CN113124912A - 一种基于游标效应的光纤法布里珀罗传感器的增敏方法 - Google Patents

一种基于游标效应的光纤法布里珀罗传感器的增敏方法 Download PDF

Info

Publication number
CN113124912A
CN113124912A CN202110233859.7A CN202110233859A CN113124912A CN 113124912 A CN113124912 A CN 113124912A CN 202110233859 A CN202110233859 A CN 202110233859A CN 113124912 A CN113124912 A CN 113124912A
Authority
CN
China
Prior art keywords
interferometer
spectrum
vernier effect
sensing
fabry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110233859.7A
Other languages
English (en)
Other versions
CN113124912B (zh
Inventor
蔡小磊
覃亚丽
蔡礼邹
郑欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202110233859.7A priority Critical patent/CN113124912B/zh
Publication of CN113124912A publication Critical patent/CN113124912A/zh
Application granted granted Critical
Publication of CN113124912B publication Critical patent/CN113124912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种基于游标效应的光纤法布里珀罗传感器的增敏方法,只需使用单个传感干涉仪获得实测的反射光谱,然后叠加上由计算机根据法布里珀罗干涉原理生成的参考干涉仪的反射光谱,就能实现游标效应。相较于通过并联结构实现游标效应的方法而言,本发明中将实测的传感干涉仪光谱与计算机中生成的参考干涉仪光谱叠加的方法更易于保持参考干涉仪光谱的稳定,使其不受所处环境的稳定性影响。更多的,由于可以通过设置参考干涉仪的腔长和折射率来控制放大倍数,因此在有效的光谱范围内,本发明可以实现任意的放大倍数和分辨率。

