for the compressor, the refrigerant can pass through the air hole 36.
  • FIG. 9 is a diagram showing the structure of the teeth portion 22a.
  • the stator 2 In the xy plane, when the angle formed by the two straight lines L1 passing through both ends P1 of the tooth tip surface 223a and the rotation center of the rotor 3 is ⁇ 1 [degrees], the stator 2 has 0.75 ⁇ ( ⁇ 1 ⁇ N) / 360. ⁇ 0.97 is satisfied.
  • N 9.
  • N may be a natural number of 2 or more.
  • the ratio ⁇ [%] occupied by the tooth tip surface 223a on the circumference of the circle passing through the tooth tip surface 223a satisfies 75% or more and 97% or less.
  • this ratio ⁇ is referred to as an opening angle ratio ⁇ .
  • the circle passing through the tooth tip surface 223a is, for example, the circle indicated by the broken line R1 in FIG.
  • FIG. 10 is a cross-sectional view schematically showing another example of the motor 1.
  • the rotor 3 is longer than the stator 2.
  • the rotor 3 may be longer than the stator core 2a.
  • FIG. 11 is a cross-sectional view schematically showing still another example of the motor 1.
  • FIG. 12 is a plan view schematically showing an example of the metal member 39.
  • the rotor 3 has at least one metal member 39.
  • the metal member 39 is fixed to the end of the rotor core 31 in the axial direction of the rotor 3.
  • the rotor 3 has two metal members 39, and the metal members 39 are fixed to both ends of the rotor core 31.
  • the metal member 39 is preferably a single structure. Thereby, the cost of the metal member 39 can be reduced.
  • each metal member 39 is larger than the surface area of the rotor core 31 (specifically, the surface of the rotor core 31 facing the metal member 39).
  • FIG. 13 is a diagram showing another example of the rotor 3.
  • the rotor 3 may have the rotor core 31a shown in FIG. 13 instead of the rotor core 31.
  • the rotor core 31a shown in FIG. 13 has a plurality of different radii in the xy plane. Specifically, the radius of the rotor core 31a is the largest at the center of the magnetic poles of the rotor 3 and the smallest at the interpole portion of the rotor 3. In the example shown in FIG. 13, the outer diameter of the rotor core 31a is maximum at the magnetic pole center portion of the rotor 3 and minimum at the interpole portion of the rotor 3. In the xy plane shown in FIG.
  • the magnetic pole center portion of the rotor 3 is located on a straight line passing through the center of each permanent magnet 33 and the axis A1.
  • the interpole portion of the rotor 3 is located on a straight line passing through a point between the permanent magnets 33 adjacent to each other and the axis A1.
  • FIG. 14 is a graph showing the relationship between the rotation angle of the rotor and the internal pressure in the cylinder.
  • the solid line B1 corresponds to the motor having a large torque ripple
  • the broken line B2 corresponds to the motor having a small torque ripple.
  • FIG. 15 is a graph showing the relationship between the opening angle ratio ⁇ [%] and the torque ripple rate [%] when the motor is driven at the rated torque or less.
  • FIG. 16 is a diagram showing the magnetic flux density in the stator core 2a when the motor is driven at the rated torque or less.
  • FIG. 17 is a diagram showing the magnetic flux density in the stator core 2a when the motor is driven with a torque larger than the rated torque.
  • the torque ripple rate is the ratio of the difference between the maximum torque and the minimum torque to the time average torque. The smaller the torque ripple rate, the less the fluctuation of the rotation speed of the motor during driving of the motor, and the less likely the pressure overshoot occurs.
  • FIG. 16 when the torque load is small, the influence of magnetic saturation in each tooth portion is small.
  • FIG. 17 when the torque load is large, the magnetic saturation in each tooth portion increases. For example, when the torque load of the motor in the compressor is large, the internal pressure of the cylinder increases, so that the compressor is likely to fail due to the disproportionation reaction of the refrigerant.
  • the angle ⁇ 1 affects the magnetic attraction generated between the stator and the rotor. As a result, the angle ⁇ 1 affects the torque ripple rate.
  • FIG. 18 is a graph showing the relationship between the opening angle ratio ⁇ [%] and the torque ripple rate [%] when the motor 1 is driven with a torque larger than the rated torque.
  • the opening angle ratio ⁇ is 75% or more, the torque ripple rate can be effectively reduced. That is, in 0.75 ⁇ ( ⁇ 1 ⁇ N) / 360, the torque ripple rate can be effectively reduced.
  • the torque ripple rate can be reduced more effectively. That is, in 0.84 ⁇ ( ⁇ 1 ⁇ N) / 360, the torque ripple rate can be reduced more effectively.
  • the opening angle ratio ⁇ satisfies 75% or more and 97% or less. That is, it is desirable that the stator 2 satisfies 0.75 ⁇ ( ⁇ 1 ⁇ N) / 360 ⁇ 0.97. As a result, the torque ripple rate can be effectively reduced, and as a result, the failure of the compressor can be reduced.
  • the opening angle ratio ⁇ satisfies 84% or more and 97% or less. That is, it is more desirable that the stator 2 satisfies 0.84 ⁇ ( ⁇ 1 ⁇ N) / 360 ⁇ 0.97. As a result, the torque ripple rate can be reduced more effectively, and as a result, the failure of the compressor can be made less likely to occur.
  • the opening angle ratio ⁇ satisfies 87.5% or more and 92.5% or less. That is, it is more desirable that the stator 2 satisfies 0.875 ⁇ ( ⁇ 1 ⁇ N) / 360 ⁇ 0.925. As a result, the torque ripple rate can be reduced more effectively, and as a result, the failure of the compressor can be made less likely to occur.
  • the opening angle ratio ⁇ may be 87.5% or more and 97% or less. That is, when the stator 2 satisfies 0.875 ⁇ ( ⁇ 1 ⁇ N) / 360 ⁇ 0.97, the torque ripple rate can be effectively reduced, and as a result, the failure of the compressor is less likely to occur. it can.
  • the opening angle ratio ⁇ may be 87.5% or more and 92.5% or less. That is, when the stator 2 satisfies 0.875 ⁇ ( ⁇ 1 ⁇ N) / 360 ⁇ 0.925, the torque ripple rate can be effectively reduced, and as a result, the failure of the compressor is less likely to occur. it can.
  • the opening angle ratio ⁇ may be 84% or more and 92.5% or less. That is, when the stator 2 satisfies 0.84 ⁇ ( ⁇ 1 ⁇ N) / 360 ⁇ 0.925, the torque ripple rate can be effectively reduced, and as a result, the failure of the compressor is less likely to occur. it can.
  • the magnetic flux from the coil 27 is widely dispersed in the stator 2 as compared with the concentrated winding.
  • the fluctuation of the magnetic attraction force generated between the rotor 3 and the stator 2 when the rotor 3 is rotated becomes gentle, and the torque ripple rate can be reduced.
  • the waveform of the inverter voltage can be finely adjusted.
  • the torque waveform of the motor 1 caused by the inverter voltage can be controlled, and the torque ripple rate can be reduced.
  • the rotor 3 When the rotor 3 is longer than the stator 2 in the axial direction of the rotor 3, the moment of inertia of the rotor 3 can be increased. As a result, the occurrence of pressure overshoot can be suppressed. Further, when the stator 2 is shorter than the rotor 3 in the axial direction of the rotor 3, the motor 1 can be miniaturized. Therefore, the compressor having the motor 1 can be miniaturized.
  • the rotor 3 has at least one metal member 39, the moment of inertia of the rotor 3 can be increased. As a result, the occurrence of pressure overshoot can be suppressed.
  • the surface area of each metal member 39 in the xy plane is larger than the surface area of the rotor core 31 (specifically, the surface of the rotor core 31 facing the metal member 39). Is also desirable. As a result, the moment of inertia of the rotor 3 can be further increased. As a result, the occurrence of pressure overshoot can be effectively suppressed.
  • the magnetic flux density on the outer peripheral surface of the rotor 3 is maximum at the magnetic pole center, and the rotor 3
  • the magnetic flux density on the outer peripheral surface is minimized in the interpole region. That is, the magnetic flux density on the outer peripheral surface of the rotor 3 decreases as the magnetic pole center portion approaches the interpole portion.
  • the waveform of the induced voltage in the motor 1 approaches a sine wave, and the torque ripple rate can be reduced. As a result, the occurrence of pressure overshoot can be suppressed.
  • FIG. 19 is a cross-sectional view schematically showing the structure of the compressor 6 according to the second embodiment.
  • the compressor 6 has a motor 1 as an electric element, a closed container 61 as a housing, and a compression mechanism 62 as a compression element (also referred to as a compression device).
  • the compressor 6 is used together with the refrigerant described in the first embodiment, that is, a refrigerant containing a substance having a property of causing a disproportionation reaction. This refrigerant may be provided in advance in the compressor 6.
  • the compressor 6 is a rotary compressor.
  • the compressor 6 is not limited to the rotary compressor.
  • the motor 1 in the compressor 6 is the motor 1 described in the first embodiment.
  • the motor 1 drives the compression mechanism 62.
  • the motor 1 is a permanent magnet embedded motor, but the motor 1 is not limited thereto.
  • the closed container 61 covers the motor 1 and the compression mechanism 62. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 62 is stored in the bottom of the closed container 61.
  • the compressor 6 further includes a glass terminal 63 fixed to the closed container 61, an accumulator 64, a suction pipe 65 for sucking the refrigerant, and a discharge pipe 66 for projecting the refrigerant.
  • the suction pipe 65 and the discharge pipe 66 are fixed to the closed container 61.
  • the compression mechanism 62 is arranged in the closed container 61.
  • the compression mechanism 62 is arranged at the lower part of the closed container 61.
  • the compression mechanism 62 includes a cylinder 62a, a piston 62b, an upper frame 62c (first frame), a lower frame 62d (second frame), and a plurality of mufflers attached to the upper frame 62c and the lower frame 62d, respectively. It has 62e and.
  • the compression mechanism 62 further has a vane that divides the inside of the cylinder 62a into a suction side and a compression side.
  • the compression mechanism 62 is driven by the motor 1.
  • the compression mechanism 62 compresses the refrigerant.
  • the motor 1 is arranged at the upper part of the closed container 61. Specifically, the motor 1 is located between the discharge pipe 66 and the compression mechanism 62. That is, the motor 1 is provided above the compression mechanism 62.
  • the stator 2 of the motor 1 is fixed in the closed container 61 by a fixing method such as press fitting or shrink fitting. Instead of press fitting and shrink fitting, the stator 2 may be directly attached to the closed container 61 by welding.
  • Electric power is supplied to the coil of the stator 2 of the motor 1 (for example, the coil 27 shown in FIG. 1) via the glass terminal 63.
  • the rotor of the motor 1 (specifically, the shaft 32 of the rotor 3) is rotatably held by the upper frame 62c and the lower frame 62d via bearings provided in each of the upper frame 62c and the lower frame 62d. There is.
  • a shaft 32 is inserted through the piston 62b.
  • a shaft 32 is rotatably inserted into the upper frame 62c and the lower frame 62d.
  • the upper frame 62c is provided with a valve valve for preventing the backflow of the refrigerant. Specifically, this valve valve is located between the upper frame 62c and the muffler 62e.
  • the upper frame 62c and the lower frame 62d close the end faces of the cylinder 62a.
  • the accumulator 64 supplies the refrigerant to the cylinder 62a through the suction pipe 65.
  • the refrigerant supplied from the accumulator 64 enters the cylinder 62a through the suction pipe 65 fixed to the closed container 61.
  • the motor 1 rotates
  • the piston 62b fitted to the shaft 32 rotates in the cylinder 62a.
  • the refrigerant is compressed in the cylinder 62a.
  • the refrigerant passes through the muffler 62e and rises in the closed container 61.
  • the valve valve provided in the upper frame 62c opens, and the compressed refrigerant is discharged from the discharge pipe 66. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 66.
  • the valve valve closes and the flow of the refrigerant is cut off.
  • the compressor 6 according to the second embodiment has the motor 1 described in the first embodiment, it is possible to make it difficult for the compressor 6 to fail.
  • FIG. 20 is a diagram schematically showing the configuration of the refrigerating air conditioner 7 according to the third embodiment.
  • the refrigerating and air-conditioning device 7 can be operated for heating and cooling, for example.
  • the refrigerant circuit diagram shown in FIG. 20 is an example of a refrigerant circuit diagram of an air conditioner capable of cooling operation.
  • the refrigerating and air-conditioning device 7 has an outdoor unit 71, an indoor unit 72, and a refrigerant pipe 73 connecting the outdoor unit 71 and the indoor unit 72.
  • the outdoor unit 71 includes a compressor 6, a condenser 74 as a heat exchanger, a throttle device 75, and an outdoor blower 76 (first blower).
  • the condenser 74 condenses the refrigerant compressed by the compressor 6.
  • the throttle device 75 decompresses the refrigerant condensed by the condenser 74 and adjusts the flow rate of the refrigerant.
  • the diaphragm device 75 is also called a decompression device.
  • the indoor unit 72 has an evaporator 77 as a heat exchanger and an indoor blower 78 (second blower).
  • the evaporator 77 evaporates the refrigerant decompressed by the throttle device 75 to cool the indoor air.
  • the refrigerant is compressed by the compressor 6 and flows into the condenser 74.
  • the refrigerant is condensed by the condenser 74, and the condensed refrigerant flows into the drawing device 75.
  • the refrigerant is decompressed by the throttle device 75, and the decompressed refrigerant flows into the evaporator 77.
  • the refrigerant evaporates in the evaporator 77, and the refrigerant (specifically, the refrigerant gas) flows into the compressor 6 of the outdoor unit 71 again.
  • the configuration and operation of the refrigerating air conditioner 7 described above is an example, and is not limited to the above-mentioned example.
  • the refrigerating air conditioner 7 according to the third embodiment has the advantages described in the first and second embodiments.
  • the refrigerating and air-conditioning device 7 Since the refrigerating and air-conditioning device 7 according to the third embodiment has a compressor 6, it is possible to prevent the refrigerating and air-conditioning device 7 from failing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

