WO2021004469A1 - 发光二极管及其制造方法和发光装置 - Google Patents

发光二极管及其制造方法和发光装置 Download PDF

Info

Publication number
WO2021004469A1
WO2021004469A1 PCT/CN2020/100785 CN2020100785W WO2021004469A1 WO 2021004469 A1 WO2021004469 A1 WO 2021004469A1 CN 2020100785 W CN2020100785 W CN 2020100785W WO 2021004469 A1 WO2021004469 A1 WO 2021004469A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
electrode
emitting
forming
Prior art date
Application number
PCT/CN2020/100785
Other languages
English (en)
French (fr)
Inventor
王琳琳
尤娟娟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/279,664 priority Critical patent/US20220037614A1/en
Publication of WO2021004469A1 publication Critical patent/WO2021004469A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present disclosure relates to the field of lighting devices, and in particular, to a light-emitting diode, a light-emitting device including the light-emitting diode, and a manufacturing method of the light-emitting diode.
  • the important parameters of organic light-emitting diode products used for lighting are color temperature, power, efficiency, color rendering index, etc.
  • the color temperature should usually be between 2500K-4000K, and the required light should include weaker blue light and stronger red light.
  • An embodiment of the present disclosure provides a light-emitting diode, including a first electrode, a light-emitting functional layer, and a second electrode that are stacked and arranged, the first electrode being a transparent electrode, wherein,
  • the second electrode includes a metal electrode layer and a semiconductor auxiliary layer, the metal electrode layer is attached to the light-emitting function layer, and the semiconductor auxiliary layer is disposed on a side of the metal electrode layer away from the light-emitting function layer On the surface, and where
  • the metal electrode layer is made of a magnesium-silver alloy, and the thickness of the metal electrode layer is between 3 nm and 5 nm, and
  • the semiconductor auxiliary layer is made of IZO, and the thickness of the semiconductor auxiliary layer is between 100 nm and 130 nm.
  • the mass percentage of magnesium in the magnesium-silver alloy is between 70% and 90%.
  • the light transmittance of the second electrode is between 65% and 70%.
  • the light-emitting functional layer includes a first hole injection layer, a first hole transport layer, a red light-emitting functional layer, a green light-emitting functional layer, a first electron transport layer, a connecting layer, and a second The hole injection layer, the second hole transport layer, the blue light-emitting functional layer, the second electron transport layer, and wherein the second electrode is disposed on the second electron transport layer away from the blue light-emitting functional layer On the surface.
  • the peak wavelength of green light of the light emitting diode is between 530 nm and 540 nm
  • the peak wavelength of blue light is between 465 nm and 475 nm
  • the full width at half maximum of the blue light is between 69 nm and 79 nm.
  • the light emitting diode further includes an encapsulation layer located on a side of the second electrode away from the light emitting function layer.
  • the packaging layer includes a first packaging layer and a second packaging layer, the first packaging layer is attached to the second electrode, and the second packaging layer is located away from the first packaging layer.
  • One side of the light-emitting functional layer is one side of the light-emitting functional layer.
  • the first encapsulation layer is made of tetrafluoroethylene
  • the second encapsulation layer is made of silicon nitride
  • An embodiment of the present disclosure provides a light emitting device including the aforementioned light emitting diode.
  • An embodiment of the present disclosure provides a method for manufacturing a light emitting diode, including:
  • first electrode Forming a first electrode, the first electrode being made of a transparent material
  • the metal electrode layer is made of a magnesium-silver alloy, and the thickness of the metal electrode layer is between 3 nm and 5 nm;
  • the semiconductor auxiliary layer is formed on the surface of the metal electrode layer away from the metal electrode layer, the semiconductor auxiliary layer is made of IZO, and the thickness of the semiconductor auxiliary layer is between 100 nm and 130 nm.
  • forming a light-emitting function layer on the surface of the first electrode includes:
  • connection layer Forming a connection layer on the surface of the first electron transport layer facing away from the first electrode
  • a second electron transport layer is formed on the surface of the blue light-emitting function layer facing away from the first electrode, and wherein,
  • the second electrode layer is formed on a surface of the second electron transport layer facing away from the first electrode.
  • the manufacturing method further includes:
  • An encapsulation layer is formed on the surface of the second electrode away from the first electrode.
  • the encapsulation layer includes a first encapsulation layer and a second encapsulation layer, and forming the encapsulation layer on a surface of the second electrode facing away from the first electrode further includes:
  • a second encapsulation layer is formed on the surface of the first encapsulation layer facing away from the second electrode using silicon nitride.
  • Fig. 1 is a schematic diagram of a light emitting diode in the related art
  • Fig. 2 is a schematic diagram of a light emitting diode according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a light emitting diode according to an embodiment of the present disclosure
  • FIG. 4 is a spectrum diagram of the light emitting diode shown in FIG. 1, the light emitting diode shown in FIG. 2, and the light emitting diode shown in FIG. 3 when emitting light;
  • FIG. 5 is a flowchart of a method of manufacturing a light emitting diode according to an embodiment of the present disclosure.
  • the method of manufacturing the light emitting diode shown in FIG. 1 includes:
  • a first hole injection layer 131 is formed by evaporation on the surface of the first electrode layer 110 away from the base substrate;
  • a first hole transport layer 132 is formed by evaporation on the surface of the first hole injection layer 131 away from the base substrate, wherein the total thickness of the first hole injection layer 131 and the first hole transport layer 132 is 650 angstroms ;
  • a red light-emitting functional layer 133 is formed by evaporation on the surface of the first hole transport layer 132 facing away from the base substrate;
  • a green light-emitting functional layer 134 is vapor-deposited on the surface of the red light-emitting functional layer 133 facing away from the base substrate, wherein the thickness of the red light-emitting functional layer 133 and the green light-emitting functional layer 134 is 300 angstroms;
  • a first electron transport layer 135 with a thickness of 200 angstroms is formed by evaporation on the surface of the green light-emitting function layer 134 away from the base substrate;
  • connection layer 136 with a thickness of 150 angstroms is formed by evaporation on the surface of the first electron transport layer 135 away from the base substrate;
  • a second hole injection layer 137 is formed by evaporation on the surface of the connection layer 136 away from the base substrate;