Description

一种基于游标效应的光纤法布里珀罗传感器的增敏方法
技术领域
本发明涉及一种基于游标效应的光纤法布里珀罗传感器的增敏方法,属于光纤传感检测的技术领域。
背景技术
传感器在科学技术领域、各种行业生产以及日常生活中发挥着重要的作用。传感器按照使用的材料可以分为半导体传感器,金属传感器,光纤传感器等。其中,光纤传感器是20世纪70年代末发展起来的一种新型传感器。由于光在光纤中传输时,光纤的外界环境参量会发生变化,如温度、压力、折射率等。这些环境参量会使得光纤的光波参数发生变化,比如光强、频率、波长等。光纤传感器依据环境参量的变化与光纤的光波参数的变化之间的对应关系,间接地测量所需的环境参量。目前,光纤法布里珀罗传感器由于具有低成本、小体积、高灵敏度、免疫电磁干扰以及适应高温、高压等恶劣环境的特点而被广泛应用于物理化学参量的测量中。
在光纤传感器实验中,有效地提高测量灵敏度是研究的重点。游标效应最初来源于游标卡尺的原理,其本质是差分法,后被应用于光子器件灵敏度的增大中,现被证实是一种有效的提高光纤传感器测量灵敏度的方法。游标效应可以使光纤法布里珀罗传感系统突破由传感器特性所限制的灵敏度极限,使测量灵敏度大大提高。基于游标效应的光纤法布里珀罗传感器的应用大部分是在两个干涉仪相邻的级联结构中,这种结构能使传感器高度集成,体积小而精巧。不足之处是两个干涉仪所处的环境基本一致,而环境温度对参考干涉仪的影响是不可避免的。这通常会导致游标效应的增敏效果减弱,甚至出现不可预估的非线性变化。最近,有研究人员提出了基于游标效应的并联结构的光纤法布里珀罗传感器,将传感干涉仪和参考干涉仪分开,使参考干涉仪可以远离传感环境。这降低了传感器的集成度,增加了搭建传感系统的复杂程度。同时,保持参考干涉仪所处环境的稳定显得极为重要但又难以实现。综上所述,目前实现游标效应需要参考干涉仪的存在,增加了传感结构的复杂性,而参考干涉仪所处环境的稳定性会影响到其反射光谱的稳定从而决定传感系统的性能优劣。
因此,确保参考干涉仪的光谱稳定是实现游标效应达到增敏效果的关键。在此基础上,使用基于游标效应的光纤法布里珀罗传感器的增敏方法在实际测量中也具有重要意义。
发明内容
为了解决实现游标效应时需要额外的参考干涉仪以及参考干涉仪所处环境的变化导致光谱不稳定的问题,本发明提供了一种基于游标效应的光纤法布里珀罗传感器的增敏方法。只需使用单个传感干涉仪获得实测的反射光谱,然后叠加上由计算机根据法布里珀罗干涉原理生成的参考干涉仪的反射光谱,就能实现游标效应。由于参考干涉仪的反射光谱由计算机生成,因此这种通过叠加光谱实现游标效应的方法解决了参考干涉仪的光谱稳定性问题,同时可以灵活地控制其增敏程度。
本发明解决其技术问题所采用的技术方案是:
一种基于游标效应的光纤法布里珀罗传感器的增敏方法,包括以下步骤:
步骤1,设计单腔法布里珀罗传感器作为传感干涉仪,传感干涉仪的腔长为L1,波长为λ的光从光源入射传感干涉仪,入射光在干涉腔的第一个反射面的反射光强为I1,第二个反射面的反射光强为I2,由光谱仪测量得到的传感干涉仪的反射光谱为Is
步骤2,将传感干涉仪置于环境参量Z中,当环境参量Z发生ΔZ的变化时,传感干涉仪的腔长L1发生ΔL1的变化,腔长的变化导致光谱仪测得的光谱发生偏移,通过观测光谱波谷对应的波长λm的偏移得到传感干涉仪对环境参量的灵敏度S1
Figure BDA0002959855300000031
步骤3,在计算机中根据法布里珀罗干涉原理生成参考干涉仪的反射光谱Ir,定义参考干涉仪的腔长为L2,入射光在干涉腔的第一个反射面的反射光强为I3,第二个反射面的反射光强为I4,初始相位为
Figure BDA0002959855300000032
Figure BDA0002959855300000033
步骤4,将传感干涉仪和参考干涉仪的反射光谱叠加实现游标效应,得到总反射光谱I=Is+Ir,其包络谱由常数项A和带有初始相位
Figure BDA0002959855300000034
的余弦项
Figure BDA0002959855300000035
构成,由于传感干涉仪的反射光谱随着环境参量发生偏移,总反射光谱也会发生偏移,通过观测总反射光谱的包络谱波谷对应的波长λe的偏移可以得到实现游标效应后传感器对环境参量的灵敏度S2
Figure BDA0002959855300000036
步骤5,得到实现游标效应后传感器的灵敏度放大倍数
Figure BDA0002959855300000037
同时,实现游标效应后传感器的分辨率re和传感干涉仪分辨率rs满足
Figure BDA0002959855300000038
即通过叠加光谱实现了基于游标效应的法布里珀罗传感器的增敏方法;
步骤6,由于参考干涉仪的反射光谱Ir是根据法布里珀罗干涉原理生成的,所以可以通过设置参考干涉仪的腔长L2和折射率n来控制放大倍数M和分辨率re
进一步的,所述步骤2中,环境参量Z为温度、应变或压强。
