WO2021004225A1 - 一种末端膨大微结构阵列仿生黏附材料的制备方法 - Google Patents

一种末端膨大微结构阵列仿生黏附材料的制备方法 Download PDF

Info

Publication number
WO2021004225A1
WO2021004225A1 PCT/CN2020/095630 CN2020095630W WO2021004225A1 WO 2021004225 A1 WO2021004225 A1 WO 2021004225A1 CN 2020095630 W CN2020095630 W CN 2020095630W WO 2021004225 A1 WO2021004225 A1 WO 2021004225A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
electroplating
component
array
adhesive material
Prior art date
Application number
PCT/CN2020/095630
Other languages
English (en)
French (fr)
Inventor
戴振东
姬科举
袁聪
唐义强
陈健
崔恩华
Original Assignee
南京溧航仿生产业研究院有限公司
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京溧航仿生产业研究院有限公司, 南京航空航天大学 filed Critical 南京溧航仿生产业研究院有限公司
Priority to US17/288,536 priority Critical patent/US11254566B2/en
Publication of WO2021004225A1 publication Critical patent/WO2021004225A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/006Microdevices formed as a single homogeneous piece, i.e. wherein the mechanical function is obtained by the use of the device, e.g. cutters
    • B81B1/008Microtips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00206Processes for functionalising a surface, e.g. provide the surface with specific mechanical, chemical or biological properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0094Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor injection moulding of small-sized articles, e.g. microarticles, ultra thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0097Glues or adhesives, e.g. hot melts or thermofusible adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/727Fastening elements
    • B29L2031/729Hook and loop-type fasteners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/03Processes for manufacturing substrate-free structures
    • B81C2201/034Moulding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing an adhesive material, in particular to a method for preparing an adhesive material with an enlarged end microstructure array.
  • the preparation methods of the biomimetic adhesive material for the enlarged microstructure array can be divided into two types: direct mold re-molding and post-processing molding.
  • Patent US20110117321A1 and Patent US8524092B2 prepared single-level and multi-level mushroom-head-shaped end-expanded microstructure array bionic adhesive materials by directly over-molding SU8 and silicon substrates by photolithographic molding.
  • Direct laminating molding has higher requirements for the design and processing of the template, and the demolding process also requires the elasticity and toughness of the material. Therefore, in its development direction, it is necessary to make a larger innovative design for the porous template to adapt to multiple categories, Large-scale preparation requirements.
  • Patent US8398909B1 and Patent US9340708B2 use a dip coating process to build a duck tongue-like structure at the end of the inclined polymer PU fiber array.
  • This structure shows the anisotropy of adhesion force similar to the dry adhesion unit of organisms, and is an active control adhesion material The adhesion and desorption provides a good design idea.
  • the dip coating modification process shows the convenience and diversity of controlling the end microstructure, which helps to study the mapping relationship between the end morphology and adhesion mechanics, but the secondary molding restricts the scale development to a certain extent.
  • the micro-nano-scale porous template is the key to the direct composite molding process.
  • the preparation of the template mainly includes technical methods such as photolithography, micro-nano imprinting, and electrochemical processing.
  • Most of the micro-nanoporous substrates involved are silicon substrates.
  • micro-nanoporous substrate obtained by the silicon substrate photolithography technology has good designability in the preparation of micro-nano fibers, but the planar characteristics of the silicon substrate and the limited number of repetitions make the distance between most adhesive materials based on this technology large Large-scale industrialization still has some distance.
  • Porous metal/metal oxide is a type of metal/metal oxide with a large number of directional or random pores dispersed in the interior. The formation of these pores can be obtained by a variety of processing methods, and the directional and precise control of the pore structure can be achieved , Often used as a mold for molding in industrial production. South Korea’s Dong et al. used anodic aluminum oxide (AAO) as a template to prepare a nanoscale PS fiber array cross-scale structure, where the AAO template was prepared by an improved electrochemical process (see YLDong, DHLee, SGLee, K.
  • AAO anodic aluminum oxide
  • Porous metal/metal oxide as a template has good scalability in terms of scale and scale, but current research shows that the uniformity of the pore structure and the processing accuracy of the terminal structure of this type of porous metal/metal oxide need to be further improved. With the development of micro-nano processing technology, it has become a potential development strategy to obtain array hole metal with good orientation and uniformity and use it as a template to prepare biomimetic adhesive materials.
  • the present invention discloses a method for preparing a bionic adhesion material for an enlarged end microstructure array, which cleverly uses electroplating to control the modification of through holes to realize precise processing of complex geometries on metal materials ,
  • the service life of the mold is greatly improved, and the production cost is reduced.
  • the mold selection of substrates with different elastic modulus can flexibly control the end morphology of the microstructure, thereby achieving the preparation of adhesive materials with different properties.
  • the present invention is realized as follows:
  • Step 1 Processing a through hole array on the metal sheet
  • Step 2 Use electroplating to modify the morphology of the through-hole.
  • the method uses electrochemical methods to modify the morphology of the through holes to prepare through-hole components of the mold.
  • the effect of the electrochemical method on the morphology of the through holes is to make the thickness of the plating layer in the middle of the through hole thicker through electroplating.
  • the axial direction of the through hole gradually becomes thinner to both sides.
  • Step three filling the mold assembly described in step two with a polymer, and demolding after curing to obtain an adhesive material for an enlarged end microstructure array.
  • the substrate component is a series of components containing different elastic modulus materials, and the elastic modulus of the substrate component ranges from 0.3 to 60 MPa.
  • the substrate component may be a plurality of elastic pads, and the elastic modulus of the material of each elastic pad is different. When in use, an elastic pad with a suitable elastic modulus is selected according to different requirements. When components with different elastic moduli are selected for the substrate component, the morphology of the end of the microstructure can be adjusted.
