WO2021001964A1 - 波長可変レーザおよびその制御方法 - Google Patents

波長可変レーザおよびその制御方法 Download PDF

Info

Publication number
WO2021001964A1
WO2021001964A1 PCT/JP2019/026493 JP2019026493W WO2021001964A1 WO 2021001964 A1 WO2021001964 A1 WO 2021001964A1 JP 2019026493 W JP2019026493 W JP 2019026493W WO 2021001964 A1 WO2021001964 A1 WO 2021001964A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
dbr
current
laser
phase adjustment
Prior art date
Application number
PCT/JP2019/026493
Other languages
English (en)
French (fr)
Inventor
真 下小園
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/619,721 priority Critical patent/US20220360046A1/en
Priority to JP2021529632A priority patent/JP7248119B2/ja
Priority to PCT/JP2019/026493 priority patent/WO2021001964A1/ja
Publication of WO2021001964A1 publication Critical patent/WO2021001964A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06246Controlling other output parameters than intensity or frequency controlling the phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to a tunable laser composed of a semiconductor laser having a variable wavelength and a method for manufacturing the same.
  • a tunable laser is a useful light source used in a wide range of fields such as wavelength multiplex transmission, optical measurement, optical frequency sweep type OCT (optical coherence tomography), laser optical spectroscopy, and optical sensitivity measurement.
  • a tunable semiconductor laser using a semiconductor as a gain medium is widely used in various fields because of its low power consumption, small size, and easy handling.
  • Tunable semiconductor lasers are mainly divided into three types depending on the structure.
  • Distributed Feedback (DFB) lasers Distributed Bragg Reflector (DBR) lasers, and external cavity lasers.
  • DFB Distributed Feedback
  • DBR Distributed Bragg Reflector
  • the DFB laser is provided with a grating (diffraction grating) on the active layer, and the wavelength change is realized by adjusting the injection current amount or the temperature of the element.
  • the DBR laser does not have a grating placed on the active region, but has a DBR grating on both sides or one side of the active region. Also, the DBR laser usually includes a phase adjustment region for phase matching. The DBR laser realizes tunable wavelength by using the carrier plasma effect caused by injecting a current into the DBR region independent of the active region.
  • the external cavity type laser realizes tunable wavelength by arranging a mirror outside the active region and mechanically moving the mirror.
  • a mirror by MEMS Micro Electro Mechanical Systems
  • MEMS Micro Electro Mechanical Systems
  • the most used gas sensing application is the DFB laser. Since the DFB laser has a structure capable of realizing a narrow line width, it is used in a form in which the wavelength is matched with the absorption line of the gas. As described above, the DFB laser can change the wavelength in the range of about 1 nm by changing the injection current and the temperature of the element itself. However, with the DFB laser, it takes more than 1 ms to sweep when the wavelength is swept.
  • the DBR laser can change the wavelength of about 5 nm by changing the DBR current and the phase adjustment current at the same time. Further, since the DBR laser changes the wavelength based on the change in the refractive index induced by the injection current, it is possible to realize a high-speed tunable of ⁇ s or less.
  • the feature of the external resonator type laser is a wide wavelength tunable width by using a MEMS mirror, and in principle, a tunable width of up to 100 nm can be realized, but when a semiconductor is used as a gain medium, the gain band Actually, it is about 60 nm due to the limitation. Further, in the external resonator type laser, since the MEMS mirror is mechanically moved, it takes about ms to sweep the wavelength.
  • the DBR laser which can realize a faster wavelength tunable, is suitable for gas sensing.
  • this kind of sensing it is preferable that the range of tunable wavelength is wider.
  • a DBR laser continuous wavelength tunable of 5 nm or more is realized (see Non-Patent Document 1).
  • the same power supply is resistance-divided and a current is synchronously injected into the DBR region and the phase adjustment region of the DBR laser to realize a tunable wavelength of 5.6 nm.
  • control is performed by a separate power source in which the DBR current of the DBR laser and the phase adjustment current are synchronized.
  • the control method of Non-Patent Document 1 and the control method of Non-Patent Document 2 are essentially the same.
  • a rear DBR region 321, a phase adjustment region 322, a laser active region 323, a front DBR region 324, and an amplification region 325 are arranged in the waveguide direction.
  • the semiconductor substrate 301 is common to each area.
  • a core 302 made of a bulk semiconductor is formed on the semiconductor substrate 301.
  • a grating 303 is formed on the core 302.
  • an active layer 304 having a multiple quantum well structure is formed on the semiconductor substrate 301.
  • a core 305 made of a bulk semiconductor is formed on the semiconductor substrate 301, and a grating 306 is formed on the core 305.
  • an active layer 307 having a multiple quantum well structure is formed on the semiconductor substrate 301.
  • an overclad 308 is formed in common in each region.
  • a common electrode 310 is formed on the back surface of the semiconductor substrate 301. Further, the first electrode 311 is formed on the overclad 308 of the rear DBR region 321. A second electrode 312 is formed on the overclad 308 of the phase adjustment region 322. A third electrode 313 is formed on the overclad 308 of the laser active region 323. A fourth electrode 314 is formed on the overclad 308 of the anterior DBR region 324. A fifth electrode 315 is formed on the overclad 308 of the amplification region 325.
  • the role of each region in performing laser oscillation and wavelength control will be described.
  • the light generated in the laser active region 323 becomes laser oscillation by the resonator composed of the rear DBR region 321, the phase adjustment region 322, and the front DBR region 324.
  • this laser is amplified by the amplification region 325 in which the current 334 is injected into the fifth electrode 315, and is emitted from the right side of the paper surface of FIG.
  • the oscillation wavelength is determined by the front DBR region 324 and the rear DBR region 321 in which the current 331 is injected into the first electrode 311, the fourth electrode 314, and the phase adjustment region in which the current 332 is injected into the second electrode 312. It is a resonator composed of 322.
  • FIG. 6 shows an example of a wavelength map of a tunable laser using a DBR laser.
  • the wavelength map in this tunable laser is the current injected into the DBR region on the horizontal axis and the current injected into the phase adjustment region on the vertical axis, and the display state shows the oscillation wavelength band obtained by combining these two currents. It is represented by different regions that can be distinguished. In the example shown in FIG. 6, characters (alphabets) are assigned to each area for identification. It is also possible to identify each region by color.
  • the DBR current referred to here is the total amount of current that flows when the front DBR region and the rear DBR region are electrically connected.
  • mode hop does not occur in the region where the state changes continuously, but mode hop occurs when the boundary line where the wavelength changes discontinuously is crossed. From this wavelength map, we can see the following. First, it is possible to realize a certain degree of tunable wavelength by injecting a current into the DBR region alone. Secondly, even if a current is injected independently into the phase adjustment region, a certain degree of wavelength tunable can be realized, but mode hop occurs immediately, so it oscillates continuously only in the range of about 1 nm at most. The wavelength cannot be changed.
  • Non-Patent Document 1 a current is applied by sandwiching a dividing resistor between the DBR region and the phase adjustment region, or as described in Non-Patent Document 2, they are separate.
  • a current is applied in a synchronized manner of the power supply, the wavelength of 5 nm or more can be continuously changed along the trajectory shown by the arrow line of FIG.
  • the side mode suppression ratio is a parameter representing the monochromaticity (singularity of the longitudinal mode) of the spectrum of the oscillating laser, and the peak with the highest spectral intensity (main mode) and the peak with the second highest spectrum intensity (side). Mode) and intensity ratio.
  • FIG. 7 shows an example of an SMSR map of a tunable laser using a DBR laser.
  • the horizontal axis is the current injected into the DBR region and the vertical axis is the current injected into the phase adjustment region, and the SMSR of the oscillating light emitted by the combination of these two currents is displayed.
  • the states are identifiablely represented by different regions.
  • characters alphabets
  • FIGS. 8A and 8B show the electrical control method by the conventional method in more detail.
  • the horizontal axis of FIG. 8A shows time (or phase), and the vertical axis shows the intensity of the modulated signal.
  • the trajectory drawn by the relationship between the DBR current and the phase adjustment current when the DBR current and the phase adjustment current modulated by the modulation signals of the same frequency and the same phase shown in FIG. 8A are applied to the DBR laser is shown in FIG. 8B.
  • the loci when the current widths are the same are drawn in FIGS. 8A and 8B, if the slope of the straight line is to be changed, the ratio of the DBR current and the phase adjustment current may be changed. Further, when it is desired to shift the position where the locus is drawn, a bias current may be applied. As described above, since the relationship between the DBR current and the phase adjustment current does not follow the shape of the wavelength map in the trajectory drawn in a straight line, there are places where the SMSR deteriorates.
  • the present invention has been made to solve the above problems, and an object of the present invention is to suppress deterioration of SMSR in a tunable laser.
  • variable wavelength laser is arranged following the rear DBR region, the phase adjustment region arranged following the rear DBR region, the laser active region arranged following the phase adjustment region, and the laser active region. Synchronized with the DBR current in the front DBR region, the amplification region arranged following the front DBR region, the first current injection unit that injects the DBR current into the rear DBR region and the front DBR region, and the phase adjustment region. Therefore, it is provided with a second current injection unit that injects a phase adjustment current that changes at a frequency twice that of the DBR current.
  • the method for controlling a tunable laser according to the present invention includes a rear DBR region, a phase adjustment region arranged following the rear DBR region, a laser active region arranged following the phase adjustment region, and a laser active region. It is a control method of a tunable laser including a front DBR region arranged in a row and an amplification region arranged following the front DBR region, and is injected into the rear DBR region and the front DBR region in the phase adjustment region. Synchronized with the DBR current, a phase adjustment current that changes at a frequency twice the DBR current is injected.
  • a phase adjustment current that changes at a frequency twice that of the DBR current is injected into the phase adjustment region in synchronization with the DBR current injected into the rear DBR region and the front DBR region. Therefore, the deterioration of SMSR in the tunable laser is suppressed.
  • FIG. 1 is a configuration diagram showing a configuration of a tunable laser according to an embodiment of the present invention.
  • FIG. 2A is a characteristic diagram showing changes in the modulation signal of the DBR current and the modulation signal of the phase adjustment current with respect to the time change of the tunable laser according to the present invention.
  • FIG. 2B is a characteristic diagram showing the relationship between the DBR current and the phase adjustment current of the tunable laser according to the present invention.
  • FIG. 3A is a characteristic diagram showing changes in the DBR current and the phase adjustment current with respect to the time change of the conventional tunable laser.
  • FIG. 3B is a characteristic diagram showing the relationship between the DBR current and the phase adjustment current of the conventional tunable laser.
  • FIG. 4A is a characteristic diagram showing changes in the DBR current and the phase adjustment current with respect to the time change of the tunable laser according to the embodiment.
  • FIG. 4B is a characteristic diagram showing the relationship between the DBR current and the phase adjustment current of the tunable laser according to the embodiment.
  • FIG. 5 is a cross-sectional view showing the configuration of a tunable laser using a DBR laser.
  • FIG. 6 is computer graphics showing an oscillation wavelength map of a tunable laser by a DBR laser.
  • FIG. 7 is computer graphics showing an SMSR map of a tunable laser with a DBR laser.
  • FIG. 8A is a characteristic diagram showing changes in the modulation signal of the DBR current and the modulation signal of the phase adjustment current with respect to the time change.
  • FIG. 8B is a characteristic diagram showing the relationship between the DBR current and the phase adjustment current.
  • This tunable laser follows the rear DBR region 101, the phase adjustment region 102 arranged following the rear DBR region 101, the laser active region 103 arranged following the phase adjustment region 102, and the laser active region 103.
  • the front DBR region 104 is provided, and the amplification region 105 is provided following the front DBR region 104.
  • Each area is formed with a common semiconductor substrate.
  • a core made of bulk semiconductor is formed on the semiconductor substrate.
  • a grating is formed on the core.
  • an active layer having a multiple quantum well structure is formed on the semiconductor substrate.
  • the front DBR region 104 a core made of bulk semiconductor is formed on the semiconductor substrate, and a grating is formed on the core.
  • an active layer having a multiple quantum well structure is formed on the semiconductor substrate.
  • an overclad is formed in common in each region.
  • this tunable laser has a first current injection unit 111 that injects a DBR current into the rear DBR region 101 and the front DBR region 104, and a second current injection unit 112 that injects a phase adjustment current into the phase adjustment region 102. And.
  • the first current injection unit 111 applies a DBR current obtained by modulating the bias current with a modulation signal to each DBR region.
  • the second current injection unit 112 injects a phase adjustment current obtained by modulating the bias current with a modulation signal. Further, the first current injection unit 111 inverts the modulated signal in the region where the modulated signal takes a negative value.
  • a third current injection unit 113 for injecting a current into the laser active region 103 and a fourth current injection unit 114 for injecting a current into the amplification region 105 are provided.
  • the light generated in the laser active region 103 is a resonance composed of the rear DBR region 101, the phase adjustment region 102, and the front DBR region 104.
  • Laser oscillation is performed by the device. Further, it is amplified by the amplification region 105 in which a predetermined current is injected by the fourth current injection unit 114, and is emitted from the right side of the paper surface of FIG.
  • the oscillation wavelength is determined by the DBR current injected by the first current injection unit 111 and the phase adjustment current injected by the second current injection unit 112.
  • the second current injection unit 112 injects the phase adjustment current that changes at a frequency twice the DBR current into the phase adjustment region 102 in synchronization with the DBR current. Further, the first current injection unit 111 inverts the modulated signal to a positive value in the region where the modulated signal for modulating the DBR current takes a negative value.
  • the horizontal axis of FIG. 2A is time (or phase).
  • the vertical axis of FIG. 2A shows the intensity of the modulated signal.
  • the modulation signal is inverted in the region where the modulation signal of the DBR current takes a negative value, and then the modulation signal of the phase adjustment current is changed at a frequency twice that of the modulation signal of the DBR current.
  • the modulation signal of the DBR current and the modulation signal of the phase adjustment current it is possible to sweep in a form that follows the shape of the wavelength map (see FIG. 6), and deterioration of SMSR can be suppressed. If the deterioration of SMSR can be suppressed in this way, the laser beam can be oscillated with a higher signal-to-noise ratio (S / N).
  • a current of 100 mA is applied to the laser active region and 100 mA is applied to the amplified region of the tunable semiconductor laser having a DBR structure. Further, a periodically changing current as shown in FIG. 3A is applied to each DBR region and the phase control region, respectively. As shown in FIG. 3A, a DBR current and a phase adjustment current that change in phase with time are applied, respectively.
  • the DBR current is set to a bias current of 4 mA and an amplitude of 3 mA
  • the phase adjustment current is set to a bias current of 10 mA and an amplitude of 9 mA, and then vibrated as a cosine wave having a period of 0.1 ms.
  • the trajectory followed by the DBR current and the phase adjustment current set in this way is a straight line as shown in FIG. 3B.
  • the worst value was 20 dB.
  • a current of 100 mA is applied to the laser active region and 100 mA is applied to the amplified region of the tunable semiconductor laser having a DBR structure. Further, a periodically changing current as shown in FIG. 4A is applied to each DBR region and the phase control region, respectively.
  • the bias current is set to 0.5 mA
  • the amplitude is set to 3 mA
  • the phase is 90 ° to 270 °.
  • the modulated signal is inverted.
  • the bias current is set to 10 mA
  • the amplitude is set to 9 mA
  • the locus followed by the DBR current and the phase adjustment current set in this way is a curve as shown in FIG. 4B.
  • the worst value was 40 dB. Therefore, according to the present invention, it is possible to use the light source as a continuously tunable light source while sufficiently securing the S / N ratio of the signal. Therefore, by using the tunable laser according to the present invention, it is possible to accurately detect the absorption lines of a plurality of gases.
  • the cosine wave is applied to each DBR region and the phase control region, but if the relationship between the phase and the amplitude is the same, it is another waveform such as a triangular wave or a sawtooth wave.
  • the trajectories drawn by the DBR current and the phase adjustment current do not change, the same effect can be obtained.
  • phase adjustment current that is synchronized with the DBR current injected into the rear DBR region and the front DBR region and changes at a frequency twice the DBR current is applied. Since the injection is performed, the deterioration of SMSR in the tunable laser is suppressed.

Abstract

後方DBR領域(101)および前方DBR領域(104)に、DBR電流を注入する第1電流注入部(111)と、位相調整領域(102)に、位相調整電流を注入する第2電流注入部(112)とを備える。第2電流注入部(112)が、位相調整領域(102)に、DBR電流と同期して、DBR電流の2倍の周波数で変化する位相調整電流を注入する。また、第1電流注入部(111)は、DBR電流が負値を取る領域では、DBR電流を正値に反転する。

Description

波長可変レーザおよびその制御方法
 本発明は、波長が可変とされた半導体レーザからなる波長可変レーザおよびその製造方法に関する。
 波長可変レーザは、波長多重伝送、光測定、光周波数掃引型OCT(optical coherence tomography)、レーザ光分光、光感度計測などの幅広い分野に利用される有用な光源である。この中でも、利得媒体に半導体を用いた波長可変半導体レーザは、消費電力が低く小型で取り扱いが簡単であるため、様々な分野において広く用いられている。
 波長可変半導体レーザは、構造の違いで主に3つの種類に分けられる。分布帰還型(Distributed Feedback:DFB)レーザ、分布反射型(Distributed Bragg Reflector:DBR)レーザ、および外部共振器型レーザである。
 DFBレーザは、活性層の上にグレーティング(回折格子)を備え、注入電流量もしくは素子の温度を調整することによって、波長変化を実現している。
 DBRレーザは、活性領域の上にはグレーティングを配置せず、活性領域の両側もしくは片側にDBRグレーティングを配置している。また通常、DBRレーザは、位相整合を行うために位相調整領域を具備している。DBRレーザは、活性領域とは独立なDBR領域に電流を注入することによって起こるキャリアプラズマ効果を用いて波長可変を実現する。
 外部共振器型レーザは、活性領域の外側にミラーを配置してミラーを機械的に動かすことによって波長可変を実現している。半導体レーザの場合、通常は、フットプリント(素子サイズ)を縮小するために、MEMS(Micro Electro Mechanical Systems)によるミラーが用いられている。
 次に、これらのレーザをガスセンシングに適用する際の特徴を記す。ガスセンシング用途として最も用いられているのは、DFBレーザである。DFBレーザは、狭線幅を実現できる構造であるため、ガスの吸収線に波長を合わせた形で使われる。前述のように、DFBレーザは、注入電流および素子の温度自体を変えることによって、波長を1nm程度の範囲で可変することができる。しかしながら、DFBレーザは、波長掃引した場合の掃引に1ms以上の時間がかかる。
 DBRレーザは、DBR電流と位相調整電流を同時に変化させることによって5nm程度の波長が可変できる。また、DBRレーザは、注入電流によって誘起された屈折率変化を原理として波長を可変するため、μs以下の高速な波長可変を実現できる。
 外部共振器型レーザの特徴は、MEMSミラーを用いることによる広帯域な波長可変幅であり、100nmにもおよぶ波長可変を原理的には実現できるが、半導体を利得媒体として用いる場合には、利得帯域に制限があるため実際には60nm程度である。また、外部共振器型レーザでは、MEMSミラーを機械的に動かすため、波長掃引にms程度の時間を要する。
 上述のことを勘案すると、より高速な波長可変が実現できる、DBRレーザが、ガスセンシングに適しているものと考えられる。ここで、この種のセンシングにおいては、波長可変の範囲がより広いことが好ましい。例えば、DBRレーザにおいては、5nm以上の連続波長可変が実現されている(非特許文献1参照)。この技術では、同一の電源を抵抗分割し、DBRレーザのDBR領域と位相調整領域とに電流を同期して注入し、5.6nmの波長可変を実現している。また、非特許文献2では、DBRレーザのDBR電流と位相調整電流とを同期させた、各々別々の電源によって制御を行っている。非特許文献1の制御方法と、非特許文献2の制御方法は、本質的には同じである。
T. Kanai et al., "First Demonstration of 2 μm Wavelength Tunable Distributed Bragg Reflector Laser Diode", International Semiconductor Laser Conference, TuB4, 2016. M. Abe et al., "4-nm continuous rapid sweeping spectroscopy in 2-μm band using distributed Bragg reflector laser", Applied Physics B, 123:260, 2017.
 ここで、DBRレーザによる波長可変レーザの構造について図5を参照して説明する。この波長可変レーザは、導波方向に、後方DBR領域321、位相調整領域322、レーザ活性領域323、前方DBR領域324、増幅領域325が配列されている。
 各領域は、半導体基板301を共通としている。後方DBR領域321,位相調整領域322では、半導体基板301の上に、バルクの半導体からなるコア302が形成されている。また、後方DBR領域321では、コア302の上に、グレーティング303が形成されている。
 レーザ活性領域323では、半導体基板301の上に、多重量子井戸構造の活性層304が形成されている。
 前方DBR領域324では、半導体基板301の上に、バルクの半導体からなるコア305が形成され、コア305の上に、グレーティング306が形成されている。
 増幅領域325では、半導体基板301の上に、多重量子井戸構造の活性層307が形成されている。
 また、各領域おいて共通に、オーバークラッド308が形成されている。
 また、半導体基板301の裏面には、共通電極310が形成されている。また、後方DBR領域321のオーバークラッド308上には、第1電極311が形成されている。位相調整領域322のオーバークラッド308上には、第2電極312が形成されている。レーザ活性領域323のオーバークラッド308上には、第3電極313が形成されている。前方DBR領域324のオーバークラッド308上には、第4電極314が形成されている。増幅領域325のオーバークラッド308上には、第5電極315が形成されている。
 次に、レーザ発振および波長制御を行う際の、各領域の役割を説明する。第3電極313に電流333を注入することにより、レーザ活性領域323で発生した光は、後方DBR領域321、位相調整領域322、前方DBR領域324によって構成される共振器によってレーザ発振となる。また、このレーザは、第5電極315に電流334が注入されている増幅領域325によって増幅されて、図5の紙面右方から出射する。発振波長を決めるのは、第1電極311,第4電極314に電流331が注入されている前方DBR領域324、後方DBR領域321と、第2電極312に電流332が注入されている位相調整領域322からなる共振器である。
 次に、波長マップについて説明を行う。図6に、DBRレーザによる波長可変レーザの波長マップの例を示す。この波長可変レーザにおける波長マップとは、横軸にDBR領域に注入した電流、縦軸に位相調整領域に注入した電流を取り、これら2つの電流の組み合わせによって得られる発振波長帯を、表示状態が識別可能に異なる領域によって表現している。図6に示す例では、各領域に文字(アルファベット)を割り当てて識別している。各領域の識別を色によって実施することもできる。ここでいうDBR電流とは、前方DBR領域と後方DBR領域を電気的に接続した時に流れる総電流量のことである。
 波長マップにおいて、状態が連続的に変化する領域においてモードホップは起こらないが、波長が不連続に変化する境界線を超えるとモードホップが発生してしまう。この波長マップから、次のことがわかる。第1に、DBR領域に単独で電流を注入することによっても、ある程度の波長可変を実現することは可能である。第2に、位相調整領域に単独で電流を注入しても、ある程度の波長可変を実現することができるが、すぐにモードホップが起こってしまうので、せいぜい1nm程度の範囲でしか連続的に発振波長を変えることができない。
 しかしながら、非特許文献1に記載されているように、DBR領域と位相調整領域との間に分割抵抗を挟むことにより電流を印加する、もしくは非特許文献2に記載されているように、別々の電源を同期させた形で電流を印加すると、図6に矢視線で示す軌跡に沿って5nm以上の波長を連続的に変化させることができる。
 次に、サイドモード抑圧比(Side-mode supression ratio:SMSR)マップについて説明を行う。なお、サイドモード抑圧比とは、発振するレーザのスペクトルの単色性(縦モードの単一性)を表すパラメータであり、スペクトル強度が一番大きいピーク(主モード)と二番目に大きいピーク(サイドモード)との強度比である。
 図7に、DBRレーザによる波長可変レーザのSMSRマップの例を示す。これは、上述した波長可変レーザに対して、横軸にDBR領域に注入した電流、縦軸に位相調整領域に注入した電流を取り、これら2つの電流の組み合わせによって出る発振光のSMSRを、表示状態が識別可能に異なる領域によって表現している。図7に示す例では、各領域に文字(アルファベット)を割り当てて識別している。各領域の識別を色によって実施することもできる。
 図6の場合と同じ条件で軌跡(図7中の矢視線)を描くと、一部SMSRが悪い点を通過していることがわかる。すなわち、前述した従来の技術では、比較的制御が簡単にできるが、矢視線に示すように、波長マップ上で直線的に制御されるので、必ずしもSMSRの良い状態を保つことができない。このため、従来の技術(発振制御)では、SMSRが悪い所を通過するため、発振の状態が不安定になる場合があり、最悪の場合、モードホップが発生してしまうという問題点があった。
 この事象を電気信号の観点から、図8A、図8Bを参照して説明する。図8A、図8Bは、従来方法による電気的制御方法をより詳細に示している。図8Aの横軸は時間(もしくは位相)、縦軸は変調信号の強度を示す。図8Aに示す、同一周波数で同位相の変調信号で変調した、DBR電流と位相調整電流とをDBRレーザに印加したとき、DBR電流と位相調整電流との関係が描く軌跡は、図8Bに示すように直線を描く。これは所謂リサジュー図形に相当する。
 図8A、図8Bには電流幅が同じ場合の軌跡を描いたが、直線の傾きを変えたい場合は、DBR電流と位相調整電流の比率を変えれば良い。また軌跡を描く位置をずらしたいときには、バイアス電流を印加すれば良い。前述のように、DBR電流と位相調整電流との関係が、直線状に描かれる軌跡では、波長マップの形に沿っていないので、SMSRが悪くなってしまう箇所が発生する。
 本発明は、以上のような問題点を解消するためになされたものであり、波長可変レーザにおけるSMSRの劣化を抑制することを目的とする。
 本発明に係る波長可変レーザは、後方DBR領域と、後方DBR領域に続いて配置された位相調整領域と、位相調整領域に続いて配置されたレーザ活性領域と、レーザ活性領域に続いて配置された前方DBR領域と、前方DBR領域に続いて配置された増幅領域と、後方DBR領域および前方DBR領域に、DBR電流を注入する第1電流注入部と、位相調整領域に、DBR電流と同期して、DBR電流の2倍の周波数で変化する位相調整電流を注入する第2電流注入部とを備える。
 本発明に係る波長可変レーザの制御方法は、後方DBR領域と、後方DBR領域に続いて配置された位相調整領域と、位相調整領域に続いて配置されたレーザ活性領域と、レーザ活性領域に続いて配置された前方DBR領域と、前方DBR領域に続いて配置された増幅領域とを備える波長可変レーザの制御方法であって、位相調整領域には、後方DBR領域および前方DBR領域に注入されるDBR電流と同期し、DBR電流の2倍の周波数で変化する位相調整電流を注入する。
 以上説明したように、本発明によれば、位相調整領域には、後方DBR領域および前方DBR領域に注入されるDBR電流と同期し、DBR電流の2倍の周波数で変化する位相調整電流を注入するので、波長可変レーザにおけるSMSRの劣化が抑制される。
図1は、本発明の実施の形態に係る波長可変レーザの構成を示す構成図である。 図2Aは、本発明に係る波長可変レーザの時間変化に対するDBR電流の変調信号および位相調整電流の変調信号の変化を示す特性図である。 図2Bは、本発明に係る波長可変レーザのDBR電流と位相調整電流との関係を示す特性図である。 図3Aは、従来の波長可変レーザの時間変化に対するDBR電流および位相調整電流の変化を示す特性図である。 図3Bは、従来の波長可変レーザのDBR電流と位相調整電流との関係を示す特性図である。 図4Aは、実施の形態に係る波長可変レーザの時間変化に対するDBR電流および位相調整電流の変化を示す特性図である。 図4Bは、実施の形態に係る波長可変レーザのDBR電流と位相調整電流との関係を示す特性図である。 図5は、DBRレーザによる波長可変レーザの構成を示す断面図である。 図6は、DBRレーザによる波長可変レーザの発振波長マップを示すコンピュータグラフィックスである。 図7は、DBRレーザによる波長可変レーザのSMSRマップを示すコンピュータグラフィックスである。 図8Aは、時間変化に対するDBR電流の変調信号および位相調整電流の変調信号の変化を示す特性図である。 図8Bは、DBR電流と位相調整電流との関係を示す特性図である。
 以下、本発明の実施の形態に係る波長可変レーザについて図1を参照して説明する。この波長可変レーザは、後方DBR領域101と、後方DBR領域101に続いて配置された位相調整領域102と、位相調整領域102に続いて配置されたレーザ活性領域103と、レーザ活性領域103に続いて配置された前方DBR領域104と、前方DBR領域104に続いて配置された増幅領域105とを備える。
 各領域は、半導体基板を共通として形成されている。後方DBR領域101,位相調整領域102では、半導体基板の上に、バルクの半導体からなるコアが形成されている。また、後方DBR領域101では、コアの上に、グレーティングが形成されている。レーザ活性領域103では、半導体基板の上に、多重量子井戸構造の活性層が形成されている。前方DBR領域104では、半導体基板の上に、バルクの半導体からなるコアが形成され、このコアの上に、グレーティングが形成されている。増幅領域105では、半導体基板の上に、多重量子井戸構造の活性層が形成されている。また、各領域おいて共通に、オーバークラッドが形成されている。これらの構成は、図5を用いて説明したDBRレーザによる波長可変レーザと同様である。
 また、この波長可変レーザは、後方DBR領域101および前方DBR領域104に、DBR電流を注入する第1電流注入部111と、位相調整領域102に、位相調整電流を注入する第2電流注入部112とを備える。第1電流注入部111は、バイアス電流を変調信号で変調したDBR電流を、各DBR領域に印加する。第2電流注入部112は、バイアス電流を変調信号で変調した位相調整電流を注入する。また、第1電流注入部111は、変調信号が負値を取る領域では、変調信号を反転する。また、レーザ活性領域103に電流を注入する第3電流注入部113、増幅領域105に電流を注入する第4電流注入部114を備える。
 第3電流注入部113によりレーザ活性領域103に所定の電流を注入することにより、レーザ活性領域103で発生した光は、後方DBR領域101、位相調整領域102、前方DBR領域104によって構成される共振器によってレーザ発振となる。また、第4電流注入部114により所定の電流が注入されている増幅領域105によって増幅されて、図1の紙面右方から出射する。発振波長は、第1電流注入部111により注入されるDBR電流と、第2電流注入部112により注入される位相調整電流によって決定される。
 実施の形態に係る波長可変レーザでは、第2電流注入部112が、位相調整領域102に、DBR電流と同期して、DBR電流の2倍の周波数で変化する位相調整電流を注入する。また、第1電流注入部111は、DBR電流を変調するための変調信号が負値を取る領域では、変調信号を正値に反転する。
 上述した制御について、図2A、図2Bを参照して説明する。図2Aの横軸は時間(もしくは位相)である。また、図2Aの縦軸は、変調信号の強度を示す。図2Aに示すように、DBR電流の変調信号が負値を取る領域に関しては変調信号を反転した上で、位相調整電流の変調信号を、DBR電流の変調信号の2倍の周波数で変化させる。このように各電流(の変調信号)を制御することによって、横軸にDBR電流、縦軸に位相調整電流を取った時に描く軌跡は、図2Bに示すようになる。DBR電流の変調信号、位相調整電流の変調信号を制御することにより、波長マップ(図6参照)の形状に沿った形での掃引が可能となり、SMSRの劣化を抑えることができる。このように、SMSRの劣化を抑制することができれば、より高い信号雑音強度比(Signal-to-Noise Ratio:S/N)によって、レーザ光の発振が可能となる。
 次に、従来の制御と本発明の制御とを比較して説明する。まず、従来の制御について、図3A、図3Bを参照して説明する。DBR構造を有する波長可変半導体レーザの、レーザ活性領域に対して100mA、増幅領域に対して100mAの電流を印加する。また、各DBR領域と位相制御領域に対しては、図3Aに示すような、周期的に変化する電流をそれぞれ印加する。図3Aに関係を示すように、時間に対して同位相で変化するDBR電流と位相調整電流を各々印加する。具体的には、DBR電流はバイアス電流を4mA、振幅を3mAに設定し、位相調整電流はバイアス電流を10mA、振幅を9mAに設定した上で、周期0.1msの余弦波として振動させる。このように設定したDBR電流と位相調整電流がたどる軌跡は、図3Bに示すように直線となる。この時のレーザ発振光のSMSRを測定したところ、最悪値が20dBであった。
 次に本発明について、図4A、図4Bを参照して説明する。DBR構造を有する波長可変半導体レーザの、レーザ活性領域に対して100mA、増幅領域に対して100mAの電流を印加する。また、各DBR領域と位相制御領域に対しては、図4Aに示すような周期的に変化する電流をそれぞれ印加する。具体的には、時間に対してDBR電流については、バイアス電流を0.5mA、振幅を3mAに設定し、周期0.1msの余弦波で振動させた後に、位相が90°~270°の部分については変調信号を反転させる。また、位相調整電流については、バイアス電流を10mA、振幅を9mAに設定し、周期0.051msの余弦波で振動させる。
 このように設定したDBR電流と位相調整電流がたどる軌跡は、図4Bに示すように、曲線となる。この時のレーザ発振光のSMSRを測定したところ、最悪値が40dBであった。したがって、本発明によれば、信号のS/N比を十分に確保した上で、連続波長可変する光源として用いることが可能となる。このため、本発明に係る波長可変レーザを用いることで、複数のガスの吸収線を精度良く検出することが可能となる。なお、上述した実施の形態の説明では、各DBR領域および位相制御領域に対して余弦波を印加したが、位相と振幅の関係が同じであれば三角波や鋸歯状波等の別の波形であっても、DBR電流と位相調整電流が描く軌跡は変わらないので、同じ効果が得られる。
 以上に説明したように、本発明によれば、位相調整領域には、後方DBR領域および前方DBR領域に注入されるDBR電流と同期し、DBR電流の2倍の周波数で変化する位相調整電流を注入するので、波長可変レーザにおけるSMSRの劣化が抑制されるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…後方DBR領域、102…位相調整領域、103…レーザ活性領域、104…前方DBR領域、105…増幅領域、111…第1電流注入部、112…第2電流注入部、113…第3電流注入部、114…第4電流注入部。

Claims (4)

  1.  後方DBR領域と、
     前記後方DBR領域に続いて配置された位相調整領域と、
     前記位相調整領域に続いて配置されたレーザ活性領域と、
     前記レーザ活性領域に続いて配置された前方DBR領域と、
     前記前方DBR領域に続いて配置された増幅領域と、
     前記後方DBR領域および前記前方DBR領域に、DBR電流を注入する第1電流注入部と、
     前記位相調整領域に、前記DBR電流と同期して、前記DBR電流の2倍の周波数で変化する位相調整電流を注入する第2電流注入部と
     を備える波長可変レーザ。
  2.  請求項1記載の波長可変レーザにおいて、
     前記第1電流注入部は、前記DBR電流を変調する変調信号が負値を取る領域では、前記変調信号を反転する
     ことを特徴とする波長可変レーザ。
  3.  後方DBR領域と、
     前記後方DBR領域に続いて配置された位相調整領域と、
     前記位相調整領域に続いて配置されたレーザ活性領域と、
     前記レーザ活性領域に続いて配置された前方DBR領域と、
     前記前方DBR領域に続いて配置された増幅領域と
     を備える波長可変レーザの制御方法であって、
     前記位相調整領域には、前記後方DBR領域および前記前方DBR領域に注入されるDBR電流と同期し、前記DBR電流の2倍の周波数で変化する位相調整電流を注入する
     ことを特徴とする波長可変レーザの制御方法。
  4.  請求項3記載の波長可変レーザの制御方法において、
     前記DBR電流を変調する変調信号が負値を取る領域では、前記変調信号を反転することを特徴とする波長可変レーザの制御方法。
PCT/JP2019/026493 2019-07-03 2019-07-03 波長可変レーザおよびその制御方法 WO2021001964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/619,721 US20220360046A1 (en) 2019-07-03 2019-07-03 Variable Wavelength Laser and Control Method Therefor
JP2021529632A JP7248119B2 (ja) 2019-07-03 2019-07-03 波長可変レーザおよびその制御方法
PCT/JP2019/026493 WO2021001964A1 (ja) 2019-07-03 2019-07-03 波長可変レーザおよびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026493 WO2021001964A1 (ja) 2019-07-03 2019-07-03 波長可変レーザおよびその制御方法

Publications (1)

Publication Number Publication Date
WO2021001964A1 true WO2021001964A1 (ja) 2021-01-07

Family

ID=74101210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026493 WO2021001964A1 (ja) 2019-07-03 2019-07-03 波長可変レーザおよびその制御方法

Country Status (3)

Country Link
US (1) US20220360046A1 (ja)
JP (1) JP7248119B2 (ja)
WO (1) WO2021001964A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030147442A1 (en) * 2001-12-04 2003-08-07 Larson Michael C. Methods for robust channel switching of widely-tunable sampled-grating distributed bragg reflector lasers
JP2007059472A (ja) * 2005-08-22 2007-03-08 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ装置および波長制御方法
JP2015103620A (ja) * 2013-11-22 2015-06-04 日本電信電話株式会社 波長可変レーザ
JP2018011023A (ja) * 2016-07-15 2018-01-18 日本電信電話株式会社 波長可変半導体レーザ
JP2018060974A (ja) * 2016-10-07 2018-04-12 日本電信電話株式会社 半導体光集積素子
JP2019096792A (ja) * 2017-11-24 2019-06-20 日本電信電話株式会社 半導体レーザ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804278B2 (en) 2001-07-06 2004-10-12 Intel Corporation Evaluation and adjustment of laser losses according to voltage across gain medium
GB0408415D0 (en) 2004-04-15 2004-05-19 Univ Cambridge Tech Control device and method
US20070242708A1 (en) 2004-07-16 2007-10-18 University College Cork-National University Of Ire Method for Designing a Semiconductor Laser with Intracavity Reflecting Features, Semiconductor Laser Method of Fabrication Thereof
GB2433644A (en) 2005-12-22 2007-06-27 Bookham Technology Plc A method of controlling a laser
US7508858B2 (en) 2007-04-30 2009-03-24 The Research Foundation Of State University Of New York Detuned duo-cavity laser-modulator device and method with detuning selected to minimize change in reflectivity
JP5320745B2 (ja) 2008-01-11 2013-10-23 沖電気工業株式会社 キャリア抑圧光パルス列生成装置及びキャリア抑圧光パルス列生成方法
JP2011253977A (ja) 2010-06-03 2011-12-15 Mitsubishi Electric Corp Dbrレーザ
US8179933B1 (en) 2010-10-29 2012-05-15 Corning Incorporated Systems and methods for visible light source evaluation
WO2013016249A2 (en) 2011-07-22 2013-01-31 Insight Photonic Solutions, Inc. System and method of dynamic and adaptive creation of a wavelength-continuous and prescribed wavelength versus time sweep from a laser
CN111712980B (zh) 2018-02-14 2023-06-06 古河电气工业株式会社 光模块、其波长控制方法以及其校准方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030147442A1 (en) * 2001-12-04 2003-08-07 Larson Michael C. Methods for robust channel switching of widely-tunable sampled-grating distributed bragg reflector lasers
JP2007059472A (ja) * 2005-08-22 2007-03-08 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ装置および波長制御方法
JP2015103620A (ja) * 2013-11-22 2015-06-04 日本電信電話株式会社 波長可変レーザ
JP2018011023A (ja) * 2016-07-15 2018-01-18 日本電信電話株式会社 波長可変半導体レーザ
JP2018060974A (ja) * 2016-10-07 2018-04-12 日本電信電話株式会社 半導体光集積素子
JP2019096792A (ja) * 2017-11-24 2019-06-20 日本電信電話株式会社 半導体レーザ

Also Published As

Publication number Publication date
JP7248119B2 (ja) 2023-03-29
US20220360046A1 (en) 2022-11-10
JPWO2021001964A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP3941887B2 (ja) 波長移動レーザ及びその作動方法
CN101512286B (zh) 生成合成波长的方法和装置
US20060215716A1 (en) Radio frequency modulation of variable degree and automatic power control using external photodiode sensor for low-noise lasers of various wavelengths
JPH0964439A (ja) レーザ光源装置
JP2008034657A (ja) キャリア抑圧光パルス列発生方法及びこの方法を実現するモード同期半導体レーザ
US20060233205A1 (en) Mode-matching system for tunable external cavity laser
US11251584B2 (en) Tunable laser
JP4770077B2 (ja) 波長可変半導体レーザおよび光モジュール
JP3198338B2 (ja) 半導体発光装置
JP2001320124A (ja) 変調器集積化光源及び光通信用モジュール
JPH02159781A (ja) 光通信装置
JP2006066586A (ja) モード同期半導体レーザ装置及びモード同期半導体レーザ装置の波長制御方法
JPH1093184A (ja) モード同期半導体レーザ
JP2013258398A (ja) 半導体レーザ
JP2018060974A (ja) 半導体光集積素子
WO2021001964A1 (ja) 波長可変レーザおよびその制御方法
JPH09199808A (ja) 位相共役波の発生装置、波長変換方法、光分散補償方法及び多波長光発生装置
JP2010050162A (ja) 半導体波長可変レーザ
KR100526999B1 (ko) 다영역 dfb 레이저 다이오드
JP2009033078A (ja) 波長走査型光源
JP2012222352A (ja) テラヘルツシステムで使用するためのビート信号生成装置、テラヘルツシステム、およびビート信号生成装置の使用方法
JPH06112570A (ja) 分布ブラッグ反射型半導体レーザ
JPH0595152A (ja) 半導体短光パルス発生装置および短光パルスの発生方法
JP3022437B2 (ja) モード同期半導体レーザ
JP6818410B2 (ja) 波長可変レーザ装置及び光干渉断層計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936346

Country of ref document: EP

Kind code of ref document: A1