JP6727314B2 - ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法 - Google Patents

ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法 Download PDF

Info

Publication number
JP6727314B2
JP6727314B2 JP2018538986A JP2018538986A JP6727314B2 JP 6727314 B2 JP6727314 B2 JP 6727314B2 JP 2018538986 A JP2018538986 A JP 2018538986A JP 2018538986 A JP2018538986 A JP 2018538986A JP 6727314 B2 JP6727314 B2 JP 6727314B2
Authority
JP
Japan
Prior art keywords
core portion
plates
core
stator core
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018538986A
Other languages
English (en)
Other versions
JPWO2018051407A1 (ja
Inventor
勇二 廣澤
勇二 廣澤
昌弘 仁吾
昌弘 仁吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018051407A1 publication Critical patent/JPWO2018051407A1/ja
Application granted granted Critical
Publication of JP6727314B2 publication Critical patent/JP6727314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/42Means for preventing or reducing eddy-current losses in the winding heads, e.g. by shielding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、電動機に用いられるステータコアに関する。
一般に、ロータとステータとを有する電動機が用いられている。鉄損の増加、特に渦電流損の増加を防止するために、ステータ用の構成要素として、複数の薄い電磁鋼板が積層されたステータコアがよく用いられている。例えば、電動機の回転軸方向に直交する方向(例えば、径方向)に積層された複数の電磁鋼板を有するステータコアが提案されている(例えば、特許文献1参照)。
特開2010−17002号公報
しかしながら、電動機の回転軸方向に直交する方向(例えば、径方向)に積層された複数の電磁鋼板を有するステータコアは、電動機の回転軸方向に直交する方向に対する剛性が低下するため、電動機の駆動中における振動(例えば、回転軸方向に直交する方向の振動)及び騒音の原因となり得る。
本発明の目的は、電動機の駆動中における振動及び騒音を低減するステータコアを提供することである。
本発明のステータコアは、第1の方向に積層された複数の第1のプレートを有する第1のコア部と、前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、前記第1のコア部と前記第2のコア部との間に挟まれている第3のコア部とを有し、前記第3のコア部は、前記第1の方向に直交する第2の方向に積層された複数の第3のプレートによって形成されたヨーク部を有する。
本発明によれば、電動機の駆動中における振動及び騒音を低減するステータコアを提供することができる。
本発明の実施の形態1に係る電動機の構造を概略的に示す断面図である。 分割コア部の構造を概略的に示す斜視図である。 ステータコアの構造を概略的に示す分解図である。 第1のコア部及び第2のコア部の一例を概略的に示す平面図である。 第1のコア部の他の例を概略的に示す斜視図である。 第1のコア部のさらに他の例を概略的に示す斜視図である。 第3のコア部の構造を概略的に示す斜視図である。 ステータコアの構造を概略的に示す平面図である。 第1のインシュレータの構造を概略的に示す平面図である。 分割コア部の構造を概略的に示す断面図である。 ロータの構造を概略的に示す断面図である。 ステータコアの製造工程の一例を示すフローチャートである。 本発明の実施の形態2に係る駆動装置の構成を概略的に示す図である。 本発明の実施の形態3に係る圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態4に係る空気調和機の構成を概略的に示す図である。
実施の形態1.
図1は、本発明の実施の形態1に係る電動機1の構造を概略的に示す断面図である。矢印D1は、ステータ2、ステータコア20、及びロータ3の各々の外周に沿った方向(以下“周方向”という)を示す。各図に示されるZRW直交座標系において、Z軸方向(Z軸)は、電動機1のシャフト(後述するシャフト33)の軸線A1(軸心)と平行な方向(以下“回転軸方向”という)を示し、R軸方向(R軸)は、Z軸方向に直交する方向を示し、W軸方向(W軸)は、Z軸方向及びR軸方向の両方に直交する方向を示す。
電動機1は、ステータ2と、ロータ3とを有する。電動機1は、例えば、永久磁石埋込型電動機である。
ステータ2は、ステータコア20と、第1のインシュレータ24aと、第2のインシュレータ24bと、巻線25とを有する。ステータ2は、軸線A1(ロータ3の回転軸)を中心とする周方向に円環状に形成されている。ステータ2の内側に、エアギャップを介してロータ3が挿入されている。第1のインシュレータ24a及び第2のインシュレータ24bは、ステータコア20を絶縁する。
ステータコア20は、第1のコア部21と、第2のコア部22と、第3のコア部23とを有する(後述する図2及び3参照)。本実施の形態では、ステータ2は、複数の分割コア部200によって形成されている。複数の分割コア部200は、軸線A1を中心とする周方向に円環状に配列されている。ただし、ステータ2は、複数の分割コア部200によって形成されていなくてもよい。例えば、ステータコア20は、円環状の複数の種々のプレート(例えば、電磁鋼板及びアモルファス材料など)を積層することによって形成されていてもよい。
分割コア部200の構造について以下に説明する。
図2は、分割コア部200の構造を概略的に示す斜視図である。
本実施の形態では、ステータ2が複数の分割コア部200によって形成されているため、各分割コア部200は、第1のコア部21(分割された第1のコア部21)と、第2のコア部22(分割された第2のコア部22)と、第3のコア部23(分割された第3のコア部23)と、第1のインシュレータ24aと、第2のインシュレータ24bと、巻線25とを有する。ただし、図2に示される例では、巻線25は図示されていない。
第1のインシュレータ24aは、ステータコア20と組み合わされる。本実施の形態では、第1のインシュレータ24aは、回転軸方向におけるステータコア20の両端部に備えられている。ただし、第1のインシュレータ24aは、回転軸方向におけるステータコア20の一方の端部に備えられていてもよい。本実施の形態では、第1のインシュレータ24aは、絶縁性樹脂である。