  • the aperture of the through-hole is not greater than 100 micrometers, the center distance between two adjacent through-holes is not greater than 100 micrometers, the through-holes may be cylindrical or special-shaped holes; the metal foil The thickness is not more than 1mm.
  • the polymer described in step 3 is an organic or inorganic elastomer; including polydimethylsiloxane, silicone polymer elastomer with additional crosslinking agent, acrylate functional group-containing or two-component prepolymer One of rubber and rubber materials, or a modified material of the above-mentioned elastomer.
  • the electroplating process described in step two is: electroplating the cleaned and activated through-hole array with a pre-nickel formula for 1-3 minutes at room temperature with a current density of 2-8A/dm 2 ; then move the through-hole array to In the electroplating tank, the through hole array is used as the cathode, the nickel plate is used as the anode, and the two electrodes are arranged in parallel; the electroplating parameters are current density 2-5A/dm 2 , electroplating temperature 50-70°C, mechanical stirring throughout the electroplating process, electroplating time 1-3 hours , Forming a hyperboloid-like through-hole component with the middle diameter smaller than the two ends.
  • the present invention has the following beneficial effects:
  • the preparation method involved in the present invention realizes precise processing of complex geometries on metal materials by processing through hole arrays and electroplating, that is, through the ingenious combination of subtractive manufacturing methods and additive manufacturing methods, and greatly improves the mold Service life, reduce production costs; the present invention uses electroplating to control the modification of through holes to realize precise machining of complex geometries on metal materials. Compared with the existing non-metal molds, it can greatly increase the service life of the molds and reduce production costs. , For substrate components with different elastic moduli, by adjusting the positive pressure between the through-hole component and the substrate component, the end morphology of the microstructure can be adjusted.
  • the mold substrate component used in the preparation method of the present invention contains a series of components of different elastic modulus materials; when the substrate component selects components with different elastic modulus, combined with the applied positive pressure, the micro Flexible control of structure end morphology;
  • the preparation method involved in the present invention can be formed at one time, and combined with the micro-nano imprint technology, it can realize economical and reliable industrial production of the adhesive material for the enlarged microstructure array at the end.
  • Figure 1 is a flow chart of a method for preparing an adhesive material for an enlarged end microstructure array of the present invention
  • Figure 2 is a top view of the through hole component of the present invention.
  • Figure 3 is a cross-sectional view of the through-hole assembly of the present invention.
  • Fig. 4 is a schematic diagram of the principle of the substrate assembly of the present invention for controlling the topography of the microstructure end;
  • Fig. 5 is an electron micrograph of the adhesive material of the cylindrical array with enlarged ends in the embodiment of the present invention.
  • FIG. 1 shown is a flow chart of a method for preparing an adhesive material for an enlarged end microstructure array of the present invention. The specific steps are:
  • Step 1 Use a laser to process an array of through holes on a metal sheet; the aperture of the through holes is not greater than 100 microns, and the center distance between two adjacent through holes is not greater than 100 microns; the thickness of the metal sheet is not greater than 1 mm, and the through holes It can be cylindrical or special-shaped hole;
  • Step 2 Use electroplating to modify the morphology of the through hole to prepare a mold assembly; the modification of the morphology of the through hole by electroplating means that the thickness of the plating layer in the middle of the through hole is made thicker by electroplating, and it goes to both sides along the axis of the through hole. Gradually thinning
  • Step 3 Fill the mold with polymer, release the mold after curing, to obtain the end-expanded microstructure array adhesion material.
  • the mold includes a through-hole component and a substrate component, the through-hole component is prepared by step 2 in claim 1, the substrate component includes a series of components of different elastic modulus materials; the substrate components are selected differently When the elastic modulus is a component, the morphology of the end of the microstructure can be adjusted.
  • the polymer can be any organic or inorganic elastomer, such as PDMS (polydimethylsiloxane), silicone polymer elastomer with additional crosslinking agent, acrylate functional group or two-component prepolymer And rubber materials can also be modified materials of the above materials.
  • SUS304 stainless steel belt is used for preparation, and the following technical solutions are adopted in specific implementations:
  • Step 1 Use a SUS304 stainless steel strip with a thickness of 0.06mm to process a cylindrical through hole array with a picosecond laser.
  • the hole diameter is 0.085mm and the hole pitch is 0.13mm.
  • Two adjacent rows of holes are arranged in a staggered arrangement.
  • Step 2 Immerse the through-hole array prepared in step 1 in a 10wt% oxalic acid solution, ultrasonically clean until the slag is removed, put it in an alkaline degreasing agent, ultrasonically clean for 20 minutes, and clean it with deionized water; Immerse in 37% concentrated hydrochloric acid HCl for 0.5-1min at room temperature to activate the surface; electroplating with pre-nickel formula for 1 minute at room temperature, the current density is 2A/dm 2 . Then move the through-hole array to the electroplating bath, the through-hole array is used as the cathode, the nickel plate is used as the anode, and the two electrodes are arranged in parallel.
  • the main technical parameters of electroplating are the current density of 2A/dm 2 , the electroplating temperature of 55-60°C, and the whole process needs Mechanical stirring and electroplating time of 2 hours will form a hyperboloid-like through-hole assembly with a small diameter in the middle and large diameters at both ends, as shown in Figures 2 to 3.
  • Step 3 Mix (Sylgard 184A) and curing agent (Sylgard 184B) uniformly at a mass ratio of 10:1, and prepare PDMS in advance. Make the lower surface of the through-hole component of the mold and the upper surface of the substrate component tightly fit under a certain positive pressure, and the hyperboloid through-hole and the elastic substrate form a "suction cup" interface, as shown in Figure 4, and then pour the PDMS onto
  • the mold substrate component in this embodiment uses polytetrafluoroethylene with a relatively large elastic modulus. Vacuum the bubbles for 10 minutes, and then place them in a convection oven at 70°C for 2 hours. Finally, careful demolding can prepare the end-expanded cylindrical array adhesion material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Micromachines (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