ステータ(2)は、不均化反応を起こす性質の物質を含む冷媒と共に用いられる圧縮機内に配置されたモータのロータの外側に配置されるステータである。ステータ(2)は、ヨーク部(21a)と、N個のティース部(22a)とを有する。N個のティース部(22a)の各々は、ロータ(3)に対向するティース先端面(223a)を有する。ロータ(3)の軸方向と直交する平面において、ティース先端面(223a)をの両端とロータ(3)の回転中心とを通る2直線が成す角度をθ1[度]としたとき、0.75≦(θ1×N)/360≦0.97を満たす。

Description

ステータ、モータ、圧縮機、及び空気調和機
 本発明は、モータのステータに関する。
 一般に、圧縮機の冷媒として、1,1,2-トリフルオロエチレンを含む冷媒が用いられている(例えば、特許文献1参照)。
国際公開第2015/136977号
 しかしながら、従来の技術では、圧縮機内のモータの構造によっては、冷媒が膨張し、圧縮機内のシリンダが故障することがある。その結果、圧縮機の故障を引き起こすことがある。
 本発明は、以上に述べた課題を解決し、圧縮機の故障を発生しにくくすることを目的とする。
 本発明の一態様に係るステータは、
 不均化反応を起こす性質の物質を含む冷媒と共に用いられる圧縮機内に配置されたモータのロータの外側に配置されるステータであって、
 ヨーク部と、
 N個のティース部と
 を備え、
 前記N個のティース部の各々は、前記ロータに対向するティース先端面を有し、
 前記ロータの軸方向と直交する平面において、前記ティース先端面の両端と前記ロータの回転中心とを通る2直線が成す角度をθ1[度]としたとき、
 0.75≦(θ1×N)/360≦0.97
 を満たす。
 本発明の他の態様に係るモータは、
 前記ステータと、
 前記ステータの内側に配置された前記ロータと
を備える。
 本発明の他の態様に係る圧縮機は、
 密閉容器と、
 前記密閉容器内に配置された圧縮装置と、
 前記圧縮装置を駆動する前記モータと
 を備える。
 本発明の他の態様に係る空気調和機は、
 前記圧縮機と、
 熱交換器と
 を備える。
 本発明によれば、圧縮機の故障を発生しにくくすることができる。
本発明の実施の形態1に係るステータを備えたモータの内部構造を概略的に示す断面図である。 駆動装置の構成を示すブロック図である。 分割鉄心部の構造を概略的に示す斜視図である。 ステータ鉄心の構造を概略的に示す平面図である。 分割鉄心部の構造を概略的に示す断面図である。 鉄心部の構造を概略的に示す平面図である。 鉄心部の構造を概略的に示す斜視図である。 ロータの構造を概略的に示す断面図である。 ティース部の構造を示す図である。 モータの他の例を概略的に示す断面図である。 モータのさらに他の例を概略的に示す断面図である。 金属部材の例を概略的に示す平面図である。 ロータの他の例を示す図である。 ロータの回転角度とシリンダにおける内圧との関係を示すグラフである。 定格トルク以下でモータが駆動するときの開き角割合[%]とトルクリプル率[%]との関係を示すグラフである。 定格トルク以下でモータが駆動するときのステータ鉄心における磁束密度を示す図である。 定格トルクよりも大きいトルクでモータが駆動するときのステータ鉄心における磁束密度を示す図である。 定格トルクよりも大きいトルクでモータが駆動するときの開き角割合[%]とトルクリプル率[%]との関係を示すグラフである。 本発明の実施の形態2に係る圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態3に係る冷凍空調装置の構成を概略的に示す図である。
実施の形態1.
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、モータ1の軸線A1と平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線A1は、ロータ3の回転中心である。軸線A1は、ステータ2の中心も示す。軸線A1と平行な方向は、「モータ1の軸方向」、「ロータ3の軸方向」、又は単に「軸方向」ともいう。径方向は、ロータ3又はステータ2の半径方向であり、軸線A1と直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線A1を中心とする周方向を示す。ロータ3又はステータ2の周方向を、単に「周方向」ともいう。
 図1は、本発明の実施の形態1に係るステータ2を備えたモータ1の内部構造を概略的に示す断面図である。
 モータ1は、ステータ2と、ロータ3とを有する。モータ1は、例えば、永久磁石埋込型電動機である。
 モータ1は、例えば、不均化反応を起こす性質の物質を含む冷媒と共に用いられる圧縮機内に配置されたモータである。
 例えば、上述の冷媒は、不均化反応を起こす性質の物質を1wt%以上含んでいればよい。上述の冷媒は、不均化反応を起こす性質の物質のみで構成された冷媒でもよい。すなわち、上述の冷媒に占める不均化反応を起こす性質の物質の割合は、1wt%から100wt%であればよい。
 不均化反応を起こす性質の物質は、例えば、1,1,2-トリフルオロエチレン又は1,2-ジフルオロエチレンである。
 例えば、上述の冷媒は、1,1,2-トリフルオロエチレンを1wt%以上含んでいればよい。上述の冷媒は、1,1,2-トリフルオロエチレンのみで構成された冷媒でもよい。すなわち、上述の冷媒は、1,1,2-トリフルオロエチレンを1wt%から100wt%含んでいればよい。
 例えば、上述の冷媒は、1,2-ジフルオロエチレンを1wt%以上含んでいればよい。上述の冷媒は、1,2-ジフルオロエチレンのみで構成された冷媒でもよい。すなわち、上述の冷媒は、1,2-ジフルオロエチレンを1wt%から100wt%含んでいればよい。
 上述の冷媒は、1,1,2-トリフルオロエチレンとジフルオロメタン(R32とも称する)との混合物でもよい。例えば、1,1,2-トリフルオロエチレンを40wt%、R32を60wt%含有する混合物を冷媒として使用することができる。この混合物のR32を別の物質に置き換えても構わない。例えば、1,1,2-トリフルオロエチレンと他のエチレン系フッ化炭化水素との混合物を冷媒として使用しても構わない。他のエチレン系フッ化炭化水素としては、フルオロエチレン(HFO-1141とも称する)、1,1-ジフルオロエチレン(HFO-1132aとも称する)、トランス-1,2-ジフルオロエチレン(「HFO-1132(E)」とも称する)、シス-1,2-ジフルオロエチレン(「HFO-1132(Z)」とも称する)を使用することができる。
 R32は、2,3,3,3-テトラフルオロプロペン(R1234yfとも称する)、トランス-1,3,3,3-テトラフルオロプロペン(「R1234ze(E)」とも称する)、シス-1,3,3,3-テトラフルオロプロペン(「R1234ze(Z)」とも称する)、1,1,1,2-テトラフルオロエタン(R134aとも称する)、1,1,1,2,2-ペンタフルオロエタン(R125とも称する)のいずれかに置き換えても構わない。R32は、R32、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R125のうち、いずれか2種類以上からなる混合物に置き換えても構わない。
 ステータ2は、円環状に形成されたステータ鉄心2aと、ステータ鉄心2aに巻回されたコイル27とを有する。ステータ2は、軸線A1(すなわち、ロータ3の回転中心)を中心とする周方向に円環状に形成されている。
 ステータ2は、ロータ3の外側に配置される。ステータ2の内側に、ロータ3が回転自在に備えられている。ステータ2の内側表面とロータ3の外側表面との間には、0.3mmから1mmのエアギャップが設けられている。ステータ2のコイル27に、インバータから電流が供給されると、ロータ3が回転する。コイル27に供給される電流は、指令回転数に同期した周波数を持つ電流である。
 ステータ2は、複数の分割鉄心部25aを有する。図1に示される例では、複数の分割鉄心部25aが、軸線A1を中心とする周方向に円環状に配列されており、これによりステータ2を形成している。
 次に、駆動装置101について説明する。
 図2は、駆動装置101の構成を示すブロック図である。