  • a second hole transport layer 138 is formed by evaporation on the surface of the second hole injection layer 137 facing away from the base substrate, wherein the thickness of the second hole injection layer 137 and the second hole transport layer 138 is 990 angstroms;
  • a blue light-emitting functional layer 139 with a thickness of 250 angstroms is formed by evaporation on the surface of the second hole transport layer 138 away from the base substrate;
  • a second electron transport layer 1310 with a thickness of 250 angstroms is formed by evaporation on the surface of the blue light-emitting function layer 139 away from the base substrate;
  • a silicon nitride with a thickness of 1 ⁇ m is formed on the surface of the second electrode 120 away from the base substrate by chemical vapor deposition to form the encapsulation layer 140.
  • the light-emitting diode includes a first electrode 110, a light-emitting function layer 130, and a second electrode 120 that are stacked, and the first electrode 110 is a transparent electrode.
  • the light transmittance of the second electrode 120 is between 65% and 70%. It can be seen from this that, for light with a wavelength of 400 nm to 500 nm, the reflectivity of the second electrode 120 is between 30% and 35%.
  • the blue light transmittance of the second electrode 120 can be limited to be between 65% and 70%.
  • the specific structure of the second electrode 120 is not particularly limited.
  • the second electrode 120 includes a metal electrode layer 121 and a semiconductor auxiliary layer 122.
  • the metal electrode layer 121 is attached to the light-emitting function layer 130, and the semiconductor auxiliary layer 122 is disposed on the surface of the metal electrode layer 121 away from the light-emitting function layer 130.
  • the metal electrode layer 121 should have a small thickness, so that the metal electrode layer 121 has light transmittance.
  • the second electrode 120 having a light transmittance of 65% to 70% for light with a wavelength of 400 nm to 500 nm can be obtained.
  • the thickness of the metal electrode layer 121 is between 3 nm and 5 nm.
  • the light emitting diode provided by the present disclosure is a top emitting diode
  • the first electrode 110 is the anode of the light emitting diode
  • the second electrode 120 is the cathode of the light emitting diode.
  • the second electrode 120 of the light-emitting diode has both transmissive properties and reflective properties. Therefore, when the light-emitting diode emits light, the second electrode 120 can enhance the strength of the microcavity formed in the light-emitting diode, but will not weaken it.
  • the microcavity is enhanced to a strong microcavity. Therefore, the light-emitting diode can not only obtain a higher color rendering index, a wider spectrum, and a higher light extraction efficiency when emitting light, so that the energy consumption of the light-emitting diode can be reduced.
  • the metal electrode layer 121 is made of a metal material
  • the semiconductor auxiliary layer 122 is made of a semiconductor material.
  • the main function of the metal electrode layer 121 is to conduct electricity and form electrodes, and the metal electrode layer 121 can also provide better light reflection performance.
  • the main function of the auxiliary semiconductor layer 122 is to adjust the transmittance of the second electrode.
  • the auxiliary semiconductor layer 122 is made of a transparent semiconductor material (for example, indium zinc oxide (IZO)).
  • the metal electrode layer 121 is made of a magnesium-silver alloy
  • the semiconductor auxiliary layer 122 is made of indium zinc oxide.
  • the mass percentage of magnesium in the magnesium-silver alloy made of the metal electrode layer 121 is between 70% and 90%.
  • a magnesium-silver alloy can be used as a target, and the metal electrode layer 121 can be obtained by magnetron sputtering.
  • the thickness of the semiconductor auxiliary layer 122 is between 100 nm and 130 nm.
  • the material of the light-emitting functional layer 130 can be determined according to the specific required light-emitting color.
  • light emitting diodes can emit white light.
  • the light-emitting functional layer 130 includes a first hole injection layer 131, a first hole transport layer 132, a red light-emitting functional layer 133, a green light-emitting functional layer 134, a first electron transport layer 135, a connection layer 136, The second hole injection layer 137, the second hole transport layer 138, the blue light emitting function layer 139, and the second electron transport layer 1310.
  • the first hole injection layer 131 is disposed on the first electrode 110, and the second electrode 120 is disposed on the surface of the second electron transport layer 1310 away from the blue light-emitting function layer 139.
  • the green light emitting function layer 134 is directly formed, and then the connecting layer is formed, and the blue light emitting function layer is formed on the connecting layer.
  • the peak value of green light is between 520 nm and 535 nm
  • the peak value of blue light is between 465 nm and 475 nm
  • the full width at half maximum of blue light is between 69 nm and 79 nm.
  • connection layer 136 allows both electrons and holes to pass. Therefore, the connection layer 136 can be made of aluminum nitride material.
  • the packaging layer 140 needs to be used for packaging.
  • the specific structure of the encapsulation layer 140 is not particularly limited, as long as it can isolate the light-emitting function layer of the light-emitting diode from the outside and prevent external water and oxygen from corroding the light-emitting function layer.
  • the packaging layer 140 includes a first packaging layer 141 made of tetrafluoroethylene and a second packaging layer 142 made of silicon nitride. The second electrode 120 is attached, and the second encapsulation layer 142 is located on the side of the first encapsulation layer 141 away from the light-emitting function layer 130.
  • the first encapsulation layer 141 made of tetrafluoroethylene has a certain light reflection performance, which can enhance the weak microcavity of the light emitting diode to a certain extent, and improve the light extraction efficiency.
  • An embodiment of the present disclosure provides a light-emitting device, the light-emitting device includes a light-emitting diode, wherein the light-emitting device includes the above-mentioned light-emitting diode provided in the present disclosure.
  • the light emitting diode has a higher color rendering index and a higher light extraction rate.
  • the specific application of the light-emitting device is not particularly limited.
  • the light-emitting device may be a lighting device.
  • the present disclosure is not limited to this, and the light-emitting device may also be a backlight source of a display device.
  • An embodiment of the present disclosure provides a method for manufacturing a light emitting diode. As shown in FIG. 5, the manufacturing method includes steps S110 to S130.
  • step S110 a first electrode is formed, and the first electrode is made of a transparent material.
  • step S120 a light-emitting function layer is formed on one surface of the first electrode.
  • a second electrode is formed on the surface of the light-emitting function layer away from the first electrode.
  • the light transmittance of the second electrode is 65% to 70%.
  • the step of forming a second electrode on the surface of the light-emitting function layer away from the first electrode includes:
  • the metal electrode layer is made of a magnesium-silver alloy, and the thickness of the metal electrode layer is between 3 nm and 5 nm;
  • a semiconductor auxiliary layer is formed on the surface of the metal electrode layer away from the first electrode.
  • the light-emitting diode is a top-emission light-emitting diode. Since the second electrode is both reflective and transparent, when the light-emitting diode emits light, the weak resonant microcavity formed in the light-emitting diode is It is enhanced, but it has not been enhanced to a strong microcavity. Therefore, it can ensure a higher color rendering and a higher light output rate, and thus lower energy consumption.
  • the semiconductor auxiliary layer is made of IZO.
  • the metal electrode layer can be formed by sputtering, and similarly, the semiconductor auxiliary layer can be formed by sputtering.
  • the mass percentage of magnesium in the magnesium-silver alloy is between 70% and 90%. between.
  • the thickness of the metal electrode layer is between 3 nm and 5 nm.
  • the thickness of the semiconductor auxiliary layer is between 100 nm and 130 nm.
  • the light emitting diode is a light emitting diode that emits white light. Accordingly, the step of forming a light emitting function layer on one surface of the first electrode includes:
  • connection layer Forming a connection layer on the surface of the first electron transport layer away from the first electrode
  • a second electron transport layer is formed on the surface of the blue light-emitting function layer away from the first electrode.
  • each layer in the light-emitting functional layer can be formed by vapor deposition.
  • the green light-emitting functional layer is directly formed after the red light-emitting functional layer is formed, and the two are formed as a co-evaporated layer.
  • the manufacturing method further includes: after forming the second electrode, forming an encapsulation layer on the side of the second electrode away from the light-emitting function layer.
  • a first encapsulation layer with light-reflecting properties may be provided on the side of the second electrode away from the light-emitting function layer, and the second encapsulation layer may be formed using inorganic materials, specifically After forming the second electrode, the manufacturing method further includes:
  • the second encapsulation layer is formed on the side of the first encapsulation layer away from the light-emitting function layer by using silicon nitride.
  • An embodiment of the present disclosure provides a method (example 1) for manufacturing a light emitting diode as shown in FIG. 2, including:
  • ITO silver tin oxide
  • a first hole injection layer 131 is formed by evaporation on the surface of the first electrode 110 away from the base substrate, and the material of the first hole injection layer 131 is PEDOT (poly 3,4-ethylenedioxythiophene);
  • a first hole transport layer 132 is formed by evaporation on the surface of the first hole injection layer 131 facing away from the base substrate.
  • the material of the first hole transport layer is NPB, wherein the first hole injection layer 131 and the first hole
  • the total thickness of a hole transport layer 132 is 450 angstroms;
  • a red light-emitting functional layer 133 is formed by vapor deposition on the surface of the first hole transport layer 132 away from the base substrate, and the material of the red light-emitting functional layer is Btp2Ir (acac);
  • a green light-emitting functional layer 134 is vapor-deposited on the surface of the red light-emitting functional layer 133 away from the base substrate.
  • the material of the green light-emitting functional layer is Ir(ppy) 3 , wherein the red light-emitting functional layer 133 and the green light-emitting functional layer 134
  • the thickness is 300 angstroms;
  • a first electron transport layer 135 with a thickness of 200 angstroms is formed by vapor deposition on the surface of the green light-emitting function layer 134 away from the base substrate, and the material of the first electron transport layer is TPBi;
  • connection layer 136 with a thickness of 150 angstroms is formed by evaporation on the surface of the first electron transport layer 135 facing away from the base substrate, wherein the material of the connection layer is aluminum nitride;
  • a second hole injection layer 137 is formed by evaporation on the surface of the connection layer 136 away from the base substrate, and the material of the second hole injection layer is PEDOT;
  • a second hole transport layer 138 is formed by evaporation on the surface of the second hole injection layer 137 facing away from the base substrate.
  • the material of the second hole transport layer is NPB.
  • the second hole injection layer 137 and the first The total thickness of the two hole transport layer 138 is 1150 angstroms;
  • a blue light-emitting functional layer 139 with a thickness of 250 angstroms is formed by vapor deposition on the surface of the hole transport layer 138 away from the base substrate, and the material of the blue light-emitting functional layer is AND;
  • a second electron transport layer 1310 with a thickness of 550 angstroms is formed by vapor deposition on the surface of the blue light-emitting function layer 139 facing away from the base substrate, and the material of the second electron transport layer is TPBi;
  • a metal electrode layer 121 with a thickness of 40 angstroms is formed by sputtering on the surface of the second electron transport layer facing away from the base substrate;
  • IZO IZO
  • a silicon nitride with a thickness of 1 ⁇ m is formed by chemical vapor deposition to form the encapsulation layer 140.
  • One embodiment of the present disclosure provides a method of manufacturing the light emitting diode shown in FIG. 3 (Example 2), which differs from the above-mentioned method of manufacturing the light emitting diode shown in FIG. 2 only in that the encapsulation layer is formed
  • the steps are different. Only this difference will be described below.
  • the step of forming the encapsulation layer in this embodiment specifically includes:
  • a tetrafluoroethylene layer is formed by coating on the surface of the semiconductor auxiliary layer 122 facing away from the base substrate to obtain a first encapsulation layer 141 with a thickness of 1 ⁇ m;
  • a silicon nitride is formed on the surface of the first encapsulation layer 141 away from the base substrate by chemical vapor deposition to form a second encapsulation layer 142 with a thickness of 1 ⁇ n, wherein the first encapsulation layer 141 and the second encapsulation layer 142 are common
  • the encapsulation layer 140 is formed.
  • Example 1 The spectra of the light-emitting diodes in Example 1, Example 2, and the related art were respectively tested with the IVL test equipment under the condition of 10 current density, and the spectrogram shown in FIG. 4 was obtained.
  • the peak wavelength of green light is between 520 nm and 535 nm
  • the peak wavelength of blue light is between 465 nm and 475 nm
  • the full width at half maximum of blue light is between 69 nm and 79 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供一种发光二极管,包括层叠设置的第一电极、发光功能层和第二电极,所述第一电极为透明电极,所述第二电极包括金属电极层和半导体辅助层,所述金属电极层与所述发光功能层相贴合,所述半导体辅助层设置在所述金属电极层背离所述发光功能层的一侧表面上。所述金属电极层由镁银合金制成,所述金属电极层的厚度在3nm至5nm之间,以及所述半导体辅助层由IZO制成,所述半导体辅助层的厚度在100nm至130nm之间。本公开还提供一种发光装置和一种发光二极管的制造方法。所述发光二极管显色度高,且能耗低。