第2のインシュレータ24bは、例えば、薄いPET(ポリエチレンテレフタレート)フィルムである。PETフィルムの厚さは、例えば、0.15mmである。第2のインシュレータ24bは、ステータコア20のティース部(後述するティース部222及び232)の側面を覆う。
図3は、ステータコア20(分割されたステータコア20)の構造を概略的に示す分解図である。
第1のコア部21は、第1の方向に積層された複数の第1のプレート211を有する。言い換えると、複数の第1のプレート211は、第1の方向に垂直な面に対して平行に積層されている。本実施の形態では、第1の方向は、Z軸方向である。第1のプレート211は、例えば、電磁鋼板である。第1のプレート211は、打ち抜き処理(プレス打ち抜き加工)によって、予め定められた形状に形成されている。第1のプレート211の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、第1のプレート211の厚さは、0.35mmである。ただし、第1のプレート211の形状及び厚さは本実施の形態に限定されない。各第1のプレート211は、隣接する第1のプレート211同士が、後述するカシメ223によって互いに締結されている。
第2のコア部22は、第1の方向に積層された複数の第2のプレート212を有する。言い換えると、複数の第2のプレート212は、第1の方向に垂直な面に対して平行に積層されている。第2のプレート212は、例えば、電磁鋼板である。第2のプレート212は、打ち抜き処理によって、予め定められた形状に形成されている。第2のプレート212の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、第2のプレート212の厚さは、0.35mmである。ただし、第2のプレート212の形状及び厚さは本実施の形態に限定されない。各第2のプレート212は、隣接する第2のプレート212同士が、後述するカシメ223によって互いに締結されている。
本実施の形態では、第1のコア部21と第2のコア部22とは、互いに同じ材料によって形成されており、互いに同じ構造である。すなわち、第1のプレート211及び第2のプレート212は、互いに同じ材料で形成されており、互いに同じ構造を持つ。ただし、第1のコア部21と第2のコア部22とは、互いに異なる材料によって形成されていてもよく、互いに異なる構造を持っていてもよい。すなわち、第1のプレート211及び第2のプレート212は、互いに異なる材料で形成されていてもよく、互いに異なる構造を持っていてもよい。複数の第1のプレート211及び複数の第2のプレート212の少なくとも一方は、複数の電磁鋼板であることが望ましい。
第3のコア部23は、第1の方向(Z軸方向)に直交する方向に積層された複数の第3のプレート213を有する。第1の方向に直交する方向は、例えば、R軸方向(第2の方向)又はW軸方向(第3の方向)である。言い換えると、複数の第3のプレート213は、第1の方向に垂直な面に対して垂直に積層されている。
第3のコア部23は、第1のコア部21と第2のコア部22との間に挟まれている。言い換えると、第1のコア部21と第2のコア部22との間に第3のコア部23が固定されている。本実施の形態では、第1の方向における第3のコア部23の一端側に、第1のコア部21が固定されており、第1の方向における第3のコア部23の他端側に、第2のコア部22が固定されている。
第3のプレート213は、例えば、アモルファス材料(例えば、アモルファス金属)又はナノ結晶材料(例えば、ナノ結晶金属)によって形成された薄板である。第3のプレート213は、例えば、矩形である。
第1のコア部21及び第2のコア部22の少なくとも1つは、ステータコア20の径方向(図3に示される例ではR軸方向)において第3のコア部23よりも大きくてもよい。
複数の第3のプレート213の各々は、複数の第1のプレート211の各々よりも薄い。複数の第3のプレート213の各々は、複数の第2のプレート212の各々よりも薄い。第3のプレート213の厚さは、例えば、5μmから50μmである。本実施の形態では、第3のプレート213の厚さは、20μmである。ただし、第3のプレート213の形状及び厚さは本実施の形態に限定されない。各第3のプレート213は、隣接する第3のプレート213同士を、金型を用いた成形、接着剤、又は溶接によって互いに固定することができる。
図4は、第1のコア部21及び第2のコア部22の一例を概略的に示す平面図である。本実施の形態では、第1のコア部21及び第2のコア部22は、互いに同じ構造であるので、図4には第1のコア部21の構造を示す。
第1のコア部21は、ヨーク部221と、ティース部222と、カシメ223と、インシュレータ固定部224とを有する。
ティース部222は、ヨーク部221から径方向(図4に示される例では、−R方向、すなわち、ステータコア20の径方向の内向き)に延在している。言い換えると、ティース部222は、ヨーク部221から軸線A1に向けて突出している。ティース部222は、径方向における先端である先端部222aを有する。先端部222aは、ステータコア20の周方向に向けて広がるように形成されている。
インシュレータ固定部224は、第1のインシュレータ24aを固定する。本実施の形態では、インシュレータ固定部224は、第1のインシュレータ24aのインシュレータ位置決め部241(後述する図9参照)が挿入される凹部である。
図5は、第1のコア部21の他の例を概略的に示す斜視図である。
図6は、第1のコア部21のさらに他の例を概略的に示す斜視図である。
図5及び6に示される第1のコア部21の構造は、第2のコア部22にも適用可能である。
図5に示されるように、インシュレータ固定部224は、ティース部222に形成されていてもよい。さらに、インシュレータ固定部224は、突起であってもよい。この場合、第1のインシュレータ24aのインシュレータ位置決め部241は、凹状に形成される。
図6に示されるように、インシュレータ固定部224は、ティース部222の側面に形成されていてもよい。この場合、第1のインシュレータ24aのインシュレータ位置決め部241は、インシュレータ固定部224と嵌合可能な形状及び位置に形成される。
図7は、第3のコア部23の構造を概略的に示す斜視図である。
第3のコア部23は、第1の方向に直交する第2の方向に積層された複数の第3のプレート213(図3)によって形成されたヨーク部231を有する。ヨーク部231の第1の方向における長さz1は、ヨーク部231の第2の方向における幅r1よりも長い。本実施の形態では、第2の方向は、径方向(例えば、図2,3,及び7では、R軸方向)である。ただし、第2の方向は、径方向に限定されない。例えば、第3のプレート213の数が少なくなるように、第2の方向を選択することがコストの観点から望ましい。
第3のコア部23は、第1の方向に直交する第3の方向に積層された複数の第3のプレート213によって形成されたティース部232を有する。ティース部232の第1の方向における長さz2は、ティース部232の第3の方向における幅w1よりも長い。本実施の形態では、長さz2は、長さz1と等しい。本実施の形態では、第3の方向は、第1の方向及び第2の方向に直交する。例えば、第3の方向は、図2,3,及び7では、W軸方向である。ただし、第3の方向は、W軸方向に限定されない。例えば、第3のプレート213の数が少なくなるように、第3の方向を選択することがコストの観点から望ましい。
ティース部232は、ヨーク部231から径方向(すなわち、ステータコア20の径方向の内向き)に延在している。言い換えると、ティース部232は、ヨーク部231から軸線A1に向けて突出している。ティース部232は、径方向における先端である先端部232aを有する。先端部232aは、ステータコア20の周方向に向けて広がるように形成されている。