 モータ1は、図2に示される駆動装置101を有してもよい。駆動装置101は、電源の出力を整流するコンバータ102と、モータ1のステータ2(具体的には、コイル27)に電力を供給するインバータ103と、制御装置50とを有する。
 図2に示される例では、コイル27は、U相,V相,及びW相を持つ3相コイルである。
 コンバータ102には、交流電源である電源から電力が供給される。コンバータ102は、インバータ103に電圧を印加する。コンバータ102からインバータ103に印加される電圧を「コンバータ電圧」とも称する。コンバータ102の母線電圧は制御装置50に供給される。
 インバータ103は、パルス幅変調制御方式(PWM制御方式とも称する)で動作する。
 モータ1を駆動するインバータ電圧、すなわち、モータ1のコイル27に印加される電圧は、PWM制御方式で生成される。上述のように、モータ1のコイル27は、例えば、3相コイルである。この場合、インバータ103は、各相に対応する少なくとも1つのインバータスイッチを有し、各インバータスイッチは、1組のスイッチング素子(本実施の形態では、2個のスイッチング素子)を有する。
 PWM制御方式では、各相に対応するインバータスイッチのオンオフの時間割合を制御することでインバータ電圧の波形を生成する。これにより、インバータ103からの所望の出力波形を得ることができる。具体的には、インバータ103においてインバータスイッチがオンのとき、インバータ103からコイル27へ電圧が供給され、インバータ電圧が増大する。インバータスイッチがオフのとき、インバータ103からコイル27への電圧供給は遮断され、インバータ電圧が降下する。インバータ電圧と誘起電圧との差分がコイル27に供給され、電動機電流が発生し、モータ1の回転力が生じる。目標とする電動機電流値に一致するようインバータスイッチのオンオフの時間割合を制御することで、インバータ103からの所望の出力波形を得ることができる。
 各インバータスイッチのオンオフのタイミングは、キャリア波に基づいて決定される。キャリア波は、一定の振幅を持つ三角波で構成される。PWM制御方式におけるパルス幅変調周期は、キャリア波の周波数であるキャリア周波数によって決まる。本実施の形態では、予め定められたキャリア波のパターン又は予め定められたキャリア周波数が制御装置50に格納されている。制御装置50は、キャリア周波数を制御し、各インバータスイッチのオンオフを制御する。これにより、制御装置50は、コイル27に供給されるインバータ103からの出力を制御する。
 キャリア波の周波数であるキャリア周波数を「インバータ103のキャリア周波数」とも称する。すなわち、インバータ103のキャリア周波数は、コイル27に印加される電圧の制御周波数であり、制御装置50は、インバータ103のキャリア周波数を制御する。
 本実施の形態では、インバータ103は、3個のインバータスイッチ(すなわち、6個のスイッチング素子)を有するが、3個のインバータスイッチの内の1個のインバータスイッチ、すなわち、U相、V相、又はW相に対応する1個のインバータスイッチに対する制御について説明する。ただし、その1個のインバータスイッチに対する制御は、他の2個のインバータスイッチに対する制御にも適用可能である。
 制御装置50は、キャリア波の電圧値と、インバータ出力電圧指令値とを比較する。インバータ出力電圧指令値は、例えば、制御装置50において、目標電動機電流値に基づいて計算される。インバータ出力電圧指令値は、例えば、空気調和機などの冷凍空調装置のリモコンから制御装置50に入力された運転指示信号に基づいて設定される。
 キャリア波の電圧値がインバータ出力電圧指令値よりも小さいとき、制御装置50は、インバータスイッチがオンになるようにPWM制御信号をオンにする。キャリア波の電圧値がインバータ出力電圧指令値以上であるとき、制御装置50は、インバータスイッチがオフになるようにPWM制御信号をオフにする。これにより、インバータ電圧が目標値に近づく。
 上述のように、制御装置50は、インバータ出力電圧指令値とキャリア波の電圧値との差に基づいてPWM制御信号を生成する。
 制御装置50は、PWM制御信号に基づくインバータ駆動信号などの制御信号をインバータ103に出力し、インバータスイッチのオンオフ制御を行う。インバータ駆動信号は、PWM制御信号と同じ信号でもよく、PWM制御信号と異なる信号でもよい。
 インバータスイッチがオンのときにインバータ電圧がインバータ103から出力される。インバータ電圧はコイル27に供給され、モータ1において電動機電流(具体的には、U相電流、V相電流、およびW相電流)が発生する。これにより、インバータ電圧はモータ1(具体的には、ロータ3)の回転力に変換される。電動機電流は、電流センサなどの計測器で計測され、制御装置50に計測結果(例えば、電流値を示す信号)が送信される。
 制御装置50は、例えば、プロセッサおよびメモリで構成される。例えば、制御装置50は、マイクロコンピュータである。制御装置50は、単一回路又は複合回路などの専用のハードウェアとしての処理回路で構成されてもよい。
 分割鉄心部25aの構造について以下に説明する。
 図3は、分割鉄心部25aの構造を概略的に示す斜視図である。
 本実施の形態では、ステータ2が複数の分割鉄心部25aによって構成されている。各分割鉄心部25aは、分割された鉄心である鉄心部21と、第1のインシュレータ24aと、第2のインシュレータ24bと、コイル27とを有する。ただし、図3に示される例では、コイル27は図示されていない。
 第1のインシュレータ24aは、ステータ鉄心2a(具体的には、鉄心部21)と組み合わされる。本実施の形態では、第1のインシュレータ24aは、軸方向におけるステータ鉄心2aの両端部に備えられている。ただし、第1のインシュレータ24aは、軸方向におけるステータ鉄心2aの一方の端部に備えられていてもよい。本実施の形態では、第1のインシュレータ24aは、絶縁性樹脂である。
 第2のインシュレータ24bは、例えば、薄いPET(ポリエチレンテレフタレート)フィルムである。PETフィルムの厚さは、例えば、0.15mmである。第2のインシュレータ24bは、ステータ鉄心2aのティース部(後述するティース部22a)の側面を覆う。
 図4は、ステータ鉄心2aの構造を概略的に示す平面図である。
 ステータ鉄心2aは、少なくとも1つのヨーク部21aと、少なくとも2つのティース部22aとを有する。ステータ鉄心2aは、複数の鉄心部21によって構成されている。したがって、各鉄心部21は、ヨーク部21aと、ティース部22aとを有する。
 図4に示される例では、ステータ鉄心2aは、9個の鉄心部21によって構成されている。
 ただし、ステータ鉄心2aは、複数の鉄心部21に分割されていなくてもよい。この場合、ステータ鉄心2aは、1つの部材として一体化された複数の鉄心部21で構成されていてもよい。例えば、ステータ鉄心2aは、円環状の複数の材料(例えば、電磁鋼板)を積層することによって形成されていてもよい。
 2つのヨーク部21a及び2つのティース部22aによって囲まれた領域は、スロット部26である。ステータ鉄心2aにおいて、複数のスロット部26は、周方向に等間隔に設けられている。図4に示される例では、ステータ鉄心2aに、9個のスロット部26が設けられている。
 図4に示されるように、ステータ鉄心2aは、複数のティース部22aを有し、各ティース部22aは、スロット部26を介して隣接している。したがって、複数のティース部22a及び複数のスロット部26は、周方向に、交互に配列されている。周方向における複数のティース部22aの配列ピッチ(すなわち、周方向におけるスロット部26の幅)は等間隔である。すなわち、複数のティース部22aは、放射状に位置している。
 本実施の形態では、ステータ2は、N個の分割鉄心部25a(Nは2以上の自然数)を有する。したがって、ステータ2は、N個のティース部22aを有する。図1に示される例では、ステータ2は、9個の分割鉄心部25aを有する。したがって、図1に示される例では、ステータ2は、9個のティース部22aを有する。
 図5は、分割鉄心部25aの構造を概略的に示す断面図である。
