WO2018051407A1 - ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法 - Google Patents

ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法 Download PDF

Info

Publication number
WO2018051407A1
WO2018051407A1 PCT/JP2016/076964 JP2016076964W WO2018051407A1 WO 2018051407 A1 WO2018051407 A1 WO 2018051407A1 JP 2016076964 W JP2016076964 W JP 2016076964W WO 2018051407 A1 WO2018051407 A1 WO 2018051407A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
plates
stator
electric motor
core portion
Prior art date
Application number
PCT/JP2016/076964
Other languages
English (en)
French (fr)
Inventor
勇二 廣澤
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/321,595 priority Critical patent/US10763717B2/en
Priority to PCT/JP2016/076964 priority patent/WO2018051407A1/ja
Priority to CN201680088805.3A priority patent/CN109643917B/zh
Priority to JP2018538986A priority patent/JP6727314B2/ja
Publication of WO2018051407A1 publication Critical patent/WO2018051407A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/42Means for preventing or reducing eddy-current losses in the winding heads, e.g. by shielding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator core used for an electric motor.
  • an electric motor having a rotor and a stator is used.
  • a stator core in which a plurality of thin electromagnetic steel plates are laminated is often used as a component for the stator.
  • a stator core having a plurality of electromagnetic steel plates stacked in a direction (for example, radial direction) orthogonal to the rotation axis direction of an electric motor has been proposed (for example, see Patent Document 1).
  • a stator core having a plurality of electromagnetic steel plates stacked in a direction orthogonal to the rotation axis direction of the motor decreases in rigidity with respect to the direction orthogonal to the rotation axis direction of the motor.
  • vibration in a direction perpendicular to the rotation axis direction and noise.
  • An object of the present invention is to provide a stator core that reduces vibration and noise during driving of an electric motor.
  • the stator core according to the present invention includes a first core portion having a plurality of first plates stacked in a first direction, and a second core having a plurality of second plates stacked in the first direction. And a third core having a plurality of third plates sandwiched between a first portion and the first core portion and the second core portion and stacked in a direction orthogonal to the first direction Part.
  • FIG. 1 It is sectional drawing which shows schematically the structure of the electric motor which concerns on Embodiment 1 of this invention. It is a perspective view which shows the structure of a division
  • FIG. 1 is a cross-sectional view schematically showing the structure of an electric motor 1 according to Embodiment 1 of the present invention.
  • An arrow D1 indicates a direction along the outer periphery of each of the stator 2, the stator core 20, and the rotor 3 (hereinafter referred to as “circumferential direction”).
  • the Z-axis direction is a direction parallel to an axis A1 (axis center) of a shaft (shaft 33 described later) of the electric motor 1 (hereinafter referred to as “rotation axis direction”)
  • the R-axis direction (R-axis) indicates a direction orthogonal to the Z-axis direction
  • the W-axis direction indicates a direction orthogonal to both the Z-axis direction and the R-axis direction.
  • the electric motor 1 has a stator 2 and a rotor 3.
  • the electric motor 1 is, for example, a permanent magnet embedded type electric motor.
  • the stator 2 includes a stator core 20, a first insulator 24 a, a second insulator 24 b, and a winding 25.
  • the stator 2 is formed in an annular shape in the circumferential direction around the axis A1 (rotational axis of the rotor 3).
  • a rotor 3 is inserted inside the stator 2 via an air gap.
  • the first insulator 24 a and the second insulator 24 b insulate the stator core 20.
  • the stator core 20 has a first core portion 21, a second core portion 22, and a third core portion 23 (see FIGS. 2 and 3 described later).
  • the stator 2 is formed by a plurality of divided core portions 200.
  • the plurality of divided core portions 200 are arranged in an annular shape in the circumferential direction around the axis A1.
  • the stator 2 may not be formed by the plurality of divided core portions 200.
  • the stator core 20 may be formed by laminating a plurality of various annular plates (for example, electromagnetic steel plates and amorphous materials).
  • FIG. 2 is a perspective view schematically showing the structure of the split core portion 200.
  • each divided core portion 200 includes a first core portion 21 (the divided first core portion 21) and a second core portion 21.
  • Core portion 22 (divided second core portion 22), third core portion 23 (divided third core portion 23), first insulator 24a, and second insulator 24b, And winding 25.
  • the winding 25 is not illustrated.
  • the first insulator 24 a is combined with the stator core 20.
  • the first insulator 24a is provided at both ends of the stator core 20 in the rotation axis direction.
  • the first insulator 24a may be provided at one end of the stator core 20 in the rotation axis direction.
  • the first insulator 24a is an insulating resin.
  • the second insulator 24b is, for example, a thin PET (polyethylene terephthalate) film.
  • the thickness of the PET film is, for example, 0.15 mm.
  • the second insulator 24b covers a side surface of a teeth portion (teeth portions 222 and 232 described later) of the stator core 20.
  • FIG. 3 is an exploded view schematically showing the structure of the stator core 20 (divided stator core 20).
  • the first core unit 21 includes a plurality of first plates 211 stacked in the first direction.
  • the plurality of first plates 211 are stacked in parallel to a plane perpendicular to the first direction.
  • the first direction is the Z-axis direction.
  • the first plate 211 is, for example, an electromagnetic steel plate.
  • the first plate 211 is formed in a predetermined shape by a punching process (press punching process).
  • the thickness of the first plate 211 is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of the first plate 211 is 0.35 mm.
  • the shape and thickness of the first plate 211 are not limited to the present embodiment. In each first plate 211, adjacent first plates 211 are fastened to each other by caulking 223 described later.
  • the second core portion 22 has a plurality of second plates 212 stacked in the first direction.
  • the plurality of second plates 212 are stacked in parallel to a plane perpendicular to the first direction.
  • the second plate 212 is, for example, an electromagnetic steel plate.
  • the second plate 212 is formed in a predetermined shape by a punching process.
  • the thickness of the second plate 212 is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of the second plate 212 is 0.35 mm.
  • the shape and thickness of the second plate 212 are not limited to this embodiment.
  • the adjacent second plates 212 are fastened to each other by a caulking 223 described later.
  • the first core portion 21 and the second core portion 22 are made of the same material and have the same structure. That is, the first plate 211 and the second plate 212 are made of the same material and have the same structure.
  • the 1st core part 21 and the 2nd core part 22 may be formed with a mutually different material, and may have a mutually different structure. That is, the first plate 211 and the second plate 212 may be formed of different materials, or may have different structures.
  • At least one of the plurality of first plates 211 and the plurality of second plates 212 is preferably a plurality of electromagnetic steel plates.
  • the third core portion 23 has a plurality of third plates 213 stacked in a direction orthogonal to the first direction (Z-axis direction).
  • the direction orthogonal to the first direction is, for example, the R-axis direction (second direction) or the W-axis direction (third direction).
  • the plurality of third plates 213 are stacked perpendicular to the plane perpendicular to the first direction.
  • the third core part 23 is sandwiched between the first core part 21 and the second core part 22.
  • the third core part 23 is fixed between the first core part 21 and the second core part 22.
  • the first core portion 21 is fixed to one end side of the third core portion 23 in the first direction, and the other end side of the third core portion 23 in the first direction.
  • the second core portion 22 is fixed.
  • the third plate 213 is a thin plate formed of, for example, an amorphous material (for example, amorphous metal) or a nanocrystalline material (for example, nanocrystalline metal).
  • the third plate 213 is, for example, a rectangle.
  • At least one of the first core portion 21 and the second core portion 22 may be larger than the third core portion 23 in the radial direction of the stator core 20 (R-axis direction in the example shown in FIG. 3).
  • Each of the plurality of third plates 213 is thinner than each of the plurality of first plates 211.
  • Each of the plurality of third plates 213 is thinner than each of the plurality of second plates 212.
  • the thickness of the third plate 213 is, for example, 5 ⁇ m to 50 ⁇ m. In the present embodiment, the thickness of the third plate 213 is 20 ⁇ m. However, the shape and thickness of the third plate 213 are not limited to this embodiment.
  • Each third plate 213 can fix the adjacent third plates 213 to each other by molding using a mold, an adhesive, or welding.
  • FIG. 4 is a plan view schematically showing an example of the first core portion 21 and the second core portion 22.
  • FIG. 4 shows the structure of the first core portion 21.
  • the first core portion 21 includes a yoke portion 221, a teeth portion 222, a caulking 223, and an insulator fixing portion 224.
  • the teeth portion 222 extends from the yoke portion 221 in the radial direction (in the example shown in FIG. 4, in the ⁇ R direction, that is, inward in the radial direction of the stator core 20). In other words, the teeth part 222 protrudes from the yoke part 221 toward the axis A1.
  • the teeth part 222 has a front end part 222a which is a front end in the radial direction.
  • the front end portion 222 a is formed so as to expand in the circumferential direction of the stator core 20.
  • the insulator fixing part 224 fixes the first insulator 24a.
  • the insulator fixing portion 224 is a recess into which an insulator positioning portion 241 (see FIG. 9 described later) of the first insulator 24a is inserted.
  • FIG. 5 is a perspective view schematically showing another example of the first core portion 21.
  • FIG. 6 is a perspective view schematically showing still another example of the first core portion 21.
  • the structure of the first core portion 21 shown in FIGS. 5 and 6 can also be applied to the second core portion 22.
  • the insulator fixing portion 224 may be formed on the tooth portion 222. Further, the insulator fixing portion 224 may be a protrusion. In this case, the insulator positioning portion 241 of the first insulator 24a is formed in a concave shape.
  • the insulator fixing portion 224 may be formed on the side surface of the tooth portion 222.
  • the insulator positioning portion 241 of the first insulator 24a is formed in a shape and position that can be fitted to the insulator fixing portion 224.
  • FIG. 7 is a perspective view schematically showing the structure of the third core portion 23.
  • the third core part 23 has a yoke part 231 formed by a plurality of third plates 213 (FIG. 3) stacked in a second direction orthogonal to the first direction.
  • the length z1 of the yoke part 231 in the first direction is longer than the width r1 of the yoke part 231 in the second direction.
  • the second direction is the radial direction (for example, the R-axis direction in FIGS. 2, 3, and 7).
  • the second direction is not limited to the radial direction. For example, it is desirable from the viewpoint of cost to select the second direction so that the number of the third plates 213 is reduced.
  • the third core portion 23 has a teeth portion 232 formed by a plurality of third plates 213 stacked in a third direction orthogonal to the first direction.
  • the length z2 of the tooth part 232 in the first direction is longer than the width w1 of the tooth part 232 in the third direction.
  • the length z2 is equal to the length z1.
  • the third direction is orthogonal to the first direction and the second direction.
  • the third direction is the W-axis direction in FIGS.
  • the third direction is not limited to the W-axis direction. For example, it is desirable from the viewpoint of cost to select the third direction so that the number of the third plates 213 is reduced.
  • the teeth portion 232 extends from the yoke portion 231 in the radial direction (that is, inward in the radial direction of the stator core 20). In other words, the teeth portion 232 protrudes from the yoke portion 231 toward the axis A1.
  • the teeth part 232 has the front-end
  • the tip 232a is formed so as to expand in the circumferential direction of the stator core 20.
  • FIG. 8 is a plan view schematically showing the structure of the stator core 20.
  • the adjacent yoke parts 221 are connected to each other by connecting the yoke parts 221 of the stator core 20 adjacent to both sides to each other. That is, the divided core parts 200 shown in FIG. 1 are connected by connecting the stator cores 20 (the divided stator cores 20) of the divided core parts 200 adjacent to both sides to each other.
  • the adjacent first core portions 21 may be connected to each other, and the adjacent second core portions 22 may be connected to each other.
  • a region surrounded by the two yoke portions 221 and the two teeth portions 222 is the slot portion 26.
  • the teeth portions 222 of the stator core 20 are adjacent to each other through the slot portion 26. Therefore, the plurality of teeth portions 222 and the plurality of slot portions 26 are alternately arranged in the circumferential direction.
  • the arrangement pitch of the plurality of teeth portions 222 in the circumferential direction (that is, the width of the slot portions 26 in the circumferential direction) is equal.
  • the plurality of slot portions 26 are formed at equal intervals in the circumferential direction. In the present embodiment, nine slot portions 26 are formed in the stator 2.
  • the stator core 20 is preferably formed so that the space factor of the winding 25 (the ratio of the cross-sectional area of the winding 25 to the cross-sectional area of the slot portion 26) is high in order to increase the torque of the electric motor 1.
  • FIG. 9 is a plan view schematically showing the structure of the first insulator 24a.
  • the first insulator 24 a has an insulator positioning portion 241 combined with the insulator fixing portion 224 of the stator core 20.
  • the insulator positioning portion 241 is a protrusion that is inserted into the insulator fixing portion 224.
  • FIG. 10 is a cross-sectional view schematically showing the structure of the split core portion 200.
