JP2009033078A - 波長走査型光源 - Google Patents

波長走査型光源 Download PDF

Info

Publication number
JP2009033078A
JP2009033078A JP2007227825A JP2007227825A JP2009033078A JP 2009033078 A JP2009033078 A JP 2009033078A JP 2007227825 A JP2007227825 A JP 2007227825A JP 2007227825 A JP2007227825 A JP 2007227825A JP 2009033078 A JP2009033078 A JP 2009033078A
Authority
JP
Japan
Prior art keywords
wavelength
fabry
light source
perot
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007227825A
Other languages
English (en)
Inventor
Motonobu Korogi
元伸 興梠
Kazuhiro Imai
一宏 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Comb Inc
Original Assignee
Optical Comb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Comb Inc filed Critical Optical Comb Inc
Priority to JP2007227825A priority Critical patent/JP2009033078A/ja
Publication of JP2009033078A publication Critical patent/JP2009033078A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】 狭帯域のスペクトルを持つ光源の波長を広い帯域で高速、且つ連続的に走査できるようにした波長走査型のレーザ光源を提供する。
【解決手段】
レーザ発振の光路となる光ファイバーループ11と、上記光ファイバーループ11内に設けられ、発振する波長に利得を有する光増幅器12と、上記光ファイバーループ11内に設けられ、近接したFSRを有する2台のファブリペロー共振器13A,13Bと、上記光ファイバーループ11に接続され、当該光ファイバーループ11を通過する光の一部を取り出す光学カップラ14と、上記近接したFSRを有する2台のファブリペロー共振器13A,13Bの内の一方のファブリペロー共振器の共振器長を一定範囲で周期的に変化させる共振器長制御部15とを備える。
【選択図】 図1

Description

本発明は、単光性の光を発生してその発光波長を周期的に走査する波長走査型光源に関する。
従来、光を測定対象に照射し測定対象を分析する分析装置の光源として、広帯域の光源が用いられている。分光分析では広帯域の光を測定対象に投光し、その反射光や透過光を回折格子等で波長成分に空間的に分解したり、干渉計で周波数成分にフーリエ変換して分析する手法が広く用いられている。このような光源としては、例えば白色光源やエルビウムドープドファイバ(EDF)を用いたASE光源等があった。しかしこのような分光分析では、波長に対する光出力強度密度が低いため、分光において利用できる光のレベルが小さい。そのためフーリエ変換の分析をしても検出光信号がノイズに埋もれてしまい、分析が難しいという欠点があった。
分析装置の光源として、強いレベルの単一スペクトルの光を所望の帯域で変化させる波長可変型の光源を用いる方法もある。これは単光性の強い光の波長を変化させて測定対象に照射し、測定対象を透過したり、又は反射する光をそのまま受光素子で受光するものである。この方法では、光源の波長に対する光強度密度が高いので、検出光のレベルと信号対ノイズ比が十分に高く、十分な測定精度を実現できる。
従来の波長可変型の光源には外部共振器型レーザやファイバーリングレーザー、レーザ素子内に波長可変機構を設けたタイプがある。外部共振器型レーザは、ゲイン媒質、例えば半導体レーザを用い、その半導体レーザの一方の端面と外部のミラーとの間で外部共振器を形成し、外部共振器の中に回折格子等による波長可変フィルタを設けることによって発振波長を変化させ、波長可変型の光源を得るようにしたものである。
外部共振器型レーザ光源では、外部共振器長は例えば50mmと比較的小さく、縦モード間隔は例えば3GHzとなる。従って単に波長可変フィルタの波長を変えただけでは、縦モードの間で不安定になる。例えばモード間では不連続なモードホップが生じたり、マルチモードで発振することもある。そのため単一モードで連続的に波長を可変し、しかも出力を安定とするためには、外部共振器長をピエゾ素子等を用いて微妙に制御しなければならず、複雑な制御が必要となる。また、機械的な動作を伴い、波長と外部共振器長とを同期させて制御するため、高速で波長を変化させることが難しいという欠点があった。
従来より、狭帯域のスペクトルを持つ光源の波長を広い帯域で高速、且つ連続的に走査できるようにした波長走査型のファイバレーザ光源として、光ファイバーループに発振波長にゲインを有するゲイン媒体と光サーキュレータを設け、光サーキュレータで取り出された光をコリメートレンズで拡大し、その光軸上に設けたポリゴンミラーを回転させ、ポリゴンミラーで反射された光の受光位置に入射光と同一方向に光を反射するリトロー構成とした回折格子を設けた構成の波長走査型ファイバレーザ光源が提案されている。この波長走査型ファイバレーザ光源では、回折格子への入射角度によって選択波長が変化し、2回の入射により選択度が増すので、高速でポリゴンミラーを回転させて選択波長を変化させても、狭帯域のままで発振波長を変化させることができる(例えば、特許文献1参照)。
また、従来より、エルビウムドープドファイバを用いたリングレーザによる波長可変光源も提案されている。この波長可変光源100は、例えば図16に示すように、エルビウムドープドファイバ(EDF)をゲイン媒体とするファイバアンプ112を用い、その光ファイバーループ113内に波長可変型のバンドパスフィルタ114を設けて、このバンドパスフィルタ114の波長を変化させることによって、光ファイバーループ113に接続した光カップラ115を介して取り出されるレーザ光の波長を可変するようにしたものである。この場合には光ファイバーループ113の共振器長を例えば30mと長くできるため、縦モード間隔を狭くすることができる。そのため共振器長を変化させることなく、モードホップの影響をなくすることができる。従って厳密には単一モード発振ではないが、バンドパスフィルタ114の選択波長を変化させるだけで、擬似的に連続して波長可変を行うことができる(例えば、非特許文献1参照)。
さらに、レーザ素子内に波長可変機構を設けたタイプでは、利得を生み出す活性領域と、回折格子による反射を生み出すDBR領域とが、同一レーザ素子内に形成されたDBR−LD(Distributed Bragg reflector laser diode)が提案されている。このDBR−LDの波長可変範囲は、最高でも10nm程度である。また、利得を生み出す活性領域とこれを前方と後方で挟むDBR領域とが同一レーザ素子内に形成された、不均一回折格子を用いたDBR−LDが提案されている。前方と後方のDBR領域は、不均一回折格子によって多数の反射ピークが発生し、かつ反射ピークの間隔が前方と後方で僅かにずれている。この構造によっていわゆる「バーニア効果」が得られるので、極めて広い波長可変が可能となる。この不均一回折格子を用いたDBR−LDでは、100nmを越える波長可変動作が実現されている。この不均一回折格子を用いたDBR−LDでは、100nmを越える波長可変動作及び40nmの準連続波長可変動作が実現されている(例えば、特許文献2参照)。
特開2006−237359号公報 特開2006−278770号公報 YAMASHITA ET AL., IEEE JOURAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.7, NO.1 JANUARY/FEBRUARY 2001, PP41〜43
ところで、波長可変光源を分析装置の光源として用いる場合には、高速で波長を変化させること、及び発振スペクトルの幅を狭くすることが必要であり、これに応じた特性がバンドパスフィルタにも要求される。例えば光コヒーレンストモグラフィ(OCT)において、高速の波長走査が利用可能になると、高速の画像処理、血流観測、酸素飽和濃度の変化等の動的な解析が可能となるので、このような装置が要求されている。
上記特許文献1の開示技術を採用した製品として、例えば、santec株式会社より、最高20kHzのスキャンレートで波長を繰り返し走査することのできる波長スキャニングレーザー光源HSL−2000が提供されている。しかし現状では、波長走査の周期として20kHzが実用化になっているに過ぎない。
これでは光コヒーレンストモグラフィ(OCT)により立体画像を得るのに数秒の時間を必要としてしまう。
また、上記特許文献2に記載されているように、DBR−LDでは、DBR領域にキャリア注入を行うことにより、この部分での屈折率を変化させて、波長可変動作を実現している。このため、電流注入により結晶欠陥が増殖すると、電流注入に対する屈折率変化の割合が著しく変動するので、長期に渡り安定な波長でのレーザ発振を維持することが難しい。更に、現状の化合物半導体のプロセス技術では、2インチ以上のインチアップは不可能である。そのため、複雑化してサイズの大きくなったレーザ素子では、現状以上の価格低減が難しい。だからといって1mm以下の小型な素子だと縦モード間隔が大きく、例えば100GHzであり、高速で波長を変化させるような単に波長可変フィルタの波長を変えただけだと縦モード間隔ごとのとびとびの波長可変動作となる。このような大きなとびとびの波長可変動作は光コヒーレンストモグラフィーへの応用としては大きすぎる。さらに単に波長可変フィルタの波長を変えただけでは、縦モードの間で不安定になる。例えばモード間では不連続なモードホップが生じたり、マルチモードで発振することもある。
さらに、上記特許文献2の開示技術では、リング型の光共振器で複数の光共振器を波長フィルタに採用した構成であり、バーニア効果によって波長可変が可能であるが、ヒータによる波長可変であり、高速走査に適していない。また同じ基板上にある複数のリング型の光共振器の共振器長をそれぞれ調整することが難しい。またリング型の光共振器を含むレーザ全体の長さが短いので単に波長可変フィルタの波長を変えただけでは、縦モードの間で不安定になる。例えばモード間では不連続なモードホップが生じたり、マルチモードで発振することもある。
そこで、本発明は、このような欠点を解消するため成されたもので、狭帯域のスペクトルを持つ光源の波長を広い帯域で高速、且つ連続的に走査できるようにした波長走査型のレーザ光源を提供することを目的とする。
本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。
本発明に係る波長走査型光源は、レーザ発振光路内に設けられ、発振する波長に利得を有する光増幅器と、上記レーザ発振光路内に設けられ、近接したFSR(Free spectral range)を有する2台のファブリペロー共振器と、上記レーザ発振光路を通過する光の一部を取り出す光学素子と、上記近接したFSRを有する2台のファブリペロー共振器の内の一方のファブリペロー共振器の共振器長を一定範囲で周期的に変化させる共振器長制御部とを備えることを特徴とする。
本発明では、狭帯域のスペクトルを持つ光源の波長を広い帯域で高速、且つ連続的に走査できるようにした波長走査型のレーザ光源を提供することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
本発明に係る波長走査型光源10は、その基本的な構成を図1に示すように、レーザ発振の光路となる光ファイバーループ11と、上記光ファイバーループ11内に設けられ、発振する波長に利得を有する光増幅器12と、上記光ファイバーループ11内に設けられ、近接したFSR(Free spectral range)を有する2台のファブリペロー共振器13A,13Bと、上記光ファイバーループ11に接続され、当該光ファイバーループ11を通過する光の一部を取り出す光学素子例えば光学カップラ14と、上記近接したFSRを有する2台のファブリペロー共振器13A,13Bの内の一方、ここではファブリペロー共振器13Aの共振器長を一定範囲で周期的に変化させる共振器長制御部15とを備えてなる。
この波長走査型光源10において、近接したFSRを有する2台のファブリペロー共振器13A,13Bは、それぞれ波長選択フィルタとして機能する。そして、上記2台のファブリペロー共振器13A,13Bの内の少なくとも一方、ここではファブリペロー共振器13Aは、共振器長を可変することにより選択波長を可変することのできるようになっている。
そして、上記近接したFSRを有する2台のファブリペロー共振器13A,13Bは、一方のファブリペロー共振器13Aの共振器長を可変することにより、そのバーニア効果により選択波長を可変することのできる狭帯域の波長選択特性を有するバンドパスフィルタとして機能する。
この波長走査型光源10では、光ファイバーループ11内に設けられた上記近接したFSRを有する2台のファブリペロー共振器13A,13Bによるバンドパスフィルタを通過した光が光増幅器12で増幅され、上記光ファイバーループ11を介して帰還されることによって発振する。そして、この波長走査型光源10では、上記ファブリペロー共振器13Aの共振器長を共振器長制御部15により一定範囲で周期的に変化させることによって、発振波長が周期的に変化し、光学カップラ14を介して取り出されるレーザ光の波長が周期的に変化するようになっている。
なお、上記光ファイバーループ11からレーザ光を取り出す光学カップラ14は、光増幅器12の後に設けられているが、光増幅器12の前、あるいは、2台のファブリペロー共振器13A,13Bの間に設けられていてもよい。
このような構成の波長走査型光源10では、光ファイバーループ11の共振器長を長くすることができ、光ファイバーループ11の共振器長を例えば1000mとすることにより、レーザ全体の縦モード間隔を例えば200kHz程度に狭くすることができる。これにより、上記レーザ全体の縦モード間隔は各ファブリペロー共振器13A,13Bの一つ一つのモードの帯域幅(FSR/フィネス、例えば2.5GHz/50=50MHz)よりも十分狭くできるので、そのため共振器長を変化させることなく、モードホップの影響をなくすることができる。従って厳密には単一モード発振ではないが、バンドパスフィルタの選択波長を変化させるだけで、擬似的に連続して波長可変を行うことができる。
ここで、通常の光共振器の透過スペクトルを図2の(A),(B)に示す。横軸は光の周波数であり、FSR=1として規格化して、100×FSRの範囲を示している。FSR毎の100本のモードが見て取れる。なお、図2の(B)は、図2の(A)の拡大図である。
図3の(A)〜(G)は、FSRが1%異なる光共振器を2台縦列接続した場合の透過スペクトルを示している。それぞれの横軸は図2の(A)と同じであるが、2台の光共振器のそれぞれのモード間隔が異なるためにバーニア効果を起こして、FSRが小さなモードで構成させるスペクトルの包絡線はFSRが大きな光共振器と同等になる。1%のFSRの違いはモアレ縞の包絡線のFSRを100倍にする。また、共振器長を波長程度変えると、ピークがモアレ縞の包絡線のFSRだけ変化することがわかる。なお、図3の一部の拡大図を図4に示す。
したがって、FSRの小さい光共振器を用いたとしても2台の光共振器のスペクトルのバーニア効果を利用すれば、モアレ縞の包絡線のFSRは、2台の光共振器のFSRの違いに反比例して、大きくなる。
すなわち、FSRの小さい光共振器を用いたとしても2台の光共振器のスペクトルのバーニア効果を利用することにより、波長可変レーザ光源を構成することができる。
この場合、2台の光共振器のFSRに相当する間隔でレーザの波長はFSR(例えば2.5GHz)ごとのとびとびになるが、光CT等の応用の場合、深さ方向の測定範囲がc/FSR(約10cm)よりも十分狭い範囲であれば擬似的に連続して波長可変と見なすことができる。
また、光共振器にLN(LiNbO)等の電気的に屈折率可変な材料で構築したファブリペロー共振器に電極を付けた構造のファブリペロー電気光学変調器(または 光コム発生器)と呼ばれる変調器を用いることで電気光学効果により波長可変が行える。電気的な変調であるのでリニアリティーや再現性も優れている。
そこで、上記波長走査型光源10における共振器長が可変されるファブリペロー共振器13Aには、ファブリペロー電気光学変調器が用いられる。そして、ファブリペロー電気光学変調器に上記共振器長制御部15により鋸歯状波等の周期的な信号を与えて光変調することで、上記波長走査型光源10の発振波長を高精度に且つ高速に走査することができる。
また、ファブリペロー電気光学変調器は、研磨によって長さ調整が行なえ、それぞれ温度制御を行なうことで正確に共振器長を制御できるので、共振器長の絶対値を温度制御を行うことで希望する範囲に1ppmで制御が可能である。したがって、例えばFSR=2.5GHzのファブリペロー電気光学変調器と、1/4000だけFSRの異なるファブリペロー電気光学変調器を2台揃えることは容易である。これによりバーニア効果によって4000倍の10THzのFSRの波長選択素子が容易に実現できる。
そこで、上記波長走査型光源10における近接したFSRを有する2台のファブリペロー共振器13A,13Bには、研磨によって長さが揃えられたファブリペロー電気光学変調器が用いられ、各共振器長の絶対値が温度制御により調整される。
なお、例えば正確に必要量だけ長さを変えて光共振器を製作できれば、2台の光共振器を熱的に同じ温度になるように熱的に接触させられることで、FSRの差は一定になるので、温度制御を行なわなくてもよい。例えば導波路プロセスの調整でFSRに差をつけることができ、LNのTi拡散による導波路の場合であれば、例えば1/4000だけ屈折率が変わるように、Tiのドープ量を調整することによって、1/4000だけFSRの異なる導波路ファブリペロー電気光学変調器を作製することができる。
上記2台のファブリペロー共振器13A,13Bにファブリペロー電気光学変調器13A’,13B’を用いた波長走査型光源10の実際の構成例を図5に示す。
現在市販されているファブリペロー電気光学変調器は反射があるので、図5に示す波長走査型光源10では、光アイソレータ17A,17B,17C,17Dを挿入している。また、遅延線18を挿入している。例えば遅延線は1kmのファイバーである。これにより光ファイバーループ11を光が一周する時間は5μsとなるので、200kHzの周期でのモード間隔になる。この波長走査型光源10全体の系は偏波保存で構築され、レーザ発振の光路となる光ファイバーループ11を通過する光の偏光の状態を決定するために偏光子19が光増幅器12と光アイソレータ17Cと間に挿入されている。なお、遅延にはファラデーミラーとSMファイバーとPBSカップラを用いても可能である。走査周波数はこの200kHzの整数倍で可能になる。
なお、偏光子19は、レーザ発振の光路となる光ファイバーループ11を通過する光の偏光の状態を決定するためのものであって、基本的にループ内のどの位置に挿入してもよい。
ここで、上記波長走査型光源10における光増幅器12、ファブリペロー共振器13A,13B、光カップラ14として、波長1.5μm帯用の、光ファイバアンプEFDA、2台のコム発生器モジュールOFCG1,OFCG2、光カップラPCを使用して、図6に示すファイバーリングレーザーを構成し、コム発生器モジュールOFCG1へのバイアス電圧による波長可変特性を測定したところ、高速波長走査可能な走査型レーザ光源として機能しており、図7に示すような結果が得られた。
温度差が大きいとFSRの差が大きいため、電圧に対する波長変化は緩やかで波長可変帯域は狭くなる。温度差が小さくなると波長の変化はバイアス電圧に敏感になり、波長可変帯域も拡大する。波長可変帯域は、温度差15℃の場合33nm程度、温度差25度の場合約15nmであった。
なお、光増幅器12には、IPG Photonics社製の光ファイバアンプ(PM EDFA)をPout=+22.6dBmで使用した。また、ファブリペロー共振器13A,13Bとして、室温でFSRが2.5GHzの導波路型ファブリペロー電気光学変調器(株式会社光コム製の導波路型FP-EO変調器 WR-250-03)を2台使用し、温度制御により第1の導波路型ファブリペロー電気光学変調器13A’と第2の導波路型ファブリペロー電気光学変調器13B’の温度をずらしてFSRをずらし、波長可変フィルタを構成した。各導波路型ファブリペロー電気光学変調器13A’,13B’はFSRが1℃当たり約0.08MHz変化するものを使用し、ペルチェ素子などを用いた温度制御により、第1の導波路型ファブリペロー電気光学変調器13A’の温度は20℃(固定)とし、第2の導波路型ファブリペロー電気光学変調器13B’の温度は33℃〜45℃(可変)とした。
光カップラ14には、10:90すなわち10%が出力のものを使用した。
光アイソレータ17A,17B,17Cは、導波路型ファブリペロー電気光学変調器13A’,13B’の入出力に各1箇所使用した。
ここで、導波路型ファブリペロー電気光学変調器13A’,13B’はロスがおよそ7dBあり、2台の導波路型ファブリペロー電気光学変調器13A’,13B’を併せて14dBのロスとなり、このロスはレーザ光の自然放出光(ASE)を増加させるので、図8のように2台の光増幅器12A,12Bをそれぞれ導波路型ファブリペロー電気光学変調器13A’,13B’の後段に配置し、それぞれの導波路型ファブリペロー電気光学変調器13A’,13B’の後段で光増幅を行うことにより、導波路型ファブリペロー電気光学変調器13A’,13B’におけるロスによる自然放出光(ASE)の増加を少なくすることができる。
また、例えば図9や図10に示すように、光ファイバーループ11を通過する光の偏光方向を90°回転させる偏光変換素子19A,19BとPBSカップラ20A,20Bにより偏光成分を分離することで光の経路を決定し、1台の光増幅器12を2台の光増幅器12A,12Bとして用い、それぞれ導波路型ファブリペロー電気光学変調器13A’,13B’の後段で光増幅するようにしても、導波路型ファブリペロー電気光学変調器13A’,13B’におけるロスによる自然放出光(ASE)の増加を少なくすることができる。