 各分割鉄心部25aは、ヨーク部21aと、径方向におけるヨーク部21aの内側に位置するティース部22aと、コイル27と、ステータ鉄心2aを絶縁する第1のインシュレータ24aと、ステータ鉄心2aを絶縁する第2のインシュレータ24bとを有する。本実施の形態では、ティース部22aは、1つの部材としてヨーク部21aと一体化されているが、ヨーク部21aとは別に形成されたティース部22aをヨーク部21aに取り付けてもよい。
 コイル27は、第1のインシュレータ24a及び第2のインシュレータ24bを介してステータ鉄心2aに巻回されている。具体的には、コイル27は、ティース部22aの周りに巻回されている。コイル27に電流が流れると、コイル27から回転磁界が発生する。
 コイル27は、例えば、マグネットワイヤである。例えば、ステータ2は、3相であり、コイル27の結線は、例えば、Y結線(スター結線ともいう)又はデルタ結線である。コイル27のターン数及び線径は、モータ1の回転数、トルク、電圧仕様、及びスロット部26の断面積等に応じて定められる。コイル27の線径は、例えば、1.0mmである。ステータ鉄心2aの各ティース部22aには、コイル27が、例えば、80ターン巻回されている。ただし、コイル27の線径及びターン数は、これらの例に限られない。
 コイル27の巻線方式は、例えば、集中巻である。例えば、鉄心部21を円環状に配列する前の状態(例えば、鉄心部21が直線状に配列された状態)で、鉄心部21にコイル27を巻回することができる。コイル27が巻回された鉄心部21(すなわち、分割鉄心部25a)は、円環状に折り畳まれて、溶接等によって固定される。
 コイル27は、集中巻の代わりに、ステータ鉄心2aの各ティース部22aに分布巻きで取り付けられていてもよい。
 図6は、鉄心部21の構造を概略的に示す平面図である。
 図7は、鉄心部21の構造を概略的に示す斜視図である。
 ヨーク部21aは、周方向に延びており、ティース部22aは、ステータ鉄心2aの径方向における内側(図6では、-y方向)に向かって延びている。言い換えると、ティース部22aは、ヨーク部21aから軸線A1に向けて突出している。
 図6及び図7に示されるように、各ティース部22aは、本体部221aと、歯先部222aと、ティース先端面223aとを有する。歯先部222aは、径方向におけるティース部22a(具体的には、本体部221aの端部)の先端に設けられている。図6及び図7に示される例では、本体部221aは、径方向に沿って等しい幅を持つ。歯先部222aは、周方向に延びており、周方向に向けて広がるように形成されている。
 ティース先端面223aは、モータ1において、ロータ3に対向する。具体的には、ティース先端面223aは、モータ1において、ロータ3に対向する歯先部222aの表面である。
 図5から図7に示されるように、鉄心部21(例えば、ヨーク部21a)には、第1のインシュレータ24aを固定するための固定穴24cが設けられている。
 図7に示されるように、鉄心部21は、少なくとも1つのシート28(プレートともいう)によって構成されている。本実施の形態では、複数のシート28を軸方向(すなわち、z軸方向)に積層することにより鉄心部21が形成されている。
 シート28は、プレス加工(具体的には打ち抜き加工)によって、予め定められた形状に形成される。シート28は、例えば、電磁鋼板である。電磁鋼板をシート28として用いる場合、シート28の厚さは、例えば、0.01mmから0.7mmである。本実施の形態では、シート28の厚さは、0.35mmである。シート28は、カシメ部24dによって、隣接する他のシート28と固定されている。
 ロータ3の構造について以下に説明する。
 図8は、ロータ3の構造を概略的に示す断面図である。
 ロータ3は、ロータ鉄心31と、シャフト32と、少なくとも1つの永久磁石33と、少なくとも1つの磁石挿入孔34と、少なくとも1つのフラックスバリア35と、少なくとも1つの風穴36と、少なくとも1つのスリット38とを有する。ロータ3は、軸線A1を中心として回転自在である。ロータ3は、ステータ2の内側に、回転自在に配置されている。軸線A1は、ロータ3の回転中心であり、且つ、シャフト32の軸線である。
 本実施の形態では、ロータ3は、永久磁石埋込型ロータである。ロータ鉄心31は、ロータ3の周方向に配列された複数の磁石挿入孔34を有する。磁石挿入孔34は、永久磁石33が配置される空隙である。各磁石挿入孔34には、1つの永久磁石33が配置されている。ただし、各磁石挿入孔34に複数の永久磁石33を配置してもよい。磁石挿入孔34に配置された永久磁石33は、ロータ3の径方向(すなわち、軸線A1と直交する方向)に磁化されている。磁石挿入孔34の数は、ロータ3の磁極数に対応する。各磁極の位置関係は同じである。本実施の形態では、ロータ3の磁極数は、6極である。ただし、ロータ3の磁極数は、2極以上であればよい。
 永久磁石33には、例えば、ネオジウム(Nd)、鉄(Fe)、及びボロン(B)を含む希土類磁石(以下、「Nd-Fe-B永久磁石」という)が適用される。
 Nd-Fe-B永久磁石の保磁力は、温度により低下する性質を持つ。例えば、圧縮機のように100℃以上の高温雰囲気中でNd希土類磁石を用いたモータを使用する場合、磁石の保磁力は温度により、約-0.5から-0.6%/ΔK劣化するため、Dy(ディスプロシウム)元素を添加して保磁力を高める必要がある。保磁力は、Dy元素の含有量にほぼ比例して向上する。一般的な圧縮機では、モータの雰囲気温度上限は150℃程度であり、20℃に対して、130℃程度の温度上昇の範囲で使用する。例えば、-0.5%/ΔKの温度係数では保磁力は65%低下する。
 圧縮機の最大負荷で減磁しないようにするためには、1100~1500A/m程度の保磁力が必要である。150℃の雰囲気温度中で保磁力を保証するためには、常温保磁力を1800~2300A/m程度に設計する必要がある。
 Nd-Fe-B永久磁石にDy元素が添加されていない状態では、常温保磁力は1800A/m程度である。2300kA/m程度の保磁力を得るためには、2wt%程度のDy元素を添加する必要がある。しかしながら、Dy元素を添加すると、保磁力特性は向上するが、残留磁束密度特性が低下する。残留磁束密度が低下すると、モータのマグネットトルクが低下し、通電電流が増加するため、銅損が増加する。そのため、モータの効率を考慮すると、Dy添加量を低減することが望まれる。
 ロータ鉄心31は、複数の電磁鋼板を積層することにより形成されている。ロータ鉄心31の各電磁鋼板の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、ロータ鉄心31の各電磁鋼板の厚さは、0.35mmである。ロータ鉄心31の電磁鋼板は、カシメによって、隣接する他の電磁鋼板と固定されている。
 ロータ3の径方向における磁石挿入孔34の外側には、少なくとも1つのスリット38が形成されている。本実施の形態では、ロータ3の径方向における磁石挿入孔34の外側に複数のスリット38が形成されている。各スリット38は、径方向に長い。
 シャフト32は、ロータ鉄心31と連結されている。例えば、シャフト32は、ロータ鉄心31に形成された軸穴37に、焼き嵌め又は圧入などの固定方法によって固定される。これにより、ロータ鉄心31が回転することによって発生する回転エネルギーは、シャフト32に伝達される。
 フラックスバリア35は、ロータ3の周方向において磁石挿入孔34に隣接する位置に形成されている。言い換えると、各フラックスバリア35は、各磁石挿入孔34の長手方向における各磁石挿入孔34の端部に隣接している。フラックスバリア35は、漏れ磁束を低減する。隣接する磁極間での磁束の短絡を防ぐため、フラックスバリア35とロータ鉄心31の外周面との間の薄肉部の幅は短いことが望ましい。フラックスバリア35とロータ鉄心31の外周面との間の薄肉部の幅は、例えば、0.35mmである。風穴36は、貫通孔である。例えば、圧縮機にモータ1を用いたとき、冷媒が風穴36を通過することができる。
 ティース部22aの構造を具体的に説明する。
 図9は、ティース部22aの構造を示す図である。
 xy平面において、ティース先端面223aの両端P1とロータ3の回転中心とを通る2直線L1が成す角度をθ1[度]としたとき、ステータ2は、0.75≦(θ1×N)/360≦0.97を満たす。