  • the winding 25 is wound around the stator core 20 via the first insulator 24a and the second insulator 24b, and forms a coil that generates a rotating magnetic field.
  • the winding 25 is, for example, a magnet wire.
  • the stator 2 has three phases, and the connection of the winding 25 (coil) is a Y connection (star connection).
  • the number of turns and the wire diameter of the winding 25 (coil) are determined according to the rotational speed, torque, voltage specification, cross-sectional area of the slot portion 26, and the like.
  • the wire diameter of the winding 25 is 1.0 mm.
  • the stator core 20 is wound with 80 turns of the winding 25.
  • the wire diameter and the number of turns of the winding 25 are not limited to these examples.
  • the winding method of the winding 25 is concentrated winding.
  • the winding 25 can be wound around the stator core 20 in a state before the divided stator cores 20 are arranged in an annular shape (for example, a state where the divided stator cores 20 are arranged linearly).
  • the stator core 20 around which the winding 25 is wound is folded into an annular shape and fixed by welding or the like.
  • FIG. 11 is a cross-sectional view schematically showing the structure of the rotor 3.
  • the rotor 3 includes a rotor core 31, a plurality of permanent magnets 32, a shaft 33, a plurality of magnet insertion holes 34, a plurality of flux barriers 35 (leakage magnetic flux suppression holes), and a plurality of air holes 36.
  • the rotor 3 is rotatable about the axis A1.
  • the rotor 3 is rotatably disposed inside the stator 2 through an air gap.
  • the axis A ⁇ b> 1 is the rotation center of the rotor 3 and the axis of the shaft 33.
  • the air gap formed between the rotor 3 and the stator 2 (specifically, between the outer surface of the rotor 3 and the inner surface of the stator 2) is, for example, 0.3 mm to 1 mm.
  • the rotor 3 is a permanent magnet embedded type.
  • a plurality of magnet insertion holes 34 are formed in the rotor core 31 in the circumferential direction of the rotor 3.
  • the magnet insertion hole 34 is a space into which the permanent magnet 32 is inserted.
  • a plurality of permanent magnets 32 are arranged in each magnet insertion hole 34.
  • one permanent magnet 32 may be disposed in each magnet insertion hole 34.
  • the plurality of permanent magnets 32 are magnetized so as to be magnetized in the radial direction of the rotor 3, and the positional relationship between the magnetic poles is the same.
  • the number of magnet insertion holes 34 corresponds to the number of magnetic poles of the rotor 3. In the present embodiment, the number of magnetic poles of the rotor 3 is six. However, the number of magnetic poles of the rotor 3 may be two or more.
  • the rotor core 31 is formed by laminating a plurality of electromagnetic steel plates.
  • the thickness of each electromagnetic steel sheet of the rotor core 31 is 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each electromagnetic steel plate of the rotor core 31 is 0.35 mm.
  • the shape and thickness of each electromagnetic steel plate of the rotor core 31 are not limited to this embodiment. Adjacent electromagnetic steel sheets of the rotor core 31 are fastened to each other by caulking.
  • the shaft 33 is connected to the rotor core 31. Specifically, it is fixed to the shaft hole formed in the rotor core 31 by shrink fitting or press fitting. Thereby, the rotational energy generated by the rotation of the rotor core 31 is transmitted to the shaft 33.
  • the flux barrier 35 is formed at a position adjacent to the magnet insertion hole 34 in the circumferential direction of the rotor 3.
  • the flux barrier 35 reduces leakage magnetic flux.
  • the length between the flux barrier 35 and the outer surface of the rotor 3 is, for example, 0.35 mm.
  • the air hole 36 is a through hole. For example, when the electric motor 1 is used as a compressor, the refrigerant can pass through the air holes 36.
  • the permanent magnet 32 for example, a rare earth magnet mainly composed of neodymium (Nd), iron (Fe), and boron (B) can be used.
  • the coercive force of the Nd—Fe—B permanent magnet has a property of decreasing with temperature.
  • the coercive force of the magnet deteriorates with temperature (about ⁇ 0.5% / ⁇ K to ⁇ 0.6%). / ⁇ K), it is necessary to add a Dy (dysprosium) element to increase the coercive force.
  • the coercive force is improved almost in proportion to the content of the Dy element.
  • the upper limit of the atmospheric temperature of the electric motor is about 150 ° C., and is used in a range of temperature increase of about 130 ° C. with respect to 20 ° C.
  • the coercive force decreases by 65%.
  • the room temperature coercivity is about 1800 A / m.
  • the coercive force characteristic is improved, but the residual magnetic flux density characteristic is lowered.
  • the residual magnetic flux density decreases, the magnet torque of the electric motor decreases and the energization current increases, so that the copper loss increases. Therefore, considering the motor efficiency, it is desirable to reduce the Dy addition amount.
  • FIG. 12 is a flowchart illustrating an example of the manufacturing process of the stator core 20.
  • step S1 a plurality of first plates 211 having a predetermined structure are formed, and the plurality of first plates 211 are stacked in the first direction (Z-axis direction) to thereby form the first core portion 21.
  • the first plate 211 is, for example, an electromagnetic steel plate.
  • the first plate 211 is formed so as to have a predetermined structure by a punching process (press punching process).
  • the plurality of first plates 211 are stacked in the first direction while being fastened by, for example, caulking 223.
  • the plurality of first plates 211 may be stacked in the first direction while being fixed by bolt fixing or rivet fixing.
  • a plurality of second plates 212 having a predetermined structure are formed, and a plurality of second plates 212 are stacked in the first direction to form the second core portion 22.
  • the second plate 212 is, for example, an electromagnetic steel plate.
  • the second plate 212 is formed so as to have a predetermined structure by a punching process.
  • the plurality of second plates 212 are stacked in the first direction while being fastened by caulking 223, for example.
  • the plurality of second plates 212 may be stacked in the first direction while being fixed by bolt fixing or rivet fixing.
  • a plurality of third plates 213 having a predetermined structure are formed, and the plurality of third plates 213 are stacked in a direction orthogonal to the first direction to thereby form the third core portion 23.
  • the third plate 213 is formed of, for example, an amorphous material (for example, amorphous metal) or a nanocrystalline material (for example, nanocrystalline metal).
  • an amorphous material or a nanocrystalline material is cut into a predetermined shape by shear cutting.
  • the third plate 213 is rectangular.
  • the yoke portion 231 of the third core portion 23 is stacked in a second direction orthogonal to the first direction.
  • the plurality of third plates 213 are fixed by molding using a mold, an adhesive, or welding, and the plurality of third plates 213 are stacked in the R-axis direction. Thereby, the yoke part 231 is formed.
  • a direction in which stacking is easy may be selected as the second direction.
  • the tooth part 232 of the third core part 23 is laminated in a third direction orthogonal to the first direction.
  • the plurality of third plates 213 are fixed by molding using a mold, an adhesive, or welding, and the plurality of third plates 213 are stacked in the W-axis direction.
  • a direction in which stacking is easy may be selected as the third direction.
  • the tips of the third plates 213 at both ends in the W-axis direction among the plurality of third plates 213 are bent in accordance with the shapes of the tip portions 222 a of the first core portion 21 and the second core portion 22. . Thereby, the teeth part 232 is formed.
  • the third core part 23 can be formed by fixing the yoke part 231 and the tooth part 232 by, for example, molding using a mold, an adhesive, or welding.
  • step S3 stress is easily generated in the third core part 23. Specifically, stress is easily generated in the third core portion 23 when the third plate 213 is stacked. The stress generated in the third core portion 23 causes deterioration of the magnetic characteristics of the third core portion 23. Therefore, in step S3, after forming the third core part 23, the third core part 23 may be subjected to heat treatment (annealing). This releases the stress and removes the strain. As a result, the magnetic characteristics of the third core portion 23 are improved.
  • the amorphous material and the nanocrystalline material used as the third plate 213 have a remarkable effect of heat treatment because the magnetic characteristics are significantly deteriorated due to stress.
  • step S4 the first core part 21, the second core part 22, and the third core part 23 are connected. Specifically, the first core portion 21 and the second core portion 22 are fixed with the third core portion 23 interposed therebetween. In other words, the third core part 23 is fixed between the first core part 21 and the second core part 22.
  • the first core portion 21 is fixed to one end side of the third core portion 23 in the first direction by molding using a mold, an adhesive, or welding, and the third core in the first direction is fixed.
  • the second core portion 22 is fixed to the other end side of the portion 23.
  • the 1st core part 21, the 2nd core part 22, and the 3rd core part 23 are fixed by winding the coil
  • the stator core 20 can be manufactured through the above steps.
  • the stator core formed by laminating a plurality of plates in a direction orthogonal to the rotation axis direction may have reduced rigidity.
  • the rigidity in the direction orthogonal to the rotation axis direction is reduced.
  • the gap may cause vibrations during driving of the electric motor (for example, vibrations in a direction orthogonal to the rotation axis direction) and noise.
  • the stator core 20 of the electric motor 1 includes a first core portion 21 having a plurality of first plates 211 stacked in a first direction, and a plurality of second cores stacked in the first direction.
  • a second core portion 22 having a plurality of plates 212 and a third core portion 23 having a plurality of third plates 213 stacked in a direction orthogonal to the first direction.
  • the third core part 23 is sandwiched between the first core part 21 and the second core part 22.
  • the electric motor 1 when the electric motor 1 is used as a drive source of the compressor, the electric motor 1 is attached to the inner wall of a hermetic container that is a housing of the compressor. In this case, a large stress (stress in a direction orthogonal to the rotation axis direction) is generated in the stator core 20.
  • a large stress stress in a direction orthogonal to the rotation axis direction
  • iron loss increases.
  • the rigidity in the direction orthogonal to the rotation axis direction can be increased, so that the shape of the stator core 20 can be maintained and an increase in iron loss can be suppressed. Motor efficiency can be increased by preventing an increase in iron loss.
  • the electric motor 1 can be firmly fixed to the sealed container, and the vibration and noise of the electric motor 1 can be reduced in the compressor.
  • At least one of the first core portion 21 and the second core portion 22 of the electric motor 1 may be larger than the third core portion 23 in the radial direction of the stator core 20. Thereby, at least one of the 1st core part 21 and the 2nd core part 22 can be attached to the inner wall of the airtight container of a compressor. As a result, when the electric motor 1 is attached to the inner wall of the hermetic container of the compressor, the compressive stress generated in the stator core 20 (particularly the third core portion 23) is reduced, and an increase in iron loss can be prevented.
  • iron loss energy loss
  • Hysteresis loss is energy loss when the magnetic domain of the stator core changes the direction of the magnetic field by an alternating magnetic field, and is theoretically proportional to the frequency of magnetic flux change occurring in the stator core.
  • Eddy current loss is energy loss caused by eddy currents generated inside a stator core (for example, a magnetic steel sheet). The eddy current loss is theoretically proportional to the square of the frequency of the magnetic flux change generated in the stator core, and further proportional to the square of the thickness of each of the laminated plates of the stator core. Accordingly, in order to prevent an increase in iron loss, particularly an increase in eddy current loss, it is effective to reduce the thickness of the laminated plate.
  • each of the plurality of third plates 213 of the stator core 20 is thinner than each of the plurality of first plates 211. Thereby, the eddy current loss in the stator core 20 (especially the 3rd core part 23) can be reduced.
  • each of the plurality of third plates 213 is thinner than each of the plurality of second plates 212. Thereby, the eddy current loss in the stator core 20 (especially the 3rd core part 23) can be reduced.
  • the length of the yoke part 221 of the third core part 23 in the first direction is longer than the width of the yoke part 221 of the third core part 23 in the second direction. Furthermore, the length in the first direction of the tooth portion 222 of the third core portion 23 is longer than the width in the third direction of the tooth portion 222. Thereby, the number of the 3rd plates 213 for forming the yoke part 221 of the 3rd core part 23 can be reduced. Similarly, the number of the third plates 213 for forming the tooth portions 222 of the third core portion 23 can be reduced. Therefore, manufacturing steps such as cutting and bonding of the third plate 213 can be reduced, and the life of the tool for forming the third core portion 23 can be extended.
  • the plurality of third plates 213 are formed of an amorphous material or a nanocrystalline material.
  • the amorphous material and the nanocrystalline material have excellent magnetic properties, and are formed as the third plate 213 with a thickness of about 3% to 15% of the electromagnetic steel sheet.
  • an electromagnetic steel sheet having a thickness of about 0.2 mm to 0.5 mm is used for the stator core, whereas an amorphous material and a nanocrystalline material can be formed to a thickness of about 15 ⁇ m to 30 ⁇ m.
  • the iron loss of an electromagnetic steel sheet normally used for a stator core is about 1.2 W / kg (magnetic flux density 1.0 T at 50 Hz), whereas the iron loss of an amorphous material is 0.05 W / kg (magnetic flux at 50 Hz).
  • the density is about 1.0T). Therefore, since the eddy current loss becomes smaller in proportion to the square of the thickness of the laminated plate, it is possible to prevent an increase in iron loss even when the electric motor is operated at a high frequency.
  • the first core portion 21 has an insulator fixing portion 224 that fixes the first insulator 24a.