一种末端膨大微结构阵列黏附材料的制备方法,属于黏附材料的制备领域,包括以下步骤:1、在金属薄片上加工通孔;2、采用电化学方法对通孔形貌进行修型,制备出模具通孔组件;3、用聚合物填充到模具中,固化后脱模得到末端膨大微结构阵列黏附材料;利用电镀对通孔的可控修饰,实现在金属材料上对复杂几何的精密加工,相比现有的非金属模具,能大大提高模具使用寿命,降低生产成本,针对不同弹性模量的衬底组件,通过调节通孔组件与衬底组件之间的正压力,可调控微结构末端形貌,从而实现不同性能黏附材料的制备。

Description

一种末端膨大微结构阵列仿生黏附材料的制备方法 技术领域
本发明涉及一种黏附材料的制备方法,特别涉及一种末端膨大微结构阵列黏附材料的制备方法。
背景技术
自然界中许多生物在垂直表面甚至天花板上表现出卓越的附着能力。例如飞蛾幼虫、部分甲虫、苍蝇、蜜蜂、蜘蛛、壁虎等,这种所谓的“干黏附”能力得益于它们脚掌底部的微结构。受这种生物功能的启发,学者们对各种几何形状的纤维末端(例如扁平,球形,凹形或末端膨大状等)展开了研究(请参见Del Cam po A,Greiner C,álva rez I,et al.Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices.Advanced Materials,2007,19(15):1973-1977),并结合多种制备方法,制备出了多种具有干黏附特性的仿生结构材料。这些研究中具有蘑菇头状末端膨大的纤维阵列因其低预压(<5N/cm 2)下的稳定黏附特性得到了广泛的关注。(请参见Hu H,Tian H,Li X,et al.Biomimetic Mushroom-Shaped Microfibers for Dry Adhesives by Electrically Induced Polymer Deformation.ACS Applied Materials&Interfaces,2014,6(16):14167-14173)。
末端膨大微结构阵列仿生黏附材料的制备方法主要可以分为模具直接复模和后期处理成型两类。专利US20110117321A1和专利US8524092B2通过对SU8和硅基底的光刻制模,直接复模分别制备了单层级和多层级的蘑菇头状末端膨大微结构阵列仿生黏附材料。直接复膜成型对模板的设计加工要求较高,且脱模过程对材料的弹性和韧性亦有要求,所以其发展方向上需要对多孔模板做出较大的创新性设计,以适应多品类、规模化的制备需求。而后期处理成型弱化了对前期多孔模具的要求,可以通过软刻蚀、蘸涂、机压成型、电子束刻蚀等末端修饰加工实现。专利US8398909B1和专利US9340708B2用蘸涂工艺在倾斜的聚合物PU纤维阵列末端构筑了鸭舌板状结构,该结构表现出了类似于生物体干黏附单元的黏附力各向异性,为主动调控黏附材料的黏脱附提供了良好的设计思路。蘸涂修饰工艺展示出了调控末端微结构的便捷性和多样性,有助于研究末端形貌与黏附力学的映射关系,但是二次成型一定程度上制约了规模化发展。
微纳米尺度多孔模板是直接复模成型工艺的关键,模板的制备主要有光刻、微纳米压印、电化学加工等技术方法,所涉及微纳孔基材大都是硅基底。
硅基底光刻技术获得的微纳孔基材在制备微纳米纤维上具有较好的可设计性,但是硅基材的平面特性以及重复使用次数受限等问题,使得多数基于该技术的黏附材料距离大规模产业化仍然具有一段距离。