 本実施の形態では、N=9である。ただし、Nは2以上の自然数であればよい。
 すなわち、xy平面において、ティース先端面223aを通る円の円周においてティース先端面223aが占める割合α[%]が、75%以上97%以下を満たす。本出願では、この割合αを、開き角割合αと称する。ティース先端面223aを通る円は、例えば、図4において破線R1で示される円である。
変形例1.
 図10は、モータ1の他の例を概略的に示す断面図である。
 ロータ3の軸方向において、ロータ3は、ステータ2よりも長い。この場合、ロータ3は、ステータ鉄心2aよりも長ければよい。
変形例2.
 図11は、モータ1のさらに他の例を概略的に示す断面図である。
 図12は、金属部材39の例を概略的に示す平面図である。
 変形例2では、ロータ3は、少なくとも1つの金属部材39を有する。金属部材39は、ロータ3の軸方向におけるロータ鉄心31の端部に固定されている。
 図11及び図12に示される例では、ロータ3は、2つの金属部材39を有し、ロータ鉄心31の両端部に金属部材39が固定されている。金属部材39は、単一の構造体であることが望ましい。これにより、金属部材39のコストを低減することができる。
 xy平面において、各金属部材39の表面積は、ロータ鉄心31(具体的には、金属部材39に面するロータ鉄心31の表面)の表面積よりも大きい。
変形例3.
 図13は、ロータ3の他の例を示す図である。
 ロータ3は、ロータ鉄心31の代わりに、図13に示されるロータ鉄心31aを有してもよい。図13に示されるロータ鉄心31aは、xy平面において、複数の異なる半径を持つ。具体的には、ロータ鉄心31aの半径は、ロータ3の磁極中心部で最大であり、ロータ3の極間部で最小である。図13に示される例では、ロータ鉄心31aの外径は、ロータ3の磁極中心部で最大であり、ロータ3の極間部で最小である。図13に示されるxy平面において、ロータ3の磁極中心部は、各永久磁石33の中央と軸線A1とを通る直線上に位置する。図13に示されるxy平面において、ロータ3の極間部は、互いに隣接する永久磁石33の間の点と軸線A1とを通る直線上に位置する。
 実施の形態1に係るステータ2の利点を以下に説明する。
 図14は、ロータの回転角度とシリンダにおける内圧との関係を示すグラフである。図14に示される例では、実線B1は、大きいトルクリプルを持つモータに対応しており、破線B2は、小さいトルクリプルを持つモータに対応している。
 通常、圧縮機において、冷媒の圧縮が開始されると、シリンダの内部圧力が高まる。内部圧力が要求能力を満たす狙いの吐出圧力に達したとき、冷媒がバルブ弁を押しのけ、バルブ弁が開放される。これにより、シリンダが吐出マフラに連通し、狙いの吐出圧力で冷媒が吐出パイプから吐出される。
 しかしながら、シリンダの内部圧力が狙いの吐出圧力に達してからバルブ弁が完全に開放されるまでにタイムラグが発生する場合、シリンダの内部圧力が、狙いの吐出圧力を超えることがある。この現象を、本出願では、「圧力オーバーシュート」と称する。
 圧力オーバーシュートが発生すると、1,1,2-トリフルオロエチレン、1,2-ジフルオロエチレンなどの不均化反応を起こす性質の物質を含む冷媒は、不均化反応の連鎖によって急激な体積膨張を起こし、圧縮機内のシリンダが故障しやすくなる。そのため、できるだけ圧力オーバーシュートの発生を抑えることが望ましい。
 通常、圧縮機において、モータの回転速度が大きいほど、冷媒が圧縮される周期が短くなり、バルブ弁開放の遅れによる影響は大きくなる。すなわち、モータの回転速度が大きいほど、圧力オーバーシュートが発生しやすくなる。
 通常、モータの駆動中にトルクリプルが発生するため、モータの駆動中にモータの回転速度が上下する。瞬時の回転速度が大きくなるほど、シリンダの瞬時の内部圧力が高まり、シリンダが故障しやすくなる。
 図15は、定格トルク以下でモータが駆動するときの開き角割合α[%]とトルクリプル率[%]との関係を示すグラフである。
 図16は、定格トルク以下でモータが駆動するときのステータ鉄心2aにおける磁束密度を示す図である。
 図17は、定格トルクよりも大きいトルクでモータが駆動するときのステータ鉄心2aにおける磁束密度を示す図である。
 図15に示されるように、定格トルク以下でモータが駆動するとき、図9に示される角度θ1が大きいほど、モータの駆動時におけるトルクリプル率は小さい。トルクリプル率とは、時間平均トルクに対する、最大トルクと最小トルクとの差分の比率である。トルクリプル率が小さいほど、モータの駆動中におけるモータの回転速度の変動が低減し、圧力オーバーシュートが発生しにくくなる。図16に示されるように、トルク負荷が小さいとき、各ティース部における磁気飽和の影響が少ない。これに対して、図17に示されるように、トルク負荷が大きいとき、各ティース部における磁気飽和が増加する。例えば、圧縮機内のモータにおいてトルク負荷が大きいとき、シリンダの内部圧力が高まるため、冷媒の不均化反応による圧縮機の故障が起きやすい。
 具体的には、角度θ1は、ステータとロータとの間に発生する磁気吸引力に影響を及ぼす。その結果、角度θ1は、トルクリプル率に影響を及ぼす。
 図18は、定格トルクよりも大きいトルクでモータ1が駆動するときの開き角割合α[%]とトルクリプル率[%]との関係を示すグラフである。
 図18に示されるように、開き角割合αが75%以上のとき、トルクリプル率を効果的に小さくすることができる。すなわち、0.75≦(θ1×N)/360において、トルクリプル率を効果的に小さくすることができる。
 開き角割合αが84%以上のとき、トルクリプル率をより効果的に小さくすることができる。すなわち、0.84≦(θ1×N)/360において、トルクリプル率をより効果的に小さくすることができる。
 開き角割合αが97%を超えるとき、トルクリプル率が急激に大きくなる。すなわち、(θ1×N)/360>0.97において、トルクリプル率が急激に大きくなる。
 したがって、開き角割合αは、75%以上97%以下を満たすことが望ましい。すなわち、ステータ2は、0.75≦(θ1×N)/360≦0.97を満たすことが望ましい。これにより、トルクリプル率を効果的に小さくすることができ、その結果、圧縮機の故障を発生しにくくすることができる。
 開き角割合αは、84%以上97%以下を満たすことがより望ましい。すなわち、ステータ2は、0.84≦(θ1×N)/360≦0.97を満たすことがより望ましい。これにより、トルクリプル率をより効果的に小さくすることができ、その結果、圧縮機の故障をより発生しにくくすることができる。
 さらに、開き角割合αは、87.5%以上92.5%以下を満たすことがより望ましい。すなわち、ステータ2は、0.875≦(θ1×N)/360≦0.925を満たすことがより望ましい。これにより、トルクリプル率をより効果的に小さくすることができ、その結果、圧縮機の故障をより発生しにくくすることができる。
 開き角割合αが90%のとき、トルクリプル率が最小である。したがって、ステータ2が、(θ1×N)/360=0.9を満たすとき、トルクリプル率が最小である。この場合、圧縮機の故障をより発生しにくくすることができる。
 開き角割合αは、87.5%以上97%以下でもよい。すなわち、ステータ2が0.875≦(θ1×N)/360≦0.97を満たすとき、トルクリプル率を効果的に小さくすることができ、その結果、圧縮機の故障を発生しにくくすることができる。
 開き角割合αは、87.5%以上92.5%以下でもよい。すなわち、ステータ2が0.875≦(θ1×N)/360≦0.925を満たすとき、トルクリプル率を効果的に小さくすることができ、その結果、圧縮機の故障を発生しにくくすることができる。
 開き角割合αは、84%以上92.5%以下でもよい。すなわち、ステータ2が0.84≦(θ1×N)/360≦0.925を満たすとき、トルクリプル率を効果的に小さくすることができ、その結果、圧縮機の故障を発生しにくくすることができる。