  • the 2nd core part 22 may have the insulator fixing
  • the first insulator 24 a can be fixed to the stator core 20 without forming the insulator fixing portion 224 in the third core portion 23.
  • the stator core 20 having high rigidity with respect to the direction orthogonal to the rotation axis direction can be manufactured. Thereby, the stator core 20 which can reduce the vibration and noise during the drive of the electric motor 1 can be manufactured.
  • an amorphous material and a nanocrystalline material have a hardness (for example, Vickers hardness) 3 to 6 times that of a general electromagnetic steel sheet, and thus have poor workability.
  • the Vickers hardness of the electromagnetic steel sheet is about 187 GN / m 3
  • the Vickers hardness of the amorphous material is about 900 GN / m 3 .
  • a fixing method capable of generating compressive stress such as caulking is not desirable. Therefore, it is desirable to select a fixing method according to the material of the stator core.
  • the third core portion 23 is strengthened while preventing deterioration of the magnetic properties of the stator core 20. Can be fixed to. Furthermore, by fixing each of the first core portion 21 and the second core portion 22 with the caulking 223, rigidity can be increased while preventing deterioration of the magnetic characteristics of the stator core 20 as a whole.
  • amorphous materials and nanocrystalline materials have a hardness (for example, Vickers hardness) that is 3 to 6 times that of a general electromagnetic steel sheet, so that punching is difficult.
  • the third plate 213 can be easily formed by cutting an amorphous material or a nanocrystalline material into a rectangle by shear cutting.
  • the third core part 23 is subjected to heat treatment to release the stress and remove the strain. As a result, the magnetic characteristics of the third core portion 23 can be improved.
  • FIG. 13 is a diagram schematically showing the configuration of the driving device 4.
  • the driving device 4 includes the electric motor 1 according to the first embodiment and a driving circuit 41 that drives the electric motor 1.
  • the drive circuit 41 is a circuit that drives the electric motor 1 according to the first embodiment.
  • the electric motor 1 according to the first embodiment performs variable speed driving based on PWM (Pulse Width Modulation) control by the driving circuit 41.
  • PWM Pulse Width Modulation
  • the AC power is supplied to the drive circuit 41 from a commercial AC power source E as an external power source.
  • the AC voltage supplied from the commercial AC power source E is converted into a DC voltage by the rectifier circuit 42.
  • the rectifier circuit 42 includes, for example, a chopper circuit that boosts the voltage applied from the commercial AC power supply E, and a smoothing capacitor that smoothes the DC voltage.
  • the DC voltage converted by the rectifier circuit 42 is converted to a variable frequency AC voltage by the inverter circuit 43 and applied to the motor 1 (specifically, the winding 25).
  • the electric motor 1 is driven by variable frequency AC power supplied from the inverter circuit 43.
  • the inverter circuit 43 is, for example, a three-phase bridge inverter circuit.
  • the inverter circuit 43 includes six IGBTs (insulated gate bipolar transistors) 43a and six SiC-SBDs (Schottky barrier diodes) 43b as main inverter elements.
  • Each SiC-SBD 43b uses silicon carbide (SiC) as a flywheel diode (FRD).
  • SiC-SBD 43b suppresses the back electromotive force generated when the IGBT 43a switches the current from ON to OFF.
  • the rotor position detector 44 calculates the position of the rotor 3 of the electric motor 1 from the output signal of the inverter circuit 43 and outputs the position information of the rotor 3 to the output voltage calculator 45.
  • the rotor position detection unit 44 may detect the terminal voltage of the electric motor 1 and detect the position of the rotor 3 of the electric motor 1.
  • the position information of the rotor 3 detected by the rotor position detector 44 is output to the output voltage calculator 45.
  • the output voltage calculation unit 45 is an optimum inverter circuit 43 that is applied to the electric motor 1 based on the target rotation speed N given from the outside of the drive circuit 41 and the position information of the rotor 3 input from the rotor position detection unit 44.
  • the output voltage is calculated.
  • the output voltage calculation unit 45 outputs a signal associated with the calculation result (output voltage) to the PWM signal generation unit 46.
  • the PWM signal generation unit 46 outputs a PWM signal based on the signal input from the output voltage calculation unit 45 to the main element drive circuit 47.
  • the main element drive circuit 47 drives each IGBT 43 a of the inverter circuit 43.
  • Each IGBT 43 a performs switching according to the PWM signal from the main element drive circuit 47.
  • the voltage dividing resistors 49 a and 49 b are connected in series between the rectifier circuit 42 and the inverter circuit 43.
  • the DC voltage detector 48 detects and holds the electric signal converted into a low voltage by the voltage dividing resistors 49a and 49b.
  • the instantaneous value of the current supplied to the electric motor 1 (specifically, the winding 25) is detected.
  • the output voltage calculation unit 45 stops outputting the signal to the PWM signal generation unit 46.
  • an electric motor for example, a brushless DC motor controlled by an inverter is driven by harmonics. Therefore, the ratio of the eddy current loss in the iron loss generated in the motor is larger than the hysteresis loss. Therefore, by using a plurality of third plates 213 formed thinner than each of the plurality of first plates 211 and the plurality of second plates 212 for the stator 2 of the motor 1, eddy current loss in the motor 1 is achieved. Can be prevented from increasing. For example, by using a plate made of an amorphous material or a nanocrystalline material as the third plate 213, the thickness of the third plate 213 can be reduced, and an increase in eddy current loss is effective. Can be prevented.
  • FIG. 14 is a cross-sectional view schematically showing the structure of the compressor 5 according to the third embodiment.
  • the compressor 5 includes the electric motor 1 according to the first embodiment as an electric element, a sealed container 51 as a housing, a compression mechanism 52 as a compression element, and a drive circuit 41 that drives the electric motor 1.
  • the compressor 5 is a rotary compressor.
  • the compressor 5 is not limited to a rotary compressor.
  • the sealed container 51 covers the electric motor 1 and the compression mechanism 52. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 52 is stored at the bottom of the sealed container 51.
  • the drive circuit 41 is the drive circuit described in the second embodiment. That is, the drive circuit 41 has an inverter circuit 43.
  • the compressor 5 further includes a glass terminal 53 fixed to the sealed container 51, an accumulator 54, a suction pipe 55, and a discharge pipe 56.
  • the electric motor 1 is a permanent magnet embedded electric motor, but is not limited thereto.
  • the compression mechanism 52 includes a cylinder 52a, a piston 52b, an upper frame 52c (first frame), a lower frame 52d (second frame), and a plurality of mufflers attached to the upper frame 52c and the lower frame 52d. 52e.
  • the compression mechanism 52 further includes a vane that divides the inside of the cylinder 52a into a suction side and a compression side. The compression mechanism 52 is driven by the electric motor 1.
  • Electric power is supplied to the coil (the winding 25 described in the first embodiment) of the electric motor 1 (specifically, the stator 2) via the glass terminal 53.
  • stator 2 of the electric motor 1 can be directly attached to the sealed container 51 by a method such as shrink fitting or welding.
  • At least one of the first core portion 21 and the second core portion 22 of the electric motor 1 is more than the third core portion 23 in the radial direction of the stator core 20 (R-axis direction in the example shown in FIG. 14). May be larger.
  • both the first core portion 21 and the second core portion 22 are larger than the third core portion 23 in the radial direction of the stator core 20. Therefore, a gap is formed between the third core portion 23 and the sealed container 51. That is, in the present embodiment, the third core part 23 is not in contact with the sealed container 51.
  • the third core portion 23 is subjected to heat treatment (annealing). This releases the stress and removes the strain. As a result, the magnetic characteristics of the third core portion 23 are improved.
  • the amorphous material and the nanocrystalline material used as the third plate 213 have a remarkable effect of heat treatment because the magnetic characteristics are significantly deteriorated due to stress.
  • the rotor 3 (specifically, the shaft 33) of the electric motor 1 is rotatably held by the upper frame 52c and the lower frame 52d via bearings provided in the upper frame 52c and the lower frame 52d.
  • the shaft 33 is inserted through the piston 52b.
  • a shaft 33 is rotatably inserted in the upper frame 52c and the lower frame 52d.
  • the upper frame 52c and the lower frame 52d close the end surface of the cylinder 52a.
  • the accumulator 54 supplies a refrigerant (for example, refrigerant gas) to the cylinder 52a through the suction pipe 55.
  • the refrigerant supplied from the accumulator 54 is sucked into the cylinder 52 a from the suction pipe 55 fixed to the sealed container 51.
  • the electric motor 1 rotates by energization of the inverter
  • the piston 52b fitted to the shaft 33 rotates in the cylinder 52a.
  • the refrigerant is compressed in the cylinder 52a.
  • the refrigerant passes through the muffler 52e and rises in the sealed container 51. At this time, refrigeration oil is mixed in the compressed refrigerant.
  • the mixture of the refrigerant and the refrigerating machine oil passes through the air holes 36 formed in the rotor core 31, separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 56. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 56.
  • refrigerant of the compressor 5 R410A, R407C, R22, and the like can be used.
  • the refrigerant of the compressor 5 is not limited to these.
  • a low GWP (global warming potential) refrigerant or the like can be used as the refrigerant of the compressor 5.
  • refrigerants are typical examples of low GWP refrigerants.
  • the halogenated hydrocarbon having a carbon double bond in the composition is, for example, HFO-1234yf (CF3CF ⁇ CH2).
  • HFO is an abbreviation for Hydro-Fluoro-Olefin.
  • Olefin is an unsaturated hydrocarbon having one double bond.
  • the GWP of HFO-1234yf is 4.
  • the hydrocarbon having a carbon double bond in the composition is, for example, R1270 (propylene).
  • R1270 has a GWP of 3, which is smaller than that of HFO-1234yf, but the flammability of R1270 is better than that of HFO-1234yf.
  • the mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition and a hydrocarbon having a carbon double bond in the composition is, for example, a mixture of HFO-1234yf and R32. is there. Since HFO-1234yf is a low-pressure refrigerant, the pressure loss increases, and the performance of the refrigeration cycle (especially in an evaporator) tends to decrease. Therefore, it is desirable to use a mixture with R32 or R41 which is a high-pressure refrigerant.
  • the compressor 5 according to the third embodiment has the following effects in addition to the effects described in the first and second embodiments.
  • the rigidity in the direction orthogonal to the rotation axis direction (Z-axis direction in the example shown in FIG. 14) can be increased. Therefore, the electric motor 1 can be firmly fixed to the sealed container 51, and vibration and noise of the electric motor 1 can be reduced in the compressor 5.
  • the third core portion 23 and the sealed container 51 are arranged. A gap is formed between the two.
  • the first core portion 21 and the second core portion 22 are attached to the inner wall of the sealed container 51.
  • FIG. 15 is a diagram schematically showing the configuration of the air conditioner 6 according to Embodiment 4. As shown in FIG.
  • An air conditioner 6 (for example, a refrigeration air conditioner) according to Embodiment 4 includes an indoor unit 61 as a blower (first blower), a refrigerant pipe 62, and a blower connected to the indoor unit 61 by the refrigerant pipe 62. And an outdoor unit 63 (second blower).
  • an indoor unit 61 as a blower (first blower), a refrigerant pipe 62, and a blower connected to the indoor unit 61 by the refrigerant pipe 62.
  • an outdoor unit 63 (second blower).
  • the indoor unit 61 includes an electric motor 61a (for example, the electric motor 1 according to Embodiment 1), a blower 61b that blows air by being driven by the electric motor 61a, and a housing 61c that covers the electric motor 61a and the blower 61b.
  • the air blower 61b has, for example, blades that are driven by the electric motor 61a.
  • the outdoor unit 63 includes an electric motor 63a (for example, the electric motor 1 according to the first embodiment), a blower 63b, a compressor 64 (for example, the compressor 5 according to the third embodiment), and a heat exchanger (not illustrated). ).
  • the air blower 63b blows air by being driven by the electric motor 63a.
  • the air blower 63b has, for example, blades that are driven by the electric motor 63a.
  • the compressor 64 is sealed as an electric motor 64a (for example, the electric motor 1 according to Embodiment 1), a compression mechanism 64b (for example, a refrigerant circuit) driven by the electric motor 64a, and a housing that covers the electric motor 64a and the compression mechanism 64b.
  • a container 64c compression container).
  • At least one of the indoor unit 61 and the outdoor unit 63 includes the electric motor 1 described in the first embodiment. Specifically, the electric motor 1 described in the first embodiment is applied to at least one of the electric motors 61a and 63a as a driving source of the blower unit.
  • the compressor 5 according to Embodiment 3 may be used as the compressor 64.
  • the electric motor 1 described in the first embodiment is used as the electric motor 64a of the compressor 64.
  • the air conditioner 6 can perform an operation such as a cooling operation in which cool air is blown from the indoor unit 61 or a heating operation in which warm air is blown.
  • the electric motor 61a is a drive source for driving the blower 61b.
  • the blower 61b can blow the adjusted air.
  • the electric motor 1 described in the first embodiment is applied to at least one of the electric motors 61a and 63a, the same effects as the effects described in the first embodiment. Can be obtained.
  • the compressor 5 according to the third embodiment as the compressor 64, the same effect as that described in the third embodiment can be obtained, and the operating efficiency of the air conditioner 6 can be increased. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

ステータコア(20)は、第1の方向に積層された複数の第1のプレート(211)を有する第1のコア部(21)と、第1の方向に積層された複数の第2のプレート(212)を有する第2のコア部(22)と、第1の方向に直交する方向に積層された複数の第3のプレート(213)を有する第3のコア部(23)とを有する。第3のコア部(23)は、第1のコア部(21)と第2のコア部(22)との間に挟まれている。

Description

ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法
 本発明は、電動機に用いられるステータコアに関する。
 一般に、ロータとステータとを有する電動機が用いられている。鉄損の増加、特に渦電流損の増加を防止するために、ステータ用の構成要素として、複数の薄い電磁鋼板が積層されたステータコアがよく用いられている。例えば、電動機の回転軸方向に直交する方向(例えば、径方向)に積層された複数の電磁鋼板を有するステータコアが提案されている(例えば、特許文献1参照)。
特開2010-17002号公報
 しかしながら、電動機の回転軸方向に直交する方向(例えば、径方向)に積層された複数の電磁鋼板を有するステータコアは、電動機の回転軸方向に直交する方向に対する剛性が低下するため、電動機の駆動中における振動(例えば、回転軸方向に直交する方向の振動)及び騒音の原因となり得る。
 本発明の目的は、電動機の駆動中における振動及び騒音を低減するステータコアを提供することである。
 本発明のステータコアは、第1の方向に積層された複数の第1のプレートを有する第1のコア部と、前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、前記第1のコア部と前記第2のコア部との間に挟まれており、前記第1の方向に直交する方向に積層された複数の第3のプレートを有する第3のコア部とを有する。
 本発明によれば、電動機の駆動中における振動及び騒音を低減するステータコアを提供することができる。
本発明の実施の形態1に係る電動機の構造を概略的に示す断面図である。 分割コア部の構造を概略的に示す斜視図である。 ステータコアの構造を概略的に示す分解図である。 第1のコア部及び第2のコア部の一例を概略的に示す平面図である。 第1のコア部の他の例を概略的に示す斜視図である。 第1のコア部のさらに他の例を概略的に示す斜視図である。 第3のコア部の構造を概略的に示す斜視図である。 ステータコアの構造を概略的に示す平面図である。 第1のインシュレータの構造を概略的に示す平面図である。 分割コア部の構造を概略的に示す断面図である。 ロータの構造を概略的に示す断面図である。 ステータコアの製造工程の一例を示すフローチャートである。 本発明の実施の形態2に係る駆動装置の構成を概略的に示す図である。 本発明の実施の形態3に係る圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態4に係る空気調和機の構成を概略的に示す図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る電動機1の構造を概略的に示す断面図である。矢印D1は、ステータ2、ステータコア20、及びロータ3の各々の外周に沿った方向(以下“周方向”という)を示す。各図に示されるZRW直交座標系において、Z軸方向(Z軸)は、電動機1のシャフト(後述するシャフト33)の軸線A1(軸心)と平行な方向(以下“回転軸方向”という)を示し、R軸方向(R軸)は、Z軸方向に直交する方向を示し、W軸方向(W軸)は、Z軸方向及びR軸方向の両方に直交する方向を示す。
 電動機1は、ステータ2と、ロータ3とを有する。電動機1は、例えば、永久磁石埋込型電動機である。
 ステータ2は、ステータコア20と、第1のインシュレータ24aと、第2のインシュレータ24bと、巻線25とを有する。ステータ2は、軸線A1(ロータ3の回転軸)を中心とする周方向に円環状に形成されている。ステータ2の内側に、エアギャップを介してロータ3が挿入されている。第1のインシュレータ24a及び第2のインシュレータ24bは、ステータコア20を絶縁する。
 ステータコア20は、第1のコア部21と、第2のコア部22と、第3のコア部23とを有する(後述する図2及び3参照)。本実施の形態では、ステータ2は、複数の分割コア部200によって形成されている。複数の分割コア部200は、軸線A1を中心とする周方向に円環状に配列されている。ただし、ステータ2は、複数の分割コア部200によって形成されていなくてもよい。例えば、ステータコア20は、円環状の複数の種々のプレート(例えば、電磁鋼板及びアモルファス材料など)を積層することによって形成されていてもよい。
 分割コア部200の構造について以下に説明する。
 図2は、分割コア部200の構造を概略的に示す斜視図である。
 本実施の形態では、ステータ2が複数の分割コア部200によって形成されているため、各分割コア部200は、第1のコア部21(分割された第1のコア部21)と、第2のコア部22(分割された第2のコア部22)と、第3のコア部23(分割された第3のコア部23)と、第1のインシュレータ24aと、第2のインシュレータ24bと、巻線25とを有する。ただし、図2に示される例では、巻線25は図示されていない。
 第1のインシュレータ24aは、ステータコア20と組み合わされる。本実施の形態では、第1のインシュレータ24aは、回転軸方向におけるステータコア20の両端部に備えられている。ただし、第1のインシュレータ24aは、回転軸方向におけるステータコア20の一方の端部に備えられていてもよい。本実施の形態では、第1のインシュレータ24aは、絶縁性樹脂である。
 第2のインシュレータ24bは、例えば、薄いPET(ポリエチレンテレフタレート)フィルムである。PETフィルムの厚さは、例えば、0.15mmである。第2のインシュレータ24bは、ステータコア20のティース部(後述するティース部222及び232)の側面を覆う。
 図3は、ステータコア20(分割されたステータコア20)の構造を概略的に示す分解図である。
 第1のコア部21は、第1の方向に積層された複数の第1のプレート211を有する。言い換えると、複数の第1のプレート211は、第1の方向に垂直な面に対して平行に積層されている。本実施の形態では、第1の方向は、Z軸方向である。第1のプレート211は、例えば、電磁鋼板である。第1のプレート211は、打ち抜き処理(プレス打ち抜き加工)によって、予め定められた形状に形成されている。第1のプレート211の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、第1のプレート211の厚さは、0.35mmである。ただし、第1のプレート211の形状及び厚さは本実施の形態に限定されない。各第1のプレート211は、隣接する第1のプレート211同士が、後述するカシメ223によって互いに締結されている。
 第2のコア部22は、第1の方向に積層された複数の第2のプレート212を有する。言い換えると、複数の第2のプレート212は、第1の方向に垂直な面に対して平行に積層されている。第2のプレート212は、例えば、電磁鋼板である。第2のプレート212は、打ち抜き処理によって、予め定められた形状に形成されている。第2のプレート212の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、第2のプレート212の厚さは、0.35mmである。ただし、第2のプレート212の形状及び厚さは本実施の形態に限定されない。各第2のプレート212は、隣接する第2のプレート212同士が、後述するカシメ223によって互いに締結されている。
 本実施の形態では、第1のコア部21と第2のコア部22とは、互いに同じ材料によって形成されており、互いに同じ構造である。すなわち、第1のプレート211及び第2のプレート212は、互いに同じ材料で形成されており、互いに同じ構造を持つ。ただし、第1のコア部21と第2のコア部22とは、互いに異なる材料によって形成されていてもよく、互いに異なる構造を持っていてもよい。すなわち、第1のプレート211及び第2のプレート212は、互いに異なる材料で形成されていてもよく、互いに異なる構造を持っていてもよい。複数の第1のプレート211及び複数の第2のプレート212の少なくとも一方は、複数の電磁鋼板であることが望ましい。
 第3のコア部23は、第1の方向(Z軸方向)に直交する方向に積層された複数の第3のプレート213を有する。第1の方向に直交する方向は、例えば、R軸方向(第2の方向)又はW軸方向(第3の方向)である。言い換えると、複数の第3のプレート213は、第1の方向に垂直な面に対して垂直に積層されている。
 第3のコア部23は、第1のコア部21と第2のコア部22との間に挟まれている。言い換えると、第1のコア部21と第2のコア部22との間に第3のコア部23が固定されている。本実施の形態では、第1の方向における第3のコア部23の一端側に、第1のコア部21が固定されており、第1の方向における第3のコア部23の他端側に、第2のコア部22が固定されている。
 第3のプレート213は、例えば、アモルファス材料(例えば、アモルファス金属)又はナノ結晶材料(例えば、ナノ結晶金属)によって形成された薄板である。第3のプレート213は、例えば、矩形である。
 第1のコア部21及び第2のコア部22の少なくとも1つは、ステータコア20の径方向(図3に示される例ではR軸方向)において第3のコア部23よりも大きくてもよい。
 複数の第3のプレート213の各々は、複数の第1のプレート211の各々よりも薄い。複数の第3のプレート213の各々は、複数の第2のプレート212の各々よりも薄い。第3のプレート213の厚さは、例えば、5μmから50μmである。本実施の形態では、第3のプレート213の厚さは、20μmである。ただし、第3のプレート213の形状及び厚さは本実施の形態に限定されない。各第3のプレート213は、隣接する第3のプレート213同士を、金型を用いた成形、接着剤、又は溶接によって互いに固定することができる。
 図4は、第1のコア部21及び第2のコア部22の一例を概略的に示す平面図である。本実施の形態では、第1のコア部21及び第2のコア部22は、互いに同じ構造であるので、図4には第1のコア部21の構造を示す。
 第1のコア部21は、ヨーク部221と、ティース部222と、カシメ223と、インシュレータ固定部224とを有する。
 ティース部222は、ヨーク部221から径方向(図4に示される例では、-R方向、すなわち、ステータコア20の径方向の内向き)に延在している。言い換えると、ティース部222は、ヨーク部221から軸線A1に向けて突出している。ティース部222は、径方向における先端である先端部222aを有する。先端部222aは、ステータコア20の周方向に向けて広がるように形成されている。
 インシュレータ固定部224は、第1のインシュレータ24aを固定する。本実施の形態では、インシュレータ固定部224は、第1のインシュレータ24aのインシュレータ位置決め部241(後述する図9参照)が挿入される凹部である。
 図5は、第1のコア部21の他の例を概略的に示す斜視図である。
 図6は、第1のコア部21のさらに他の例を概略的に示す斜視図である。
 図5及び6に示される第1のコア部21の構造は、第2のコア部22にも適用可能である。
 図5に示されるように、インシュレータ固定部224は、ティース部222に形成されていてもよい。さらに、インシュレータ固定部224は、突起であってもよい。この場合、第1のインシュレータ24aのインシュレータ位置決め部241は、凹状に形成される。
 図6に示されるように、インシュレータ固定部224は、ティース部222の側面に形成されていてもよい。この場合、第1のインシュレータ24aのインシュレータ位置決め部241は、インシュレータ固定部224と嵌合可能な形状及び位置に形成される。
 図7は、第3のコア部23の構造を概略的に示す斜視図である。
 第3のコア部23は、第1の方向に直交する第2の方向に積層された複数の第3のプレート213(図3)によって形成されたヨーク部231を有する。ヨーク部231の第1の方向における長さz1は、ヨーク部231の第2の方向における幅r1よりも長い。本実施の形態では、第2の方向は、径方向(例えば、図2,3,及び7では、R軸方向)である。ただし、第2の方向は、径方向に限定されない。例えば、第3のプレート213の数が少なくなるように、第2の方向を選択することがコストの観点から望ましい。
 第3のコア部23は、第1の方向に直交する第3の方向に積層された複数の第3のプレート213によって形成されたティース部232を有する。ティース部232の第1の方向における長さz2は、ティース部232の第3の方向における幅w1よりも長い。本実施の形態では、長さz2は、長さz1と等しい。本実施の形態では、第3の方向は、第1の方向及び第2の方向に直交する。例えば、第3の方向は、図2,3,及び7では、W軸方向である。ただし、第3の方向は、W軸方向に限定されない。例えば、第3のプレート213の数が少なくなるように、第3の方向を選択することがコストの観点から望ましい。
 ティース部232は、ヨーク部231から径方向(すなわち、ステータコア20の径方向の内向き)に延在している。言い換えると、ティース部232は、ヨーク部231から軸線A1に向けて突出している。ティース部232は、径方向における先端である先端部232aを有する。先端部232aは、ステータコア20の周方向に向けて広がるように形成されている。
 図8は、ステータコア20の構造を概略的に示す平面図である。
 両側に隣接するステータコア20のヨーク部221が互いに連結されていることにより、隣接するヨーク部221が互いに連結されている。すなわち、図1に示される各分割コア部200は、両側に隣接する分割コア部200のステータコア20(分割されたステータコア20)が互いに連結されていることにより、連結されている。隣接する第1のコア部21が互いに連結されてもよく、隣接する第2のコア部22が互いに連結されてもよい。2つのヨーク部221及び2つのティース部222によって囲まれた領域がスロット部26である。
 ステータコア20の各ティース部222は、スロット部26を介して隣接している。したがって、複数のティース部222及び複数のスロット部26は、周方向に、交互に配列されている。周方向における複数のティース部222の配列ピッチ(すなわち、周方向におけるスロット部26の幅)は等間隔である。
 複数のスロット部26は、周方向に等間隔に形成されている。本実施の形態では、ステータ2に、9個のスロット部26が形成されている。
 ステータコア20は、電動機1のトルクを増加させるため、巻線25の占積率(スロット部26の断面積に対する巻線25の断面積の割合)が高くなるように形成されていることが望ましい。
 図9は、第1のインシュレータ24aの構造を概略的に示す平面図である。
 第1のインシュレータ24aは、ステータコア20のインシュレータ固定部224と組み合わされるインシュレータ位置決め部241を有する。本実施の形態では、インシュレータ位置決め部241は、インシュレータ固定部224に挿入される突起である。
 図10は、分割コア部200の構造を概略的に示す断面図である。
 巻線25は、第1のインシュレータ24a及び第2のインシュレータ24bを介してステータコア20に巻回されており、回転磁界を発生させるコイルを形成する。
 巻線25は、例えば、マグネットワイヤである。本実施の形態では、ステータ2は、3相であり、巻線25(コイル)の結線は、Y結線(スター結線)である。巻線25(コイル)のターン数及び線径は、電動機1の回転数、トルク、電圧仕様、及びスロット部26の断面積等に応じて定められる。本実施の形態では、巻線25の線径は、1.0mmである。本実施の形態では、ステータコア20には、巻線25が80ターン巻回されている。ただし、巻線25の線径及びターン数は、これらの例に限られない。
 本実施の形態では、巻線25(コイル)の巻線方式は、集中巻である。例えば、分割されたステータコア20を円環状に配列する前の状態(例えば、分割されたステータコア20が直線状に配列された状態)で、ステータコア20に巻線25を巻回することができる。巻線25が巻回されたステータコア20は、円環状に折り畳まれて、溶接等によって固定される。
 ロータ3の構造について以下に説明する。
 図11は、ロータ3の構造を概略的に示す断面図である。
 ロータ3は、ロータコア31と、複数の永久磁石32と、シャフト33と、複数の磁石挿入孔34と、複数のフラックスバリア35(漏れ磁束抑制穴)と、複数の風穴36とを有する。
 ロータ3は、軸線A1を中心として回転自在である。ロータ3は、ステータ2の内側に、エアギャップを介して回転自在に配置されている。軸線A1は、ロータ3の回転中心であり、且つ、シャフト33の軸線である。ロータ3とステータ2との間(具体的には、ロータ3の外側表面とステータ2の内側表面との間)に形成されるエアギャップは、例えば、0.3mmから1mmである。巻線25に電流を供給することにより、回転磁界が発生し、ロータ3が回転する。巻線25に供給される電流は、指令回転数(ロータ3の回転数)に同期した周波数を持つ電流である。
 本実施の形態では、ロータ3は、永久磁石埋込型である。ロータコア31には、ロータ3の周方向に複数の磁石挿入孔34が形成されている。磁石挿入孔34は、永久磁石32が挿入される空隙である。各磁石挿入孔34には、複数の永久磁石32が配置されている。ただし、各磁石挿入孔34に1つの永久磁石32を配置してもよい。複数の永久磁石32は、ロータ3の径方向に磁化されるように着磁されており、磁極の位置関係は互いに同じである。磁石挿入孔34の数は、ロータ3の磁極数に対応する。本実施の形態では、ロータ3の磁極数は、6極である。ただし、ロータ3の磁極数は、2極以上であればよい。
 ロータコア31は、複数の電磁鋼板を積層することにより形成されている。ロータコア31の各電磁鋼板の厚さは、0.1mmから0.7mmである。本実施の形態では、ロータコア31の各電磁鋼板の厚さは、0.35mmである。ただし、ロータコア31の各電磁鋼板の形状及び厚さは、本実施の形態に限定されない。ロータコア31の各電磁鋼板は、隣接する電磁鋼板同士が、カシメによって互いに締結されている。
 シャフト33は、ロータコア31と連結されている。具体的には、ロータコア31に形成された軸穴に、焼き嵌め又は圧入などによって固定されている。これにより、ロータコア31が回転することによって発生する回転エネルギーは、シャフト33に伝達される。
 フラックスバリア35は、ロータ3の周方向において磁石挿入孔34に隣接する位置に形成されている。フラックスバリア35は、漏れ磁束を低減する。隣接する永久磁石32間での磁束の短絡を防ぐため、フラックスバリア35とロータ3の外側表面(外縁)との間の長さは短いことが望ましい。フラックスバリア35とロータ3の外側表面との間の長さは、例えば、0.35mmである。風穴36は、貫通孔である。例えば、圧縮機に電動機1を用いたとき、冷媒が風穴36を通過することができる。
 永久磁石32として、例えば、ネオジウム(Nd)、鉄(Fe)、及びボロン(B)を主成分とする希土類磁石を用いることができる。Nd-Fe-B永久磁石の保磁力は、温度により低下する性質を持つ。例えば、圧縮機のように100℃以上の高温雰囲気中でNd希土類磁石を用いた電動機を使用する場合、磁石の保磁力は温度により劣化(約-0.5%/ΔKから-0.6%/ΔK)するため、Dy(ディスプロシウム)元素を添加して保磁力を高める必要がある。保磁力は、Dy元素の含有量にほぼ比例して向上する。一般的な圧縮機では、電動機の雰囲気温度上限は約150℃であり、20℃に対して、約130℃の温度上昇の範囲で使用する。例えば、-0.5%/ΔKの温度係数では保磁力は65%低下する。
 圧縮機の最大負荷で減磁しないようにするためには、1100A/mから1500A/m程度の保磁力が必要である。150℃の雰囲気温度中で保磁力を保証するためには、常温保磁力を1800A/mから2300A/m程度に設計する必要がある。
 Nd-Fe-B永久磁石にDy元素が添加されていない状態では、常温保磁力は約1800A/mである。約2300kA/mの保磁力を得るためには、約2wt%のDy元素を添加する必要がある。しかしながら、Dy元素を添加すると、保磁力特性は向上するが、残留磁束密度特性が低下する。残留磁束密度が低下すると、電動機のマグネットトルクが低下し、通電電流が増加するため、銅損が増加する。そのため、モータ効率を考慮すると、Dy添加量を低減することが望ましい。
 ステータコア20の製造方法について以下に説明する。
 図12は、ステータコア20の製造工程の一例を示すフローチャートである。
 ステップS1では、予め定められた構造を持つ複数の第1のプレート211を形成し、複数の第1のプレート211を第1の方向(Z軸方向)に積層することにより第1のコア部21を形成する。第1のプレート211は、例えば、電磁鋼板である。例えば、打ち抜き処理(プレス打ち抜き加工)によって予め定められた構造を持つように第1のプレート211を形成する。複数の第1のプレート211は、例えば、カシメ223によって締結しながら第1の方向に積層される。複数の第1のプレート211を、ボルト固定又はリベット固定によって固定しながら第1の方向に積層してもよい。
 ステップS2では、予め定められた構造を持つ複数の第2のプレート212を形成し、複数の第2のプレート212を第1の方向に積層することにより第2のコア部22を形成する。第2のプレート212は、例えば、電磁鋼板である。例えば、打ち抜き処理によって予め定められた構造を持つように第2のプレート212を形成する。複数の第2のプレート212は、例えば、カシメ223によって締結しながら第1の方向に積層される。複数の第2のプレート212を、ボルト固定又はリベット固定によって固定しながら第1の方向に積層してもよい。
 ステップS3では、予め定められた構造を持つ複数の第3のプレート213を形成し、複数の第3のプレート213を第1の方向に直交する方向に積層することにより第3のコア部23を形成する。第3のプレート213は、例えば、アモルファス材料(例えば、アモルファス金属)又はナノ結晶材料(例えば、ナノ結晶金属)によって形成される。例えば、シャー切断によってアモルファス材料又はナノ結晶材料を予め定められた形状に切断する。本実施の形態では、第3のプレート213は矩形である。
 第3のコア部23のヨーク部231は、第1の方向に直交する第2の方向に積層される。例えば、金型を用いた成形、接着剤、又は溶接によって複数の第3のプレート213を固定し、複数の第3のプレート213をR軸方向に積層する。これにより、ヨーク部231が形成される。積層が容易な方向を第2の方向として選択してもよい。
 第3のコア部23のティース部232は、第1の方向に直交する第3の方向に積層される。例えば、金型を用いた成形、接着剤、又は溶接によって複数の第3のプレート213を固定し、複数の第3のプレート213をW軸方向に積層する。積層が容易な方向を第3の方向として選択してもよい。複数の第3のプレート213のうちのW軸方向における両端側の第3のプレート213の先端は、第1のコア部21及び第2のコア部22の先端部222aの形状に合わせて折り曲げられる。これにより、ティース部232が形成される。
 さらに、ヨーク部231とティース部232とを、例えば、金型を用いた成形、接着剤、又は溶接によって固定することにより、第3のコア部23を形成することができる。
 第3のコア部23を形成する工程において、第3のコア部23に応力が発生しやすい。具体的には、第3のプレート213の積層を行うときに第3のコア部23に応力が発生しやすい。第3のコア部23に生じる応力は、第3のコア部23の磁気特性の劣化を引き起こす。そのため、ステップS3において、第3のコア部23を形成した後に、第3のコア部23に熱処理(焼なまし)を施してもよい。これにより、応力が解放され、ひずみが除去される。その結果、第3のコア部23の磁気特性が改善される。第3のプレート213として用いられるアモルファス材料及びナノ結晶材料は、応力を起因とする磁気特性の劣化が顕著であるので、熱処理の効果が高い。
 ステップS4では、第1のコア部21、第2のコア部22、及び第3のコア部23を連結する。具体的には、第1のコア部21及び第2のコア部22を、第3のコア部23を挟んで固定する。言い換えると、第1のコア部21と第2のコア部22との間に第3のコア部23を固定する。例えば、金型を用いた成形、接着剤、又は溶接によって第1の方向における第3のコア部23の一端側に、第1のコア部21を固定し、第1の方向における第3のコア部23の他端側に、第2のコア部22を固定する。第1のコア部21、第2のコア部22、及び第3のコア部23は、接着剤、溶接、及び金型を用いた成形ではなく、巻線25を巻回することによって固定してもよい。
 上記の各工程により、ステータコア20を製造することができる。
 実施の形態1に係る電動機1のステータ2のステータコア20の効果について以下に説明する。
 回転軸方向に直交する方向(例えば、周方向又は径方向)に複数のプレートが積層されることにより形成されたステータコアは、剛性が低下する場合がある。例えば、ステータコアの複数のプレート間に隙間がある場合、回転軸方向に直交する方向に対する剛性が低下する。さらに、この隙間によって、電動機の駆動中における振動(例えば、回転軸方向に直交する方向の振動)及び騒音の原因となり得る。
 実施の形態1に係る電動機1のステータコア20は、第1の方向に積層された複数の第1のプレート211を有する第1のコア部21と、第1の方向に積層された複数の第2のプレート212を有する第2のコア部22と、第1の方向に直交する方向に積層された複数の第3のプレート213を有する第3のコア部23とを有する。第3のコア部23は、第1のコア部21と第2のコア部22との間に挟まれている。第1の方向に積層された複数の第1のプレート211を有する第1のコア部21と、第1の方向に積層された複数の第2のプレート212を有する第2のコア部22とによって、回転軸方向に直交する方向に対する剛性を高めることができる。これにより、電動機1の駆動中における振動及び騒音を低減することができる。
 例えば、圧縮機の駆動源として電動機1を用いるとき、電動機1は、圧縮機のハウジングである密閉容器の内壁に取り付けられる。この場合、ステータコア20に大きな応力(回転軸方向に直交する方向における応力)が生じる。通常、ステータコアに圧縮応力が生じると、鉄損が増加する。実施の形態1に係る電動機1によれば、回転軸方向に直交する方向に対する剛性を高めることができるので、ステータコア20の形状を維持することができ、鉄損の増加を抑制することができる。鉄損の増加を防止することによってモータ効率を高めることができる。さらに、電動機1を密閉容器に強固に固定することができ、圧縮機内において電動機1の振動及び騒音を低減することができる。
 電動機1の第1のコア部21及び第2のコア部22のうちの少なくとも1つは、ステータコア20の径方向において第3のコア部23よりも大きくてもよい。これにより、圧縮機の密閉容器の内壁に、第1のコア部21及び第2のコア部22の少なくとも一方を取り付けることができる。その結果、電動機1を圧縮機の密閉容器の内壁に取り付けたときに、ステータコア20(特に、第3のコア部23)に生じる圧縮応力が低減され、鉄損の増加を防止することができる。
 一般に、ステータコアでは、ヒステリシス損及び渦電流損などの鉄損(エネルギー損失)が発生する。ヒステリシス損は、ステータコアの磁区が交番磁界によって磁界の向きを変えるときのエネルギー損失であり、理論的にはステータコアに生じる磁束変化の周波数に比例する。渦電流損は、ステータコア(例えば、電磁鋼板)の内部に発生する渦電流によって生じるエネルギー損失である。渦電流損は、理論的にはステータコアに生じる磁束変化の周波数の2乗に比例し、更にステータコアの積層プレートの各々の厚さの2乗にも比例する。したがって、鉄損の増加、特に渦電流損の増加を防止するために、積層プレートの厚さを薄くすることが有効である。
 実施の形態1に係る電動機1において、ステータコア20の複数の第3のプレート213の各々は、複数の第1のプレート211の各々よりも薄い。これにより、ステータコア20(特に第3のコア部23)における渦電流損を低減することができる。同様に、複数の第3のプレート213の各々は、複数の第2のプレート212の各々よりも薄い。これにより、ステータコア20(特に第3のコア部23)における渦電流損を低減することができる。
 第3のコア部23のヨーク部221の第1の方向における長さは、第3のコア部23のヨーク部221の第2の方向における幅よりも長い。さらに、第3のコア部23のティース部222の第1の方向における長さは、ティース部222の第3の方向における幅よりも長い。これにより、第3のコア部23のヨーク部221を形成するための第3のプレート213の数を低減することができる。同様に、第3のコア部23のティース部222を形成するための第3のプレート213の数を低減することができる。したがって、第3のプレート213の切断及び接着等の製造工程を削減することができ、第3のコア部23を形成するための工具の寿命を延ばすことができる。
 複数の第3のプレート213は、アモルファス材料又はナノ結晶材料によって形成されている。アモルファス材料及びナノ結晶材料は、優れた磁気特性を持ち、電磁鋼板の3%から15%程度の厚さで第3のプレート213として形成される。例えば、0.2mmから0.5mm程度の厚さの電磁鋼板がステータコアに用いられるのに対し、アモルファス材料及びナノ結晶材料は15μmから30μm程度の厚さに形成することができる。例えば、通常ステータコアに用いられる電磁鋼板の鉄損が1.2W/kg(50Hzで磁束密度1.0T)程度であるのに対し、アモルファス材料の鉄損は、0.05W/kg(50Hzで磁束密度1.0T)程度である。したがって、渦電流損は積層プレートの厚さの2乗に比例して小さくなるため、電動機が高周波で運転される場合であっても鉄損の増加を防止することが可能となる。
 第1のコア部21は、第1のインシュレータ24aを固定するインシュレータ固定部224を有する。同様に、第2のコア部22が、第1のインシュレータ24aを固定するインシュレータ固定部224を有してもよい。これにより、第3のコア部23にインシュレータ固定部224を形成せずに、ステータコア20に第1のインシュレータ24aを固定することができる。
 ステータコア20の製造方法の効果を以下に説明する。
 ステータコア20の製造方法によれば、回転軸方向に直交する方向に対する剛性の高いステータコア20を製造することができる。これにより、電動機1の駆動中における振動及び騒音を低減可能なステータコア20を製造することができる。
 一般に、アモルファス材料及びナノ結晶材料は、一般的な電磁鋼板と比較して3倍から6倍の硬度(例えば、ビッカース硬度)を持つため、加工性が悪い。例えば、電磁鋼板のビッカース硬度が187GN/m程度であるのに対して、アモルファス材料のビッカース硬度は900GN/m程度である。さらに、アモルファス材料及びナノ結晶材料は、圧縮応力による磁気特性劣化が顕著であるため、カシメなどの圧縮応力が発生しうる固定方法は望ましくない。したがって、ステータコアの材料に応じて固定方法を選択することが望ましい。
 本実施の形態では、金型を用いた成形、接着剤、又は溶接によって複数の第3のプレート213を固定するので、ステータコア20の磁気特性の劣化を防ぎながら、第3のコア部23を強固に固定することができる。さらに、第1のコア部21及び第2のコア部22の各々を、カシメ223によって固定することにより、ステータコア20全体としての磁気特性の劣化を防ぎながら剛性を高めることができる。
 上述のように、アモルファス材料及びナノ結晶材料は、一般的な電磁鋼板と比較して3倍から6倍の硬度(例えば、ビッカース硬度)を持つため、打ち抜き処理が困難である。本実施の形態では、シャー切断によってアモルファス材料又はナノ結晶材料を矩形に切断することにより、第3のプレート213を容易に形成することができる。
 第3のコア部23を形成する工程において、第3のコア部23を形成した後に、第3のコア部23に熱処理を施すことにより、応力が解放され、ひずみが除去される。その結果、第3のコア部23の磁気特性を改善することができる。
実施の形態2.
 次に、本発明の実施の形態2に係る駆動装置4について説明する。
 図13は、駆動装置4の構成を概略的に示す図である。
 駆動装置4は、実施の形態1に係る電動機1と、電動機1を駆動する駆動回路41とを有する。
 駆動回路41は、実施の形態1に係る電動機1を駆動する回路である。実施の形態1に係る電動機1は、駆動回路41によるPWM(Pulse Width Modulation)制御に基づく可変速駆動を行う。
 外部電源としての商用交流電源Eから交流の電力が駆動回路41に供給される。商用交流電源Eから供給された交流電圧は、整流回路42で直流電圧に変換される。整流回路42は、例えば、商用交流電源Eから印加される電圧を昇圧するチョッパー回路、及び直流電圧を平滑にする平滑コンデンサなどを有する。
 整流回路42で変換された直流電圧は、インバータ回路43で可変周波数の交流電圧に変換され、電動機1(具体的には、巻線25)に印加される。電動機1は、インバータ回路43から供給される可変周波数の交流電力により駆動される。
 インバータ回路43は、例えば、3相ブリッジのインバータ回路である。インバータ回路43は、インバータ主素子としての6個のIGBT(絶縁ゲートバイポーラトランジスタ)43aと、6個のSiC-SBD(ショットキーバリアダイオード)43bとを有する。各SiC-SBD43bには、フライホイルダイオード(FRD)としてシリコンカーバイド(SiC)が用いられている。SiC-SBD43bは、IGBT43aが電流をONからOFFに切り替えるときに生じる逆起電力を抑制する。
 回転子位置検出部44は、インバータ回路43の出力信号から電動機1のロータ3の位置を演算し、ロータ3の位置情報を出力電圧演算部45に出力する。回転子位置検出部44は、電動機1の端子電圧を検出して、電動機1のロータ3の位置を検出してもよい。
 回転子位置検出部44によって検出されたロータ3の位置情報は、出力電圧演算部45に出力される。出力電圧演算部45は、駆動回路41の外部から与えられる目標回転数N及び回転子位置検出部44から入力されたロータ3の位置情報に基づいて、電動機1に印加される最適なインバータ回路43の出力電圧を演算する。出力電圧演算部45は、演算結果(出力電圧)に関連付けられた信号をPWM信号生成部46に出力する。
 PWM信号生成部46は、出力電圧演算部45から入力された信号に基づくPWM信号を主素子駆動回路47に出力する。主素子駆動回路47は、インバータ回路43の各IGBT43aを駆動する。各IGBT43aは、主素子駆動回路47からのPWM信号に従ってスイッチングを行う。
 分圧抵抗49a及び49bは、整流回路42とインバータ回路43との間において、直列に接続されている。直流電圧検出部48は、分圧抵抗49a及び49bによって低電圧に変換された電気信号を検出し、保持する。
 実施の形態2に係る駆動装置4によれば、電動機1(具体的には、巻線25)に供給される電流の瞬時値が検出される。検出された瞬時値が予め定められた値よりも高いとき、出力電圧演算部45はPWM信号生成部46への信号の出力を停止する。これにより、電動機1に大電流が流れることがなくなり、ステータ2の反磁界によって生じるロータ3の永久磁石32の減磁を防止することができ、電動機1の信頼性を高めることができる。
 一般に、インバータによって制御される電動機(例えば、ブラシレス直流モータ)は、高調波によって駆動される。そのため、電動機に生じる鉄損のうち、渦電流損が占める割合が、ヒステリシス損よりも大きい。そこで、電動機1のステータ2に、複数の第1のプレート211及び複数の第2のプレート212の各々よりも薄く形成された複数の第3のプレート213を用いることにより、電動機1における渦電流損の増加を防止することができる。例えば、第3のプレート213として、アモルファス材料又はナノ結晶材料によって形成されたプレートを用いることにより、第3のプレート213の厚さを薄く形成することが可能になり、渦電流損の増加を効果的に防止することができる。
実施の形態3.
 次に、本発明の実施の形態3に係る圧縮機5について説明する。
 図14は、実施の形態3に係る圧縮機5の構造を概略的に示す断面図である。
 圧縮機5は、電動要素としての実施の形態1に係る電動機1と、ハウジングとしての密閉容器51と、圧縮要素としての圧縮機構52と、電動機1を駆動する駆動回路41とを有する。本実施の形態では、圧縮機5は、ロータリ圧縮機である。ただし、圧縮機5は、ロータリ圧縮機に限定されない。
 密閉容器51は、電動機1及び圧縮機構52を覆う。密閉容器51の底部には、圧縮機構52の摺動部分を潤滑する冷凍機油が貯留されている。駆動回路41は、実施の形態2で説明した駆動回路である。すなわち、駆動回路41はインバータ回路43を有する。
 圧縮機5は、さらに、密閉容器51に固定されたガラス端子53と、アキュムレータ54と、吸入パイプ55と、吐出パイプ56とを有する。
 本実施の形態では、電動機1は、永久磁石埋込型電動機であるが、これに限定されない。圧縮機構52は、シリンダ52aと、ピストン52bと、上部フレーム52c(第1のフレーム)と、下部フレーム52d(第2のフレーム)と、上部フレーム52c及び下部フレーム52dにそれぞれ取り付けられた複数のマフラ52eとを有する。圧縮機構52は、さらに、シリンダ52a内を吸入側と圧縮側とに分けるベーンを有する。圧縮機構52は、電動機1によって駆動される。
 電動機1(具体的には、ステータ2)のコイル(実施の形態1で説明した巻線25)には、ガラス端子53を介して電力が供給される。
 例えば、焼き嵌め又は溶接等の方法により、電動機1のステータ2を密閉容器51に直接取り付けることができる。
 電動機1の第1のコア部21及び第2のコア部22のうちの少なくとも1つは、ステータコア20の径方向(図14に示される例では、R軸方向)において第3のコア部23よりも大きくてもよい。本実施の形態では、第1のコア部21及び第2のコア部22の両方が、ステータコア20の径方向において第3のコア部23よりも大きい。したがって、第3のコア部23と密閉容器51との間に空隙が形成されている。すなわち、本実施の形態では、第3のコア部23は、密閉容器51に接触していない。
 ステータ2を密閉容器51に取り付ける前に、第3のコア部23に熱処理(焼なまし)が施されていることが望ましい。これにより、応力が解放され、ひずみが除去される。その結果、第3のコア部23の磁気特性が改善される。第3のプレート213として用いられるアモルファス材料及びナノ結晶材料は、応力を起因とする磁気特性の劣化が顕著であるので、熱処理の効果が高い。
 電動機1のロータ3(具体的には、シャフト33)は、上部フレーム52c及び下部フレーム52dの各々に備えられた軸受部を介して回転自在に上部フレーム52c及び下部フレーム52dに保持されている。
 ピストン52bには、シャフト33が挿通されている。上部フレーム52c及び下部フレーム52dには、シャフト33が回転自在に挿通されている。上部フレーム52c及び下部フレーム52dは、シリンダ52aの端面を閉塞する。アキュムレータ54は、吸入パイプ55を介して冷媒(例えば、冷媒ガス)をシリンダ52aに供給する。
 次に、圧縮機5の動作について説明する。アキュムレータ54から供給された冷媒は、密閉容器51に固定された吸入パイプ55からシリンダ52a内へ吸入される。インバータの通電によって電動機1が回転することにより、シャフト33に嵌合されたピストン52bがシリンダ52a内で回転する。これにより、シリンダ52a内で冷媒の圧縮が行われる。
 冷媒は、マフラ52eを通り、密閉容器51内を上昇する。このとき、圧縮された冷媒には、冷凍機油が混入されている。冷媒と冷凍機油との混合物は、ロータコア31に形成された風穴36を通過する際に、冷媒と冷凍機油との分離が促進され、冷凍機油が吐出パイプ56へ流入するのを防止できる。このようにして、圧縮された冷媒が、吐出パイプ56を通って冷凍サイクルの高圧側へと供給される。
 圧縮機5の冷媒として、R410A、R407C、及びR22等を用いることができる。ただし、圧縮機5の冷媒は、これらに限られない。例えば、圧縮機5の冷媒として、低GWP(地球温暖化係数)の冷媒等を用いることができる。
 低GWP冷媒の代表例として、以下の冷媒がある。
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素は、例えば、HFO-1234yf(CF3CF=CH2)である。HFOは、Hydro-Fluoro-Olefinの略称である。Olefinは、二重結合を1つ持つ不飽和炭化水素のことである。HFO-1234yfのGWPは、4である。
(2)組成中に炭素の二重結合を有する炭化水素は、例えば、R1270(プロピレン)である。R1270のGWPは3であり、HFO-1234yfのGWPよりも小さいが、R1270の可燃性は、HFO-1234yfの可燃性よりもよい。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素及び組成中に炭素の二重結合を有する炭化水素の少なくとも1つを含む混合物は、例えば、HFO-1234yfとR32との混合物である。HFO-1234yfは、低圧冷媒のため、圧損が大きくなり、冷凍サイクル(特に、蒸発器において)の性能が低下しやすい。そのため、高圧冷媒であるR32又はR41等との混合物を使用することが望ましい。
 実施の形態3に係る圧縮機5によれば、実施の形態1及び2で説明した効果に加えて、下記の効果を有する。
 実施の形態3に係る圧縮機5によれば、駆動源として電動機1を用いることにより、回転軸方向(図14に示される例では、Z軸方向)に直交する方向に対する剛性を高めることができるので、電動機1を密閉容器51に強固に固定することができ、圧縮機5内において電動機1の振動及び騒音を低減することができる。
 電動機1の第1のコア部21及び第2のコア部22のうちの少なくとも1つが、ステータコア20の径方向において第3のコア部23よりも大きいとき、第3のコア部23と密閉容器51との間に、空隙が形成される。本実施の形態では、第1のコア部21及び第2のコア部22が密閉容器51の内壁に取り付けられている。これにより、ステータコア20に圧縮応力が生じるとき、この圧縮応力は、主に第1のコア部21及び第2のコア部22に生じ、第3のコア部23における応力の発生を低減できる。その結果、鉄損の増加を防止することができ、圧縮機5の効率を高めることができる。特に、アモルファス材料及びナノ結晶材料は、圧縮応力を起因とする磁気特性の劣化が顕著であるので、第3のプレート213としてアモルファス材料及びナノ結晶材料を用いたときに、鉄損の増加を防止する効果が高い。
実施の形態4.
 本発明の実施の形態4に係る空気調和機6を以下に説明する。
 図15は、実施の形態4に係る空気調和機6の構成を概略的に示す図である。
 実施の形態4に係る空気調和機6(例えば、冷凍空調装置)は、送風機(第1の送風機)としての室内機61と、冷媒配管62と、冷媒配管62によって室内機61と接続された送風機(第2の送風機)としての室外機63とを備える。
 室内機61は、電動機61a(例えば、実施の形態1に係る電動機1)と、電動機61aによって駆動されることにより、送風する送風部61bと、電動機61a及び送風部61bを覆うハウジング61cとを有する。送風部61bは、例えば、電動機61aによって駆動される羽根を有する。
 室外機63は、電動機63a(例えば、実施の形態1に係る電動機1)と、送風部63bと、圧縮機64(例えば、実施の形態3に係る圧縮機5)と、熱交換器(図示しない)とを有する。送風部63bは、電動機63aによって駆動されることにより、送風する。送風部63bは、例えば、電動機63aによって駆動される羽根を有する。圧縮機64は、電動機64a(例えば、実施の形態1に係る電動機1)と、電動機64aによって駆動される圧縮機構64b(例えば、冷媒回路)と、電動機64a及び圧縮機構64bを覆うハウジングとしての密閉容器64c(圧縮容器)とを有する。
 実施の形態4に係る空気調和機6において、室内機61及び室外機63の少なくとも1つは、実施の形態1で説明した電動機1を有する。具体的には、送風部の駆動源として、電動機61a及び63aの少なくとも一方に、実施の形態1で説明した電動機1が適用される。
 圧縮機64として実施の形態3に係る圧縮機5を用いてもよい。この場合、圧縮機64の電動機64aとして、実施の形態1で説明した電動機1が用いられる。
 空気調和機6は、例えば、室内機61から冷たい空気を送風する冷房運転、又は温かい空気を送風する暖房運転等の運転を行うことができる。室内機61において、電動機61aは、送風部61bを駆動するための駆動源である。送風部61bは、調整された空気を送風することができる。
 実施の形態4に係る空気調和機6によれば、電動機61a及び63aの少なくとも一方に、実施の形態1で説明した電動機1が適用されるので、実施の形態1で説明した効果と同様の効果を得ることができる。
 さらに、圧縮機64として実施の形態3に係る圧縮機5を用いることにより、実施の形態3で説明した効果と同様の効果を得ることができ、空気調和機6の運転効率を高めることができる。
 以上に説明した各実施の形態における特徴は、互いに適宜組み合わせることができる。
 以上に説明したように、好ましい実施の形態を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 1,61a,63a,64a 電動機、 2 ステータ、 3 ロータ、 4 駆動装置、 5 圧縮機、 6 空気調和機、 20 ステータコア、 21 第1のコア部、 22 第2のコア部、 23 第3のコア部、 24a 第1のインシュレータ、 24b 第2のインシュレータ、 25 巻線、 26 スロット部、 31 ロータコア、 32 永久磁石、 33 シャフト、 41 駆動回路、 43 インバータ回路、 51 密閉容器、 52 圧縮機構、 61 室内機、 63 室外機、 200 分割コア部、 211 第1のプレート、 212 第2のプレート、 213 第3のプレート、 221,231 ヨーク部、 222,232 ティース部、 222a,232a 先端部、 223 カシメ、 224 インシュレータ固定部、 241 インシュレータ位置決め部。

Claims (22)

  1.  第1の方向に積層された複数の第1のプレートを有する第1のコア部と、
     前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、
     前記第1のコア部と前記第2のコア部との間に挟まれており、前記第1の方向に直交する方向に積層された複数の第3のプレートを有する第3のコア部と
     を備えるステータコア。
  2.  前記複数の第3のプレートの各々は、前記複数の第1のプレートの各々よりも薄い請求項1に記載のステータコア。
  3.  前記複数の第3のプレートの各々は、前記複数の第2のプレートの各々よりも薄い請求項1又は2に記載のステータコア。
  4.  前記複数の第1のプレートと前記複数の第2のプレートとは、互いに同じ材料で形成されている請求項1から3のいずれか1項に記載のステータコア。
  5.  前記第3のコア部は、前記第1の方向に直交する第2の方向に積層された前記複数の第3のプレートによって形成されたヨーク部を有する請求項1から4のいずれか1項に記載のステータコア。
  6.  前記ヨーク部の前記第1の方向における長さは、前記ヨーク部の前記第2の方向における幅よりも長い請求項5に記載のステータコア。
  7.  前記第3のコア部は、前記第1の方向に直交する第3の方向に積層された前記複数の第3のプレートによって形成されたティース部を有する請求項1から6のいずれか1項に記載のステータコア。
  8.  前記ティース部の前記第1の方向における長さは、前記ティース部の前記第3の方向における幅よりも長い請求項7に記載のステータコア。
  9.  前記第1のコア部及び前記第2のコア部のうちの少なくとも1つは、径方向において前記第3のコア部よりも長い請求項1から8のいずれか1項に記載のステータコア。
  10.  前記第1のコア部及び第2のコア部のうちの少なくとも1つは、インシュレータを固定する固定部を有する請求項1から9のいずれか1項に記載のステータコア。
  11.  前記複数の第3のプレートは、アモルファス材料又はナノ結晶材料によって形成された請求項1から10のいずれか1項に記載のステータコア。
  12.  前記複数の第1のプレート及び前記複数の第2のプレートの少なくとも一方は、複数の電磁鋼板である請求項1から11のいずれか1項に記載のステータコア。
  13.  ステータコアと、
     前記ステータコアと組み合わされるインシュレータと、
     前記インシュレータを介して前記ステータコアに巻回される巻線と
     を備え、
     前記ステータコアは、
     第1の方向に積層された複数の第1のプレートを有する第1のコア部と、
     前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、
     前記第1のコア部と前記第2のコア部との間に挟まれており、前記第1の方向に直交する方向に積層された複数の第3のプレートを有する第3のコア部と
     を有する
     ステータ。
  14.  ロータと、
     ステータと
     を備え、
     前記ステータは、
     第1の方向に積層された複数の第1のプレートを有する第1のコア部と、
     前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、
     前記第1のコア部と前記第2のコア部との間に挟まれており、前記第1の方向に直交する方向に積層された複数の第3のプレートを有する第3のコア部と
     を有する
     電動機。
  15.  電動機と、
     前記電動機を駆動する駆動回路と
     を備え、
     前記電動機は、
     ロータと、
     ステータと
     を有し、
     前記ステータは、
     第1の方向に積層された複数の第1のプレートを有する第1のコア部と、
     前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、
     前記第1のコア部と前記第2のコア部との間に挟まれており、前記第1の方向に直交する方向に積層された複数の第3のプレートを有する第3のコア部と
     を有する
     駆動装置。
  16.  電動機と、
     前記電動機によって駆動される圧縮機構と、
     前記電動機を駆動する駆動回路と、
     前記電動機及び前記圧縮機構を覆うハウジングと
     を備え、
     前記電動機は、
     ロータと、
     ステータと
     を有し、
     前記ステータは、
     第1の方向に積層された複数の第1のプレートを有する第1のコア部と、
     前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、
     前記第1のコア部と前記第2のコア部との間に挟まれており、前記第1の方向に直交する方向に積層された複数の第3のプレートを有する第3のコア部と
     を有する
    圧縮機。
  17.  前記第1のコア部及び前記第2のコア部のうちの少なくとも1つは、径方向において前記第3のコア部よりも大きい請求項16に記載の圧縮機。
  18.  室内機と、
     前記室内機に接続された室外機と
     を備え、
     前記室内機及び前記室外機の少なくとも1つは電動機を有し、
     前記電動機は、
     ロータと、
     ステータと
     を有し、
     前記ステータは、
     第1の方向に積層された複数の第1のプレートを有する第1のコア部と、
     前記第1の方向に積層された複数の第2のプレートを有する第2のコア部と、
     前記第1のコア部と前記第2のコア部との間に挟まれており、前記第1の方向に直交する方向に積層された複数の第3のプレートを有する第3のコア部と
     を有する
     空気調和機。
  19.  複数の第1のプレートを第1の方向に積層することにより第1のコア部を形成するステップと、
     複数の第2のプレートを前記第1の方向に積層することにより第2のコア部を形成するステップと、
     複数の第3のプレートを前記第1の方向に直交する方向に積層することにより第3のコア部を形成するステップと、
     前記第1のコア部及び前記第2のコア部を、前記第3のコア部を挟んで固定するステップと
     を備えるステータコアの製造方法。
  20.  前記第3のコア部を形成するステップは、シャー切断によってアモルファス材料又はナノ結晶材料を予め定められた形状に切断し、前記複数の第3のプレートを形成するステップを含む請求項19に記載のステータコアの製造方法。
  21.  前記第3のコア部を形成するステップは、金型を用いた成形、接着剤、又は溶接によって前記複数の第3のプレートを固定するステップを含む請求項19又は20に記載のステータコアの製造方法。
  22.  前記第3のコア部を形成するステップは、前記第3のコア部に熱処理を施すステップを含む請求項19から21のいずれか1項に記載のステータコアの製造方法。
PCT/JP2016/076964 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法 WO2018051407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/321,595 US10763717B2 (en) 2016-09-13 2016-09-13 Stator core, stator, electric motor, drive device, compressor, air conditioner, and a method of manufacturing a stator core
PCT/JP2016/076964 WO2018051407A1 (ja) 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法
CN201680088805.3A CN109643917B (zh) 2016-09-13 2016-09-13 定子铁芯及定子铁芯的制造方法
JP2018538986A JP6727314B2 (ja) 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076964 WO2018051407A1 (ja) 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法

Publications (1)

Publication Number Publication Date
WO2018051407A1 true WO2018051407A1 (ja) 2018-03-22

Family

ID=61619918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076964 WO2018051407A1 (ja) 2016-09-13 2016-09-13 ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法

Country Status (4)

Country Link
US (1) US10763717B2 (ja)
JP (1) JP6727314B2 (ja)
CN (1) CN109643917B (ja)
WO (1) WO2018051407A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050535A1 (ko) * 2018-09-03 2020-03-12 엘지이노텍 주식회사 모터
WO2021260814A1 (ja) * 2020-06-24 2021-12-30 三菱電機株式会社 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
EP3902110A4 (en) * 2018-12-17 2022-10-05 Nippon Steel Corporation LAMINATED CORE AND ELECTRIC LATHE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008891A (zh) * 2019-06-26 2022-02-01 日本制铁株式会社 铁芯块、层叠铁芯及旋转电机
US11476737B2 (en) * 2020-03-13 2022-10-18 Toyota Motor Engineering & Manufacturing North America. Inc. Integrated power control assemblies with built-in cooling systems
JP7386971B2 (ja) * 2020-04-09 2023-11-27 三菱電機株式会社 冷凍サイクル装置及び空気調和装置
JP7138817B1 (ja) * 2022-05-24 2022-09-16 日機装株式会社 モータ軸受摩耗監視装置、モータ軸受摩耗監視装置の調整方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271240A (ja) * 1991-01-18 1992-09-28 Shibaura Eng Works Co Ltd 電動機の固定子及び直巻式電動機の固定子の製造方法
JP2014117090A (ja) * 2012-12-11 2014-06-26 Mitsubishi Heavy Ind Ltd 電動機、及び、電動機一体型圧縮機
JP2014155347A (ja) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474903B2 (ja) 2003-11-12 2010-06-09 ダイキン工業株式会社 モータ及びモータの製造方法並びに駆動装置、圧縮機、移動体
JP2006296010A (ja) 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd 密閉型圧縮機
CN101855812B (zh) * 2007-11-15 2013-01-23 松下电器产业株式会社 电动机和使用该电动机的电子设备
JP2010017002A (ja) 2008-07-04 2010-01-21 Mazda Motor Corp 回転電機のステータコア
EP2652860A4 (en) * 2010-12-13 2015-09-02 Radam Motors Llc STATOR FOR AN ELECTRIC MOTOR OR GENERATOR WITH A LOSS OF MAGNETIC MATERIAL AND METHOD FOR MANUFACTURING THE STATUS
JP2012253918A (ja) 2011-06-03 2012-12-20 Daikin Ind Ltd 回転電気機械及びそれを用いた圧縮機
WO2016092612A1 (ja) * 2014-12-08 2016-06-16 三菱電機株式会社 静止誘導機器
CN105119396B (zh) * 2015-09-18 2018-07-03 合肥工业大学 混合叠压定子铁芯及其在再制造动力电机中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271240A (ja) * 1991-01-18 1992-09-28 Shibaura Eng Works Co Ltd 電動機の固定子及び直巻式電動機の固定子の製造方法
JP2014117090A (ja) * 2012-12-11 2014-06-26 Mitsubishi Heavy Ind Ltd 電動機、及び、電動機一体型圧縮機
JP2014155347A (ja) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050535A1 (ko) * 2018-09-03 2020-03-12 엘지이노텍 주식회사 모터
CN112805901A (zh) * 2018-09-03 2021-05-14 Lg伊诺特有限公司 马达
EP3849055A4 (en) * 2018-09-03 2021-10-27 LG Innotek Co., Ltd. ENGINE
CN112805901B (zh) * 2018-09-03 2023-11-17 Lg伊诺特有限公司 马达
US11942823B2 (en) 2018-09-03 2024-03-26 Lg Innotek Co., Ltd. Motor
EP3902110A4 (en) * 2018-12-17 2022-10-05 Nippon Steel Corporation LAMINATED CORE AND ELECTRIC LATHE
WO2021260814A1 (ja) * 2020-06-24 2021-12-30 三菱電機株式会社 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
JPWO2021260814A1 (ja) * 2020-06-24 2021-12-30
JP7286019B2 (ja) 2020-06-24 2023-06-02 三菱電機株式会社 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
JP7471493B2 (ja) 2020-06-24 2024-04-19 三菱電機株式会社 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置

Also Published As

Publication number Publication date
JP6727314B2 (ja) 2020-07-22
CN109643917A (zh) 2019-04-16
US10763717B2 (en) 2020-09-01
US20190386534A1 (en) 2019-12-19
JPWO2018051407A1 (ja) 2019-04-18
CN109643917B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP6727314B2 (ja) ステータコア、ステータ、電動機、駆動装置、圧縮機、空気調和機、及びステータコアの製造方法
WO2018207277A1 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置、並びにステータの製造方法
WO2017077590A1 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置
JP5661903B2 (ja) 圧縮機
JP6053910B2 (ja) 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
JP5318050B2 (ja) 永久磁石型モータの駆動装置及び圧縮機
JP2012055117A (ja) 永久磁石型モータ及び圧縮機
CN109792168B (zh) 定子及其制造方法、电动机、驱动装置、压缩机、制冷空调装置
JPWO2020170390A1 (ja) モータ、圧縮機および空気調和装置
JP2012197707A (ja) 圧縮機
WO2020089991A1 (ja) ロータ、モータ、圧縮機、及び冷凍空調装置
WO2019146006A1 (ja) 電動機、圧縮機および空気調和装置
JP2018198527A (ja) 圧縮機、電動機、圧縮機の使用方法及び電動機の使用方法
KR102459101B1 (ko) 전동기, 압축기, 송풍기, 및 냉동 공조 장치
WO2020026431A1 (ja) ステータ、モータ、圧縮機、及び冷凍空調装置
JP7286019B2 (ja) 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
JPWO2021009862A1 (ja) ステータ、モータ、圧縮機、及び空気調和機
JP2015052324A (ja) 圧縮機
JP7500733B2 (ja) ロータ、電動機、圧縮機および冷凍サイクル装置
JP2012055118A (ja) 永久磁石型モータの駆動装置及び圧縮機
JP2015092081A (ja) 圧縮機
JP2018174705A (ja) 電動機、圧縮機、電動機の使用方法及び圧縮機の使用方法
JP2017158428A (ja) 電動機及び圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916192

Country of ref document: EP

Kind code of ref document: A1