例えばSOA等の光増幅器はどちらの偏光に対しても、どちらの方向に対しても増幅できるので、これを用いると光が一周する間に2度光増幅を行うことができ、図9に示す波長走査型光源10では、方向と偏光で光を分離し、SOAを用いた1台の光増幅器12で光増幅を行うようにしている。なお、PBSカップラ20A,20Bの代わりにサーキュレータを用いるようにしても良い。また、図10に示す波長走査型光源10では、光増幅器12を通過する方向は同じであるが、偏光で分離するようにしている。
また、上記波長走査型光源10では、上記バンドパスフィルタを構成する2台のファブリペロー共振器13A,13Bの内の一方のファブリペロー共振器13Aの共振器長を共振器長制御部15により一定範囲で周期的に変化させることによって、光学カップラ14を介して取り出されるレーザ光の波長を周期的に走査するようにしたが、例えば図11に示す波長走査型光源10における共振器長制御部15のように、周期的な走査信号として鋸歯状波信号発生器150により発生された鋸歯状波信号をファブリペロー共振器13Bには直接供給し、ファブリペロー共振器13Aには反転増幅器151を介して直接供給する構成とし、2台のファブリペロー共振器13A,13B内の電気光学変調器の両方に対して、反転した走査信号を与えて、上記各ファブリペロー共振器13A,13Bの共振器長を相反的に変化させることで変調電圧を半分にでき、また、ファブリペロー共振器内の電気光学変調器に電圧を加えたときに生じる位相の変化は相殺されるので、波長の走査をより高精度且つ安定に行うことができる。
また、波長走査型光源10において、中心波長はそれぞれのファブリペロー電気光学変調器の温度差に極めて敏感であるので、図11に示す波長走査型光源10における共振器長制御部15では、光学カップラ14を介して取り出されるレーザ光、すなわち、中心波長を透過するバンドフィルタを通過した光の一部を光学カップラ14’からバンドパスフィルタ16を介して光検出器152に導いて該光検出器152により検出し、そのタイミングと周期的な走査信号の位相差をロックインアンプ153で検出して、その位相差が一定値になるように制御信号を周期的な信号に重畳させてフィードバックすることによって、中心波長を制御するようになっている。これにより、常に一定な波長で変調が可能になる。
ここで、図12に示すような測定系200を構築して、バーニア効果による波長走査型光源10から出力されるレーザ光の波長を干渉計210にて測定して、上記バンドパスフィルタを構成する2台のファブリペロー共振器13A,13Bの内の一方のファブリペロー共振器13Aの共振器長を変化させる共振器長制御部15により与える走査信号電圧とレーザ周波数との関係を求めた結果を図13の(A)に示し、また、その測定値の直線近似値からのずれ量をプロットした結果を図13の(B)に示す。図13の(A)、(B)の各横軸は走査信号電圧であり、図13の(A)の縦軸は測定結果として得られた波長に対応するレーザ周波数であり、図13の、(B)の縦軸はそのレーザ周波数測定値の直線近似値からのずれ量である。
また、上記共振器長制御部15がファブリペロー共振器13Aに与える走査信号の波形と干渉計210にて得られる干渉信号の波形を観測したところ、図14の(A)、(B),(C)ように、走査信号の波形(三角波、正弦波、鋸歯状波)に追従した干渉信号の波形が得られた。
ここで、上記図12に示した測定系200では、波長走査型光源10の光増幅器12にはSOA(半導体光アンプ)を用い、また、遅延線18として1kmのSMファイバーとファラデーミラーとPBSカップラを用いた遅延線を挿入した。さらに、同期したファンクションジェネレーター2チャンネルを共振器長制御部15として用いて、それぞれのファブリペロー共振器13A,13Bに対して任意の波形で変調ができるようにした。
この測定系200では、光増幅器12にSOAを用いたことで波長可変範囲が大きくなっている。すなわち、図13の(A)は一方のファブリペロー共振器13Aのバイアスに電圧を加えてレーザの周波数(波長)変化を測定した結果を示しているが、データをみると波長可変が10THzに達したことがわかる。10THzはおよそ80nmであり、これは図6の系で得た図7の実験データ33nmよりも大きい。ここでは、温度の条件として2台のファブリペロー電気光学変調器13A,13Bの温度差が8度に設定されている。
また、この測定系200では、波長走査型光源10に遅延線18を入れることにより100kHzの整数倍で変調が可能になっている。1kmのSMファイバーとファラデーミラーとPBSカップラを用いた遅延線の場合、光がファイバーを往復するので、2kmの遅延線と等価になる。図14のデータは走査周波数200kHzでのデータであり、温度の条件も同じ8度とした。走査範囲は10THzである。
さらにこのとき、同期した2チャンネルのファンクションジェネレーターを共振器長制御部15として用いて、それぞれのファブリペロー共振器13A,13Bに対して反転した走査信号を加えることにより、波長の変化の方向にかかわらず図14のように良好な変調が得られた。一方のファブリペロー共振器13Aだけに100kHzを超える走査信号を加えた場合、波長の変化の方向によって光強度が異なったり、レーザ発振しなくなるなど不具合が生じたりしましたが、それぞれのファブリペロー共振器13A,13Bに対して反転した走査信号を加えることで、それらの不具合の程度は格段に減少した。これにより走査周波数は少なくとも1MHzまでは確認できた。
なお、それぞれのファブリペロー共振器13A,13Bに対して反転した走査信号を加える場合、特に高速走査周波数(1MHzぐらい)では、2台のファブリペロー電気光学変調器13A,13Bの間の距離を無視できないので、それぞれのファブリペロー共振器13A,13Bに対して加える反転した走査信号の間の位相差を調整する必要がある。
上記測定結果から明らかなように、バーニア効果による波長走査型光源10におけるレーザ周波数は、共振器長制御部15による走査信号電圧にほぼ比例する。
すなわち、バーニア効果による波長走査型光源10は、その光の波長が入力電圧信号に比例する。したがって、例えば入力電気信号として直線的な鋸歯状波などで変調すれば、鋸歯状の波長の変調が可能である。特に電気的なEO効果によって波長を操作することができるので、機械的な変調で起こるヒステリシスなどもない。
また、このバーニア効果による波長走査型光源10では、原理的に、レーザ波長が走査信号電圧に比例するので、レーザ周波数が走査信号電圧に完全には比例していない。したがって、直線的な走査信号では波数(レーザ周波数×2π÷光速)について時間的に等間隔な走査はできないが、走査信号の波形を調整することにより、波数について時間的に等間隔な走査を行うことができる。
すなわち、バーニア効果による波長走査型光源10は、走査信号の波形を調整し非線形な鋸歯状波にすることで、波数について時間的に等間隔であるような、鋸歯状の変調が可能である。
ここで、αを定数とすると、電圧Vに対する波長は、
λ=α・V+λ0
である。一方、光の波数Kは、
K=2π/λ=2π/(α・V+λ0)
であるので、任意の時間に対する関数K(t)である波数を実現するには電圧の時間に対する関数V(t)を
V(t)=(2π/K(t)−λ0)/α
とすればよい。
そこで、上記波長走査型光源10では、上記バンドパスフィルタを構成する2台のファブリペロー共振器13A,13Bの内の少なくとも一方のファブリペロー共振器13Aの共振器長を共振器長制御部15により一定範囲で周期的に変化させることによって、光学カップラ14を介して取り出されるレーザ光の波長を周期的に走査するにあたり、予め、上記共振器長制御部が上記ファブリペロー共振器に与える走査信号の波形を調整し、光カップラ14を介して取り出されるレーザ光の波数が時間に対して線形になるように校正することによって、波数が時間に対して線形なレーザ光を光カップラ14を介して得ることができる。
そして、例えば、図15に示す波長走査型光源10のように、波数が時間に対して線形なレーザ光を得るための校正データを共振器長制御部15がROM15Aから読み出して走査信号の波形を生成する構成とすることにより、波数が時間に対して線形なレーザ光を光カップラ14を介して得ることができる。
ここで、光コヒーレンストモグラフィー装置に波長走査型光源10を用いる場合、必要なコヒーレント長をδLとし、光の速度をcとすると、ファブリペロー電気光学変調器の最大FSR(FSRmax)は、サンプリング定理から、
FSRmax=c/δL (1)式
なる(1)式にて与えられる。
そして、2つのファブリペロー電気光学変調器がそれぞれ7dBの損失を持っているために、総合損失は14dB以上あり、出力パワーは、飽和限界に届いておらず、各ファブリペロー電気光学変調器の光学的応答特性に敏感な状態にある。
したがって、周波数走査速度(Srate)、すなわち、単位時間当たりにレーザ光が走査する周波数のカットオフ(Srate-cut)は、最大走査レンジ(FSRv)の関数として、
Srate-cut=FSRv/Fδt (2)式
なる(2)式にて与えられるものと推定される。ここで、δt(=F/FSR)は、ファブリペロー電気光学変調器における光子の寿命である。
実験の結果として得られた周波数走査速度(Srate)のカットオフ(Srate-cut)は、12THz/μsであった。
また、コヒーレント長(δL)の限界(δLlimit)は、
δLlimit=c/Srateδt (3)式
なる(3)式にて与えられるものと推定された。
この結果から、コヒーレント長(δL)と周波数走査速度(Srate)はトレードオフの関係にあると予測することができ、周波数走査速度(Srate)のカットオフ(Srate-cut)におけるコヒーレント長(δL)の限界(δLlimit-cutoff)は、
δLlimit-cutoff=cF/FSRv (4)式
なる(4)式にて与えられる。
したがって、コヒーレント長(δL)、周波数走査速度(Srate)、最大走査レンジ(FSRv)がシステムの要求で与えられたとすると、共振器の条件、すなわち、フィネス(F)及び自由スペクトル領域(FSR)の条件を次のようにして決定することができる。
すなわち、フィネス(F)の取り得る範囲は、上記(3)式から一般的に求めると
cFSR/SrateδL>F
となり、自由スペクトル領域(FSR)の取り得る範囲は、
c/δL>FSR
となる。
ここで、実際の装置では、上記フィネス(F)の取り得る範囲が、
c/δL>FSR>SrateF/FSRv/2
すなわち、周波数走査速度(Srate)がカットオフ(Srate-cut)の1/2から2倍の範囲で良好な動作を確認することができた。
なお、この波長走査型光源10では、走査速度が遅い場合、特に周波数走査速度(Srate)がカットオフ(Srate-cut)/2よりも遅い場合に、強度雑音が発生した。この現象は、モード競合雑音(mode competition noise)と考えられ、SOAに高周波重畳(high frequency superposition)を行うことにより、モード競合雑音(mode competition noise)を減らすことができ、走査速度が遅い場合の特性を改善することができる。周波数走査速度(Srate)がカットオフ(Srate-cut)/2よりも速い場合には、上述の図8、図9、図10等に示した方法によりループ利得を大きくすることで改善できる。
本発明に係る波長走査型光源の基本的な構成を示すブロック図である。 通常の光共振器の透過スペクトルを示す図である。 FSRが1%異なる光共振器を2台縦列接続した場合の透過スペクトルを示す図である。 図3に示した透過スペクトルの一部を拡大して示した図である。 上記2台のファブリペロー共振器にファブリペロー電気光学変調器を用いた波長走査型光源の実際の構成例を示すブロック図である。 波長1.5μm帯用の、光ファイバアンプ、2台のコム発生器モジュール、光カップラを使用したファイバーリングレーザーの構成を示すブロック図である。 上記ファイバーリングレーザーの測定結果を示す図である。 2台の光増幅器をそれぞれファブリペロー電気光学変調器の後段に配置してなる波長走査型光源の構成例を示すブロック図である。 1台の光増幅器により2台のファブリペロー電気光学変調器の後段で光増幅するようにしてなる波長走査型光源の構成例を示すブロック図である。 1台の光増幅器により2台のファブリペロー電気光学変調器の後段で光増幅するようにしてなる波長走査型光源の他の構成例を示すブロック図である。 2つのファブリペロー共振器で構成されるバンドパスフィルタの中心波長を制御するようにした共振器長制御部の構成例を示すブロック図である。 本発明に係る波長走査型光源における走査信号電圧とレーザ周波数との関係を測定するための測定系の構成を示すブロック図である。 上記走査信号電圧とレーザ周波数との関係を測定した結果を示す図である。 上記共振器長制御部がファブリペロー共振器に与える走査信号の波形と干渉計にて得られる干渉信号の波形の観測結果を示す図である。 波数が時間に対して線形なレーザ光を光カップラを介して得ることができる波長走査型光源の構成例を示すブロック図である。 従来から提案されている波長可変光源の原理的な構成を示すブロック図である。
符号の説明
10 波長走査型光源
11 光ファイバーループ
12 光増幅器
13A,13B ファブリペロー共振器
13A’,13B’ ファブリペロー電気光学変調器
14 光カップラ
15 共振器長制御部
15A ROM
16 バンドパスフィルタ
17A,17B,17C,17D,17E 光アイソレータ
18 遅延線
150 鋸歯状波信号発生器
151 反転増幅器
152 光検出器
153 ロックインアンプ

Claims (9)

  1. レーザ発振光路内に設けられ、発振する波長に利得を有する光増幅器と、
    上記レーザ発振光路内に設けられ、近接したFSR(Free spectral range)を有する2台のファブリペロー共振器と、
    上記レーザ発振光路を通過する光の一部を取り出す光学素子と、
    上記近接したFSRを有する2台のファブリペロー共振器の内の一方のファブリペロー共振器の共振器長を一定範囲で周期的に変化させる共振器長制御部と
    を備えることを特徴とする波長走査型光源。
  2. 上記共振器長制御部により共振器長が一定範囲で周期的に変化される上記ファブリペロー共振器は、電極を付けた構造のファブリペロー電気光学変調器からなり、上記共振器長制御部により与えられる周期的な走査信号により通過する光を光変調することを特徴とする請求項1記載の波長走査型光源。
  3. 上記近接したFSRを有する2台のファブリペロー共振器は、それぞれファブリペロー電気光学変調器からなり、温度制御により上記近接したFSRに調整されていることを特徴とする請求項2記載の波長走査型光源。
  4. 上記共振器長制御部は、上記近接したFSRを有する2台のファブリペロー共振器に互いに反転した走査信号を与えて、上記各ファブリペロー共振器の共振器長を相反的に変化させることを特徴とする請求項3記載の波長走査型光源。
  5. 上記共振器長制御部は、走査信号に制御電圧を重畳することで上記近接したFSRを有する2台のファブリペロー共振器を通過する光の中心波長を制御することを特徴とする請求項4記載の波長走査型光源。
  6. 上記2台のファブリペロー共振器の各後段に上記光増幅器をそれぞれ設けたことを特徴とする請求項1記載の波長走査型光源。
  7. 上記レーザ発振光路を通過する光の方向又は偏光によって上記光を分離して、1台の上記光増幅器により上記2台のファブリペロー共振器の各後段で光増幅を行うことを特徴とする請求項1記載の波長走査型光源。
  8. 上記共振器長制御部が上記ファブリペロー共振器に与える上記周期的な走査信号の波形を調整することにより、上記光学素子を介して取り出されるレーザ光の波数が時間に対して線形になるように校正されていることを特徴とする請求項1記載の波長走査型光源。
  9. 上記ファブリペロー共振器は、必要とされるコヒーレント長をδL、周波数走査速度をSrateとして、
    cFSR/SrateδL>F
    にて示される範囲フィネス(F)を有し、
    c/δL>FSR
    にて示されるFSRを有することを特徴とする請求項1記載の波長走査型光源。
JP2007227825A 2007-01-29 2007-09-03 波長走査型光源 Pending JP2009033078A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227825A JP2009033078A (ja) 2007-01-29 2007-09-03 波長走査型光源

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007018168 2007-01-29
JP2007173348 2007-06-29
JP2007227825A JP2009033078A (ja) 2007-01-29 2007-09-03 波長走査型光源

Publications (1)

Publication Number Publication Date
JP2009033078A true JP2009033078A (ja) 2009-02-12

Family

ID=40403227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227825A Pending JP2009033078A (ja) 2007-01-29 2007-09-03 波長走査型光源

Country Status (1)

Country Link
JP (1) JP2009033078A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164578A (ja) * 2010-02-11 2011-08-25 Korea Electronics Telecommun テラヘルツ波装置
CN108225657A (zh) * 2017-09-28 2018-06-29 南京邮电大学 一种具有光学游标效应的光纤fp气压传感器及其制备方法
JP2018105867A (ja) * 2012-08-31 2018-07-05 ライトラボ・イメージング・インコーポレーテッド 光干渉断層撮影を制御するシステム及び方法
CN113124912A (zh) * 2021-03-03 2021-07-16 浙江工业大学 一种基于游标效应的光纤法布里珀罗传感器的增敏方法
JP7364840B2 (ja) 2019-09-02 2023-10-19 国立大学法人埼玉大学 波長可変レーザー装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252982A (ja) * 1986-04-25 1987-11-04 Yokogawa Electric Corp 可変波長光源
JPS62254478A (ja) * 1986-04-28 1987-11-06 Yokogawa Electric Corp 可変波長光源
JPS63186489A (ja) * 1987-01-29 1988-08-02 Yokogawa Electric Corp 可変波長レ−ザ−
JP2006279030A (ja) * 2005-03-03 2006-10-12 Nec Corp 波長可変共振器及びこれを用いた波長可変光源並びに多重共振器の波長可変方法
JP2006278770A (ja) * 2005-03-29 2006-10-12 Nec Corp 波長可変レーザ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252982A (ja) * 1986-04-25 1987-11-04 Yokogawa Electric Corp 可変波長光源
JPS62254478A (ja) * 1986-04-28 1987-11-06 Yokogawa Electric Corp 可変波長光源
JPS63186489A (ja) * 1987-01-29 1988-08-02 Yokogawa Electric Corp 可変波長レ−ザ−
JP2006279030A (ja) * 2005-03-03 2006-10-12 Nec Corp 波長可変共振器及びこれを用いた波長可変光源並びに多重共振器の波長可変方法
JP2006278770A (ja) * 2005-03-29 2006-10-12 Nec Corp 波長可変レーザ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164578A (ja) * 2010-02-11 2011-08-25 Korea Electronics Telecommun テラヘルツ波装置
US8476592B2 (en) 2010-02-11 2013-07-02 Electronics And Telecommunications Research Institute Terahertz wave apparatus
JP2018105867A (ja) * 2012-08-31 2018-07-05 ライトラボ・イメージング・インコーポレーテッド 光干渉断層撮影を制御するシステム及び方法
CN108225657A (zh) * 2017-09-28 2018-06-29 南京邮电大学 一种具有光学游标效应的光纤fp气压传感器及其制备方法
JP7364840B2 (ja) 2019-09-02 2023-10-19 国立大学法人埼玉大学 波長可変レーザー装置
CN113124912A (zh) * 2021-03-03 2021-07-16 浙江工业大学 一种基于游标效应的光纤法布里珀罗传感器的增敏方法
CN113124912B (zh) * 2021-03-03 2022-04-08 浙江工业大学 一种基于游标效应的光纤法布里珀罗传感器的增敏方法

Similar Documents

Publication Publication Date Title
US9698559B2 (en) Optical scanning and imaging systems based on dual pulsed laser systems
WO2008093448A9 (ja) 波長走査型光源及び光コヒーレンストモグラフィー装置
AU2007302314B2 (en) Method and device for generating a synthetic wavelength
US9528875B2 (en) Optical frequency tracking and stabilization based on extra-cavity frequency
JP5854596B2 (ja) 光源装置及びこれを用いた撮像装置
US7483143B2 (en) Method and apparatus for conducting heterodyne frequency-comb spectroscopy
JP2013546189A (ja) 大きなコム間隔を有する周波数コム源
US20130163624A1 (en) Laser device
JP6071203B2 (ja) 光源装置及びこれを用いた光干渉断層撮像装置、及び光発振方法
Kourogi et al. Programmable high speed (~ 1MHz) Vernier-mode-locked frequency-swept laser for OCT imaging
US20120127464A1 (en) Light source apparatus
JP2009033078A (ja) 波長走査型光源
JP2009031238A (ja) 光コヒーレンストモグラフィー装置
US9722391B2 (en) Laser system
JP2006337833A (ja) 波長可変光周波数コム発生装置
JP2009060022A (ja) 波長走査型光源
JP6580554B2 (ja) 赤外領域及び可視領域における少なくとも3つのコヒーレントなレーザビームのための発生器
JP2012080013A (ja) 光源装置及びこれを用いた撮像装置
Yeh et al. Quad-ring based erbium fiber laser for switchable and stable single-longitudinal-mode operation
JP2009016396A (ja) 波長走査型ファイバレーザ光源
KR20210113306A (ko) 라만 분광법으로 극미량의 가스를 검출하는 데 적합한 광학 피드백을 갖는 공진 광학 공동 시스템
JP2005347668A (ja) 波長走査型ファイバレーザ光源
Surkamp et al. Continuous wave THz system based on dual wavelength monolithic Y-branch laser diode
Manamanni et al. Frequency Stability Transfer in Passive Mode-Locked Quantum-Dash Laser Diode Using Optical Injection Locking
Ummy et al. Continuous Tunable Terahertz Wave Generation via a Novel CW Optical Beat Laser Source.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703