 コイル27がステータ鉄心2aの各ティース部22aに分布巻きで取り付けられている場合、コイル27からの磁束が、集中巻に比べて、ステータ2に広く分散する。これにより、ロータ3の回転時においてロータ3とステータ2との間に発生する磁気吸引力の変動が緩やかになり、トルクリプル率を小さくすることができる。
 モータ1が、PWM制御方式で動作するインバータを有する場合、インバータ電圧の波形を細かく調整することができる。これにより、インバータ電圧に起因するモータ1のトルク波形を制御することができ、トルクリプル率を小さくすることができる。
 ロータ3の軸方向において、ロータ3がステータ2よりも長い場合、ロータ3の慣性モーメントを増加させることができる。これにより、圧力オーバーシュートの発生を抑えることができる。さらに、ロータ3の軸方向において、ステータ2がロータ3よりも短いとき、モータ1を小型化することができる。したがって、モータ1を有する圧縮機を小型化することができる。
 ロータ3は、少なくとも1つの金属部材39を有する場合、ロータ3の慣性モーメントを増加させることができる。これにより、圧力オーバーシュートの発生を抑えることができる。
 ロータ3は、少なくとも1つの金属部材39を有する場合、xy平面において、各金属部材39の表面積は、ロータ鉄心31(具体的には、金属部材39に面するロータ鉄心31の表面)の表面積よりも大きいことが望ましい。これにより、ロータ3の慣性モーメントをより増加させることができる。これにより、圧力オーバーシュートの発生を効果的に抑えることができる。
 ロータ鉄心31aの半径が、ロータ3の磁極中心部で最大であり、ロータ3の極間部で最小である場合、ロータ3の外周面における磁束密度が磁極中心部で最大になり、ロータ3の外周面における磁束密度が極間部で最小になる。すなわち、磁極中心部から極間部に近づくにつれてロータ3の外周面における磁束密度が小さくなる。これにより、モータ1における誘起電圧の波形が正弦波に近づき、トルクリプル率を小さくすることができる。その結果、圧力オーバーシュートの発生を抑制することができる。
実施の形態2.
 本発明の実施の形態2に係る圧縮機6について説明する。
 図19は、実施の形態2に係る圧縮機6の構造を概略的に示す断面図である。
 圧縮機6は、電動要素としてのモータ1と、ハウジングとしての密閉容器61と、圧縮要素(圧縮装置とも称する)としての圧縮機構62とを有する。圧縮機6は、実施の形態1で説明した冷媒、すなわち、不均化反応を起こす性質の物質を含む冷媒と共に用いられる。この冷媒は、圧縮機6内に予め設けられていてもよい。本実施の形態では、圧縮機6は、ロータリ圧縮機である。ただし、圧縮機6は、ロータリ圧縮機に限定されない。
 圧縮機6内のモータ1は、実施の形態1で説明したモータ1である。モータ1は、圧縮機構62を駆動する。本実施の形態では、モータ1は、永久磁石埋込型電動機であるが、これに限定されない。
 密閉容器61は、モータ1及び圧縮機構62を覆う。密閉容器61の底部には、圧縮機構62の摺動部分を潤滑する冷凍機油が貯留されている。
 圧縮機6は、さらに、密閉容器61に固定されたガラス端子63と、アキュムレータ64と、冷媒を吸入するための吸入パイプ65と、冷媒を突出するための吐出パイプ66とを有する。
 吸入パイプ65及び吐出パイプ66は、密閉容器61に固定されている。
 圧縮機構62は、密閉容器61内に配置されている。本実施の形態では、圧縮機構62は、密閉容器61における下部に配置されている。
 圧縮機構62は、シリンダ62aと、ピストン62bと、上部フレーム62c(第1のフレーム)と、下部フレーム62d(第2のフレーム)と、上部フレーム62c及び下部フレーム62dにそれぞれ取り付けられた複数のマフラ62eとを有する。圧縮機構62は、さらに、シリンダ62a内を吸入側と圧縮側とに分けるベーンを有する。
 圧縮機構62は、モータ1によって駆動される。圧縮機構62は、冷媒を圧縮する。
 モータ1は、密閉容器61における上部に配置されている。具体的には、モータ1は、吐出パイプ66と圧縮機構62との間に位置する。すなわち、モータ1は、圧縮機構62の上方に設けられている。
 モータ1のステータ2は、圧入、焼き嵌めなどの固定方法で密閉容器61内に固定されている。圧入及び焼き嵌めの代わりに溶接でステータ2を密閉容器61に直接取り付けてもよい。
 モータ1のステータ2のコイル(例えば、図1に示されるコイル27)には、ガラス端子63を介して電力が供給される。
 モータ1のロータ(具体的には、ロータ3のシャフト32)は、上部フレーム62c及び下部フレーム62dの各々に備えられた軸受部を介して回転自在に上部フレーム62c及び下部フレーム62dに保持されている。
 ピストン62bには、シャフト32が挿通されている。上部フレーム62c及び下部フレーム62dには、シャフト32が回転自在に挿通されている。上部フレーム62cには、冷媒の逆流を防ぐバルブ弁が設けられている。具体的には、このバルブ弁は、上部フレーム62cとマフラ62eとの間に位置している。上部フレーム62c及び下部フレーム62dは、シリンダ62aの端面を閉塞する。アキュムレータ64は、吸入パイプ65を通して冷媒をシリンダ62aに供給する。
 次に、圧縮機6の動作について説明する。アキュムレータ64から供給された冷媒は、密閉容器61に固定された吸入パイプ65を通してシリンダ62a内に入る。モータ1が回転すると、シャフト32に嵌合されたピストン62bがシリンダ62a内で回転する。これにより、シリンダ62a内で冷媒が圧縮される。
 冷媒は、マフラ62eを通り、密閉容器61内を上昇する。シリンダ62aで冷媒が圧縮され、シリンダ62aの内部圧力が一定以上に達すると、上部フレーム62cに設けられたバルブ弁が開き、吐出パイプ66から圧縮された冷媒が吐出される。このようにして、圧縮された冷媒が、吐出パイプ66を通って冷凍サイクルの高圧側へと供給される。シリンダ62aの内部圧力が一定未満になるとそのバルブ弁は閉じ、冷媒の流れが遮断される。
 実施の形態2に係る圧縮機6は、実施の形態1で説明したモータ1を有するので、圧縮機6の故障を発生しにくくすることができる。
実施の形態3.
 本発明の実施の形態2に係る圧縮機6を有する、空気調和機としての冷凍空調装置7について説明する。
 図20は、実施の形態3に係る冷凍空調装置7の構成を概略的に示す図である。
 冷凍空調装置7は、例えば、冷暖房運転が可能である。図20に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。
 実施の形態3に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。
 室外機71は、圧縮機6と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機6によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。
 室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。
 冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機6によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機6へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。
 以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。
 実施の形態3に係る冷凍空調装置7は、実施の形態1及び2で説明した利点を有する。
 実施の形態3に係る冷凍空調装置7は圧縮機6を有するので、冷凍空調装置7の故障を発生しにくくすることができる。
 以上に説明したように、好ましい実施の形態を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。
 1 モータ、 2 ステータ、 3 ロータ、 6 圧縮機、 7 冷凍空調装置、 21a ヨーク部、 22a ティース部、 27 コイル、 31 ロータ鉄心、 33 永久磁石、 39 金属部材、 61 密閉容器、 62 圧縮機構、 74 凝縮器、 77 蒸発器、 103 インバータ、 223a ティース先端面。