Description

发光二极管及其制造方法和发光装置
相关申请的交叉引用
本申请要求于2019年7月11日在中国知识产权局提交的中国专利申请No.201910625633.4的优先权,其公开内容以引用方式整体并入本文中。
技术领域
本公开涉及照明装置领域,具体地,涉及一种发光二极管、一种包括该发光二极管的发光装置和所述发光二极管的制造方法。
背景技术
与显示装置不同,用作照明的有机发光二极管产品的重要参数为色温、功率、效率、显色指数等。为了保护人眼,色温通常应当在2500K-4000K之间,所需要的灯光中应当更包括较弱的蓝光和较强的红光。
发明内容
本公开的一个实施例提供了一种发光二极管,包括层叠设置的第一电极、发光功能层和第二电极,所述第一电极为透明电极,其中,
所述第二电极包括金属电极层和半导体辅助层,所述金属电极层与所述发光功能层相贴合,所述半导体辅助层设置在所述金属电极层背离所述发光功能层的一侧表面上,并且其中
所述金属电极层由镁银合金制成,所述金属电极层的厚度在3nm至5nm之间,以及
所述半导体辅助层由IZO制成,所述半导体辅助层的厚度在100nm至130nm之间。
在一些实施例中,所述镁银合金中,镁的质量百分比在70%至90%之间。
在一些实施例中,对于波长为400nm至500nm的光,所述第二电极的透光率在65%至70%之间。
在一些实施例中,所述发光功能层包括层叠设置的第一空穴注入层、第一空穴传输层、红色发光功能层、绿色发光功能层、第一电子传输层、连接层、第二空穴注入层、第二空穴传输层、蓝色发光功能层、第二电子传输层,并且其中,所述第二电极设置在所述第二电子传输层背离所述蓝色发光功能层的表面上。
在一些实施例中,所述发光二极管的绿光的峰值波长在530nm至540nm,蓝光的峰值波长在465nm至475nm之间,蓝光的半峰全宽在69nm至79nm之间。
在一些实施例中,所述发光二极管还包括位于所述第二电极背离所述发光功能层一侧的封装层。
在一些实施例中,所述封装层包括第一封装层和第二封装层,所述第一封装层与所述第二电极贴合,所述第二封装层位于所述第一封装层背离所述发光功能层的一侧。
在一些实施例中,第一封装层由四氟乙烯制成,并且所述第二封装层由硅的氮化物制成。
本公开的一个实施例提供了一种发光装置,包括前述的发光二极管。
本公开的一个实施例提供了一种发光二极管的制造方法,包括:
形成第一电极,所述第一电极由透明材料制成;
在所述第一电极的表面上形成发光功能层;
在所述发光功能层的背离所述第一电极的表面上形成第二电极,其中,所述第二电极包括金属电极层和半导体辅助层,并且形成第二电极包括:
在所述发光功能层上形成所述金属电极层,所述金属电极层由镁银合金制成,所述金属电极层的厚度在3nm至5nm之间;以及
在所述金属电极层的远离所述金属电极层的表面上上形成所述半导体辅助层,所述半导体辅助层由IZO制成,所述半导体辅助层的厚度在100nm至130nm之间。
在一些实施例中,在所述第一电极的表面上形成发光功能层包括:
在所述第一电极的所述表面上形成第一空穴注入层;
在所述第一空穴注入层的背离所述第一电极的表面上形成第一空穴传输层;
在所述第一空穴传输层的背离所述第一电极的表面上形成红色发光功能层;
在所述红色发光功能层的背离所述第一电极的表面上形成绿色发光功能层;
在所述绿色发光功能层的背离所述第一电极的表面上形成第一电子传输层;
在所述第一电子传输层的背离所述第一电极的表面上形成连接层;
在所述连接层的背离所述第一电极的表面上形成第二空穴注入层;
在所述第二空穴注入层的背离所述第一电极的表面上形成第二空穴传输层;
在所述第二空穴传输层的背离所述第一电极的表面上形成蓝色发光功能层;
在所述蓝色发光功能层的背离所述第一电极的表面上形成第二电子传输层,并且其中,
所述第二电极层形成在所述第二电子传输层的背离所述第一电极的表面上。
在一些实施例中,所述的制造方法还包括:
在所述第二电极的背离所述第一电极的表面上形成封装层。
在一些实施例中,所述封装层包括第一封装层和第二封装层,并且在所述第二电极的背离所述第一电极的表面上形成封装层进一步包括:
利用四氟乙烯在所述第二电极的背离所述第一电极的表面上形成第一封装层;以及
利用硅的氮化物在所述第一封装层的背离所述第二电极的表面上形成第二封装层。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是相关技术中的一种发光二极管的示意图;
图2是根据本公开的一个实施例中的发光二极管的的示意图;
图3是根据本公开的一个实施例中的发光二极管的示意图;
图4是图1中所示的发光二极管、图2中所示的发光二极管以及图3中所示的发光二极管发光时的光谱图;
图5是根据本公开的一个实施例的发光二极管的制造方法的流程图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在相关技术中,制造图1所示的发光二极管的方法包括:
提供衬底基板(附图中未示出);
在衬底基板的表界面上沉积厚度为700埃的ITO材料层,以形成第一电极层110;
在第一电极层110的背离衬底基板的表面上蒸镀形成第一空穴注入层131;
在第一空穴注入层131的背离衬底基板的表面上蒸镀形成第一空穴传输层132,其中,第一空穴注入层131和第一空穴传输层132的总厚度为650埃;
在第一空穴传输层132的背离衬底基板的表面上蒸镀形成红色发光功能层133;
在红色发光功能层133的背离衬底基板的表面上蒸镀形成绿色发光功能层134,其中,红色发光功能层133和绿色发光功能层134的厚度为300埃;
在绿色发光功能层134的背离衬底基板的表面上蒸镀形成厚度为200埃的第一电子传输层135;
在第一电子传输层135的背离衬底基板的表面上蒸镀形成厚度为150埃的连接层136;
在连接层136的背离衬底基板的表面上蒸镀形成第二空穴注入层137;
在第二空穴注入层137的背离衬底基板的表面上蒸镀形成第二空穴传输层138,其中,第二空穴注入层137和第二空穴传输层138的厚度为990埃;