多孔金属/金属氧化物是一类金属/金属氧化物内部弥散分布着大量的有方向性的或随机的孔洞,这些孔洞的形成可以通过多种加工手段获取,并可以实现孔结构的定向精确调控,常常作为模塑成型的模具在工业化生产中应用。韩国的Dong等利用阳极氧化铝(AAO)作为模板制备了纳米尺度的PS纤维阵列跨尺度结构,其中的AAO模板由电化学改进工 艺制备(请参见Y.L.Dong,D.H.Lee,S.G.Lee,K.Cho.Hierarchical Gecko-Inspired Nanohairs with a High Aspect Ratio Induced by Nanoyielding.Soft Matter.2012,8(18):4905-4910)。哈工大的Zhang等利用多孔镍/氧化镍(p-Ni/NiO)为模板制备了PDMS纤维阵列,p-Ni/NiO多孔模板通过电镀工艺辅助后续热处理获得,并展示出了孔型的可调性(请参见E.Zhang,Y.Liu,J.Yu,T.Lv,L.Li.Fabrication of Hierarchical Gecko-Inspired Microarrays Using a Three-Dimensional Porous Nickel Oxide Template.Journal of Materials Chemistry B.2015,3(32):6571-6575)。
多孔金属/金属氧化物作为模板在尺度和规模上具有良好的可扩展性,但目前研究显示这类多孔金属/金属氧化物的孔结构均一性以及末端结构加工精度有待进一步改善。随着微纳加工技术的发展,获得定向性、均一性良好的阵列孔金属,并以此为模板制备仿生黏附材料成为了一种有潜力的发展策略。
发明内容
本发明针对现有技术中存在的问题,公开了一种末端膨大微结构阵列仿生黏附材料的制备方法,巧妙地利用电镀对通孔的可控修饰,实现在金属材料上对复杂几何的精密加工,大大提高模具使用寿命,降低生产成本,模具选用不同弹性模量的衬底可灵活调控微结构末端形貌,从而实现不同性能黏附材料的制备。
本发明是这样实现的:
一种末端膨大微结构阵列仿生黏附材料的制备方法,其特征在于,步骤如下:
步骤一、在金属薄片上加工通孔阵列;
步骤二、采用电镀对通孔形貌进行修饰,用步骤一所述的金属薄片作为电镀阴极,与电镀阳极平行布置,由于靠近阳极侧孔口的电流密度比孔中间位置和远离阳极侧孔口的电流密度大,使得靠近阳极侧孔口处镀层沉积速度比孔中间位置和远离阳极侧孔口处快,从而制备出类双曲面形通孔阵列组件,使通孔组件下表面和衬底组件上表面紧密贴合,所述的通孔组件、衬底组件构成模具组件。该方法是采用电化学方法对通孔形貌进行修饰,制备出模具通孔组件,该电化学方法对通孔形貌进行修饰的效果是:通过电镀使通孔中部的镀层厚度偏厚,沿通孔轴线方向往两侧逐渐变薄。
步骤三、用聚合物填充到步骤二所述的模具组件中,固化后脱模得到末端膨大微结构阵列黏附材料。
进一步,所述的衬底组件为包含不同弹性模量材质的系列组件,所述的衬底组件的弹性模量范围为0.3-60MPa。该衬底组件可以是是多个弹性垫,每个弹性垫的材料的弹性模量不同,使用时,根据不同的要求从中选用一个弹性模量合适的弹性垫。衬底组件选用不同弹性模量的组件时,可调控微结构末端形貌。
进一步,步骤一中所述的通孔阵列中:通孔孔径不大于100微米,相邻两通孔的中心距不大于100微米,所述通孔可以是圆柱形或者异型孔;所述金属薄片厚度不大于1mm。
进一步,步骤三中所述的聚合物为有机或无机的弹性体;包括聚二甲基硅氧烷、附加交联剂的硅高分子弹性体、含丙烯酸酯官能团的或双组份的预聚体及橡胶材料中的一种,或者上述弹性体的改性材料。
进一步,步骤二中所述的电镀工艺为:室温下将清洗活化后的通孔阵列用预镀镍 配方电镀1-3分钟,电流密度为2-8A/dm 2;然后将通孔阵列移到电镀槽中,通孔阵列作为阴极,镍板作阳极,两电极平行布置;电镀参数为电流密度2-5A/dm 2,电镀温度50-70℃,电镀全程机械搅拌,电镀时间1-3小时,形成中部直径小于两端直径的类双曲面通孔组件。
本发明与现有技术相比的有益效果在于:
1)本发明所涉及的制备方法通过通孔阵列的加工以及电镀的方式,即通过减材制造方法和增材制造方法的巧妙组合,实现在金属材料上对复杂几何的精密加工,大大提高模具使用寿命,降低生产成本;本发明利用电镀对通孔的可控修饰,实现在金属材料上对复杂几何的精密加工,相比现有的非金属模具,能大大提高模具使用寿命,降低生产成本,针对不同弹性模量的衬底组件,通过调节通孔组件与衬底组件之间的正压力,可调控微结构末端形貌,通孔组件与衬底组件之间的压力越大,衬底的弹性模量越小,就会使衬底陷入通孔的深度越大,最后浇筑出的黏附材料微结构中“吸盘状”末端的中间凹陷就越深,从而实现不同性能黏附材料的制备;
2)本发明所涉及的制备方法中所使用的模具衬底组件包含不同弹性模量材料的系列组件;所述衬底组件选用不同弹性模量的组件时,结合施加的正压力可实现对微结构末端形貌的灵活调控;
3)本发明所涉及的制备方法可以一次成型,与微纳米压印技术结合可以实现末端膨大微结构阵列黏附材料的经济、可靠的工业化生产。
附图说明
图1是本发明一种末端膨大微结构阵列黏附材料的制备方法流程图;
图2是本发明的通孔组件俯视图;
图3是本发明的通孔组件截面图;
图4是本发明衬底组件对微结构末端形貌调控原理示意图;
图5是本发明实施例中末端膨大圆柱阵列黏附材料电镜照片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1所示,所示的是本发明一种末端膨大微结构阵列黏附材料的制备方法流程图,具体步骤为:
步骤1:用激光在金属薄片上加工通孔阵列;所述通孔孔径不大于100微米,相邻两通孔的中心距不大于100微米;所述金属薄片厚度不大于1mm,所述通孔可以是圆柱形,也可以是异型孔;
步骤2:采用电镀对通孔形貌进行修饰,制备出模具组件;所述电镀对通孔形貌进行修饰是指通过电镀使通孔中部的镀层厚度偏厚,沿通孔轴线方向往两侧逐步变薄;
步骤3:用聚合物填充到模具中,固化后脱模得到末端膨大微结构阵列黏附材料。所述模具包含通孔组件和衬底组件,所述通孔组件由权利要求1中所述步骤2制备,所述衬 底组件包含不同弹性模量材料的系列组件;所述衬底组件选用不同弹性模量的组件时,可调控微结构末端形貌。所述聚合物可以是任何有机或无机的弹性体,如PDMS(聚二甲基硅氧烷)、附加交联剂的硅高分子弹性体、含丙烯酸酯官能团的或双组份的预聚体及橡胶材料,也可以是上述材料的改性材料。
本实施例中采用SUS304不锈钢带进行制备,具体实施方式采用以下技术方案:
步骤1:选用厚度为0.06mm的SUS304不锈钢带,用皮秒激光加工圆柱形通孔阵列,孔径为0.085mm,孔距0.13mm,相邻两行孔采用错排排列。
步骤2:将步骤1制备好的通孔阵列浸入10wt%的草酸溶液中,超声清洗至熔渣除尽后,放入碱性除油剂中超声清洗20分钟后用去离子水清洗干净;在37%浓盐酸HCl中室温浸渍0.5-1min,活化表面;室温下用预镀镍配方电镀1分钟,电流密度为2A/dm 2。然后将通孔阵列移到电镀槽中,通孔阵列作为阴极,镍板作阳极,两电极平行布置,电镀的主要技术参数为电流密度2A/dm 2,电镀温度55-60℃,电镀全程需要机械搅拌,电镀时间2小时,形成中部直径小,两端直径大的类双曲面通孔组件,具体的如图2~3所示。
步骤3:将(Sylgard 184A)和固化剂(Sylgard 184B)按质量比10:1均匀混合,提前配制出PDMS。使模具的通孔组件下表面和衬底组件上表面在一定正压力下紧密贴合,类双曲面通孔与弹性衬底形成“吸盘状”界面,如图4所示,然后将PDMS浇筑到模具,本实施例中的模具衬底组件选用弹性模量较大的聚四氟乙烯。真空除气泡10分钟,随后,将之置于对流烘箱中70℃固化2小时。最后,小心脱模便可制备出末端膨大圆柱阵列黏附材料,如图5所示,制备过程中通孔组件与衬底组件之间的压力越大,衬底的弹性模量越小,就会使衬底陷入通孔的深度越大,最后浇筑出的黏附材料微结构中“吸盘状”末端的中间凹陷就越深,从而实现不同性能黏附材料的制备,该“吸盘状”末端中部凹陷深度与衬底的弹性模量(E 0)、泊松比(μ 0)、正压力(P)成正相关。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

  1. 一种末端膨大微结构阵列仿生黏附材料的制备方法,其特征在于,步骤如下:
    步骤一、在金属薄片上加工通孔阵列;
    步骤二、采用电镀对通孔形貌进行修饰,用步骤一所述的金属薄片作为电镀阴极,与电镀阳极平行布置,制备出类双曲面形通孔阵列组件,使通孔组件下表面和衬底组件上表面紧密贴合,所述的通孔组件、衬底组件构成模具组件;
    步骤三、用聚合物填充到步骤二所述的模具组件中,固化后脱模得到末端膨大微结构阵列黏附材料。
  2. 根据权利要求1所述的一种末端膨大微结构阵列仿生黏附材料的制备方法,其特征在于,所述的衬底组件为包含不同弹性模量材质的弹性垫,所述的衬底组件的弹性模量范围为0.3-60MPa。
  3. 根据权利要求1所述的一种末端膨大微结构阵列仿生黏附材料的制备方法,其特征在于,步骤一中所述的通孔阵列中:通孔孔径不大于100微米,相邻两通孔的中心距不大于100微米,所述通孔可以是圆柱形或者异型孔;所述金属薄片厚度不大于1mm。
  4. 根据权利要求1所述的一种末端膨大微结构阵列仿生黏附材料的制备方法,其特征在于,步骤二中所述的电镀工艺为:室温下将清洗活化后的通孔阵列用预镀镍配方电镀1-3分钟,电流密度为2-8A/dm 2;然后将通孔阵列移到电镀槽中,通孔阵列作为阴极,镍板作阳极,两电极平行布置;电镀参数为电流密度2-5A/dm 2,电镀温度50-70℃,电镀全程机械搅拌,电镀时间1-3小时,形成中部直径小于两端直径的类双曲面通孔组件。
  5. 根据权利要求1所述的一种末端膨大微结构阵列仿生黏附材料的制备方法,其特征在于,步骤三中所述的聚合物为有机或无机的弹性体;包括聚二甲基硅氧烷、附加交联剂的硅高分子弹性体、含丙烯酸酯官能团的或双组份的预聚体及橡胶材料中的一种,或者上述弹性体的改性材料。
PCT/CN2020/095630 2019-07-08 2020-06-11 一种末端膨大微结构阵列仿生黏附材料的制备方法 WO2021004225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/288,536 US11254566B2 (en) 2019-07-08 2020-06-11 Preparation method of bionic adhesive material with tip-expanded microstructural array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910608241.7 2019-07-08
CN201910608241.7A CN110482481B (zh) 2019-07-08 2019-07-08 一种末端膨大微结构阵列仿生黏附材料的制备方法

Publications (1)

Publication Number Publication Date
WO2021004225A1 true WO2021004225A1 (zh) 2021-01-14

Family

ID=68546725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095630 WO2021004225A1 (zh) 2019-07-08 2020-06-11 一种末端膨大微结构阵列仿生黏附材料的制备方法

Country Status (3)

Country Link
US (1) US11254566B2 (zh)
CN (1) CN110482481B (zh)
WO (1) WO2021004225A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354948A (zh) * 2021-06-03 2021-09-07 南京航空航天大学 一种末端膨大的仿生黏附材料高效制造方法
CN114953496A (zh) * 2022-05-11 2022-08-30 北京航空航天大学 一种阵列化微型吸盘成型制造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110482481B (zh) 2019-07-08 2023-04-04 南京航空航天大学 一种末端膨大微结构阵列仿生黏附材料的制备方法
CN111348619B (zh) * 2020-03-18 2020-09-29 广东工业大学 一种基于光学操控的纳米孔阵列的可控加工方法及装置
JP7256773B2 (ja) * 2020-04-24 2023-04-12 信越化学工業株式会社 平坦性制御方法、塗膜の形成方法、平坦性制御装置、及び塗膜形成装置
CN111993657B (zh) * 2020-08-12 2021-05-25 南京艾德恒信科技有限公司 一种基于微通孔镍基模具的仿生黏附结构平压制造方法
US11478976B2 (en) * 2020-08-12 2022-10-25 Nanjing Adhesion Technology Co., Ltd Flat-pressing manufacturing method of bionic adhesive structure based on micro through-hole nickel-based mold
WO2022040916A1 (zh) * 2020-08-25 2022-03-03 南京艾德恒信科技有限公司 一种基于微通孔镍基模具的仿生黏附结构平压制造方法
CN112590083B (zh) * 2020-12-10 2022-06-10 南京航空航天大学 基于微纳增材制备仿生黏附材料的方法
CN112959576A (zh) * 2021-01-28 2021-06-15 清华大学 喇叭状微结构阵列粘附表面的制备工艺
CN112987493B (zh) * 2021-03-19 2023-12-05 华南理工大学 一种大深宽比结构薄膜的制备装置及其制备方法
CN112939621A (zh) * 2021-04-06 2021-06-11 南京航空航天大学 一种透气型仿生黏附材料及其制备方法
CN113651289B (zh) * 2021-07-07 2024-06-04 北京大学 吸盘结构成型模具的制备方法和吸盘结构的制备方法
CN115122549B (zh) * 2022-06-22 2023-06-16 西北工业大学 一种柔性伞状微结构阵列超表面及其制造方法
WO2024038479A1 (ja) * 2022-08-15 2024-02-22 河西工業株式会社 成型金型、成型金型の製造方法、及び、成型品の製造方法
CN115895463A (zh) * 2022-09-20 2023-04-04 武汉大学 用于仿生结构黏附剂的桥接柱状阵列结构及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632878A (en) * 1994-02-01 1997-05-27 Fet Engineering, Inc. Method for manufacturing an electroforming mold
CN1925766A (zh) * 2004-03-12 2007-03-07 戈特利布捆扎机械有限公司 生产基础材料上的粘附元件的方法
KR100888057B1 (ko) * 2007-11-29 2009-03-11 한국기계연구원 몰딩을 이용한 건식부착물 제조방법
CN102012632A (zh) * 2010-09-10 2011-04-13 中国科学院合肥物质科学研究院 一种具有不同顶端结构的仿生粘附阵列的制备方法
CN103738913A (zh) * 2013-12-31 2014-04-23 中山大学 一种准三维微、纳米柱阵列的制作方法
CN105836696A (zh) * 2016-03-24 2016-08-10 西安交通大学 一种基于电致动的干粘附复合结构及制造工艺
CN110482481A (zh) * 2019-07-08 2019-11-22 南京航空航天大学 一种末端膨大微结构阵列仿生黏附材料的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646318A1 (de) * 1996-11-09 1998-05-14 Binder Gottlieb Gmbh & Co Rationelles Verfahren zur Herstellung eines Haftverschlußteils aus thermoplatischem Kunststoff
US6432339B1 (en) * 1997-08-25 2002-08-13 Velcro Industries B.V. Continuous molding of fastener products with a mold belt
DE19828856C1 (de) * 1998-06-29 1999-10-07 Binder Gottlieb Gmbh & Co Verfahren zur Herstellung eines Haftverschlußteiles
US7052638B2 (en) * 1999-01-15 2006-05-30 Velcro Industries B.V. Hook and loop fastener
EP1343397B1 (de) * 2000-12-22 2010-12-29 Gottlieb Binder GmbH & Co. KG Verfahren zum herstellen von haftverschlussteilen
DE10161744A1 (de) * 2001-12-15 2003-06-18 Werner Jahn Verfahren zur Herstellung eines Haftverschlußteiles
DE10207194C1 (de) * 2002-02-21 2003-06-12 Binder Gottlieb Gmbh & Co Oberfläche
TWI246929B (en) * 2004-07-16 2006-01-11 Ind Tech Res Inst Microneedle array device and its fabrication method
US7641469B2 (en) * 2004-09-28 2010-01-05 Velcro Industries B.V. Fastener molding
US20080063866A1 (en) * 2006-05-26 2008-03-13 Georgia Tech Research Corporation Method for Making Electrically Conductive Three-Dimensional Structures
US8524092B2 (en) * 2006-12-14 2013-09-03 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US8206631B1 (en) 2008-09-18 2012-06-26 Carnegie Mellon University Methods of making dry adhesives
CA2717633C (en) 2009-10-14 2018-06-19 Simon Fraser University Biomimetic dry adhesives and methods of production therefor
CN103274354B (zh) * 2013-05-17 2015-07-01 哈尔滨工业大学 一种仿壁虎结构粘合剂的制备方法
TWI537362B (zh) * 2014-11-20 2016-06-11 國立清華大學 仿生黏著層及其製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632878A (en) * 1994-02-01 1997-05-27 Fet Engineering, Inc. Method for manufacturing an electroforming mold
CN1925766A (zh) * 2004-03-12 2007-03-07 戈特利布捆扎机械有限公司 生产基础材料上的粘附元件的方法
KR100888057B1 (ko) * 2007-11-29 2009-03-11 한국기계연구원 몰딩을 이용한 건식부착물 제조방법
CN102012632A (zh) * 2010-09-10 2011-04-13 中国科学院合肥物质科学研究院 一种具有不同顶端结构的仿生粘附阵列的制备方法
CN103738913A (zh) * 2013-12-31 2014-04-23 中山大学 一种准三维微、纳米柱阵列的制作方法
CN105836696A (zh) * 2016-03-24 2016-08-10 西安交通大学 一种基于电致动的干粘附复合结构及制造工艺
CN110482481A (zh) * 2019-07-08 2019-11-22 南京航空航天大学 一种末端膨大微结构阵列仿生黏附材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354948A (zh) * 2021-06-03 2021-09-07 南京航空航天大学 一种末端膨大的仿生黏附材料高效制造方法
CN114953496A (zh) * 2022-05-11 2022-08-30 北京航空航天大学 一种阵列化微型吸盘成型制造方法

Also Published As

Publication number Publication date
CN110482481A (zh) 2019-11-22
US20210261405A1 (en) 2021-08-26
CN110482481B (zh) 2023-04-04
US11254566B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2021004225A1 (zh) 一种末端膨大微结构阵列仿生黏附材料的制备方法
CN102337213B (zh) 一种基于pdms的三维单细胞培养芯片及其可控制备方法
Park et al. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes
KR100987987B1 (ko) 양극 산화 알루미늄을 이용한 초소수성 마이크로/나노 복합구조 표면 제작용 스탬프, 그 제조 방법, 및 이를 통해제작된 구조물
CN108638403B (zh) 一种基于范德华力效应的干黏附垫及其制作方法
KR101943307B1 (ko) 높은 비표면적을 가지는 다공성 나노투과막 기반의 생체신호 측정용 생체전극 및 그의 제조방법
CN108371750A (zh) 金属微针阵列阴模模具的制备方法
US11371003B2 (en) Photoreceptor scaffold for in vitro modeling and transplantation therapy
Anand et al. Cell culture on microfabricated one-dimensional polymeric structures for bio-actuator and bio-bot applications
KR100922505B1 (ko) 니켈 도금액을 이용한 유연성을 가진 스탬프의 제조방법
WO2013134242A1 (en) Method of manufacturing polymer nanopillars by anodic aluminum oxide membrane and imprint process
KR20130027613A (ko) 미세 금속 패턴을 가지는 필름 및 이에 적합한 제조 방법
Huang et al. Study on cellar behaviors on different nanostructures by nanoporous alumina template
KR20170073337A (ko) 기판의 방수 접합에 의해 얻어지는 세포 배양 용기, 이의 제조 방법 및 상기 세포 배양 용기의 사용 방법
JP5148397B2 (ja) 細胞培養容器および細胞培養方法
CN106086944B (zh) 一种基于溶胀效应制备金属基超疏油复合铸层的方法
CN107394558A (zh) 压印模板和在导电端子的镀层上形成微结构的方法
KR20120031748A (ko) 세포 배양용 용기 및 그 제조 방법
KR101138472B1 (ko) 바이오 칩의 미세환경 내에서 세포를 공배양하는 방법
KR20200140678A (ko) 액상 물질 플랫폼을 이용한 박막의 선택적 박리 및 전사 방법
Luo et al. Fabrication of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology
CN108821231A (zh) 一种基于力学原理的表面具有微结构的高弹性基体及方法
KR100440957B1 (ko) 잉크 토출 헤드의 제조방법
CN106319594A (zh) 一种在铝制品表面形成有序凹孔的方法
CN115993755A (zh) 蘑菇状微结构、模具、蘑菇状干黏附结构及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837273

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837273

Country of ref document: EP

Kind code of ref document: A1