本发明的有益效果主要表现在:相较于通过并联结构实现游标效应的方法而言,本发明中将实测的传感干涉仪光谱与计算机中生成的参考干涉仪光谱叠加的方法更易于保持参考干涉仪光谱的稳定,使其不受所处环境的稳定性影响。更多的,由于可以通过设置参考干涉仪的腔长和折射率来控制放大倍数,因此在有效的光谱范围内,本发明可以实现任意的放大倍数和分辨率。
附图说明
图1为本发明中基于游标效应的法布里珀罗传感器的增敏方法的流程图。
图2为本发明中光谱仪测得的传感干涉仪的反射光谱图。
图3为本发明中环境参量发生变化时光谱仪测得的传感干涉仪的反射光谱图的偏移。
图4为本发明中计算机生成的参考干涉仪的反射光谱图。
图5为本发明中环境参量发生变化时实现游标效应后总反射光谱的包络的偏移。
图6为本发明中放大倍数为10倍时实现游标效应后总反射光谱的包络的偏移。
图7为本发明中基于单腔法布里珀罗传感器的传感实验装置图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1~图7,一种基于游标效应的光纤法布里珀罗传感器的增敏方法,包括以下步骤:
步骤1,设计单腔法布里珀罗传感器作为传感干涉仪,传感干涉仪的腔长为L1,波长为λ的光从光源入射传感干涉仪,入射光在干涉腔的第一个反射面的反射光强为I1,第二个反射面的反射光强为I2,由光谱仪测量得到的传感干涉仪的反射光谱为Is,传感干涉仪的反射光谱如图2所示,其中,制作的传感干涉仪的腔长L1=118.6μm。
步骤2,将传感干涉仪置于环境参量Z中,当环境参量Z发生ΔZ的变化时,传感干涉仪的腔长L1发生ΔL1的变化,腔长的变化导致光谱仪测得的光谱发生偏移,通过观测光谱波谷对应的波长λm的偏移得到传感干涉仪对环境参量的灵敏度S1
Figure BDA0002959855300000051
其中,环境参量选择为温度,因此将传感干涉仪置于一控温装置中,温度从30℃变化到45℃,实验观察到光谱波谷对应的波长λm发生偏移,如图3所示,得到传感干涉仪对温度的灵敏度S1为0.5033nm/℃,不同环境参量对传感干涉仪光谱的影响本质上都是使传感干涉仪腔长发生变化,因此测量温度参量的方法也可以类推到测量其他环境参量的情况。
步骤3,在计算机中根据法布里珀罗干涉原理生成参考干涉仪的反射光谱Ir,定义参考干涉仪的腔长为L2,入射光在干涉腔的第一个反射面的反射光强为I3,第二个反射面的反射光强为I4,初始相位为
Figure BDA0002959855300000052
Figure BDA0002959855300000053
其中,参考干涉仪的腔长L2=96.6μm,干涉腔的两个反射面的反射光强满足I3=I1和I4=I2,生成的反射光谱如图4所示。
步骤4,将传感干涉仪和参考干涉仪的反射光谱叠加实现游标效应,得到总反射光谱I=Is+Ir,其包络谱由常数项A和带有初始相位
Figure BDA0002959855300000054
的余弦项
Figure BDA0002959855300000061
构成,由于传感干涉仪的反射光谱随着环境参量发生偏移,总反射光谱也会发生偏移,通过观测总反射光谱的包络谱波谷对应的波长λe的偏移可以得到实现游标效应后传感器对环境参量的灵敏度S2
Figure BDA0002959855300000062
其中,观测到包络谱发生偏移,如图5所示,得到传感器对温度的灵敏度S2为2.7824nm/℃。
步骤5,得到实现游标效应后传感器的灵敏度放大倍数
Figure BDA0002959855300000063
同时,实现游标效应后传感器的分辨率re和传感干涉仪分辨率rs满足
Figure BDA0002959855300000064
即通过叠加光谱实现了基于游标效应的法布里珀罗传感器的增敏方法。
其中,将实现游标效应的传感器灵敏度与传感干涉仪灵敏度作对比,得到放大倍数M为5.5,又因使用的光谱仪的分辨率为20pm,则传感干涉仪分辨率rs为0.04℃,实现游标效应后传感器的分辨率re为0.007℃,实现了基于游标效应的法布里珀罗传感器的增敏。
步骤6,由于参考干涉仪的反射光谱Ir是根据法布里珀罗干涉原理生成的,所以可以通过设置参考干涉仪的腔长L2和折射率n来控制放大倍数M和分辨率re
其中,当希望的放大倍数M是10倍时,参考干涉仪的腔长L2可以设置为106.74μm,如图6所示,此时实现游标效应后传感器的灵敏度为5.0380nm/℃,分辨率re为0.004℃。
进一步,所述步骤2中,环境参量Z为温度、应变或压强。
参照图7,本发明基于单腔法布里珀罗传感器的传感实验搭建如下所述:
超辐射发光二极管1发出的激光,经过耦合器2分成两路,一路进入匹配液3,一路进入传感器4,进入匹配液3的激光不会反射回耦合器2,进入传感器4的激光发生法布里珀罗干涉,实验时传感器4置于恒温箱5中受到温度参量影响,反射回耦合器2的光经由耦合器2进入光谱分析仪6,从光谱分析仪6中提取的光谱数据进入计算机7中进行数据处理。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (2)

