WO2021008135A1 - 一种导电有机膜耦合过滤系统及降解有机废水的方法 - Google Patents

一种导电有机膜耦合过滤系统及降解有机废水的方法 Download PDF

Info

Publication number
WO2021008135A1
WO2021008135A1 PCT/CN2020/075992 CN2020075992W WO2021008135A1 WO 2021008135 A1 WO2021008135 A1 WO 2021008135A1 CN 2020075992 W CN2020075992 W CN 2020075992W WO 2021008135 A1 WO2021008135 A1 WO 2021008135A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
filtration system
electrode
conductive organic
polyvinylidene fluoride
Prior art date
Application number
PCT/CN2020/075992
Other languages
English (en)
French (fr)
Inventor
孙雪菲
管静
王曙光
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/277,740 priority Critical patent/US20210347658A1/en
Publication of WO2021008135A1 publication Critical patent/WO2021008135A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/14Ageing features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the invention relates to a conductive organic membrane coupling filtering system and a method for degrading organic wastewater, and belongs to the technical field of wastewater treatment and resource utilization.
  • the organic sewage after being removed by the grid and grid enters the double-membrane internal-circulation bioreactor, and is evenly distributed to In the filler biofilm reaction zone, an internal circulation is formed between the filler biofilm reaction zone and the microfiltration membrane filtration zone through the action of airflow.
  • the air inlet electric valve in the filler biofilm reaction zone and the microfiltration membrane filtration zone is opened alternately to form an exhaust gas.
  • the fallen biofilm and particulate matter are retained by the microfiltration membrane, and the clean water is sucked out by the self-priming pump through the microfiltration membrane, and then discharged after being sterilized by ultraviolet rays.
  • the particles and other pollutants filtered by this method are trapped by the microfiltration membrane, which is easy to cause membrane pollution, and the treatment effect of organic wastewater with higher concentration is not ideal.
  • the membrane fouling caused by macromolecules, colloidal particles and microorganisms and the treatment of concentrated wastewater generated during membrane filtration limit the application scope of membrane filtration technology.
  • the combination of coupled membrane filtration and electrochemical technology can solve or alleviate the problem of membrane pollution and directly treat the concentrated pollutants produced, which is an emerging research direction in the field of wastewater treatment.
  • the research on the preparation method of conductive organic film mainly includes the conductive modification of the base film and the loading of conductive nanomaterials.
  • Chinese patent document CN104857866A discloses a method for preparing hydrophilic modified polyvinylidene fluoride film, including the following Steps: 1) Preparation of polyvinylidene fluoride film containing initiator; 2) Preparation of KH570 grafted polyvinylidene fluoride film; 3) Immersion of KH570 grafted polyvinylidene fluoride film in an aqueous solution of titanium dioxide for reaction preparation Water modified polyvinylidene fluoride membrane.
  • this method has the disadvantages of complex modification process, poor membrane stability, easy to cause secondary pollution and high preparation cost, which hinders the industrial-scale application of conductive organic membranes.
  • the present invention provides a conductive organic membrane coupling filtration system and a method for degrading organic wastewater.
  • the invention combines electrochemistry and membrane filtration technology to realize organic degradation and sewage disinfection in organic wastewater treatment while applying a new conductive organic membrane, avoiding the defects of traditional membrane modification technology, and solving membrane pollution problems.
  • a conductive organic membrane coupling filtration system comprising a connected water pump and a reactor; the upper end of the reactor is provided with a water inlet, the lower end is provided with a water outlet, and a counter electrode and a membrane electrode are fixed in the reactor between the water inlet and the water outlet
  • the counter electrode and the membrane electrode constitute a two-electrode system, which is respectively connected to an external potentiostat via a metal wire, and the membrane electrode is a carbon-based polyvinylidene fluoride membrane.
  • the metal wire is a titanium wire; the counter electrode and the membrane electrode are respectively embedded in the electrode slot of the reactor and fixed by waterproof glue, petrolatum and silica gel gasket.
  • the counter electrode is located directly above the membrane electrode; further preferably, the vertical distance between the membrane electrode and the counter electrode is 1 to 3 cm.
  • the counter electrode is a platinum mesh, a titanium mesh or a stainless steel mesh.
  • the potentiostat provides a stable voltage range of 0-30V.
  • the membrane electrode is prepared by the following method: the polyvinylidene fluoride casting film is coated on the pretreated dry carbon fiber by a scraping method, the coating thickness is 300-400 ⁇ m, and the air Let stand for 1 to 5 minutes and immerse in deionized water overnight to prepare a polyvinylidene fluoride coated base film; after the base film is vacuum dried, a smooth and uniform carbon-based polyvinylidene fluoride film (CC/ PVDF membrane). Conventional techniques may be used for the wiper film in the present invention.
  • the carbon fiber is preferably polyacrylonitrile-based carbon fiber; the carbon fiber pretreatment is to sonicate the carbon fiber in acetone, ethanol, and deionized water solution for 60-80 minutes to remove organic matter and other impurities attached to the carbon fiber, and then at 50- Dry for 4 to 5 hours at 80°C.
  • the polyvinylidene fluoride casting solution is preferably prepared by the following method: dissolving polyvinylidene fluoride powder and pore former polyvinylpyrrolidone in N,N-dimethylformamide, and magnetically stirring 10 ⁇ 12 hours, and then vacuum degassing at 50 ⁇ 80°C for 3 ⁇ 5h to prepare polyvinylidene fluoride casting film; among them, polyvinylidene fluoride powder, pore former polyvinylpyrrolidone and N,N-dimethyl methyl The mass ratio of amide is 12:2:86.
  • the vacuum drying conditions are 50-80°C, 50-70 min.
  • the phase inversion method is specifically: coating the polyvinylidene fluoride casting liquid on the coating surface of the polyvinylidene fluoride coated base film in a scraping manner, and the base film is fixed on On the glass plate, the thickness of the coating is 200 ⁇ 400 ⁇ m, and let it stand in the air for 1 ⁇ 3min. Slowly immerse the whole glass plate in a coagulation bath of constant temperature deionized water at 25 ⁇ 28°C. After phase inversion, it will transform into a three-dimensional macromolecular network. The gel structure is cured into a film.
  • phase inversion means that the polyvinylidene fluoride film casting liquid and deionized water exchange solvent and non-solvent through the two-phase interface of solvent and non-solvent, mutual diffusion, interphase flow, condensation of membrane pores and polyvinylidene fluoride Ethylene rich phase curing.
  • the method for degrading organic wastewater by using the above conductive organic membrane coupling filtration system includes the following steps:
  • the organic wastewater passes through the counter electrode and the membrane electrode at a flow rate of 3 to 5 mL/min.
  • the organic wastewater is methyl orange wastewater or humic acid wastewater.
  • Electrostatic repulsion refers to the application of negative potential to the membrane electrode in the conductive organic membrane coupling filtration system.
  • the pollutants in the organic wastewater are negatively charged, due to the electrostatic repulsion, the pollutants with the same charge as the membrane electrode will be Repel to the other end far away from the membrane surface, reducing the deposition of contaminants on the membrane and alleviating membrane fouling.
  • the electro-enhanced wetting effect means that after a constant potential is applied to the membrane electrode, the interfacial tension of the solid-liquid surface can be reduced by connecting the external potential of the solid-liquid interface without changing the chemical composition of the membrane surface, thereby reducing the water contact angle of the membrane surface and increasing The wettability of the membrane surface improves the membrane water flux.
  • Direct electron transfer and advanced oxidation of hydroxyl radicals means that when organic wastewater enters the system, when the potential applied by the membrane is greater than the oxidation potential of the organics, the membrane electrode will undergo direct electron transfer to promote the oxidation-reduction of organic wastewater, thereby degrading organic wastewater.
  • the membrane When the membrane is polarized, the dissolved oxygen generates hydrogen peroxide through the two-electron reduction of oxygen, and the Fenton-like reaction occurs through the active sites on the carbon fiber or the catalysis of titanium dioxide on the electrode surface to generate hydroxyl radicals. At the same time, hydroxyl radicals are generated by direct oxidation of water, and the generated hydroxyl radicals further carry out advanced oxidation and even mineralization of pollutants.
  • the CC/PVDF conductive organic film is prepared by coating the polyvinylidene fluoride film casting liquid twice on the carbon fiber and adopts a simple two-step phase inversion method.
  • the first scratching film coating with polyvinylidene fluoride casting liquid improves the rough fabric structure of carbon fibers to make a flat base film.
  • the casting liquid immersed in the large pores of the carbon fibers and the pore wall carbon fibers are tightly combined to improve the mechanical stability of the membrane .
  • the second coating of polyvinylidene fluoride casting film is to prepare a smooth and dense film selection layer.
  • the two coatings make the CC/PVDF film have excellent electrical conductivity and mechanical stability as well as a smooth and uniform surface morphology It overcomes the shortcomings of the traditional conductive film modification process, such as complex modification process, poor film stability, high preparation cost and easy to cause secondary pollution.
  • the carbon-based polyvinylidene fluoride membrane prepared by the present invention can be electrochemically coupled, enhances the ability to separate small molecular substances, overcomes the limitation of membrane pore retention in traditional membrane filtration processes, and makes it possible to remove pollutants smaller than the membrane pores. To achieve the purpose of strengthening the removal of pollutants, while having the characteristics of high efficiency and economy, it has potential advantages to apply it to conductive organic membrane filtration systems.
  • the conductive organic membrane coupling filter system applies a constant potential to the two electrode system through a potentiostat.
  • electrostatic repulsion, electrically enhanced wetting, direct electron transfer, and hydroxyl radicals are generated. Oxidation and other effects can achieve the purpose of controlling membrane pollution and degrading organic wastewater, solving the problem of concentrated liquid treatment in traditional membrane filtration processes, and solving the problem of membrane pollution that hinders membrane application.
  • the conductive organic membrane coupling filtration system of the present invention has low energy consumption, simple process, stable operation, high effluent quality, small floor space and easy automatic control, and has broad application prospects.
  • Fig. 1 is a working schematic diagram of a conductive organic membrane coupling filtration system in embodiment 1 of the present invention
  • Figure 2 is a scanning electron microscope image of carbon fiber, basement membrane and CC/PVDF membrane in Example 1.
  • FIG. 3 is a confocal laser scanning microscope image of the carbon fiber in Example 1.
  • Example 4 is a confocal laser scanning microscope image of the basement membrane in Example 1.
  • Figure 5 is a confocal laser scanning microscope image of the CC/PVDF film in Example 1.
  • Figure 6 is a scanning electron microscope image of the CC/PVDF membrane in Example 2 after passing the organic wastewater for 30 minutes.
  • FIG. 7 is a Fourier transform attenuated total reflection infrared spectrum diagram of the CC/PVDF membrane after passing the organic wastewater for 30 minutes in Example 2.
  • Fig. 8 is a graph showing the voltammetry curve of the methyl orange solution of different concentrations passing through the CC/PVDF membrane in Example 2.
  • Example 9 is a scanning electron microscope image of the surface of the CC/PVDF membrane after applying a voltage of 0V to pass through the organic wastewater for 30 minutes in Example 4.
  • Fig. 10 is a scanning electron microscope image of the surface of the CC/PVDF membrane after applying a voltage of 1V to pass through the organic wastewater for 30 minutes in Example 4.
  • Example 11 is a scanning electron microscope image of the surface of the CC/PVDF membrane after applying a voltage of 2V to pass through the organic wastewater for 30 minutes in Example 4.
  • Example 12 is a scanning electron microscope image of the surface of the CC/PVDF membrane after applying a voltage of 3V to pass through the organic wastewater for 30 minutes in Example 4.
  • the potentiostat adopts the CHI1030C multi-channel potentiostat, which is sold by Shanghai Chenhua Instrument Co., Ltd.; the titanium mesh used, 60 mesh, is sold by Cangzhou Kangwei Metal Products Co., Ltd.; the carbon fiber in the embodiment uses polyacrylonitrile-based carbon fiber , Shanghai Hesen Electric Co., Ltd. is available; conductive glue, titanium wire, waterproof glue, petroleum jelly, silicone gasket, polyvinylidene fluoride, methyl orange, humic acid are all commercially available products.
  • a conductive organic membrane coupling filtration system includes a connected water pump 1 and a reactor 7 (the reactor 7 is a closed organic glass column with an effective volume of 12L).
  • the upper end of the reactor 7 is provided with a water inlet 2.
  • the lower end is provided with a water outlet 5, the water inlet 2 is connected with the water pump 1, and the counter electrode 3 and the membrane electrode 4 are embedded in the electrode card groove of the reactor in the reactor 7 between the water inlet 2 and the water outlet 5, Then fix it with waterproof glue, petroleum jelly and silica gel gasket;
  • the counter electrode 3 is made of 60 mesh titanium mesh, and the membrane electrode 4 is made of carbon-based polyvinylidene fluoride membrane (CC/PVDF membrane).
  • the counter electrode 3 is located in the membrane Above the electrode 4, the vertical distance is 1cm.
  • the trapping effect of the membrane electrode 4 enriches the pollutants in the organic wastewater between the two electrodes, prolongs the residence time of the pollutants in the system for oxidation-reduction reactions, and makes the pollutants more degraded. Degradation; the membrane electrode 4 and the counter electrode 3 constitute a two-electrode system, which is connected to the external potentiostat 6 through conductive glue and titanium wire;
  • the membrane electrode 4 is a carbon-based polyvinylidene fluoride film, which is prepared by the following method: first dissolve polyvinylidene fluoride powder and the pore-forming agent polyvinylpyrrolidone in N,N-dimethylformamide, and magnetically stir It is completely dissolved after 12 hours, and then degassed at 50°C for 4 hours to prepare polyvinylidene fluoride casting film solution; then the polyvinylidene fluoride casting film solution is coated on the pretreated dry carbon fiber by scraping film , The coating thickness is 300 ⁇ m, let it stand in the air for 3min, and immerse it in deionized water overnight to prepare a polyvinylidene fluoride coating base film.
  • CC/PVDF membrane a smooth and uniform carbon-based polyvinylidene fluoride membrane (CC/PVDF membrane) is prepared by phase inversion. As shown in Figure 2-5, from carbon fiber to base membrane to CC/PVDF membrane, the surface morphology becomes smoother and smoother, and the surface roughness is obviously reduced, which improves the mechanical stability of CC/PVDF membrane.
  • the mass ratio of the polyvinylidene fluoride powder, the pore-forming agent polyvinylpyrrolidone, and N,N-dimethylformamide is 12:2:86.
  • the method for degrading organic wastewater by using the conductive organic membrane coupled filtration system described in Example 1 includes the following steps:
  • the organic wastewater treatment effect was tested: the removal rate of methyl orange was 21%, 88% and 92% under stable voltages of 1V, 2V and 3V, and the membrane water fluxes were respectively 70%, 86% and 92%.
  • the surface morphology and chemical composition of the CC/PVDF membrane after passing the organic wastewater for 30 minutes and the CC/PVDF membrane that has not passed through the organic wastewater indicating that there is almost no adhesion of methyl orange on the membrane. Or be degraded, effectively inhibiting membrane fouling.
  • the oxidation potential changes, indicating that the CC/PVDF membrane undergoes direct electron transfer.
  • Example 2 the method for degrading organic wastewater using the conductive organic membrane coupled filtration system described in Example 1 is different in that: 20 mg/L humic acid aqueous solution is used as the organic wastewater.
  • the removal rate of humic acid is 71%, 76% and 82% under stable voltage of 1V, 2V and 3V, and the membrane water flux is respectively 65%, 81% and 85%.
  • Example 2 the method for degrading organic wastewater using the conductive organic membrane coupled filtration system described in Example 1 is different in that: 10 5 CFU/mL E. coli bacteria liquid is used as organic wastewater.
  • the pollutant removal effect is tested: the bacterial mortality rate of the effluent reaches 100% under the stable voltage of 1V, 2V and 3V, and the membrane water flux is 71%, 80% and respectively. 85%.
  • the membrane water flux is 71%, 80% and respectively. 85%.
  • a common ultrafiltration system to remove organic wastewater treatment process uses Sterlitech's PVDF ultrafiltration membrane as the conductive organic membrane.
  • the voltage applied by the potentiostat is 3V. After 30 minutes, the filtered water is taken.
  • the organic wastewater treatment effect is A
  • the base orange removal rate is 36%, and the membrane water flux is 55%.
  • the method for degrading organic wastewater using the conductive organic membrane coupled filtration system described in Example 1 is different in that: the voltage applied by the potentiostat is 0V, and the filtered water is taken after 30 minutes.
  • the organic wastewater treatment effect is that the removal rate of methyl orange is less than 20%, and the membrane water flux is 60%.
  • the method for degrading organic wastewater using the conductive organic membrane coupled filtration system described in Example 1 is different in that: the voltage applied by the potentiostat is 0V, and the filtered water is taken after 30 minutes.
  • the wastewater treatment effect is that the removal rate of humic acid is 65%, and the membrane water flux is 40%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种导电有机膜耦合过滤系统,其包括相连通的水泵(1)和反应器(7);反应器(7)上端设置有进水口(2),下端设置有出水口(5),进水口(2)与出水口(5)之间的反应器(7)内固定有对电极(3)和膜电极(4);膜电极(4)和对电极(3)构成两电极体系,通过金属导线分别连接到外置的恒电位仪(6)上,膜电极(4)为碳基聚偏氟乙烯膜。还公开了一种使用导电有机膜耦合过滤系统降解有机废水的方法。

Description

一种导电有机膜耦合过滤系统及降解有机废水的方法 技术领域
本发明涉及一种导电有机膜耦合过滤系统及降解有机废水的方法,属于废水处理及资源化技术领域。
背景技术
21世纪以来全人类面临的主要生存挑战大多数与水质和水量问题密切相关。在全球范围内,饮用水安全和卫生条件的限制导致每年有高达160万人口的死亡。膜过滤技术作为一种高效的分离纯化技术,由于其能耗低、运行稳定、占地面积小、出水水质高等优势,常应用于废水处理和资源化领域中。如中国专利文献CN105060617A公开了一种低浓度有机废水的双膜内循环生物处理工艺,经格栅和格网除渣后的有机污水进入双膜内循环生物反应器,经布水装置均匀分配到填料生物膜反应区,通过气流的作用在填料生物膜反应区与微滤膜过滤区之间形成内循环,间隙开启填料生物膜反应区和微滤膜过滤区的进气电动阀,交替形成厌氧-缺氧-好氧的环境,完成微生物好氧硝化吸磷、缺氧脱氮反应和厌氧放磷反应,达到净化水质的目的。脱落的生物膜和颗粒物被微滤膜截留,清水透过微滤膜经自吸泵抽吸出来,再经紫外线消毒后即可达标排放。但是该方法过滤的颗粒等污染物被微滤膜截留,易造成膜污染,并且对浓度较高的有机废水的处理效果不理想。
由于大分子、胶体颗粒和微生物引起的膜污染以及膜过滤期间产生的浓缩废水的处理限制了膜过滤技术的应用范围。然而耦合膜过滤和电化学技术的结合可以解决或缓解膜污染问题、直接处理产生地浓缩污染物,是一个废水处理领域的新兴研究方向。目前对导电有机膜制备方法的研究主要有对基底膜的导电改性,导电纳米材料的负载等,如中国专利文献CN104857866A公开了一种制备亲水改性聚偏氟乙烯膜的方法,包括如下步骤:1)含有引发剂的聚偏氟乙烯膜的制备;2)KH570接枝聚偏氟乙烯膜的制备;3)将KH570接枝的聚偏氟乙烯膜浸入到二氧化钛水溶液中进行反应制备亲水改性聚偏氟乙烯膜。但该方法具有修饰过程复杂、膜稳定性差、易造成二次污染和制备成本高等缺点阻碍了导电有机膜的工业规模化应用。
发明内容
针对现有技术的不足,本发明提供一种导电有机膜耦合过滤系统及降解有机废水的方法。本发明将电化学与膜过滤技术结合起来,实现了有机废水处理中有机物降解和污水消毒的同 时应用了新型导电有机膜,避免了传统膜改性工艺的缺陷,解决了膜污染问题。
本发明是通过以下技术方案实现的:
一种导电有机膜耦合过滤系统,包括相连通的水泵和反应器;反应器上端设置有进水口,下端设置有出水口,进水口与出水口之间的反应器内固定有对电极和膜电极;所述对电极和膜电极构成两电极体系,通过金属导线分别连接到外置的恒电位仪上,所述膜电极为碳基聚偏氟乙烯膜。
根据本发明优选的,所述金属导线为钛丝;所述对电极和膜电极分别嵌入反应器的电极卡槽中,通过防水胶、凡士林和硅胶垫片固定。
根据本发明优选的,所述对电极位于膜电极的正上方;进一步优选的,所述膜电极和对电极垂直距离为1~3cm。
根据本发明优选的,所述对电极为铂网、钛网或不锈钢网。
根据本发明优选的,所述恒电位仪提供稳定电压范围为0~30V。
根据本发明优选的,所述膜电极是按以下方法制备得到:将聚偏氟乙烯铸膜液以刮膜的方式涂覆在预处理后的干燥碳纤维上,涂层厚度为300~400μm,空气静中置1~5min,浸入去离子水中过夜,制得聚偏氟乙烯涂层基底膜;再将基底膜真空干燥后,经相转化法制得光滑均匀的碳基聚偏氟乙烯膜(CC/PVDF膜)。本发明中所述刮膜使用常规技术即可。
根据本发明优选的,所述碳纤维为聚丙烯腈基碳纤维;碳纤维预处理为将碳纤维依次在丙酮、乙醇和去离子水溶液中分别超声60~80min去除碳纤维附着的有机物及其它杂质,然后在50~80℃条件下干燥4~5小时。
根据本发明优选的,所述聚偏氟乙烯铸膜液按如下方法制备得到:将聚偏氟乙烯粉末和造孔剂聚乙烯吡咯烷酮溶解在N,N-二甲基甲酰胺中,磁力搅拌10~12小时,再经50~80℃真空脱气3~5h后制得聚偏氟乙烯铸膜液;其中,聚偏氟乙烯粉末、造孔剂聚乙烯吡咯烷酮与N,N-二甲基甲酰胺的质量比为12:2:86。
根据本发明优选的,所述真空干燥的条件为50~80℃,50~70min。
根据本发明优选的,所述相转化法具体为:将聚偏氟乙烯铸膜液以刮膜的方式涂覆在聚偏氟乙烯涂层基底膜的涂层表面,所述的基底膜固定于玻璃板上,涂层厚度为200~400μm,空气中静置1~3min,将玻璃板整体缓慢浸入25~28℃恒温去离子水凝固浴中,经相转化后转变成一个三维大分子网络式的凝胶结构固化成膜。
其中,相转化是指聚偏氟乙烯铸膜液和去离子水通过溶剂和非溶剂两相界面进行溶剂和 非溶剂的传质交换,相互扩散、相间流动、发生膜孔的凝聚和聚偏氟乙烯富相固化。
根据本发明,利用上述导电有机膜耦合过滤系统降解有机废水的方法,包括步骤如下:
将纯水通过反应器,对反应器预处理20~30min,使膜电极处于稳定状态,预处理后开启恒电位仪给对电极和膜电极施加稳定电压;再将有机废水持续泵入反应器,依次通过对电极和膜电极,净化后的废水从出水口自然流出。
根据本发明优选的,所述有机废水以3~5mL/min的流速通过对电极和膜电极。
根据本发明优选的,所述的有机废水为甲基橙废水或腐殖酸废水。
本发明过滤有机废水的原理:
当有机废水通过反应器时发生静电排斥、电增强润湿、直接电子转移和羟基自由基高级氧化等作用。静电排斥作用是指在导电有机膜耦合过滤系统中,给膜电极施加负电位,当有机废水中的污染物带负电荷时,由于静电排斥作用,与膜电极带同种电荷地污染物会被排斥到远离膜表面的另一端,减少了污染物在膜上的沉积从而缓解膜污染。电增强润湿作用是指给膜电极施加恒定电位后,通过连接固液界面的外电位可以降低固液表面的界面张力而不改变膜表面的化学组成,起到降低膜表面水接触角,提高膜表面的润湿性,提高膜水通量。直接电子转移和羟基自由基高级氧化作用是指有机废水进入系统后,当膜施加的电位大于有机物的氧化电位时,膜电极发生直接电子转移,促进有机废水发生氧化还原作用,从而达到降解有机废水的目的,而在膜被极化时,溶解氧通过氧的双电子还原产生过氧化氢,通过碳纤维上的活性位点或对电极表面的二氧化钛等催化作用发生类芬顿反应产生羟基自由基,同时通过对水的直接氧化产生羟基自由基,产生的羟基自由基进一步对污染物进行高级氧化甚至矿化。
本发明的技术特点与有益效果:
1、本发明中通过在碳纤维上涂覆两次聚偏氟乙烯铸膜液,采用操作简单的两步相转换法制备得到CC/PVDF导电有机膜。第一次刮膜涂覆聚偏氟乙烯铸膜液改善了碳纤维的粗糙织物结构制得平整的基底膜,同时浸入碳纤维大孔的铸膜液与孔壁碳纤维紧密结合可以提高膜的机械稳定性,第二次刮膜涂覆聚偏氟乙烯铸膜液是为了制备光滑致密的膜选择层,两次涂覆使CC/PVDF膜具有优异的导电性和机械稳定性以及光滑均匀的表面形貌,克服了传统导电膜改性工艺修饰过程复杂、膜稳定性差、制备成本高和易造成二次污染等缺点。本发明制备的碳基聚偏氟乙烯膜可与电化学耦合,增强了分离小分子物质的能力,克服传统膜过滤工艺的膜孔截留的局限性,使去除小于膜孔的污染物成为可能,达到强化去除污染物的目的,同时 具有高效经济的特点,将其应用于导电有机膜过滤系统具有潜在优势。
2、本发明中导电有机膜耦合过滤系统通过恒电位仪对两电极体系施加恒电位,在有机废水通过对电极和膜电极期间发生静电排斥、电增强润湿、直接电子转移和羟基自由基高级氧化等作用,可达到控制膜污染和降解有机废水的目的,解决传统膜过滤工艺存在的浓缩液处理问题,同时解决阻碍膜应用的膜污染问题。
3、本发明的导电有机膜耦合过滤系统能耗低,工艺简单,运行稳定,出水水质高,占地面积小且易实现自动控制,具有广阔的应用前景。
附图说明
图1为本发明中实施例1导电有机膜耦合过滤系统工作示意图;
图中:1、水泵,2、进水口,3、对电极,4、膜电极,5、出水口,6、恒电位仪,7、反应器。
图2为实施例1中碳纤维、基底膜和CC/PVDF膜的扫描电子显微镜图像。
图3为实施例1中碳纤维的共聚焦激光扫描显微镜图像。
图4为实施例1中基底膜的共聚焦激光扫描显微镜图像。
图5为实施例1中CC/PVDF膜的共聚焦激光扫描显微镜图像。
图6为实施例2中通过有机废水30min后CC/PVDF膜的扫描电子显微镜图像。
图7为实施例2中通过有机废水30min后CC/PVDF膜的傅里叶变换衰减全反射红外光谱图。
图8为实施例2中不同浓度的甲基橙溶液通过CC/PVDF膜的伏安曲线图。
图9为实施例4中施加0V电压通过有机废水30min后CC/PVDF膜表面扫描电子显微镜图像。
图10为实施例4中施加1V电压通过有机废水30min后CC/PVDF膜表面扫描电子显微镜图像。
图11为实施例4中施加2V电压通过有机废水30min后CC/PVDF膜表面扫描电子显微镜图像。
图12为实施例4中施加3V电压通过有机废水30min后CC/PVDF膜表面扫描电子显微镜图像。
具体实施方式
下面结合附图和具体实施例对本发明做进一步描述,但本发明保护范围不限于此。
同时下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂、材料和设 备,如无特殊说明,均可从商业途径获得。
实施例中恒电位仪采用CHI1030C多通道恒电位仪,上海辰华仪器有限公司有售;所用钛网,60目,沧州康威金属制品有限公司有售;实施例中碳纤维采用聚丙烯腈基碳纤维,上海河森电气有限公司有售;导电胶、钛丝、防水胶、凡士林、硅胶垫片、聚偏氟乙烯,甲基橙、腐殖酸均为市售产品。
实施例1
如图1所示,一种导电有机膜耦合过滤系统,包括相连通的水泵1和反应器7(反应器7为封闭的有机玻璃柱,有效容积为12L),反应器7上端设置有进水口2,下端设置有出水口5,进水口2与水泵1相连通,进水口2与出水口5之间的反应器7内将对电极3和膜电4极嵌入反应器的电极卡槽中,然后用防水胶、凡士林和硅胶垫片固定;对电极3采用材料为60目钛网,膜电极4采用材料为碳基聚偏氟乙烯膜(CC/PVDF膜),所述对电极3位于膜电极4的上方,垂直距离为1cm,膜电极4的截留作用使有机废水中的污染物富集在两电极间,延长系统中污染物的停留时间进行氧化还原反应,使污染物更大程度被降解;膜电极4和对电极3构成两电极体系,通过导电胶与钛丝连接到外置的恒电位仪6上;
所述膜电极4为碳基聚偏氟乙烯膜,是按以下方法制备得到:首先将聚偏氟乙烯粉末和造孔剂聚乙烯吡咯烷酮溶解在N,N-二甲基甲酰胺中,磁力搅拌12小时后完全溶解,再经50℃真空脱气4小时后制得聚偏氟乙烯铸膜液;然后将聚偏氟乙烯铸膜液以刮膜的方式涂覆在预处理后的干燥碳纤维上,涂层厚度为300μm,空气静中置3min,浸入去离子水中过夜制得聚偏氟乙烯涂层基底膜,基底膜经过80℃真空干燥70min后,将聚偏氟乙烯铸膜液以刮膜的方式涂覆在聚偏氟乙烯涂层基底膜的涂层表面,所述的基底膜固定于玻璃板上,涂层厚度为200μm,空气中静置2min,将玻璃板整体缓慢浸入25℃恒温去离子水凝固浴中,经相转化制得光滑均匀的碳基聚偏氟乙烯膜(CC/PVDF膜)。如图2-5所示,从碳纤维到基底膜到CC/PVDF膜,其表面形貌越来越光滑,表面粗糙度明显降低,提高了CC/PVDF膜的机械稳定性。
上述聚偏氟乙烯粉末、造孔剂聚乙烯吡咯烷酮与N,N-二甲基甲酰胺的质量比为12:2:86。
实施例2
利用实施例1所述的导电有机膜耦合过滤系统降解有机废水的方法,包括步骤如下:
将纯水通过反应器7,对反应器7预处理20min,使膜电极4处于稳定状态,预处理后开启恒电位仪6给钛网和CC/PVDF膜分别施加1V,2V和3V的稳定电压;再将有机废水持续泵入反应器7,以4mL/min的流速依次通过钛网和CC/PVDF膜,净化后的废水从出水口自然流出。
采用10mg/L甲基橙、10mM NaCl水溶液作为有机废水。
取本实施例运行30min净化后的水,检测有机废水处理效果为:分别施加1V,2V和3V的稳定电压下甲基橙去除率为21%、88%和92%,膜水通量分别为70%、86%和92%。如图6和图7所示,通过有机废水30min后的CC/PVDF膜表面与未通过有机废水的CC/PVDF膜表面形貌和化学组成无明显区别,说明甲基橙在膜上几乎无附着或被降解,有效的抑制了膜污染。如图8所示,在有机废水通过CC/PVDF膜时氧化电位产生了变化,说明CC/PVDF膜发生了直接电子转移。
实施例3
如实施例2所述,利用实施例1所述的导电有机膜耦合过滤系统降解有机废水的方法,不同之处在于:采用20mg/L腐殖酸水溶液作为有机废水。
取本实施例运行30min净化后的水,检测有机废水处理效果为:分别施加1V,2V和3V的稳定电压下腐殖酸去除率为71%、76%和82%,膜水通量分别为65%、81%和85%。
实施例4
如实施例2所述,利用实施例1所述的导电有机膜耦合过滤系统降解有机废水的方法,不同之处在于:采用10 5CFU/mL的大肠杆菌菌液作为有机废水。
取本实施例运行30min净化后的水,检测污染物去除效果为:分别施加1V,2V和3V的稳定电压下出水细菌死亡率均达到100%,膜水通量分别为71%、80%和85%。如图9-12所示,可以发现大肠杆菌细胞破裂及死亡,且随电压增大,细胞破裂越严重,表明导电有机膜耦合过滤系统具有高效的杀菌能力。
对比例1
一种常见超滤系统去除有机废水的处理工艺,采用Sterlitech公司的PVDF超滤膜作为导电有机膜,恒电位仪施加的电压为3V,30min后取过滤后的水,其有机废水处理效果为甲基橙去除率为36%,膜水通量为55%。
对比例2
如实施例2所述,利用实施例1所述的导电有机膜耦合过滤系统降解有机废水的方法,不同之处在于:恒电位仪施加的电压为0V,30min后取过滤后的水。其有机废水处理效果为甲基橙去除率小于20%,膜水通量为60%。
对比例3
如实施例2所述,利用实施例1所述的导电有机膜耦合过滤系统降解有机废水的方法,不同之处在于:恒电位仪施加的电压为0V,30min后取过滤后的水,其有机废水处理效果为腐 殖酸去除率为65%,膜水通量为40%。

Claims (16)

  1. 一种导电有机膜耦合过滤系统,其特征在于,该系统包括相连通的水泵和反应器;反应器上端设置有进水口,下端设置有出水口,进水口与出水口之间的反应器内固定有对电极和膜电极;所述对电极和膜电极构成两电极体系,通过金属导线分别连接到外置的恒电位仪上,所述膜电极为碳基聚偏氟乙烯膜。
  2. 根据权利要求1所述的导电有机膜耦合过滤系统,其特征在于,所述金属导线为钛丝。
  3. 根据权利要求1所述的导电有机膜耦合过滤系统,其特征在于,所述对电极和膜电极分别嵌入反应器的电极卡槽中,通过防水胶、凡士林和硅胶垫片固定。
  4. 根据权利要求1所述的导电有机膜耦合过滤系统,其特征在于,所述对电极位于膜电极的正上方。
  5. 根据权利要求1所述的导电有机膜耦合过滤系统,其特征在于,所述膜电极和对电极垂直距离为1~3cm。
  6. 根据权利要求1所述的导电有机膜耦合过滤系统,其特征在于,所述对电极为铂网、钛网或不锈钢网。
  7. 根据权利要求1所述的导电有机膜耦合过滤系统,其特征在于,所述恒电位仪提供稳定电压范围为0~30V。
  8. 根据权利要求1所述的导电有机膜耦合过滤系统,其特征在于,所述膜电极是按以下方法制备得到:将聚偏氟乙烯铸膜液以刮膜的方式涂覆在预处理后的干燥碳纤维上,涂层厚度为300~400μm,空气静中置1~5min,浸入去离子水中过夜,制得聚偏氟乙烯涂层基底膜;再将基底膜真空干燥后,经相转化法制得光滑均匀的碳基聚偏氟乙烯膜。
  9. 根据权利要求8所述的导电有机膜耦合过滤系统,其特征在于,所述碳纤维为聚丙烯腈基碳纤维。
  10. 根据权利要求8所述的导电有机膜耦合过滤系统,其特征在于,碳纤维预处理为将碳纤维依次在丙酮、乙醇和去离子水溶液中分别超声60~80min去除碳纤维附着的有机物及其它杂质,然后在50~80℃条件下干燥4~5小时。
  11. 根据权利要求8所述的导电有机膜耦合过滤系统,其特征在于,所述聚偏氟乙烯铸膜液按如下方法制备得到:将聚偏氟乙烯粉末和造孔剂聚乙烯吡咯烷酮溶解在N,N-二甲基甲酰胺中,磁力搅拌10~12小时,再经50~80℃真空脱气3~5h后制得聚偏氟乙烯铸膜液;其中,聚偏氟乙烯粉末、造孔剂聚乙烯吡咯烷酮与N,N-二甲基甲酰胺的质量比为12:2:86。
  12. 根据权利要求8所述的导电有机膜耦合过滤系统,其特征在于,所述真空干燥的条件 为50~80℃,50~70min。
  13. 根据权利要求8所述的导电有机膜耦合过滤系统,其特征在于,所述相转化法具体为:将聚偏氟乙烯铸膜液以刮膜的方式涂覆在聚偏氟乙烯涂层基底膜的涂层表面,所述的基底膜固定于玻璃板上,涂层厚度为200~400μm,空气中静置1~3min,将玻璃板整体缓慢浸入25~28℃恒温去离子水凝固浴中,经相转化后转变成一个三维大分子网络式的凝胶结构固化成膜。
  14. 一种降解有机废水的方法,包括使用权利要求1所述的导电有机膜耦合过滤系统,包括步骤如下:
    将纯水通过反应器,对反应器预处理20~30min,使膜电极处于稳定状态,预处理后开启恒电位仪给对电极和膜电极施加稳定电压;再将有机废水持续泵入反应器,依次通过对电极和膜电极,净化后的废水从出水口自然流出。
  15. 根据权利要求14所述的降解有机废水的方法,其特征在于,所述有机废水以3~5mL/min的流速通过对电极和膜电极。
  16. 根据权利要求14所述的降解有机废水的方法,其特征在于,所述的有机废水为甲基橙废水或腐殖酸废水。
PCT/CN2020/075992 2019-07-12 2020-02-20 一种导电有机膜耦合过滤系统及降解有机废水的方法 WO2021008135A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/277,740 US20210347658A1 (en) 2019-07-12 2020-02-20 Novel conductive membrane filtration system for degradation of organic pollutants from wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910628883.3 2019-07-12
CN201910628883.3A CN110182906B (zh) 2019-07-12 2019-07-12 一种导电有机膜耦合过滤系统降解有机废水的处理工艺

Publications (1)

Publication Number Publication Date
WO2021008135A1 true WO2021008135A1 (zh) 2021-01-21

Family

ID=67725589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075992 WO2021008135A1 (zh) 2019-07-12 2020-02-20 一种导电有机膜耦合过滤系统及降解有机废水的方法

Country Status (3)

Country Link
US (1) US20210347658A1 (zh)
CN (1) CN110182906B (zh)
WO (1) WO2021008135A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354212A (zh) * 2021-06-29 2021-09-07 安徽科技学院 一种耦合生物膜电化学用具有自吸过滤式的废水处理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182906B (zh) * 2019-07-12 2022-01-11 山东大学 一种导电有机膜耦合过滤系统降解有机废水的处理工艺
CN114956269B (zh) * 2022-05-25 2023-10-24 合肥工业大学 一种类电芬顿、流化床耦合膜反应处理抗生素废水的方法
CN114772688A (zh) * 2022-05-25 2022-07-22 合肥工业大学 一种处理难降解废水的微电流类芬顿流化床膜反应器
CN115090127B (zh) * 2022-06-20 2023-04-18 中南林业科技大学 一种具有电催化性能的限域膜、其制作方法及应用
CN115784378A (zh) * 2022-10-31 2023-03-14 重庆大学 用于页岩气返排水的积木式导电分离膜系统装置及方法
CN117531382A (zh) * 2023-11-16 2024-02-09 大连海事大学 一种可反复撕拉重铸的复合导电膜的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137178A (zh) * 1995-03-03 1996-12-04 北美埃尔夫爱托化学股份有限公司 一种包括聚合物电极和电解质的制品
CN103545118A (zh) * 2013-10-24 2014-01-29 四川大学 基于添加导电物质的聚偏氟乙烯基电极材料及其制备方法
CN105692817A (zh) * 2016-01-22 2016-06-22 同济大学 一种适用于污水脱盐回用的复合膜分离方法
US20160190627A1 (en) * 2013-07-30 2016-06-30 Baden-Württemberg Stiftung Ggmbh Filtration-Active Fuel Cell
CN110182906A (zh) * 2019-07-12 2019-08-30 山东大学 一种导电有机膜耦合过滤系统降解有机废水的处理工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202933A (ja) * 2000-01-20 2001-07-27 Matsushita Electric Ind Co Ltd 角形電池用封口板およびその製造方法
US9827517B2 (en) * 2011-01-25 2017-11-28 President And Fellows Of Harvard College Electrochemical carbon nanotube filter and method
EP2718235B1 (en) * 2011-06-06 2018-03-28 Axine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cell
CN105597712B (zh) * 2015-11-19 2018-01-16 天津工业大学 增强型吸油膜材料、组件及其制备方法
CN106379970B (zh) * 2016-10-26 2019-12-06 大连理工大学 一种层状金属氧化物用于苦咸水淡化的电容去离子技术
CN108275777A (zh) * 2018-03-06 2018-07-13 大连理工大学 一种阴极催化膜耦合无膜微生物燃料电池用于焦化废水处理系统
CN109745865B (zh) * 2019-02-20 2021-11-19 山东大学 一种基于石墨/二氧化钛复合材料的聚偏氟乙烯电催化超滤膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137178A (zh) * 1995-03-03 1996-12-04 北美埃尔夫爱托化学股份有限公司 一种包括聚合物电极和电解质的制品
US20160190627A1 (en) * 2013-07-30 2016-06-30 Baden-Württemberg Stiftung Ggmbh Filtration-Active Fuel Cell
CN103545118A (zh) * 2013-10-24 2014-01-29 四川大学 基于添加导电物质的聚偏氟乙烯基电极材料及其制备方法
CN105692817A (zh) * 2016-01-22 2016-06-22 同济大学 一种适用于污水脱盐回用的复合膜分离方法
CN110182906A (zh) * 2019-07-12 2019-08-30 山东大学 一种导电有机膜耦合过滤系统降解有机废水的处理工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354212A (zh) * 2021-06-29 2021-09-07 安徽科技学院 一种耦合生物膜电化学用具有自吸过滤式的废水处理装置

Also Published As

Publication number Publication date
US20210347658A1 (en) 2021-11-11
CN110182906B (zh) 2022-01-11
CN110182906A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2021008135A1 (zh) 一种导电有机膜耦合过滤系统及降解有机废水的方法
Tian et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation
CN101597096B (zh) 一种电催化膜反应器装置
CN102344227B (zh) 一种发制品废水循环利用装置及其处理方法
CN110526346B (zh) 一种电化学厌氧膜生物污水处理装置及其处理方法
CN108658177B (zh) 一种适用于水中难降解有机物去除的电化学活性炭纤维毡膜反应器
US11565953B2 (en) Flexible electrocatalytic membrane for removing nitrate from water, preparation method and use thereof
CN110339733B (zh) 一种氧化石墨烯/聚苯胺复合膜及其应用
CN108905646B (zh) 石墨烯pvdf复合导电超滤膜及制备和污染物去除方法
CN104289114A (zh) 一种导电滤膜及其应用
Li et al. Fabrication of conductive ceramic membranes for electrically assisted fouling control during membrane filtration for wastewater treatment
CN109626551A (zh) 一种新型阴阳极内置式电化学微滤膜生物反应器及其应用
CN110694496A (zh) 一种碳纳米管表面改性中空纤维膜制备方法及其应用
CN110498491A (zh) 一种电化学膜过滤耦合系统降解抗生素废水的处理工艺
CN110124735B (zh) 一种亲水导电性水凝胶阴极催化膜及其制备方法和应用
Wang et al. Superhydrophilic membrane with photo-Fenton self-cleaning property for effective microalgae anti-fouling
CN112225382A (zh) 一种废水中药品和个人护理品的去除方法
CN104773924A (zh) 一种微电流强化染料类废水生物降解的装置和方法
CN112546882B (zh) 一种聚吡咯导电膜及其制备方法和应用
CN108211820B (zh) 一种导电无机陶瓷膜材料及制备方法
CN114314737A (zh) 光电协同强化同步脱盐降解有机物的污水处理方法和装置
JP2013180263A (ja) 多孔質材料
CN112569807A (zh) 光催化性能聚偏氟乙烯混合基质膜及其制备和应用
CN110694487B (zh) 一种电化学改性聚偏氟乙烯膜的装置及其改性方法
CN214167702U (zh) 一种炼化废水深度处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839678

Country of ref document: EP

Kind code of ref document: A1