Claims (14)

  1.  不均化反応を起こす性質の物質を含む冷媒と共に用いられる圧縮機内に配置されたモータのロータの外側に配置されるステータであって、
     ヨーク部と、
     N個のティース部と
     を備え、
     前記N個のティース部の各々は、前記ロータに対向するティース先端面を有し、
     前記ロータの軸方向と直交する平面において、前記ティース先端面の両端と前記ロータの回転中心とを通る2直線が成す角度をθ1[度]としたとき、
     0.75≦(θ1×N)/360≦0.97
     を満たすステータ。
  2.  0.84≦(θ1×N)/360≦0.97を満たす請求項1に記載のステータ。
  3.  0.75≦(θ1×N)/360≦0.925を満たす請求項1に記載のステータ。
  4.  前記N個のティース部に分布巻きで取り付けられたコイルをさらに有する請求項1から3のいずれか1項に記載のステータ。
  5.  前記不均化反応を起こす性質の物質は、1,1,2-トリフルオロエチレンである請求項1から4のいずれか1項に記載のステータ。
  6.  前記不均化反応を起こす性質の物質は、1,2-ジフルオロエチレンである請求項1から4のいずれか1項に記載のステータ。
  7.  請求項1から6のいずれか1項に記載のステータと、
     前記ステータの内側に配置された前記ロータと
     を備えるモータ。
  8.  パルス幅変調制御方式で動作し、前記ステータに電力を供給するインバータを有する請求項7に記載のモータ。
  9.  前記ロータの軸方向において、前記ロータは前記ステータよりも長い請求項7又は8に記載のモータ。
  10.  前記ロータは、永久磁石を有する永久磁石埋込型ロータである請求項7から9のいずれか1項に記載のモータ。
  11.  前記ロータは、ロータ鉄心と、前記ロータの軸方向における前記ロータ鉄心の端部に固定された金属部材とを有し、
     前記ロータの軸方向と直交する前記平面において、前記金属部材の表面積は、前記ロータ鉄心の表面積よりも大きい
     請求項7から10のいずれか1項に記載のモータ。
  12.  前記ロータは、ロータ鉄心を有し、
     前記ロータ鉄心の外径は、前記ロータの磁極中心部で最大であり、前記ロータの極間部で最小である請求項7から11のいずれか1項に記載のモータ。
  13.  密閉容器と、
     前記密閉容器内に配置された圧縮装置と、
     前記圧縮装置を駆動する請求項7から12のいずれか1項に記載のモータと
     を備える圧縮機。
  14.  請求項13に記載の圧縮機と、
     熱交換器と
     を備える空気調和機。
PCT/JP2019/028036 2019-07-17 2019-07-17 ステータ、モータ、圧縮機、及び空気調和機 WO2021009862A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021532614A JPWO2021009862A1 (ja) 2019-07-17 2019-07-17 ステータ、モータ、圧縮機、及び空気調和機
US17/617,152 US20220239168A1 (en) 2019-07-17 2019-07-17 Stator, motor, compressor, and air conditioner
AU2019457513A AU2019457513B2 (en) 2019-07-17 2019-07-17 Stator, motor, compressor, and air conditioner
CN201980098023.1A CN114072987A (zh) 2019-07-17 2019-07-17 定子、马达、压缩机以及空气调节机
PCT/JP2019/028036 WO2021009862A1 (ja) 2019-07-17 2019-07-17 ステータ、モータ、圧縮機、及び空気調和機
EP19937698.9A EP4002646A4 (en) 2019-07-17 2019-07-17 STATOR, MOTOR, COMPRESSOR AND AIR CONDITIONING
JP2023175995A JP2024009926A (ja) 2019-07-17 2023-10-11 圧縮機及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028036 WO2021009862A1 (ja) 2019-07-17 2019-07-17 ステータ、モータ、圧縮機、及び空気調和機

Publications (1)

Publication Number Publication Date
WO2021009862A1 true WO2021009862A1 (ja) 2021-01-21

Family

ID=74209743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028036 WO2021009862A1 (ja) 2019-07-17 2019-07-17 ステータ、モータ、圧縮機、及び空気調和機

Country Status (6)

Country Link
US (1) US20220239168A1 (ja)
EP (1) EP4002646A4 (ja)
JP (2) JPWO2021009862A1 (ja)
CN (1) CN114072987A (ja)
AU (1) AU2019457513B2 (ja)
WO (1) WO2021009862A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240735A1 (ja) * 2019-05-29 2020-12-03 三菱電機株式会社 電動機及びそれを備えた圧縮機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247191B2 (ja) * 1983-02-28 1990-10-18 Nippon Denso Co Kaitendenkyohoorukoa
JP2006280087A (ja) * 2005-03-29 2006-10-12 Denso Corp 回転電機
JP2012244783A (ja) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp 磁石埋め込み型回転子、電動機、圧縮機、空気調和機、および、電気自動車
WO2015136977A1 (ja) 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2016031057A1 (ja) * 2014-08-29 2016-03-03 三菱電機株式会社 同期電動機
JP2018112396A (ja) * 2014-03-14 2018-07-19 三菱電機株式会社 冷凍サイクル装置
JP2019030074A (ja) * 2017-07-27 2019-02-21 株式会社デンソー 回転電機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1618771A (en) * 1925-03-24 1927-02-22 Gen Electric Synchronous induction motor
JP3415406B2 (ja) * 1997-09-05 2003-06-09 トヨタ自動車株式会社 磁石内包型交流電動機およびその設計方法
US6940205B1 (en) * 1997-09-08 2005-09-06 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US6867526B2 (en) * 2001-09-05 2005-03-15 Koyo Seiko Co., Ltd. Brushless DC motor
JP4586717B2 (ja) * 2004-12-10 2010-11-24 日本電産株式会社 モータ
JP5253098B2 (ja) * 2008-11-07 2013-07-31 トヨタ自動車株式会社 回転電機
WO2011149245A2 (ko) * 2010-05-24 2011-12-01 학교법인 두원학원 전동식압축기 전동기의 구조
JP6282276B2 (ja) * 2013-07-29 2018-02-21 三菱電機株式会社 ヒートポンプ装置
WO2015063871A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
JP2015208053A (ja) * 2014-04-17 2015-11-19 日立アプライアンス株式会社 永久磁石式回転電機及びそれを用いた圧縮機
JP5897062B2 (ja) * 2014-05-08 2016-03-30 三菱電機株式会社 圧縮機用電動機及び圧縮機及び冷凍サイクル装置及び圧縮機用電動機の製造方法
JP6537623B2 (ja) * 2015-11-04 2019-07-03 三菱電機株式会社 ステータ、電動機、圧縮機、及び冷凍空調装置
JP6655500B2 (ja) * 2016-08-09 2020-02-26 株式会社ミツバ 電動モータ
US11175080B2 (en) * 2016-10-28 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247191B2 (ja) * 1983-02-28 1990-10-18 Nippon Denso Co Kaitendenkyohoorukoa
JP2006280087A (ja) * 2005-03-29 2006-10-12 Denso Corp 回転電機
JP2012244783A (ja) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp 磁石埋め込み型回転子、電動機、圧縮機、空気調和機、および、電気自動車
WO2015136977A1 (ja) 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
JP2018112396A (ja) * 2014-03-14 2018-07-19 三菱電機株式会社 冷凍サイクル装置
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2016031057A1 (ja) * 2014-08-29 2016-03-03 三菱電機株式会社 同期電動機
JP2019030074A (ja) * 2017-07-27 2019-02-21 株式会社デンソー 回転電機

Also Published As

Publication number Publication date
AU2019457513A1 (en) 2022-01-27
CN114072987A (zh) 2022-02-18
JP2024009926A (ja) 2024-01-23
US20220239168A1 (en) 2022-07-28
JPWO2021009862A1 (ja) 2021-11-18
AU2019457513B2 (en) 2023-04-27
EP4002646A4 (en) 2022-07-13
EP4002646A1 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
JP6537623B2 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置
US7453181B2 (en) Permanent magnet synchronous motor and compressor using the same
US7902713B2 (en) Self-starting type permanent magnet synchronous motor and a compressor using the same
WO2018078840A1 (ja) 駆動装置、空気調和機および電動機の駆動方法
JP6727314B2 (ja) ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法
WO2020105131A1 (ja) 駆動装置、圧縮機、及び空気調和機
WO2018078838A1 (ja) 駆動装置および空気調和機、並びに圧縮機の制御方法
US11863020B2 (en) Motor, compressor, and air conditioner
WO2019021374A1 (ja) 駆動装置、空気調和機および駆動方法
JPWO2019021373A1 (ja) 駆動装置、圧縮機、空気調和機および駆動方法
JP2024009926A (ja) 圧縮機及び空気調和機
WO2020194504A1 (ja) ロータ、モータ、圧縮機、及び空気調和機
JP7150181B2 (ja) モータ、圧縮機、及び空気調和機
WO2020213081A1 (ja) ロータ、モータ、圧縮機、及び空気調和機
WO2019146006A1 (ja) 電動機、圧縮機および空気調和装置
JP7194165B2 (ja) 電動機、圧縮機、送風機、及び冷凍空調装置
JP2011097773A (ja) 永久磁石モータおよびエアコンディショナ
US20230187986A1 (en) Rotor, motor, compressor, and refrigeration cycle apparatus
US20230198328A1 (en) Stator, motor, compressor, refrigeration cycle apparatus, and air conditioner
WO2020152792A1 (ja) 駆動装置、圧縮機、冷凍空調装置、および電動機の駆動方法
JP7038891B2 (ja) モータ、圧縮機および空気調和装置
WO2023148844A1 (ja) 電動機、圧縮機および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019457513

Country of ref document: AU

Date of ref document: 20190717

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019937698

Country of ref document: EP

Effective date: 20220217