在第二空穴传输层138的背离衬底基板的表面上蒸镀形成厚度为250埃的蓝色发光功能层139;
在蓝色发光功能层139的背离衬底基板的表面上蒸镀形成厚度为250埃的第二电子传输层1310;
以金属铝为靶材,在第二电子传输层的背离衬底基板的表面上上溅射形成厚度为1500埃的第二电极120;
在第二电极120的背离衬底基板的表面上通过化学气相沉积形成厚度为1μm的硅的氮化物,以形成封装层140。
对于相关技术中的发光二极管,为了保证有机发光二极管具有较高的显色指数(Color Rendering Index),发光二极管发光的光谱要尽可能的宽,因此,照明装置领域常使用具有弱微腔结构的发光二极管,这样会降低发光二极管的出光效率,增加了能耗。
因此,如何在确保发光二极管具有较高的显色指数的同时降低发光二级管的能耗成为本领域亟待解决的技术问题。
本公开的一个实施例提供了一种发光二极管,如图2所示,所述发光二极管包括层叠设置的第一电极110、发光功能层130和第二电极120,第一电极110为透明电极,其中,对于波长为400nm至500nm的光,第二电极120的透光率在65%至70%之间。由此可知, 对于波长为400nm至500nm的光,第二电极120的反射率在30%至35%之间。
需要指出的是,可以限定第二电极120对蓝光的透光率在65%至70%之间。
在本公开中,对第二电极120的具体结构不做特殊的限定。作为一种优选实施方式,如图2中所示,第二电极120包括金属电极层121和半导体辅助层122。其中,金属电极层121与发光功能层130相贴合,半导体辅助层122设置在金属电极层121背离发光功能层130的一侧表面上。
需要指出的是,金属电极层121应当具有较小的厚度,以使得该金属电极层121具有透光性。通过调整金属电极层121以及半导体辅助层122的厚度可以获得“对于波长为400nm至500nm的光,透光率在65%至70%之间”的第二电极120。在一些实施例中,金属电极层121的厚度在3nm至5nm之间。
本公开所提供的发光二极管是一种顶发射二极管,第一电极110为发光二极管的阳极,第二电极120为发光二极管的阴极。所述发光二极管的第二电极120即具有透射性能,又具有反射性能,因此所述发光二极管发光时,第二电极120可以增强发光二极管中的形成的微腔的强度,但是又不会将弱微腔增强至强微腔,因此,所述发光二极管在发光时既能够获得较高的显色指数,具有较宽的光谱,又具有较高的出光效率,从而可以降低发光二极管的能耗。
在本公开中,利用金属材料制成金属电极层121,利用半导体材料制成半导体辅助层122。金属电极层121的主要功能是导电、形成电极,并且,金属电极层121还可以提供较好的反光性能。半导体辅助层122的主要功能则是调节第二电极的透过率,半导体辅助层122利用透明的半导体材料(例如,铟锌氧化物(IZO))制成。
在一些实施例中,金属电极层121由镁银合金制成,半导体辅助层122由铟锌氧化物制成。
为了使得金属电极层121兼具较好的反射性以及导电性,在一些实施例中,在制成金属电极层121的镁银合金中,镁的质量百分比 在70%至90%之间。在制作金属电极层121时,可以利用镁银合金作为靶材,通过磁控溅射的方式获得金属电极层121。
在一些实施例中,所述半导体辅助层122的厚度在100nm至130nm之间。
在本公开中,对发光二极管的发出光线的颜色不做特殊的要求。可以根据具体需要的发光颜色来确定发光功能层130的材料。例如,发光二极管可以发白光。相应地,发光功能层130包括层叠设置的第一空穴注入层131、第一空穴传输层132、红色发光功能层133、绿色发光功能层134、第一电子传输层135、连接层136、第二空穴注入层137、第二空穴传输层138、蓝色发光功能层139、第二电子传输层1310。
其中,第一空穴注入层131设置在第一电极110上,第二电极120设置在第二电子传输层1310背离蓝色发光功能层139的表面上。
在本公开所提供的发光二极管中,形成了红色发光功能层133后直接形成绿色发光功能层134,然后形成连接层,并在连接层上形成蓝色发光功能层。所述发光二极管发出的光中,绿光的峰值为520nm至535nm之间,蓝光的峰值在465nm至475nm之间,蓝光的半峰全宽在69nm至79nm之间。
连接层136既允许电子通过,又允许空穴通过,因此,可以利用氮化铝材料制成连接层136。
形成了第二电极层120之后,如图2和图3所示,需要利用封装层140进行封装。
在本公开中,对封装层140的具体结构不做特殊的限定,只要能够将发光二极管的发光功能层与外界隔绝、避免外界水氧腐蚀发光功能层即可。在一些实施例中,如图3所示,封装层140包括由四氟乙烯制成的第一封装层141和由硅的氮化物制成的第二封装层142,该第一封装层141与第二电极120贴合,第二封装层142位于第一封装层141背离发光功能层130的一侧。
利用四氟乙烯制成的第一封装层141具有一定的反光性能,可以在一定程度上增强发光二极管的弱微腔,提高出光效率。
本公开的一个实施例提供了一种发光装置,所述发光装置包括发光二极管,其中,所述发光装置包括本公开所提供的上述发光二极管。
如上文中所述,所述发光二极管具有较高的显色指数和较高的出光率。在本公开中,对发光装置的具体应用不做特殊的限定,例如,所述发光装置可以是照明设备。当然,本公开并不限于此,所述发光装置还可以是显示设备的背光源。
本公开的一个实施例提供了一种发光二极管的制造方法,如图5所示,所述制造方法包括步骤S110至S130。
在步骤S110中,形成第一电极,所述第一电极由透明材料制成。
在步骤S120中,在所述第一电极的一个表面上形成发光功能层。
在步骤S130中,在所述发光功能层的远离所述第一电极的表面上形成第二电极,对于波长在400nm至500nm的光,所述第二电极的透光率在65%至70%之间,其中,
在所述发光功能层的远离所述第一电极的表面上形成第二电极的步骤包括:
在所述发光功能层的远离所述第一电极的表面上形成金属电极层,所述金属电极层由镁银合金制成,所述金属电极层的厚度在3nm至5nm之间;
在金属电极层的远离所述第一电极的表面上形成半导体辅助层。
如上文中所述,所述发光二极管为顶发射型的发光二极管,由于第二电极既具有反射性,又具有透光性,因此,在发光二极管发光时,发光二极管中形成的弱谐振微腔被增强,但是也并未被增强至强微腔,因此,可以在确保具有较高的显色度的同时具有较高的光出射率,进而具有较低的能耗。
在一些实施例中,所述半导体辅助层由IZO制成。
在本公开中,可以利用溅射的方式形成金属电极层,同样地,可以利用溅射的方式形成半导体辅助层。
为了确保所述金属电极层具有较好的导电性能以及适当的反光 性能,并降低发光二极管的成本,在一些实施例中,所述镁银合金中,镁的质量百分比在70%至90%之间。
为了确保所述第二电极具有透光性,在一些实施例中,所述金属电极层的厚度在3nm至5nm之间。
在一些实施例中,所述半导体辅助层的厚度在100nm至130nm之间。
在一些实施例中,发光二极管为发白光的发光二极管,相应地,在所述第一电极的一个表面上形成发光功能层步骤包括:
在所述第一电极的一个表面上形成第一空穴注入层;
在第一空穴注入层的远离第一电极的表面上形成第一空穴传输层;
在第一空穴传输层的远离第一电极的表面上形成红色发光功能层;
在红色发光功能层的远离第一电极的表面上形成绿色发光功能层;
在绿色发光功能层的远离第一电极的表面上形成第一电子传输层;
在第一电子传输层的远离第一电极的表面上形成连接层;
在连接层的远离第一电极的表面上形成第二空穴注入层;
在第二空穴注入层的远离第一电极的表面上形成第二空穴传输层;
在第二空穴传输层的远离第一电极的表面上形成蓝色发光功能层;
在蓝色发光功能层的远离第一电极的表面上形成第二电子传输层。
在本公开中,可以采用蒸镀的方式形成发光功能层中的各个层。在本公开中,形成了红色发光功能层后直接形成绿色发光功能层,二者形成为共蒸层。
为了防止水氧腐蚀发光功能层,在一些实施例中,所述制造方法还包括:在形成第二电极之后,在所述第二电极的背离所述发光功 能层的一侧形成封装层。
为了对若微腔进行进一步的增强,在一些实施例中,可以在第二电极背离发光功能层的一侧设置具有反光性能的第一封装层,并利用无机材料形成第二封装层,具体地,在形成第二电极之后,所述制造方法还包括:
利用四氟乙烯在所述第二电极的背离所述发光功能层的一侧形成第一封装层;
利用硅的氮化物在第一封装层的背离所述发光功能层的一侧形成第二封装层。
本公开的一个实施例提供了一种制造如图2所示的发光二极管的方法(示例1),包括:
提供衬底基板(附图中未示出);
在衬底基板的表面上沉积厚度为120埃的ITO(氧化银锡)材料层作为第一电极110;
在第一电极110的背离衬底基板的表面上蒸镀形成第一空穴注入层131,该第一空穴注入层131的材料为PEDOT(聚3,4-乙烯二氧噻吩);
在第一空穴注入层131的背离衬底基板的表面上蒸镀形成第一空穴传输层132,该第一空穴传输层的材料为NPB,其中,第一空穴注入层131和第一空穴传输层132的总厚度为450埃;
在第一空穴传输层132的背离衬底基板的表面上蒸镀形成红色发光功能层133,该红色发光功能层的材料为Btp2Ir(acac);
在红色发光功能层133的背离衬底基板的表面上蒸镀形成绿色发光功能层134,该绿色发光功能层的材料为Ir(ppy) 3,其中,红色发光功能层133和绿色发光功能层134的厚度均为300埃;
在绿色发光功能层134的背离衬底基板的表面上蒸镀形成厚度为200埃的第一电子传输层135,该第一电子传输层的材料为TPBi;
在第一电子传输层135的背离衬底基板的表面上蒸镀形成厚度为150埃的连接层136,其中,连接层的材料为氮化铝;
在连接层136的背离衬底基板的表面上蒸镀形成第二空穴注入层137,该第二空穴注入层的材料为PEDOT;
在第二空穴注入层137的背离衬底基板的表面上蒸镀形成第二空穴传输层138,该第二空穴传输层的材料为NPB,其中,第二空穴注入层137和第二空穴传输层138的总厚度为1150埃;
在空穴传输层138的背离衬底基板的表面上蒸镀形成厚度为250埃的蓝色发光功能层139,该蓝色发光功能层的材料为AND;
在蓝色发光功能层139的背离衬底基板的表面上蒸镀形成厚度为550埃的第二电子传输层1310,该第二电子传输层的材料为TPBi;
以镁银合金为靶材,在第二电子传输层的背离衬底基板的表面上溅射形成厚度为40埃的金属电极层121;
以IZO为靶材,在金属电极层的背离衬底基板的表面上溅射形成厚度为1000埃的半导体辅助层122,从而获得了包括所述金属电极层和半导体辅助层的第二电极120;
在半导体辅助层122的背离衬底基板的表面上通过化学气相沉积形成厚度为1μm的硅的氮化物,以形成封装层140。
本公开的一个实施例提供了一种制造图3中所示的发光二极管的方法(示例2),该方法与上述制造图2中所示的发光二极管的方法的不同之处仅在于形成封装层的步骤不同。下面将仅描述该不同之处。具体地,本实施例中的形成封装层的步骤具体包括:
在半导体辅助层122的背离衬底基板的表面上通过涂敷的方式形成四氟乙烯层,以获得厚度为1μm的第一封装层141;
在第一封装层141的背离衬底基板的表面上通过化学气相沉积形成硅的氮化物,以形成厚度为1μn的第二封装层142,其中,第一封装层141和第二封装层142共同形成封装层140。
利用IVL测试设备在10电流密度的条件下分别测试示例1、示例2、相关技术中的发光二极管的光谱,得到图4中所示的光谱图。
示例2获得的发光二极管发出的光中,绿光的峰值波长为520nm至535nm之间,蓝光的峰值波长在465nm至475nm之间,蓝光的半 峰全宽在69nm至79nm之间。
通过图4可以看出,示例2获得的发光二极管的辐射能量最高,相关技术中获得的发光二极管辐射能量最低。
通过CRI测试设备测试可知,效率在10J时保证在65cd/A的情况下,相关技术中的发光元件的显色度为85,而示例2中的发光元件的显色度达到了91。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (15)

  1. 一种发光二极管,包括层叠设置的第一电极、发光功能层和第二电极,所述第一电极为透明电极,其中,
    所述第二电极包括金属电极层和半导体辅助层,所述金属电极层与所述发光功能层相贴合,所述半导体辅助层设置在所述金属电极层背离所述发光功能层的一侧表面上,并且其中
    所述金属电极层由镁银合金制成,所述金属电极层的厚度在3nm至5nm之间,以及
    所述半导体辅助层由IZO制成,所述半导体辅助层的厚度在100nm至130nm之间。
  2. 根据权利要求1所述的发光二极管,其中,所述镁银合金中,镁的质量百分比在70%至90%之间。
  3. 根据权利要求1或2所述的发光二极管,其中,对于波长为400nm至500nm的光,所述第二电极的透光率在65%至70%之间。
  4. 根据权利要求1至3中任意一项所述的发光二极管,其中,所述发光功能层包括层叠设置的第一空穴注入层、第一空穴传输层、红色发光功能层、绿色发光功能层、第一电子传输层、连接层、第二空穴注入层、第二空穴传输层、蓝色发光功能层、第二电子传输层,并且其中,所述第二电极设置在所述第二电子传输层背离所述蓝色发光功能层的表面上。
  5. 根据权利要求4所述的发光二极管,其中,所述发光二极管的绿光的峰值波长在530nm至540nm,蓝光的峰值波长在465nm至475nm之间,蓝光的半峰全宽在69nm至79nm之间。
  6. 根据权利要求1至3中任意一项所述的发光二极管,其中, 所述发光二极管还包括位于所述第二电极背离所述发光功能层一侧的封装层。
  7. 根据权利要求6所述的发光二极管,其中,所述封装层包括第一封装层和第二封装层,所述第一封装层与所述第二电极贴合,所述第二封装层位于所述第一封装层背离所述发光功能层的一侧。
  8. 根据权利要求7所述的发光二极管,其中,第一封装层由四氟乙烯制成,并且所述第二封装层由硅的氮化物制成。
  9. 一种发光装置,包括权利要求1至8中任意一项所述的发光二极管。
  10. 一种发光二极管的制造方法,其中,所述制造方法包括:
    形成第一电极,所述第一电极由透明材料制成;
    在所述第一电极的表面上形成发光功能层;
    在所述发光功能层的背离所述第一电极的表面上形成第二电极,其中,所述第二电极包括金属电极层和半导体辅助层,并且形成第二电极包括:
    在所述发光功能层上形成所述金属电极层,所述金属电极层由镁银合金制成,所述金属电极层的厚度在3nm至5nm之间;以及
    在所述金属电极层的远离所述金属电极层的表面上上形成所述半导体辅助层,所述半导体辅助层由IZO制成,所述半导体辅助层的厚度在100nm至130nm之间。
  11. 根据权利要求10所述的制造方法,其中,所述镁银合金中,镁的质量百分比在70%至90%之间。
  12. 根据权利要求10或11所述的制造方法,其中,对于波长为400nm至500nm的光,所述第二电极的透光率在65%至70%之间。
  13. 根据权利要求10至12中任意一项所述的制造方法,其中,在所述第一电极的表面上形成发光功能层包括:
    在所述第一电极的所述表面上形成第一空穴注入层;
    在所述第一空穴注入层的背离所述第一电极的表面上形成第一空穴传输层;
    在所述第一空穴传输层的背离所述第一电极的表面上形成红色发光功能层;
    在所述红色发光功能层的背离所述第一电极的表面上形成绿色发光功能层;
    在所述绿色发光功能层的背离所述第一电极的表面上形成第一电子传输层;
    在所述第一电子传输层的背离所述第一电极的表面上形成连接层;
    在所述连接层的背离所述第一电极的表面上形成第二空穴注入层;
    在所述第二空穴注入层的背离所述第一电极的表面上形成第二空穴传输层;
    在所述第二空穴传输层的背离所述第一电极的表面上形成蓝色发光功能层;
    在所述蓝色发光功能层的背离所述第一电极的表面上形成第二电子传输层,并且其中,
    所述第二电极层形成在所述第二电子传输层的背离所述第一电极的表面上。
  14. 根据权利要求10至12中任意一项所述的制造方法,还包括:
    在所述第二电极的背离所述第一电极的表面上形成封装层。
  15. 根据权利要求14所述的制造方法,其中,所述封装层包括第一封装层和第二封装层,并且在所述第二电极的背离所述第一电极 的表面上形成封装层进一步包括:
    利用四氟乙烯在所述第二电极的背离所述第一电极的表面上形成第一封装层;以及
    利用硅的氮化物在所述第一封装层的背离所述第二电极的表面上形成第二封装层。
PCT/CN2020/100785 2019-07-11 2020-07-08 发光二极管及其制造方法和发光装置 WO2021004469A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/279,664 US20220037614A1 (en) 2019-07-11 2020-07-08 Light emitting diode, method of manufacturing the same, and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910625633.4A CN110323358B (zh) 2019-07-11 2019-07-11 发光二极管及其制造方法和发光装置
CN201910625633.4 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021004469A1 true WO2021004469A1 (zh) 2021-01-14

Family

ID=68121873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100785 WO2021004469A1 (zh) 2019-07-11 2020-07-08 发光二极管及其制造方法和发光装置

Country Status (3)

Country Link
US (1) US20220037614A1 (zh)
CN (1) CN110323358B (zh)
WO (1) WO2021004469A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323358B (zh) * 2019-07-11 2021-12-24 京东方科技集团股份有限公司 发光二极管及其制造方法和发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969474A (en) * 1996-10-24 1999-10-19 Tdk Corporation Organic light-emitting device with light transmissive anode and light transmissive cathode including zinc-doped indium oxide
CN101562237A (zh) * 2008-04-17 2009-10-21 富士电机控股株式会社 有机发光元件
CN102386340A (zh) * 2010-09-02 2012-03-21 奇美电子股份有限公司 影像显示系统
CN104835919A (zh) * 2015-05-26 2015-08-12 京东方科技集团股份有限公司 一种电致发光器件及其制备方法、显示基板、显示装置
CN106920816A (zh) * 2015-12-24 2017-07-04 乐金显示有限公司 有机发光显示装置及有机发光堆叠结构
CN110323358A (zh) * 2019-07-11 2019-10-11 京东方科技集团股份有限公司 发光二极管及其制造方法和发光装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721571B1 (ko) * 2005-03-07 2007-05-23 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조방법
CN101128074A (zh) * 2007-09-20 2008-02-20 清华大学 一种有机电致发光器件及其制备方法
CN103155203B (zh) * 2010-10-12 2017-04-05 皇家飞利浦电子股份有限公司 具有封装的有机电子器件
TWI559587B (zh) * 2011-03-24 2016-11-21 松下電器產業股份有限公司 有機電致發光元件、照明器具、及食品保管裝置
CN102769104B (zh) * 2011-05-06 2015-12-16 海洋王照明科技股份有限公司 一种柔性双面发光有机电致发光装置及其制备方法
CN102690235A (zh) * 2012-05-25 2012-09-26 南京邮电大学 一类含空穴传输功能基团的铱配合物及其电致发光器件
US9449809B2 (en) * 2012-07-20 2016-09-20 Applied Materials, Inc. Interface adhesion improvement method
CN102983284A (zh) * 2012-12-06 2013-03-20 吉林大学 一种具有弱视角效应的顶发射白光有机电致发光器件
KR102092557B1 (ko) * 2012-12-12 2020-03-24 엘지디스플레이 주식회사 유기 발광 장치 및 유기 발광 장치 제조 방법
DE102015117932A1 (de) * 2015-10-21 2017-04-27 Osram Oled Gmbh Organisches optoelektronisches Bauelement und Verfahren zum Herstellen eines organischen optoelektronischen Bauelements
JP2017182892A (ja) * 2016-03-28 2017-10-05 セイコーエプソン株式会社 発光素子、発光装置、及び電子機器
CN108878665B (zh) * 2017-05-12 2021-01-26 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
US10312475B2 (en) * 2017-05-15 2019-06-04 Applied Materials, Inc. CVD thin film stress control method for display application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969474A (en) * 1996-10-24 1999-10-19 Tdk Corporation Organic light-emitting device with light transmissive anode and light transmissive cathode including zinc-doped indium oxide
CN101562237A (zh) * 2008-04-17 2009-10-21 富士电机控股株式会社 有机发光元件
CN102386340A (zh) * 2010-09-02 2012-03-21 奇美电子股份有限公司 影像显示系统
CN104835919A (zh) * 2015-05-26 2015-08-12 京东方科技集团股份有限公司 一种电致发光器件及其制备方法、显示基板、显示装置
CN106920816A (zh) * 2015-12-24 2017-07-04 乐金显示有限公司 有机发光显示装置及有机发光堆叠结构
CN110323358A (zh) * 2019-07-11 2019-10-11 京东方科技集团股份有限公司 发光二极管及其制造方法和发光装置

Also Published As

Publication number Publication date
CN110323358A (zh) 2019-10-11
CN110323358B (zh) 2021-12-24
US20220037614A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN106953020B (zh) 一种有机发光显示器件和有机发光显示装置
US8987708B2 (en) Optoelectronic component
KR101415098B1 (ko) 유기 일렉트로루미네슨트 소자와 그것을 구비한 표시장치
US10446798B2 (en) Top-emitting WOLED display device
US8314547B2 (en) Opto-electronic component
WO2015161584A1 (zh) Oled显示器及其制备方法
US10868214B2 (en) Light emitting diode, manufacturing method thereof and display device
WO2016173135A1 (zh) 有机发光二极管器件及其制备方法
KR101650029B1 (ko) 발광 컴포넌트들과 발광 컴포넌트를 제조하기 위한 방법
US10062862B2 (en) Organic light-emitting diode (OLED) display panel, electronic device and manufacturing method
JP2010198921A (ja) 透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
KR20210116108A (ko) 발광 소자 및 이를 포함하는 디스플레이 장치
Li et al. Enhanced efficiency of top-emission InP-based green quantum dot light-emitting diodes with optimized angular distribution
KR100494557B1 (ko) 고굴절률 덮개층을 가지는 고효율 발광소자
Li et al. Highly Efficient Top‐Emitting Quantum‐Dot Light‐Emitting Diodes with Record‐Breaking External Quantum Efficiency of over 44.5%
WO2021004469A1 (zh) 发光二极管及其制造方法和发光装置
US20150207092A1 (en) Organic electroluminescent element
Tyan et al. 61.2: Fluorescent White OLED Devices with Improved Light Extraction
JP6629505B2 (ja) 発光素子およびそれを備えた表示装置
US20210408463A1 (en) Display Structure
US20110084288A1 (en) Organic light emitting diode display and method of manufacturing the same
WO2017038381A1 (ja) 有機el発光装置
CN108598124A (zh) 显示装置
TWI503968B (zh) 反射式有機發光二極體顯示裝置及其驅動方法
US10411213B2 (en) White LED with two blue layers and a yellow layer and the display panel thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837321

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837321

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837321

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20837321

Country of ref document: EP

Kind code of ref document: A1