1.一种基于游标效应的光纤法布里珀罗传感器的增敏方法,其特征在于,所述方法包括以下步骤:
步骤1,设计单腔法布里珀罗传感器作为传感干涉仪,传感干涉仪的腔长为L1,波长为λ的光从光源入射传感干涉仪,入射光在干涉腔的第一个反射面的反射光强为I1,第二个反射面的反射光强为I2,由光谱仪测量得到的传感干涉仪的反射光谱为Is
步骤2,将传感干涉仪置于环境参量Z中,当环境参量Z发生ΔZ的变化时,传感干涉仪的腔长L1发生ΔL1的变化,腔长的变化导致光谱仪测得的光谱发生偏移,通过观测光谱波谷对应的波长λm的偏移得到传感干涉仪对环境参量的灵敏度S1
Figure FDA0002959855290000011
步骤3,在计算机中根据法布里珀罗干涉原理生成参考干涉仪的反射光谱Ir,定义参考干涉仪的腔长为L2,入射光在干涉腔的第一个反射面的反射光强为I3,第二个反射面的反射光强为I4,初始相位为
Figure FDA0002959855290000012
Figure FDA0002959855290000013
步骤4,将传感干涉仪和参考干涉仪的反射光谱叠加实现游标效应,得到总反射光谱I=Is+Ir,其包络谱由常数项A和带有初始相位
Figure FDA0002959855290000014
的余弦项
Figure FDA0002959855290000015
构成,由于传感干涉仪的反射光谱随着环境参量发生偏移,总反射光谱也会发生偏移,通过观测总反射光谱的包络谱波谷对应的波长λe的偏移可以得到实现游标效应后传感器对环境参量的灵敏度S2
Figure FDA0002959855290000016
步骤5,得到实现游标效应后传感器的灵敏度放大倍数
Figure FDA0002959855290000017
同时,实现游标效应后传感器的分辨率re和传感干涉仪分辨率rs满足
Figure FDA0002959855290000018
即通过叠加光谱实现了基于游标效应的法布里珀罗传感器的增敏方法;
步骤6,由于参考干涉仪的反射光谱Ir是根据法布里珀罗干涉原理生成的,所以可以通过设置参考干涉仪的腔长L2和折射率n来控制放大倍数M和分辨率re
2.如权利要求1所述的一种基于游标效应的光纤法布里珀罗传感器的增敏方法,其特征在于,所述步骤2中,环境参量Z为温度、应变或压强。
CN202110233859.7A 2021-03-03 2021-03-03 一种基于游标效应的光纤法布里珀罗传感器的增敏方法 Active CN113124912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110233859.7A CN113124912B (zh) 2021-03-03 2021-03-03 一种基于游标效应的光纤法布里珀罗传感器的增敏方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110233859.7A CN113124912B (zh) 2021-03-03 2021-03-03 一种基于游标效应的光纤法布里珀罗传感器的增敏方法