図8は、ステータコア20の構造を概略的に示す平面図である。
両側に隣接するステータコア20のヨーク部221が互いに連結されていることにより、隣接するヨーク部221が互いに連結されている。すなわち、図1に示される各分割コア部200は、両側に隣接する分割コア部200のステータコア20(分割されたステータコア20)が互いに連結されていることにより、連結されている。隣接する第1のコア部21が互いに連結されてもよく、隣接する第2のコア部22が互いに連結されてもよい。2つのヨーク部221及び2つのティース部222によって囲まれた領域がスロット部26である。
ステータコア20の各ティース部222は、スロット部26を介して隣接している。したがって、複数のティース部222及び複数のスロット部26は、周方向に、交互に配列されている。周方向における複数のティース部222の配列ピッチ(すなわち、周方向におけるスロット部26の幅)は等間隔である。
複数のスロット部26は、周方向に等間隔に形成されている。本実施の形態では、ステータ2に、9個のスロット部26が形成されている。
ステータコア20は、電動機1のトルクを増加させるため、巻線25の占積率(スロット部26の断面積に対する巻線25の断面積の割合)が高くなるように形成されていることが望ましい。
図9は、第1のインシュレータ24aの構造を概略的に示す平面図である。
第1のインシュレータ24aは、ステータコア20のインシュレータ固定部224と組み合わされるインシュレータ位置決め部241を有する。本実施の形態では、インシュレータ位置決め部241は、インシュレータ固定部224に挿入される突起である。
図10は、分割コア部200の構造を概略的に示す断面図である。
巻線25は、第1のインシュレータ24a及び第2のインシュレータ24bを介してステータコア20に巻回されており、回転磁界を発生させるコイルを形成する。
巻線25は、例えば、マグネットワイヤである。本実施の形態では、ステータ2は、3相であり、巻線25(コイル)の結線は、Y結線(スター結線)である。巻線25(コイル)のターン数及び線径は、電動機1の回転数、トルク、電圧仕様、及びスロット部26の断面積等に応じて定められる。本実施の形態では、巻線25の線径は、1.0mmである。本実施の形態では、ステータコア20には、巻線25が80ターン巻回されている。ただし、巻線25の線径及びターン数は、これらの例に限られない。
本実施の形態では、巻線25(コイル)の巻線方式は、集中巻である。例えば、分割されたステータコア20を円環状に配列する前の状態(例えば、分割されたステータコア20が直線状に配列された状態)で、ステータコア20に巻線25を巻回することができる。巻線25が巻回されたステータコア20は、円環状に折り畳まれて、溶接等によって固定される。
ロータ3の構造について以下に説明する。
図11は、ロータ3の構造を概略的に示す断面図である。
ロータ3は、ロータコア31と、複数の永久磁石32と、シャフト33と、複数の磁石挿入孔34と、複数のフラックスバリア35(漏れ磁束抑制穴)と、複数の風穴36とを有する。
ロータ3は、軸線A1を中心として回転自在である。ロータ3は、ステータ2の内側に、エアギャップを介して回転自在に配置されている。軸線A1は、ロータ3の回転中心であり、且つ、シャフト33の軸線である。ロータ3とステータ2との間(具体的には、ロータ3の外側表面とステータ2の内側表面との間)に形成されるエアギャップは、例えば、0.3mmから1mmである。巻線25に電流を供給することにより、回転磁界が発生し、ロータ3が回転する。巻線25に供給される電流は、指令回転数(ロータ3の回転数)に同期した周波数を持つ電流である。
本実施の形態では、ロータ3は、永久磁石埋込型である。ロータコア31には、ロータ3の周方向に複数の磁石挿入孔34が形成されている。磁石挿入孔34は、永久磁石32が挿入される空隙である。各磁石挿入孔34には、複数の永久磁石32が配置されている。ただし、各磁石挿入孔34に1つの永久磁石32を配置してもよい。複数の永久磁石32は、ロータ3の径方向に磁化されるように着磁されており、磁極の位置関係は互いに同じである。磁石挿入孔34の数は、ロータ3の磁極数に対応する。本実施の形態では、ロータ3の磁極数は、6極である。ただし、ロータ3の磁極数は、2極以上であればよい。
ロータコア31は、複数の電磁鋼板を積層することにより形成されている。ロータコア31の各電磁鋼板の厚さは、0.1mmから0.7mmである。本実施の形態では、ロータコア31の各電磁鋼板の厚さは、0.35mmである。ただし、ロータコア31の各電磁鋼板の形状及び厚さは、本実施の形態に限定されない。ロータコア31の各電磁鋼板は、隣接する電磁鋼板同士が、カシメによって互いに締結されている。
シャフト33は、ロータコア31と連結されている。具体的には、ロータコア31に形成された軸穴に、焼き嵌め又は圧入などによって固定されている。これにより、ロータコア31が回転することによって発生する回転エネルギーは、シャフト33に伝達される。
フラックスバリア35は、ロータ3の周方向において磁石挿入孔34に隣接する位置に形成されている。フラックスバリア35は、漏れ磁束を低減する。隣接する永久磁石32間での磁束の短絡を防ぐため、フラックスバリア35とロータ3の外側表面(外縁)との間の長さは短いことが望ましい。フラックスバリア35とロータ3の外側表面との間の長さは、例えば、0.35mmである。風穴36は、貫通孔である。例えば、圧縮機に電動機1を用いたとき、冷媒が風穴36を通過することができる。
永久磁石32として、例えば、ネオジウム(Nd)、鉄(Fe)、及びボロン(B)を主成分とする希土類磁石を用いることができる。Nd−Fe−B永久磁石の保磁力は、温度により低下する性質を持つ。例えば、圧縮機のように100℃以上の高温雰囲気中でNd希土類磁石を用いた電動機を使用する場合、磁石の保磁力は温度により劣化(約−0.5%/ΔKから−0.6%/ΔK)するため、Dy(ディスプロシウム)元素を添加して保磁力を高める必要がある。保磁力は、Dy元素の含有量にほぼ比例して向上する。一般的な圧縮機では、電動機の雰囲気温度上限は約150℃であり、20℃に対して、約130℃の温度上昇の範囲で使用する。例えば、−0.5%/ΔKの温度係数では保磁力は65%低下する。
圧縮機の最大負荷で減磁しないようにするためには、1100A/mから1500A/m程度の保磁力が必要である。150℃の雰囲気温度中で保磁力を保証するためには、常温保磁力を1800A/mから2300A/m程度に設計する必要がある。
Nd−Fe−B永久磁石にDy元素が添加されていない状態では、常温保磁力は約1800A/mである。約2300kA/mの保磁力を得るためには、約2wt%のDy元素を添加する必要がある。しかしながら、Dy元素を添加すると、保磁力特性は向上するが、残留磁束密度特性が低下する。残留磁束密度が低下すると、電動機のマグネットトルクが低下し、通電電流が増加するため、銅損が増加する。そのため、モータ効率を考慮すると、Dy添加量を低減することが望ましい。
ステータコア20の製造方法について以下に説明する。
図12は、ステータコア20の製造工程の一例を示すフローチャートである。
ステップS1では、予め定められた構造を持つ複数の第1のプレート211を形成し、複数の第1のプレート211を第1の方向(Z軸方向)に積層することにより第1のコア部21を形成する。第1のプレート211は、例えば、電磁鋼板である。例えば、打ち抜き処理(プレス打ち抜き加工)によって予め定められた構造を持つように第1のプレート211を形成する。複数の第1のプレート211は、例えば、カシメ223によって締結しながら第1の方向に積層される。複数の第1のプレート211を、ボルト固定又はリベット固定によって固定しながら第1の方向に積層してもよい。
ステップS2では、予め定められた構造を持つ複数の第2のプレート212を形成し、複数の第2のプレート212を第1の方向に積層することにより第2のコア部22を形成する。第2のプレート212は、例えば、電磁鋼板である。例えば、打ち抜き処理によって予め定められた構造を持つように第2のプレート212を形成する。複数の第2のプレート212は、例えば、カシメ223によって締結しながら第1の方向に積層される。複数の第2のプレート212を、ボルト固定又はリベット固定によって固定しながら第1の方向に積層してもよい。
ステップS3では、予め定められた構造を持つ複数の第3のプレート213を形成し、複数の第3のプレート213を第1の方向に直交する方向に積層することにより第3のコア部23を形成する。第3のプレート213は、例えば、アモルファス材料(例えば、アモルファス金属)又はナノ結晶材料(例えば、ナノ結晶金属)によって形成される。例えば、シャー切断によってアモルファス材料又はナノ結晶材料を予め定められた形状に切断する。本実施の形態では、第3のプレート213は矩形である。
第3のコア部23のヨーク部231は、第1の方向に直交する第2の方向に積層される。例えば、金型を用いた成形、接着剤、又は溶接によって複数の第3のプレート213を固定し、複数の第3のプレート213をR軸方向に積層する。これにより、ヨーク部231が形成される。積層が容易な方向を第2の方向として選択してもよい。
第3のコア部23のティース部232は、第1の方向に直交する第3の方向に積層される。例えば、金型を用いた成形、接着剤、又は溶接によって複数の第3のプレート213を固定し、複数の第3のプレート213をW軸方向に積層する。積層が容易な方向を第3の方向として選択してもよい。複数の第3のプレート213のうちのW軸方向における両端側の第3のプレート213の先端は、第1のコア部21及び第2のコア部22の先端部222aの形状に合わせて折り曲げられる。これにより、ティース部232が形成される。
さらに、ヨーク部231とティース部232とを、例えば、金型を用いた成形、接着剤、又は溶接によって固定することにより、第3のコア部23を形成することができる。
第3のコア部23を形成する工程において、第3のコア部23に応力が発生しやすい。具体的には、第3のプレート213の積層を行うときに第3のコア部23に応力が発生しやすい。第3のコア部23に生じる応力は、第3のコア部23の磁気特性の劣化を引き起こす。そのため、ステップS3において、第3のコア部23を形成した後に、第3のコア部23に熱処理(焼なまし)を施してもよい。これにより、応力が解放され、ひずみが除去される。その結果、第3のコア部23の磁気特性が改善される。第3のプレート213として用いられるアモルファス材料及びナノ結晶材料は、応力を起因とする磁気特性の劣化が顕著であるので、熱処理の効果が高い。
ステップS4では、第1のコア部21、第2のコア部22、及び第3のコア部23を連結する。具体的には、第1のコア部21及び第2のコア部22を、第3のコア部23を挟んで固定する。言い換えると、第1のコア部21と第2のコア部22との間に第3のコア部23を固定する。例えば、金型を用いた成形、接着剤、又は溶接によって第1の方向における第3のコア部23の一端側に、第1のコア部21を固定し、第1の方向における第3のコア部23の他端側に、第2のコア部22を固定する。第1のコア部21、第2のコア部22、及び第3のコア部23は、接着剤、溶接、及び金型を用いた成形ではなく、巻線25を巻回することによって固定してもよい。
上記の各工程により、ステータコア20を製造することができる。
実施の形態1に係る電動機1のステータ2のステータコア20の効果について以下に説明する。
回転軸方向に直交する方向(例えば、周方向又は径方向)に複数のプレートが積層されることにより形成されたステータコアは、剛性が低下する場合がある。例えば、ステータコアの複数のプレート間に隙間がある場合、回転軸方向に直交する方向に対する剛性が低下する。さらに、この隙間によって、電動機の駆動中における振動(例えば、回転軸方向に直交する方向の振動)及び騒音の原因となり得る。
実施の形態1に係る電動機1のステータコア20は、第1の方向に積層された複数の第1のプレート211を有する第1のコア部21と、第1の方向に積層された複数の第2のプレート212を有する第2のコア部22と、第1の方向に直交する方向に積層された複数の第3のプレート213を有する第3のコア部23とを有する。第3のコア部23は、第1のコア部21と第2のコア部22との間に挟まれている。第1の方向に積層された複数の第1のプレート211を有する第1のコア部21と、第1の方向に積層された複数の第2のプレート212を有する第2のコア部22とによって、回転軸方向に直交する方向に対する剛性を高めることができる。これにより、電動機1の駆動中における振動及び騒音を低減することができる。
例えば、圧縮機の駆動源として電動機1を用いるとき、電動機1は、圧縮機のハウジングである密閉容器の内壁に取り付けられる。この場合、ステータコア20に大きな応力(回転軸方向に直交する方向における応力)が生じる。通常、ステータコアに圧縮応力が生じると、鉄損が増加する。実施の形態1に係る電動機1によれば、回転軸方向に直交する方向に対する剛性を高めることができるので、ステータコア20の形状を維持することができ、鉄損の増加を抑制することができる。鉄損の増加を防止することによってモータ効率を高めることができる。さらに、電動機1を密閉容器に強固に固定することができ、圧縮機内において電動機1の振動及び騒音を低減することができる。
電動機1の第1のコア部21及び第2のコア部22のうちの少なくとも1つは、ステータコア20の径方向において第3のコア部23よりも大きくてもよい。これにより、圧縮機の密閉容器の内壁に、第1のコア部21及び第2のコア部22の少なくとも一方を取り付けることができる。その結果、電動機1を圧縮機の密閉容器の内壁に取り付けたときに、ステータコア20(特に、第3のコア部23)に生じる圧縮応力が低減され、鉄損の増加を防止することができる。
一般に、ステータコアでは、ヒステリシス損及び渦電流損などの鉄損(エネルギー損失)が発生する。ヒステリシス損は、ステータコアの磁区が交番磁界によって磁界の向きを変えるときのエネルギー損失であり、理論的にはステータコアに生じる磁束変化の周波数に比例する。渦電流損は、ステータコア(例えば、電磁鋼板)の内部に発生する渦電流によって生じるエネルギー損失である。渦電流損は、理論的にはステータコアに生じる磁束変化の周波数の2乗に比例し、更にステータコアの積層プレートの各々の厚さの2乗にも比例する。したがって、鉄損の増加、特に渦電流損の増加を防止するために、積層プレートの厚さを薄くすることが有効である。
実施の形態1に係る電動機1において、ステータコア20の複数の第3のプレート213の各々は、複数の第1のプレート211の各々よりも薄い。これにより、ステータコア20(特に第3のコア部23)における渦電流損を低減することができる。同様に、複数の第3のプレート213の各々は、複数の第2のプレート212の各々よりも薄い。これにより、ステータコア20(特に第3のコア部23)における渦電流損を低減することができる。
第3のコア部23のヨーク部221の第1の方向における長さは、第3のコア部23のヨーク部221の第2の方向における幅よりも長い。さらに、第3のコア部23のティース部222の第1の方向における長さは、ティース部222の第3の方向における幅よりも長い。これにより、第3のコア部23のヨーク部221を形成するための第3のプレート213の数を低減することができる。同様に、第3のコア部23のティース部222を形成するための第3のプレート213の数を低減することができる。したがって、第3のプレート213の切断及び接着等の製造工程を削減することができ、第3のコア部23を形成するための工具の寿命を延ばすことができる。
複数の第3のプレート213は、アモルファス材料又はナノ結晶材料によって形成されている。アモルファス材料及びナノ結晶材料は、優れた磁気特性を持ち、電磁鋼板の3%から15%程度の厚さで第3のプレート213として形成される。例えば、0.2mmから0.5mm程度の厚さの電磁鋼板がステータコアに用いられるのに対し、アモルファス材料及びナノ結晶材料は15μmから30μm程度の厚さに形成することができる。例えば、通常ステータコアに用いられる電磁鋼板の鉄損が1.2W/kg(50Hzで磁束密度1.0T)程度であるのに対し、アモルファス材料の鉄損は、0.05W/kg(50Hzで磁束密度1.0T)程度である。したがって、渦電流損は積層プレートの厚さの2乗に比例して小さくなるため、電動機が高周波で運転される場合であっても鉄損の増加を防止することが可能となる。
第1のコア部21は、第1のインシュレータ24aを固定するインシュレータ固定部224を有する。同様に、第2のコア部22が、第1のインシュレータ24aを固定するインシュレータ固定部224を有してもよい。これにより、第3のコア部23にインシュレータ固定部224を形成せずに、ステータコア20に第1のインシュレータ24aを固定することができる。
ステータコア20の製造方法の効果を以下に説明する。
ステータコア20の製造方法によれば、回転軸方向に直交する方向に対する剛性の高いステータコア20を製造することができる。これにより、電動機1の駆動中における振動及び騒音を低減可能なステータコア20を製造することができる。
一般に、アモルファス材料及びナノ結晶材料は、一般的な電磁鋼板と比較して3倍から6倍の硬度(例えば、ビッカース硬度)を持つため、加工性が悪い。例えば、電磁鋼板のビッカース硬度が187GN/m程度であるのに対して、アモルファス材料のビッカース硬度は900GN/m程度である。さらに、アモルファス材料及びナノ結晶材料は、圧縮応力による磁気特性劣化が顕著であるため、カシメなどの圧縮応力が発生しうる固定方法は望ましくない。したがって、ステータコアの材料に応じて固定方法を選択することが望ましい。
本実施の形態では、金型を用いた成形、接着剤、又は溶接によって複数の第3のプレート213を固定するので、ステータコア20の磁気特性の劣化を防ぎながら、第3のコア部23を強固に固定することができる。さらに、第1のコア部21及び第2のコア部22の各々を、カシメ223によって固定することにより、ステータコア20全体としての磁気特性の劣化を防ぎながら剛性を高めることができる。
上述のように、アモルファス材料及びナノ結晶材料は、一般的な電磁鋼板と比較して3倍から6倍の硬度(例えば、ビッカース硬度)を持つため、打ち抜き処理が困難である。本実施の形態では、シャー切断によってアモルファス材料又はナノ結晶材料を矩形に切断することにより、第3のプレート213を容易に形成することができる。
第3のコア部23を形成する工程において、第3のコア部23を形成した後に、第3のコア部23に熱処理を施すことにより、応力が解放され、ひずみが除去される。その結果、第3のコア部23の磁気特性を改善することができる。
実施の形態2.
次に、本発明の実施の形態2に係る駆動装置4について説明する。
図13は、駆動装置4の構成を概略的に示す図である。
駆動装置4は、実施の形態1に係る電動機1と、電動機1を駆動する駆動回路41とを有する。
駆動回路41は、実施の形態1に係る電動機1を駆動する回路である。実施の形態1に係る電動機1は、駆動回路41によるPWM(Pulse Width Modulation)制御に基づく可変速駆動を行う。
外部電源としての商用交流電源Eから交流の電力が駆動回路41に供給される。商用交流電源Eから供給された交流電圧は、整流回路42で直流電圧に変換される。整流回路42は、例えば、商用交流電源Eから印加される電圧を昇圧するチョッパー回路、及び直流電圧を平滑にする平滑コンデンサなどを有する。
整流回路42で変換された直流電圧は、インバータ回路43で可変周波数の交流電圧に変換され、電動機1(具体的には、巻線25)に印加される。電動機1は、インバータ回路43から供給される可変周波数の交流電力により駆動される。
インバータ回路43は、例えば、3相ブリッジのインバータ回路である。インバータ回路43は、インバータ主素子としての6個のIGBT(絶縁ゲートバイポーラトランジスタ)43aと、6個のSiC−SBD(ショットキーバリアダイオード)43bとを有する。各SiC−SBD43bには、フライホイルダイオード(FRD)としてシリコンカーバイド(SiC)が用いられている。SiC−SBD43bは、IGBT43aが電流をONからOFFに切り替えるときに生じる逆起電力を抑制する。
回転子位置検出部44は、インバータ回路43の出力信号から電動機1のロータ3の位置を演算し、ロータ3の位置情報を出力電圧演算部45に出力する。回転子位置検出部44は、電動機1の端子電圧を検出して、電動機1のロータ3の位置を検出してもよい。
回転子位置検出部44によって検出されたロータ3の位置情報は、出力電圧演算部45に出力される。出力電圧演算部45は、駆動回路41の外部から与えられる目標回転数N及び回転子位置検出部44から入力されたロータ3の位置情報に基づいて、電動機1に印加される最適なインバータ回路43の出力電圧を演算する。出力電圧演算部45は、演算結果(出力電圧)に関連付けられた信号をPWM信号生成部46に出力する。
PWM信号生成部46は、出力電圧演算部45から入力された信号に基づくPWM信号を主素子駆動回路47に出力する。主素子駆動回路47は、インバータ回路43の各IGBT43aを駆動する。各IGBT43aは、主素子駆動回路47からのPWM信号に従ってスイッチングを行う。
分圧抵抗49a及び49bは、整流回路42とインバータ回路43との間において、直列に接続されている。直流電圧検出部48は、分圧抵抗49a及び49bによって低電圧に変換された電気信号を検出し、保持する。
実施の形態2に係る駆動装置4によれば、電動機1(具体的には、巻線25)に供給される電流の瞬時値が検出される。検出された瞬時値が予め定められた値よりも高いとき、出力電圧演算部45はPWM信号生成部46への信号の出力を停止する。これにより、電動機1に大電流が流れることがなくなり、ステータ2の反磁界によって生じるロータ3の永久磁石32の減磁を防止することができ、電動機1の信頼性を高めることができる。
一般に、インバータによって制御される電動機(例えば、ブラシレス直流モータ)は、高調波によって駆動される。そのため、電動機に生じる鉄損のうち、渦電流損が占める割合が、ヒステリシス損よりも大きい。そこで、電動機1のステータ2に、複数の第1のプレート211及び複数の第2のプレート212の各々よりも薄く形成された複数の第3のプレート213を用いることにより、電動機1における渦電流損の増加を防止することができる。例えば、第3のプレート213として、アモルファス材料又はナノ結晶材料によって形成されたプレートを用いることにより、第3のプレート213の厚さを薄く形成することが可能になり、渦電流損の増加を効果的に防止することができる。
実施の形態3.
次に、本発明の実施の形態3に係る圧縮機5について説明する。
図14は、実施の形態3に係る圧縮機5の構造を概略的に示す断面図である。
圧縮機5は、電動要素としての実施の形態1に係る電動機1と、ハウジングとしての密閉容器51と、圧縮要素としての圧縮機構52と、電動機1を駆動する駆動回路41とを有する。本実施の形態では、圧縮機5は、ロータリ圧縮機である。ただし、圧縮機5は、ロータリ圧縮機に限定されない。
密閉容器51は、電動機1及び圧縮機構52を覆う。密閉容器51の底部には、圧縮機構52の摺動部分を潤滑する冷凍機油が貯留されている。駆動回路41は、実施の形態2で説明した駆動回路である。すなわち、駆動回路41はインバータ回路43を有する。
圧縮機5は、さらに、密閉容器51に固定されたガラス端子53と、アキュムレータ54と、吸入パイプ55と、吐出パイプ56とを有する。
本実施の形態では、電動機1は、永久磁石埋込型電動機であるが、これに限定されない。圧縮機構52は、シリンダ52aと、ピストン52bと、上部フレーム52c(第1のフレーム)と、下部フレーム52d(第2のフレーム)と、上部フレーム52c及び下部フレーム52dにそれぞれ取り付けられた複数のマフラ52eとを有する。圧縮機構52は、さらに、シリンダ52a内を吸入側と圧縮側とに分けるベーンを有する。圧縮機構52は、電動機1によって駆動される。
電動機1(具体的には、ステータ2)のコイル(実施の形態1で説明した巻線25)には、ガラス端子53を介して電力が供給される。
例えば、焼き嵌め又は溶接等の方法により、電動機1のステータ2を密閉容器51に直接取り付けることができる。
電動機1の第1のコア部21及び第2のコア部22のうちの少なくとも1つは、ステータコア20の径方向(図14に示される例では、R軸方向)において第3のコア部23よりも大きくてもよい。本実施の形態では、第1のコア部21及び第2のコア部22の両方が、ステータコア20の径方向において第3のコア部23よりも大きい。したがって、第3のコア部23と密閉容器51との間に空隙が形成されている。すなわち、本実施の形態では、第3のコア部23は、密閉容器51に接触していない。
ステータ2を密閉容器51に取り付ける前に、第3のコア部23に熱処理(焼なまし)が施されていることが望ましい。これにより、応力が解放され、ひずみが除去される。その結果、第3のコア部23の磁気特性が改善される。第3のプレート213として用いられるアモルファス材料及びナノ結晶材料は、応力を起因とする磁気特性の劣化が顕著であるので、熱処理の効果が高い。
電動機1のロータ3(具体的には、シャフト33)は、上部フレーム52c及び下部フレーム52dの各々に備えられた軸受部を介して回転自在に上部フレーム52c及び下部フレーム52dに保持されている。
ピストン52bには、シャフト33が挿通されている。上部フレーム52c及び下部フレーム52dには、シャフト33が回転自在に挿通されている。上部フレーム52c及び下部フレーム52dは、シリンダ52aの端面を閉塞する。アキュムレータ54は、吸入パイプ55を介して冷媒(例えば、冷媒ガス)をシリンダ52aに供給する。
次に、圧縮機5の動作について説明する。アキュムレータ54から供給された冷媒は、密閉容器51に固定された吸入パイプ55からシリンダ52a内へ吸入される。インバータの通電によって電動機1が回転することにより、シャフト33に嵌合されたピストン52bがシリンダ52a内で回転する。これにより、シリンダ52a内で冷媒の圧縮が行われる。
冷媒は、マフラ52eを通り、密閉容器51内を上昇する。このとき、圧縮された冷媒には、冷凍機油が混入されている。冷媒と冷凍機油との混合物は、ロータコア31に形成された風穴36を通過する際に、冷媒と冷凍機油との分離が促進され、冷凍機油が吐出パイプ56へ流入するのを防止できる。このようにして、圧縮された冷媒が、吐出パイプ56を通って冷凍サイクルの高圧側へと供給される。
圧縮機5の冷媒として、R410A、R407C、及びR22等を用いることができる。ただし、圧縮機5の冷媒は、これらに限られない。例えば、圧縮機5の冷媒として、低GWP(地球温暖化係数)の冷媒等を用いることができる。
低GWP冷媒の代表例として、以下の冷媒がある。
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素は、例えば、HFO−1234yf(CF3CF=CH2)である。HFOは、Hydro−Fluoro−Olefinの略称である。Olefinは、二重結合を1つ持つ不飽和炭化水素のことである。HFO−1234yfのGWPは、4である。
(2)組成中に炭素の二重結合を有する炭化水素は、例えば、R1270(プロピレン)である。R1270のGWPは3であり、HFO−1234yfのGWPよりも小さいが、R1270の可燃性は、HFO−1234yfの可燃性よりもよい。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素及び組成中に炭素の二重結合を有する炭化水素の少なくとも1つを含む混合物は、例えば、HFO−1234yfとR32との混合物である。HFO−1234yfは、低圧冷媒のため、圧損が大きくなり、冷凍サイクル(特に、蒸発器において)の性能が低下しやすい。そのため、高圧冷媒であるR32又はR41等との混合物を使用することが望ましい。
実施の形態3に係る圧縮機5によれば、実施の形態1及び2で説明した効果に加えて、下記の効果を有する。
実施の形態3に係る圧縮機5によれば、駆動源として電動機1を用いることにより、回転軸方向(図14に示される例では、Z軸方向)に直交する方向に対する剛性を高めることができるので、電動機1を密閉容器51に強固に固定することができ、圧縮機5内において電動機1の振動及び騒音を低減することができる。
電動機1の第1のコア部21及び第2のコア部22のうちの少なくとも1つが、ステータコア20の径方向において第3のコア部23よりも大きいとき、第3のコア部23と密閉容器51との間に、空隙が形成される。本実施の形態では、第1のコア部21及び第2のコア部22が密閉容器51の内壁に取り付けられている。これにより、ステータコア20に圧縮応力が生じるとき、この圧縮応力は、主に第1のコア部21及び第2のコア部22に生じ、第3のコア部23における応力の発生を低減できる。その結果、鉄損の増加を防止することができ、圧縮機5の効率を高めることができる。特に、アモルファス材料及びナノ結晶材料は、圧縮応力を起因とする磁気特性の劣化が顕著であるので、第3のプレート213としてアモルファス材料及びナノ結晶材料を用いたときに、鉄損の増加を防止する効果が高い。
実施の形態4.
本発明の実施の形態4に係る空気調和機6を以下に説明する。
図15は、実施の形態4に係る空気調和機6の構成を概略的に示す図である。
実施の形態4に係る空気調和機6(例えば、冷凍空調装置)は、送風機(第1の送風機)としての室内機61と、冷媒配管62と、冷媒配管62によって室内機61と接続された送風機(第2の送風機)としての室外機63とを備える。
室内機61は、電動機61a(例えば、実施の形態1に係る電動機1)と、電動機61aによって駆動されることにより、送風する送風部61bと、電動機61a及び送風部61bを覆うハウジング61cとを有する。送風部61bは、例えば、電動機61aによって駆動される羽根を有する。
室外機63は、電動機63a(例えば、実施の形態1に係る電動機1)と、送風部63bと、圧縮機64(例えば、実施の形態3に係る圧縮機5)と、熱交換器(図示しない)とを有する。送風部63bは、電動機63aによって駆動されることにより、送風する。送風部63bは、例えば、電動機63aによって駆動される羽根を有する。圧縮機64は、電動機64a(例えば、実施の形態1に係る電動機1)と、電動機64aによって駆動される圧縮機構64b(例えば、冷媒回路)と、電動機64a及び圧縮機構64bを覆うハウジングとしての密閉容器64c(圧縮容器)とを有する。
実施の形態4に係る空気調和機6において、室内機61及び室外機63の少なくとも1つは、実施の形態1で説明した電動機1を有する。具体的には、送風部の駆動源として、電動機61a及び63aの少なくとも一方に、実施の形態1で説明した電動機1が適用される。
圧縮機64として実施の形態3に係る圧縮機5を用いてもよい。この場合、圧縮機64の電動機64aとして、実施の形態1で説明した電動機1が用いられる。
空気調和機6は、例えば、室内機61から冷たい空気を送風する冷房運転、又は温かい空気を送風する暖房運転等の運転を行うことができる。室内機61において、電動機61aは、送風部61bを駆動するための駆動源である。送風部61bは、調整された空気を送風することができる。
実施の形態4に係る空気調和機6によれば、電動機61a及び63aの少なくとも一方に、実施の形態1で説明した電動機1が適用されるので、実施の形態1で説明した効果と同様の効果を得ることができる。
さらに、圧縮機64として実施の形態3に係る圧縮機5を用いることにより、実施の形態3で説明した効果と同様の効果を得ることができ、空気調和機6の運転効率を高めることができる。
以上に説明した各実施の形態における特徴は、互いに適宜組み合わせることができる。
以上に説明したように、好ましい実施の形態を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
1,61a,63a,64a 電動機、 2 ステータ、 3 ロータ、 4 駆動装置、 5 圧縮機、 6 空気調和機、 20 ステータコア、 21 第1のコア部、 22 第2のコア部、 23 第3のコア部、 24a 第1のインシュレータ、 24b 第2のインシュレータ、 25 巻線、 26 スロット部、 31 ロータコア、 32 永久磁石、 33 シャフト、 41 駆動回路、 43 インバータ回路、 51 密閉容器、 52 圧縮機構、 61 室内機、 63 室外機、 200 分割コア部、 211 第1のプレート、 212 第2のプレート、 213 第3のプレート、 221,231 ヨーク部、 222,232 ティース部、 222a,232a 先端部、 223 カシメ、 224 インシュレータ固定部、 241 インシュレータ位置決め部。

Claims (21)

  1. 第1の方向に積層された複数の第1のプレートを有する第1のコア部と、
    前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、
    前記第1のコア部と前記第2のコア部との間に挟まれている第3のコア部と
    を備え、
    前記第3のコア部は、前記第1の方向に直交する第2の方向に積層された複数の第3のプレートによって形成されたヨーク部を有する
    ステータコア。
  2. 前記第3のコア部は、前記第1の方向に直交する第3の方向に積層された、前記ヨーク部の複数の第3のプレートとは別の複数の第3のプレートによって形成されたティース部を有する請求項1に記載のステータコア。
  3. 前記ティース部の前記第1の方向における長さは、前記ティース部の前記第3の方向における幅よりも長い請求項2に記載のステータコア。
  4. 前記第3のコア部の複数の第3のプレートの各々は、前記複数の第1のプレートの各々よりも薄い請求項1から3のいずれか1項に記載のステータコア。
  5. 前記第3のコア部の複数の第3のプレートの各々は、前記複数の第2のプレートの各々よりも薄い請求項1から4のいずれか1項に記載のステータコア。
  6. 前記複数の第1のプレートと前記複数の第2のプレートとは、互いに同じ材料で形成されている請求項1からのいずれか1項に記載のステータコア。
  7. 前記ヨーク部の前記第1の方向における長さは、前記ヨーク部の前記第2の方向における幅よりも長い請求項1からのいずれか1項に記載のステータコア。
  8. 前記第1のコア部及び前記第2のコア部のうちの少なくとも1つは、径方向において前記第3のコア部よりも長い請求項1から7のいずれか1項に記載のステータコア。
  9. 前記第1のコア部及び第2のコア部のうちの少なくとも1つは、インシュレータを固定する固定部を有する請求項1から8のいずれか1項に記載のステータコア。
  10. 前記第3のコア部の複数の第3のプレートは、アモルファス材料又はナノ結晶材料によって形成された請求項1から9のいずれか1項に記載のステータコア。
  11. 前記複数の第1のプレート及び前記複数の第2のプレートの少なくとも一方は、複数の電磁鋼板である請求項1から10のいずれか1項に記載のステータコア。
  12. 請求項1から11のいずれか1項に記載のステータコアと、
    前記ステータコアと組み合わされるインシュレータと、
    前記インシュレータを介して前記ステータコアに巻回される巻線と
    を備え
    ステータ。
  13. ロータと、
    請求項1から11のいずれか1項に記載のステータコアを有するステータと
    を備え
    電動機。
  14. 請求項13に記載の電動機と、
    前記電動機を駆動する駆動回路と
    を備え
    駆動装置。
  15. 請求項13に記載の電動機と、
    前記電動機によって駆動される圧縮機構と、
    前記電動機を駆動する駆動回路と、
    前記電動機及び前記圧縮機構を覆うハウジングと
    を備え
    圧縮機。
  16. 室内機と、
    前記室内機に接続された室外機と
    を備え、
    前記室内機及び前記室外機の少なくとも1つは、請求項13に記載の電動機を有する
    空気調和機。
  17. 複数の第1のプレートを第1の方向に積層することにより第1のコア部を形成するステップと、
    複数の第2のプレートを前記第1の方向に積層することにより第2のコア部を形成するステップと、
    ヨーク部を有する第3のコア部を形成するステップと、
    前記第1のコア部及び前記第2のコア部を、前記第3のコア部を挟んで固定するステップと
    を備え、
    前記第3のコア部を形成するステップは、複数の第3のプレートを前記第1の方向に直交する第2の方向に積層することにより前記ヨーク部を形成するステップを含む
    ステータコアの製造方法。
  18. 前記第3のコア部は、ティース部を有し、
    前記第3のコア部を形成するステップは、前記ヨーク部の複数の第3のプレートとは別の複数の第3のプレートを前記第1の方向に直交する第3の方向に積層することにより前記ティース部を形成するステップを含む請求項17に記載のステータコアの製造方法。
  19. 前記第3のコア部を形成するステップは、シャー切断によってアモルファス材料又はナノ結晶材料を予め定められた形状に切断し、前記第3のコア部の複数の第3のプレートを形成するステップを含む請求項17又は18に記載のステータコアの製造方法。
  20. 前記第3のコア部を形成するステップは、金型を用いた成形、接着剤、又は溶接によって前記第3のコア部の複数の第3のプレートを固定するステップを含む請求項17から19のいずれか1項に記載のステータコアの製造方法。
  21. 前記第3のコア部を形成するステップは、前記第3のコア部に熱処理を施すステップを含む請求項17から20のいずれか1項に記載のステータコアの製造方法。
JP2018538986A 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法 Active JP6727314B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076964 WO2018051407A1 (ja) 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法

Publications (2)

Publication Number Publication Date
JPWO2018051407A1 JPWO2018051407A1 (ja) 2019-04-18
JP6727314B2 true JP6727314B2 (ja) 2020-07-22

Family

ID=61619918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018538986A Active JP6727314B2 (ja) 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法

Country Status (4)

Country Link
US (1) US10763717B2 (ja)
JP (1) JP6727314B2 (ja)
CN (1) CN109643917B (ja)
WO (1) WO2018051407A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644795B1 (ko) 2018-09-03 2024-03-08 엘지이노텍 주식회사 모터
US11973369B2 (en) * 2018-12-17 2024-04-30 Nippon Steel Corporation Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets
KR20220010609A (ko) * 2019-06-26 2022-01-25 닛폰세이테츠 가부시키가이샤 코어 블록, 적층 코어 및 회전 전기 기기
US11476737B2 (en) * 2020-03-13 2022-10-18 Toyota Motor Engineering & Manufacturing North America. Inc. Integrated power control assemblies with built-in cooling systems
JP7386971B2 (ja) * 2020-04-09 2023-11-27 三菱電機株式会社 冷凍サイクル装置及び空気調和装置
CN115803993A (zh) 2020-06-24 2023-03-14 三菱电机株式会社 定子、电动机、压缩机、制冷循环装置以及空调装置
JP7138817B1 (ja) * 2022-05-24 2022-09-16 日機装株式会社 モータ軸受摩耗監視装置、モータ軸受摩耗監視装置の調整方法、およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2929145B2 (ja) * 1991-01-18 1999-08-03 芝浦メカトロニクス株式会社 電動機の固定子及び直巻式電動機の固定子の製造方法
JP4474903B2 (ja) 2003-11-12 2010-06-09 ダイキン工業株式会社 モータ及びモータの製造方法並びに駆動装置、圧縮機、移動体
JP2006296010A (ja) 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd 密閉型圧縮機
US8368278B2 (en) * 2007-11-15 2013-02-05 Panasonic Corporation Motor and electronic device comprising the same
JP2010017002A (ja) 2008-07-04 2010-01-21 Mazda Motor Corp 回転電機のステータコア
JP5941478B2 (ja) * 2010-12-13 2016-06-29 ラダム・モーターズ・リミテッド・ライアビリティ・カンパニーRadam Motors, Llc 低損失磁性材料を有する電動機又は発電機において用いられるステーター、及びステーターを製造する方法
JP2012253918A (ja) 2011-06-03 2012-12-20 Daikin Ind Ltd 回転電気機械及びそれを用いた圧縮機
JP6062233B2 (ja) 2012-12-11 2017-01-18 三菱重工業株式会社 電動機、及び、電動機一体型圧縮機
JP5896937B2 (ja) * 2013-02-08 2016-03-30 三菱電機株式会社 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機
WO2016092612A1 (ja) * 2014-12-08 2016-06-16 三菱電機株式会社 静止誘導機器
CN105119396B (zh) * 2015-09-18 2018-07-03 合肥工业大学 混合叠压定子铁芯及其在再制造动力电机中的应用

Also Published As

Publication number Publication date
JPWO2018051407A1 (ja) 2019-04-18
WO2018051407A1 (ja) 2018-03-22
US10763717B2 (en) 2020-09-01
US20190386534A1 (en) 2019-12-19
CN109643917B (zh) 2021-02-26
CN109643917A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6727314B2 (ja) ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法
JP5661903B2 (ja) 圧縮機
WO2018207277A1 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置、並びにステータの製造方法
JP5318050B2 (ja) 永久磁石型モータの駆動装置及び圧縮機
WO2014128938A1 (ja) 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
JP2012055117A (ja) 永久磁石型モータ及び圧縮機
JP6779304B2 (ja) ステータ、電動機、駆動装置、圧縮機、及び冷凍空調装置、並びにステータの製造方法
JP5462212B2 (ja) 圧縮機
JP7195408B2 (ja) ロータ、モータ、圧縮機、及び空気調和機
JP2017153356A (ja) 電動機及び圧縮機
JP6563090B2 (ja) 圧縮機、電動機、圧縮機の使用方法及び電動機の使用方法
JP6903168B2 (ja) 電動機、圧縮機および空気調和装置
KR102459101B1 (ko) 전동기, 압축기, 송풍기, 및 냉동 공조 장치
JP5661955B2 (ja) 圧縮機
JPWO2021009862A1 (ja) ステータ、モータ、圧縮機、及び空気調和機
JP7471493B2 (ja) 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
JP2015052324A (ja) 圧縮機
WO2023148844A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2022024204A1 (ja) ロータ、電動機、圧縮機および冷凍サイクル装置
JP6563091B2 (ja) 電動機、圧縮機、電動機の使用方法及び圧縮機の使用方法
JP2012055118A (ja) 永久磁石型モータの駆動装置及び圧縮機
JP2015092081A (ja) 圧縮機
JP2018166401A (ja) 圧縮機及び圧縮機の使用方法
JP2017158428A (ja) 電動機及び圧縮機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250