Publications (2)

Publication Number Publication Date
CN113124912A true CN113124912A (zh) 2021-07-16
CN113124912B CN113124912B (zh) 2022-04-08

Family

ID=76772732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110233859.7A Active CN113124912B (zh) 2021-03-03 2021-03-03 一种基于游标效应的光纤法布里珀罗传感器的增敏方法

Country Status (1)

Country Link
CN (1) CN113124912B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414134A (zh) * 2022-01-21 2022-04-29 吉林大学 一种基于聚二甲基硅氧烷膜和游标效应增敏的光纤液压传感器
CN114739285A (zh) * 2022-04-01 2022-07-12 厦门大学 基于数字虚拟参考腔和游标效应的法珀腔长精确测量方法
CN115290925A (zh) * 2022-07-12 2022-11-04 厦门大学 一种高灵敏的流体流速光学测量传感器和测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033078A (ja) * 2007-01-29 2009-02-12 Optical Comb Inc 波長走査型光源
CN110243511A (zh) * 2019-06-28 2019-09-17 暨南大学 一种高灵敏度光纤法布里珀罗应力传感器及其传感方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033078A (ja) * 2007-01-29 2009-02-12 Optical Comb Inc 波長走査型光源
CN110243511A (zh) * 2019-06-28 2019-09-17 暨南大学 一种高灵敏度光纤法布里珀罗应力传感器及其传感方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯德玖等: "基于无芯光纤强度调制型液位传感器的设计与性能", 《光子学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414134A (zh) * 2022-01-21 2022-04-29 吉林大学 一种基于聚二甲基硅氧烷膜和游标效应增敏的光纤液压传感器
CN114414134B (zh) * 2022-01-21 2022-11-29 吉林大学 一种基于pdms膜和游标效应增敏的光纤液压传感器
CN114739285A (zh) * 2022-04-01 2022-07-12 厦门大学 基于数字虚拟参考腔和游标效应的法珀腔长精确测量方法
CN115290925A (zh) * 2022-07-12 2022-11-04 厦门大学 一种高灵敏的流体流速光学测量传感器和测量方法

Also Published As

Publication number Publication date
CN113124912B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN113124912B (zh) 一种基于游标效应的光纤法布里珀罗传感器的增敏方法
Coelho et al. Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres
Jin et al. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect
Pang et al. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing
Wieduwilt et al. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator
Shao et al. All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching
CN107894292A (zh) 基于光纤表面等离子体共振的折射率温度双参数测量方法及装置
Shao et al. Excellent repeatability, all-sapphire Fabry Perot optical Pressure sensor based on wet etching and direct bonding for Harsh Environment Applications
Xu et al. Empirical model for the temperature dependence of silicon refractive index from O to C band based on waveguide measurements
Zhou et al. Temperature insensitive fiber optical refractive index probe with large dynamic range at 1,550 nm
CN107340004B (zh) 一种基于介质超表面的双参数检测系统
Liu et al. Dual-detection-parameter SPR sensor based on graded index multimode fiber
WO2020125517A1 (zh) 基于光纤布拉格光栅法布里-泊罗腔的传感装置
Liu et al. Sensitivity enhanced strain sensor based on two-arm Vernier effect
Terentyev et al. Multiple-beam reflection interferometer formed in a single-mode fiber for applications in fiber lasers
Chatzianagnostou et al. Theory and sensitivity optimization of plasmo-photonic Mach-Zehnder interferometric sensors
Havreland et al. Micro-fabricated all optical pressure sensors
Liu et al. A controllable humidity sensitivity measurement solution based on a pure FPI fiber tip and the harmonic Vernier effect
Hong et al. Template-stripping fabricated plasmonic nanogratings for chemical sensing
Mukhammad et al. Plasmonic-enhanced light absorption in periodic silicon structures: the effect of inter-island distance
CN114739285B (zh) 基于数字虚拟参考腔和游标效应的法珀腔长精确测量方法
Levy et al. Design of a single-channel modal interferometer waveguide sensor
Swain et al. Realization of a temperature sensor using both two-and three-dimensional photonic structures through a machine learning technique
Cohen et al. A monolithic chemical sensor using tandem heterodyned sampled grating DBR lasers
Chen et al. Submicrometer ultrananocrystalline diamond films processed in oxygen and hydrogen plasma and analyzed by UV-vis spectroscopy: Thickness and optical constant results

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared