WO2020263044A1 - 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법 - Google Patents

복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법 Download PDF

Info

Publication number
WO2020263044A1
WO2020263044A1 PCT/KR2020/008416 KR2020008416W WO2020263044A1 WO 2020263044 A1 WO2020263044 A1 WO 2020263044A1 KR 2020008416 W KR2020008416 W KR 2020008416W WO 2020263044 A1 WO2020263044 A1 WO 2020263044A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
light sources
rays
computed tomography
light source
Prior art date
Application number
PCT/KR2020/008416
Other languages
English (en)
French (fr)
Inventor
노영준
신민식
강성훈
오태석
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to EP20831813.9A priority Critical patent/EP3991661B1/en
Priority to JP2021577632A priority patent/JP7340632B2/ja
Priority to KR1020247007329A priority patent/KR20240033189A/ko
Priority to KR1020217042641A priority patent/KR102645067B1/ko
Priority to CN202080047007.2A priority patent/CN114040712A/zh
Priority to US17/623,127 priority patent/US11969272B2/en
Publication of WO2020263044A1 publication Critical patent/WO2020263044A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4275Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis using a detector unit almost surrounding the patient, e.g. more than 180°
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4447Tiltable gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings

Definitions

  • the present disclosure relates to a computed tomography apparatus and a computed tomography method using a plurality of light sources.
  • Computed tomography is a non-invasive biometric imaging method.
  • Computed tomography apparatus obtains a computed tomography image of an object by irradiating X-rays to an object from various directions, detecting some X-rays that have passed through the object with a detection device, and reconstructing an image by converting the output data of the detection device into electrical signals. can do.
  • a computed tomography apparatus obtains a cross-sectional image of the object by irradiating the object with X-rays while the object is located inside a ring-shaped gantry in which an X-ray source is arranged, and while the gantry is rotating. , By reconstructing a cross-sectional image of the object, a 3D stereoscopic image of the object may be obtained.
  • a computed tomography apparatus using a single light source should radiate X-rays while rotating around the object 360 degrees in order to acquire a computed tomography image of the object.
  • a single light source eg, an X-ray source
  • twisting of lines connected to the gantry eg, a line for supplying power to the light source
  • a light source requires high power to irradiate X-rays
  • a computed tomography apparatus includes: a gantry including a first rotation device, a second rotation device, and a third rotation device in a ring shape that share one rotation axis and rotate independently of each other; A plurality of first light sources disposed on the first rotating device at regular intervals and configured to irradiate X-rays onto an object; A plurality of second light sources disposed at regular intervals on the second rotating device and configured to irradiate X-rays onto an object; A detection device disposed in a region of the third rotating device and configured to detect X-rays transmitted through the object; And one or more processors.
  • the one or more processors may include a first operation in which the first rotation device rotates in a first rotation direction by a rotation angle determined based on the number of the plurality of first light sources and the plurality of second light sources, and the determined rotation angle.
  • the first rotation device is controlled to repeat a second operation of rotating in a second rotation direction opposite to the first rotation direction, and the second rotation device rotates in the second rotation direction by the determined rotation angle.
  • the third rotation device is controlled so that, while the first rotation device performs the first operation, X-rays are irradiated to the object through one of the plurality of first light sources, and the second rotation device While performing the fourth operation, X-rays may be irradiated to the object through one of the plurality of second light sources, and X-rays transmitted through the object may be detected through the detection device.
  • a gantry including a ring-shaped first rotation device, a second rotation device, and a third rotation device sharing one rotation axis and rotatable independently of each other according to various embodiments of the present disclosure, and at regular intervals in the first rotation device.
  • a plurality of first light sources disposed and configured to irradiate X-rays to the object
  • a plurality of second light sources disposed at regular intervals on the second rotating device and configured to irradiate X-rays to the object, and disposed in one area of the third rotating device
  • a computed tomography method of a computed tomography apparatus including a detection device configured to detect X-rays transmitted through the object, wherein the first rotating device is based on the number of the plurality of first light sources and the plurality of second light sources.
  • Controlling the first rotation device to repeat a first operation of rotating in a first rotation direction by a determined rotation angle and a second operation of rotating in a second rotation direction opposite to the first rotation direction by the determined rotation angle action; Controlling the second rotation device to repeat a third operation in which the second rotation device rotates in the second rotation direction by the determined rotation angle and a fourth operation in which the second rotation device rotates in the first rotation direction by the determined rotation angle.
  • the computed tomography apparatus includes a plurality of light sources capable of irradiating X-rays to an object, the rotation angle range of the gantry may be reduced. Since the rotation angle range of the gantry can be reduced, the stability of the computed tomography apparatus can be improved.
  • a computed tomography apparatus sets an X-ray irradiation order of a plurality of light sources according to the number and arrangement positions of light sources and detection apparatuses, thereby using an optimal imaging method for each structure of the computed tomography apparatus. Computed tomography images of can be obtained.
  • FIG. 1 is a block diagram of a computed tomography apparatus according to various embodiments of the present disclosure.
  • FIG. 2 is a diagram illustrating a computed tomography apparatus according to various embodiments.
  • 3A and 3B are diagrams illustrating a method of obtaining a circular computed tomography image of an object according to various embodiments of the present disclosure.
  • FIG. 4 is a diagram illustrating a method of obtaining a spiral computed tomography image of an object according to various embodiments of the present disclosure.
  • FIG. 5 is a diagram illustrating a computed tomography apparatus according to the structure of the first embodiment
  • FIG. 6 is an x-y cross-sectional view of the gantry according to the structure of the first embodiment.
  • FIG. 7 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the first embodiment.
  • FIG. 8 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the first embodiment.
  • FIG. 9 is a flowchart of the operation of the computed tomography apparatus according to the structure of the first embodiment.
  • FIG. 10 is an x-y cross-sectional view of a gantry of a computed tomography apparatus according to a second embodiment structure.
  • FIG. 11 is a graph showing a computed tomography method of a computed tomography apparatus according to a second embodiment structure.
  • FIG. 12 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the second embodiment.
  • FIG. 13 is a graph showing a computed tomography method of a computed tomography apparatus according to a second embodiment structure.
  • FIG. 15A is an x-y cross-sectional view of the gantry of the computed tomography apparatus according to the structure of the third embodiment
  • FIG. 15B is a y-z cross-sectional view of the gantry of the structure of the third embodiment.
  • 16 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the third embodiment.
  • 17 is a diagram illustrating an x-y plan view of a gantry of a computed tomography apparatus according to a fourth embodiment structure.
  • FIG. 18 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the fourth embodiment.
  • 19 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the fourth embodiment.
  • 20 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the fourth embodiment.
  • Fig. 21 is a flowchart of the operation of the computed tomography apparatus having the structure of the fourth embodiment.
  • FIG. 22 is an x-y cross-sectional view of the gantry of the computed tomography apparatus according to the structure of the fifth embodiment.
  • FIG. 23 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the fifth embodiment.
  • 24 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the fifth embodiment.
  • 25 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the fifth embodiment.
  • 26 is an operation flowchart of the computed tomography apparatus having the structure of the fifth embodiment.
  • FIG. 27A is an x-y cross-sectional view of the gantry of the computed tomography apparatus according to the sixth embodiment
  • FIG. 27B is a y-z cross-sectional view of the gantry of the sixth embodiment.
  • 29 is a graph showing a computed tomography method of the computed tomography apparatus according to the structure of the sixth embodiment.
  • Fig. 30 is an operation flowchart of the computed tomography apparatus having the structure of the sixth embodiment.
  • 31A and 31B are diagrams illustrating a method of adjusting a visible area of a computed tomography apparatus.
  • 32 is a diagram illustrating a method of adjusting a visible region using a plurality of light sources.
  • 33 is a diagram illustrating a computed tomography apparatus according to various embodiments of the present disclosure.
  • FIG. 34A is an x-y cross-sectional view of a gantry of a computed tomography apparatus according to various embodiments
  • FIG. 34B is a schematic diagram of a y-z cross-sectional view of the gantry.
  • 35A is an x-y cross-sectional view of a gantry of a computed tomography apparatus according to various embodiments
  • FIG. 35B is a schematic diagram of a y-z cross-sectional view of the gantry.
  • Embodiments of the present disclosure are illustrated for the purpose of describing the technical idea of the present disclosure.
  • the scope of the rights according to the present disclosure is not limited to the embodiments presented below or a detailed description of these embodiments.
  • unit refers to software or hardware components such as field-programmable gate array (FPGA) and application specific integrated circuit (ASIC).
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • unit is not limited to hardware and software.
  • the “unit” may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors.
  • “unit” refers to components such as software components, object-oriented software components, class components, and task components, processors, functions, properties, procedures, subroutines, Includes segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. Components and functions provided within the "unit” may be combined into a smaller number of components and “units” or further separated into additional components and “units”.
  • the expression "based on” as used in this disclosure is used to describe one or more factors that influence the act or action of a decision or judgment, which is described in a phrase or sentence in which the expression is included, and the expression is It does not exclude additional factors that influence the action or action of a decision or judgment.
  • a component when referred to as being “connected” or “connected” to another component, the component may be directly connected to or connected to the other component, or It is to be understood that it may be connected or may be connected via other components.
  • FIG. 1 is a block diagram of a computed tomography apparatus 100 according to various embodiments of the present disclosure.
  • a computed tomography apparatus 100 may include a processor 110 and a gantry 120.
  • the computed tomography apparatus 100 may further include a transfer unit 150 and a power supply unit 160. Even if some of the components shown in FIG. 1 are omitted or substituted, there will be no problem in implementing the various embodiments disclosed in this document.
  • the processor 110 may be a component capable of performing operations or data processing related to control and/or communication of components of the computed tomography apparatus 100.
  • the processor 110 may be operatively connected to, for example, components of the computed tomography apparatus 100.
  • the processor 110 may load commands or data received from other components of the computed tomography apparatus 100 into a memory (not shown), process commands or data stored in the memory, and store result data. have.
  • the computed tomography apparatus 100 may include one or more processors 110.
  • the gantry 120 may be a structure in which a plurality of light sources 130 and a detection device 140 are disposed.
  • the gantry 120 may be a ring-shaped (or tunnel-shaped) structure in which the plurality of light sources 130 and the detection device 140 can rotate around a certain axis.
  • the light source 130 may be an X-ray source capable of emitting X-rays.
  • the light source 130 may irradiate an object with X-rays under the control of the processor 110.
  • the object may be positioned in, for example, a bore (or an inner hole or an inner hole) of the gantry 120.
  • the computed tomography apparatus 100 may include a plurality of light sources 130.
  • the plurality of light sources 130 may be, for example, X-ray light sources using carbon nanotubes (CNTs).
  • the detection device 140 may be an X-ray detector 140 that detects the amount of X-rays (or the intensity of X-rays).
  • the detection device 140 may detect the amount of X-rays transmitted through the object among X-rays irradiated from the light source 130 to the object. When the internal density of the object is not uniform, the amount that the object absorbs may vary according to the direction in which X-rays are irradiated.
  • the detection device 140 measures the amount of X-rays irradiated from various angles as it passes through the object, and the processor 110 determines the density inside the object based on the data measured by the detection device 140, A 3D image may be generated by reconstructing a detailed cross section inside the object using the density inside the object.
  • the computed tomography apparatus 100 may include at least one detection device 140.
  • the computed tomography apparatus 100 may include a gantry 120, a plurality of light sources 130, and a detection device 140.
  • the gantry 120 may include a first rotation device and a second rotation device in a ring shape that share one rotation axis and are rotatable independently of each other.
  • the plurality of light sources 130 may be disposed on the first rotation device at regular intervals, and the detection device 140 may be disposed on the second rotation device.
  • the plurality of light sources 130 may be disposed at regular intervals on the inner surface of the first rotating device to irradiate X-rays to an object located inside the gantry 120.
  • the detection device 140 may be configured to surround the entire inner surface of the second rotating device. In this case, even if any one of the plurality of light sources 130 irradiates X-rays, the detection device 140 may detect the X-rays transmitted through the object.
  • the computed tomography apparatus 100 may include a gantry 120, a plurality of light sources 130, and a plurality of detection devices 140.
  • the gantry 120 may include a single rotating device in the form of a ring that is rotatable about a rotation axis.
  • the plurality of light sources 130 may be disposed on the rotating device at regular intervals.
  • the plurality of detection devices 140 may be disposed at positions facing each other corresponding to each of the plurality of light sources 130.
  • the plurality of light sources 130 may irradiate X-rays to an object loaded on the transfer unit 150, and the plurality of detection devices 140 may detect X-rays transmitted through the object.
  • the plurality of light sources 130 may have the same position on the axis of rotation of the rotating device. For example, positions of the plurality of light sources 130 on the z-axis may be the same.
  • the computed tomography apparatus 100 may include a gantry 120, a plurality of light sources 130, and a plurality of detection devices 140.
  • the gantry 120 may include a ring-shaped rotation device that is rotatable about a rotation axis.
  • the plurality of light sources 130 may be disposed on the rotating device at regular intervals.
  • the plurality of detection devices 140 may be disposed at positions facing each other corresponding to each of the plurality of light sources 130.
  • the plurality of light sources 130 may be disposed so that positions on the rotation axis of the rotation device are spaced apart at regular intervals. For example, positions of the plurality of light sources 130 on the z-axis may be different from each other.
  • the computed tomography apparatus 100 may include a gantry 120, a plurality of light sources 130, and a detection device 140.
  • the gantry 120 may include a ring-shaped rotation device that is rotatable about a rotation axis.
  • the gantry 120 may be divided into a first partial device and a second partial device.
  • the plurality of light sources 130 may be disposed to be spaced apart from the first partial device at regular intervals.
  • the detection device 140 may be disposed on the second partial device.
  • the computed tomography apparatus 100 may include a gantry 120, a plurality of light sources 130, and a detection device 140.
  • the gantry 120 may include a first rotation device and a second rotation device in a ring shape that share one rotation axis and are rotatable independently of each other.
  • the plurality of light sources 130 may be disposed on the first rotating device at regular intervals.
  • the detection device 140 may be disposed in one area of the second rotation device.
  • the computed tomography apparatus 100 may include a gantry 120, a plurality of first light sources 130, a plurality of second light sources 130, and one detection device 140.
  • the gantry 120 may include a first rotation device, a second rotation device, and a third rotation device in a ring shape that share one rotation axis and are rotatable independently of each other.
  • the plurality of first light sources 130 may be disposed at regular intervals on the first rotating device.
  • the plurality of second light sources 130 may be disposed at regular intervals in the second rotating device.
  • the detection device 140 may be disposed in one area of the third rotating device.
  • the transfer unit 150 may be a device capable of moving in the direction of the rotation axis of the gantry 120 from the bore of the gantry 120 having a ring shape.
  • the transport unit 150 may be loaded with an object to be subjected to computed tomography.
  • the power supply device 160 may supply power required to operate each component of the computed tomography apparatus 100.
  • the power supply device 160 may supply power necessary for the plurality of light sources 130 to output X-rays.
  • FIG. 2 is a diagram illustrating a computed tomography apparatus 100 according to various embodiments.
  • FIG. 2 is a diagram schematically showing only essential components in order to explain a method of operating the computed tomography apparatus 100.
  • a computed tomography apparatus 100 includes a plurality of light sources and at least one detection device, irradiates X-rays to an object O using a plurality of light sources, and at least one An X-ray transmitted through the object O may be detected using the detection device of.
  • the object O may be positioned on the transfer unit 150, and the transfer unit 150 may move in the direction of the rotation axis of the gantry 120 through the bore of the gantry 120.
  • a plurality of light sources disposed in the gantry 120 While rotating around the object O X-rays may be irradiated to the object O, and X-rays transmitted through the object O may be detected using at least one detection device.
  • 3A and 3B are diagrams illustrating a method of obtaining a circular computed tomography image of an object according to various embodiments of the present disclosure.
  • the computed tomography apparatus 100 acquires circular computed tomography images of different portions of an object O, and the acquired circular computed tomography images By combining, an image for the entire object O may be generated.
  • the processor 110 of the computed tomography apparatus 100 moves the transport unit 150 loaded with the object O by a preset distance, and repeats the operations of obtaining a computed tomography image of the object O a preset number of times. can do.
  • the processor 110 moves the head of the object O in the bore. , It is possible to stop the transfer unit 150.
  • the processor 110 acquires a circular computed tomography image of the head of the object O using the plurality of light sources 130 and at least one detection device 140 while the transfer unit 150 is stopped. can do. Thereafter, the processor 110 may move the transfer unit 150 by a predetermined distance and then stop it. In this case, as illustrated in FIG. 3B, the chest portion of the object O may be located in the bore.
  • the processor 110 may acquire a circular computed tomography image of the chest portion of the object O using the plurality of light sources 130 and at least one detection device 140.
  • the processor 110 may repeat the above operation a plurality of times to obtain circular computed tomography images of different parts of the object O, and combine the obtained circular computed tomography images to obtain the object O You can create an image of the whole.
  • FIG. 4 is a diagram illustrating a method of obtaining a spiral computed tomography image of an object according to various embodiments of the present disclosure.
  • the computed tomography apparatus 100 acquires a spiral computed tomography image of an object O, and uses the spiral computed tomography image to cover the entire object O. You can create an image for it.
  • the processor 110 of the computed tomography apparatus 100 may constantly move the transport unit 150 on which the object O is loaded at a preset speed.
  • the processor 110 acquires a spiral computed tomography image of the object O using the plurality of light sources 130 and at least one detection device 140 while the transfer unit 150 moves at a preset speed. can do.
  • the processor 110 may generate an image of the entire object O by using a spiral computed tomography image of the object O.
  • 5 to 9 are views for explaining the computed tomography apparatus 100 having the structure of the first embodiment and a computed tomography method thereof.
  • FIG. 5 is a diagram illustrating a computed tomography apparatus 100 according to the structure of the first embodiment
  • FIG. 6 is an x-y cross-sectional view of the gantry according to the structure of the first embodiment.
  • the computed tomography apparatus 100 may include a gantry, a plurality of light sources 531, 533, and 535, and a detection device 540.
  • the gantry may include a first rotation device 521 and a second rotation device 523 in a ring shape that share one rotation axis and are rotatable independently of each other.
  • the plurality of light sources 531, 533, and 535 may be disposed on the first rotating device 521 at regular intervals.
  • the detection device 540 may be configured to completely surround the inner surface of the second rotation device 523.
  • the plurality of light sources may irradiate X-rays to the object O loaded on the transfer unit 550, and the detection device 540 may detect the X-rays transmitted through the object O.
  • the number of the plurality of light sources is three, but the number of the plurality of light sources is not limited thereto, and the number of the plurality of light sources may be two or more than three.
  • the processor 110 is an angular interval at which the plurality of light sources 531, 533, and 535 are disposed in the first rotating device 521. And an angle at which the first rotation device 521 rotates.
  • the processor 110 may determine a value obtained by dividing 360 degrees by the number of the plurality of light sources 531, 533, and 535 as an angular interval at which the plurality of light sources 531, 533, and 535 are disposed in the first rotating device 521, and , A value obtained by dividing 360 degrees by the number of the plurality of light sources 531, 533, and 535 may be determined as an angle at which the first rotating device 521 rotates.
  • the plurality of light sources 531, 533, and 535 may be disposed on the first rotating device 521 at intervals of 120 degrees, and the first The angle at which the rotation device 521 will rotate may be determined by 120 degrees. In this case, even if the first rotating device 521 rotates only 120 degrees, since there are three light sources arranged at 120 degrees intervals, a 3D image of the object O can be generated.
  • the processor may apply X-rays to the object from any one of the plurality of light sources 531, 533, and 535. Even if O) is irradiated, X-rays that have passed through the object O may be detected by the detection device 540.
  • FIG. 7 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the first embodiment. Specifically, FIG. 7 shows the operating states of the plurality of light sources 531, 533, 535, the first rotating device 521, and the transfer unit 550 over time when there are three light sources 531, 533, and 535. It is a graph showing.
  • operation state 1 means a state that rotates in the first rotation direction
  • operation state 0 refers to a state that does not rotate
  • operation state -1 is the first rotation. It may mean a state of rotating in a second rotation direction that is opposite to the direction.
  • operation state 1 refers to a state of irradiating X-rays
  • operation state 0 refers to a state in which X-rays are not irradiated. Can mean state.
  • operation state 1 refers to a state of moving in the positive direction (+ direction) of the rotation axis
  • operation state -1 is a state of moving in the negative direction (-direction) of the rotation axis.
  • the computed tomography apparatus 100 may acquire circular computed tomography images of different parts of an object by using the operation method shown in graph 700, and the acquired circular computed tomography images By combining them, an image of the entire object can be created.
  • the processor 110 may rotate the first rotation device 521 in the first rotation direction by a rotation angle determined based on the number of the plurality of light sources 531, 533, and 535. For example, when the number of the plurality of light sources 531, 533, and 535 is three, the rotation angle of the first rotation device 521 may be determined by 120 degrees. Referring to the graph for the first rotating device 521 of graph 700, the processor 110 from Until the first rotation device 521 can be rotated by 120 degrees in the first rotation direction.
  • the processor 110 may irradiate an object with X-rays through at least one of the plurality of light sources 531, 533, and 535 while the first rotation device 521 is rotated in the first rotation direction. . While the first rotation device 521 rotates in the first rotation direction, the processor 110 alternately illuminates a plurality of light sources 531, 533, and 535 in a preset order for each unit angle to irradiate a plurality of X-rays to the object. You can control the light source. For example, each time the first rotating device 521 rotates 1 degree, the light source to irradiate X-rays may be changed in a preset order.
  • the processor 110 indicates that the first rotating device 521 is 1 While rotating in the direction of rotation, i.e. from The first light source 531, the second light source 533, and the third light source 535 may be controlled to irradiate X-rays to the object alternately in order while rotating until.
  • the processor 110 while the first rotation device 521 rotates in the first rotation direction from 0 degrees to 1/3 degrees, that is, from While rotating to, X-rays may be irradiated to the object through the first light source 531 among the plurality of light sources.
  • the processor 110 rotates the first rotating device 521 from 1/3 to 2/3 degrees, that is, from While rotating to, X-rays may be irradiated to the object through the second light source 533 among the plurality of light sources.
  • the processor 110 rotates the first rotation device 521 from 2/3 degrees to 1 degree, that is, from A plurality of light sources may be controlled to irradiate an object with X-rays through the third light source 535 among the plurality of light sources. Thereafter, the processor 110 may control the plurality of light sources to irradiate the object with X-rays alternately one by one in the order of the first light source 531, the second light source 533, and the third light source 535 again.
  • the first rotation device 521 rotates 1 degree in the first rotation direction
  • the first light source 531, the second light source 533, and the third light source 535 sequentially irradiate X-rays in one sequence.
  • the processor 110 repeats the sequence 120 times at 1-degree intervals while the first rotating device 521 rotates from 0 degrees to 120 degrees to alternately generate X-rays one by one in a preset order.
  • a plurality of light sources can be controlled to irradiate the object.
  • the processor 110 may detect X-rays transmitted through the object through the detection device 540 while the first rotation device 521 rotates in the first rotation direction. In this case, the processor 110 may generate at least one raw image of the object based on the X-rays detected using the detection device 540. The processor 110 may generate a 3D image of the object based on at least one raw image of the object. In this case, the 3D image of the object may be a circular computed tomography image. The processor 110 according to various embodiments may or may not rotate the second rotation device 523 on which the detection device 540 is disposed in the same direction while the first rotation device 521 rotates. .
  • the processor 110 after the first rotation device 521 rotates by a rotation angle determined in the first rotation direction, stops the first rotation device 521, and stops the transfer unit 550. You can move the distance. Referring to the graph for the transfer unit 550 of the graph 700, the processor 110 from It is possible to move the transfer unit 550 to a predetermined distance.
  • the processor 110 is from The plurality of light sources 531, 533, and 535 may not be operated, and the first rotating device 521 may not be rotated.
  • the processor 110 may rotate the first rotation device 521 in a second rotation direction opposite to the first rotation direction by the determined rotation angle. Referring to the graph for the first rotating device 521 of graph 700, the processor 110 from Until, the first rotation device 521 may be rotated by 120 degrees in the second rotation direction.
  • the processor 110 may irradiate an object with X-rays through at least one of the plurality of light sources 531, 533, and 535 while the first rotation device 521 rotates in the second rotation direction. . While the first rotation device 521 rotates in the second rotation direction, the processor 110 alternately illuminates a plurality of light sources 531, 533, and 535 in a preset order for each unit angle to irradiate a plurality of X-rays to the object. You can control the light source. For example, each time the first rotating device 521 rotates 1 degree, the light source to irradiate X-rays may be changed in a preset order.
  • the processor 110 indicates that the first rotating device 521 is in a range of 120 degrees to 119 degrees. 2 While rotating in the direction of rotation, i.e. from During rotation until, the third light source 535, the second light source 533, and the first light source 531 may be controlled to irradiate X-rays to the object alternately in order.
  • the processor 110 is the first rotating device 521 from 120 degrees While rotating in the second direction of rotation up to degrees, i.e.
  • the processor 110 has a first rotating device 521 From degrees While rotating up to degrees, i.e. from While rotating to, X-rays may be irradiated to the object through the second light source 533 among the plurality of light sources.
  • the processor 110 has a first rotating device 521 While rotating from degrees to 119 degrees, i.e. from A plurality of light sources may be controlled to irradiate an object with X-rays through the first light source 531 among the plurality of light sources.
  • the processor 110 may control the plurality of light sources to irradiate the object with X-rays alternately in the order of the third light source 535, the second light source 533, and the first light source 531 again. While the first rotating device 521 rotates 1 degree in the second rotation direction, the third light source 535, the second light source 533, and the first light source 531 sequentially irradiate X-rays in one sequence. Assuming that, the processor 110 repeats the sequence 120 times at intervals of 1 degree while the first rotation device 521 rotates in the second rotation direction from 120 degrees to 0 degrees, thereby generating a plurality of light sources in a preset order.
  • a plurality of light sources may be controlled to irradiate the object with X-rays one by one alternately.
  • the third light source 535, the second light source 533, and the first light source 531 are alternately sequentially irradiated with X-rays to the object.
  • X-rays may be irradiated to the object.
  • the processor 110 may rotate the first rotation device 521 in a first rotation direction by a determined rotation angle, and the first rotation device 521 rotates by a rotation angle determined in the first rotation direction. After that, an operation of moving the transfer unit 550 by a predetermined distance in the rotation axis direction, an operation of rotating the first rotation device 521 in a second rotation direction by a determined rotation angle, and the first rotation device 521 After rotating by a rotation angle determined in the second rotation direction, a cycle including an operation of moving the transfer unit 550 by a preset distance in the rotation axis direction may be repeated a preset number of times. When the cycle is repeated a preset number of times, circular computed tomography images of different parts of the object may be obtained. The processor 110 may acquire a 3D image of the entire object by combining the acquired circular computed tomography images.
  • FIG. 8 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the first embodiment. Specifically, FIG. 8 is a graph showing the operation states of the plurality of light sources 531, 533, and 535, the first rotating device 521, and the transfer unit 550 over time when there are three light sources.
  • the operation state 1 means a state that rotates in the first rotation direction
  • the operation state 0 means a state that does not rotate
  • the operation state -1 means the first rotation. It may mean a state of rotating in a second rotation direction that is opposite to the direction.
  • operation state 1 refers to a state of irradiating X-rays
  • operation state 0 refers to a state in which X-rays are not irradiated. Can mean state.
  • operation state 1 refers to a state moving in the positive direction (+ direction) of the rotation axis
  • operation state -1 is a state moving in the negative direction (-direction) of the rotation axis.
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object by using the operation method shown in graph 800, and use the obtained spiral computed tomography image to You can create a 3D image of the whole.
  • the processor 110 may rotate the first rotation device 521 in the first rotation direction by a rotation angle determined based on the number of the plurality of light sources 531, 533, and 535. For example, when the number of the plurality of light sources is three, the rotation angle of the first rotation device 521 may be determined by 120 degrees. Referring to the graph for the first rotating device 521 of graph 800, the processor 110 from Until the first rotation device 521 can be rotated by 120 degrees in the first rotation direction.
  • the processor 110 may control the transfer unit 550 to move at a preset speed in the rotation axis direction in response to the first rotation device 521 starting rotation in the first rotation direction. .
  • the processor 110 From, it is possible to control the transfer unit 550 to constantly move at a preset speed in the positive direction of the rotation axis.
  • the processor 110 may irradiate an object with X-rays through at least one of the plurality of light sources 531, 533, and 535 while the first rotation device 521 is rotated in the first rotation direction. . While the first rotation device 521 rotates in the first rotation direction, the processor 110 alternately illuminates a plurality of light sources 531, 533, and 535 in a preset order for each unit angle to irradiate a plurality of X-rays to the object. You can control the light source. For example, each time the first rotating device 521 rotates 1 degree, the light source to irradiate X-rays may be changed in a preset order.
  • the processor 110 indicates that the first rotating device 521 is 1 While rotating in the direction of rotation, i.e. from The first light source 531, the second light source 533, and the third light source 535 may be controlled to irradiate X-rays to the object alternately in order while rotating until.
  • the processor 110 while the first rotation device 521 rotates in the first rotation direction from 0 degrees to 1/3 degrees, that is, from While rotating to, X-rays may be irradiated to the object through the first light source 531 among the plurality of light sources.
  • the processor 110 rotates the first rotating device 521 from 1/3 to 2/3 degrees, that is, from While rotating to, X-rays may be irradiated to the object through the second light source 533 among the plurality of light sources.
  • the processor 110 rotates the first rotation device 521 from 2/3 degrees to 1 degree, that is, from A plurality of light sources may be controlled to irradiate an object with X-rays through the third light source 535 among the plurality of light sources. Thereafter, the processor 110 may control the plurality of light sources to irradiate the object with X-rays alternately in the order of the first light source 531, the second light source 533, and the third light source 535 again.
  • the first rotation device 521 rotates 1 degree in the first rotation direction
  • the first light source 531, the second light source 533, and the third light source 535 sequentially irradiate X-rays in one sequence.
  • the processor 110 repeats the sequence 120 times at 1-degree intervals while the first rotating device 521 rotates from 0 degrees to 120 degrees to alternately generate X-rays one by one in a preset order.
  • a plurality of light sources can be controlled to irradiate the object.
  • the processor 110 may detect X-rays transmitted through the object through the detection device 540 while the first rotation device 521 rotates in the first rotation direction. In this case, the processor 110 may generate at least one raw image of the object based on the X-ray detected using the detection device 540. The processor 110 may generate a 3D image of an object based on at least one raw image of the object. In this case, the 3D image of the object may be a spiral computed tomography image of the object.
  • the processor 110 may rotate the first rotation device 521 by a rotation angle determined in the first rotation direction, and then rotate the first rotation device 521 in the first rotation direction by the determined rotation angle. It can be rotated in the second rotation direction, which is the opposite direction. Referring to the graph for the first rotating device 521 of graph 800, the processor 110 from Until, the first rotation device 521 may be rotated by 120 degrees in the second rotation direction. In this case, the processor 110 may still move the transfer unit 550 at a constant speed in the rotation axis direction.
  • the processor 110 may irradiate an object with X-rays through at least one of a plurality of light sources while the first rotation device 521 rotates in the second rotation direction.
  • the processor 110 may control the plurality of light sources to irradiate the object with X-rays while the first rotation device 521 rotates in the second rotation direction, the plurality of light sources alternately in a preset order for each unit angle. For example, each time the first rotating device 521 rotates 1 degree, the light source to irradiate X-rays may be changed in a preset order.
  • the processor 110 indicates that the first rotating device 521 is adjusted from 120 degrees to 119 degrees. 2 While rotating in the direction of rotation, i.e. from While rotating in the second rotation direction until, the third light source 535, the second light source 533, and the first light source 531 may be controlled to irradiate X-rays to the object alternately in order.
  • the processor 110 is the first rotating device 521 from 120 degrees While rotating in the second direction of rotation up to degrees, i.e.
  • the processor 110 has a first rotating device 521 From degrees While rotating up to degrees, i.e. from While rotating to, X-rays may be irradiated to the object through the second light source 533 among the plurality of light sources.
  • the processor 110 has a first rotating device 521 While rotating from degrees to 119 degrees, i.e. from A plurality of light sources may be controlled to irradiate an object with X-rays through the first light source 531 among the plurality of light sources.
  • the processor 110 may control the plurality of light sources to irradiate the object with X-rays alternately in the order of the third light source 535, the second light source 533, and the first light source 531 again.
  • the third light source 535, the second light source 533, and the first light source 531 sequentially irradiate X-rays in one sequence while the first rotation device 521 rotates 1 degree in the second rotation direction.
  • the processor 110 repeats the sequence 120 times at 1-degree intervals while the first rotation device 521 rotates in the second rotation direction from 120 degrees to 0 degrees, and sets a plurality of light sources one by one in a preset order.
  • a plurality of light sources may be controlled to alternately irradiate the object with X-rays.
  • the third light source 535, the second light source 533, and the first light source 531 are alternately sequentially irradiated with X-rays to the object.
  • X-rays may be irradiated to the object.
  • the processor 110 includes an operation of rotating the first rotation device 521 in a first rotation direction by a determined rotation angle while the transfer unit 550 moves at a preset speed in the rotation axis direction and a transfer unit ( While 550 moves at a preset speed in the rotation axis direction, a cycle including an operation of rotating the first rotation device 521 in the second rotation direction by a determined rotation angle may be repeated a preset number of times. When the cycle is repeated a preset number of times, spiral computed tomography images of the object may be obtained. The processor 110 may acquire a 3D image of the entire object by using the obtained spiral computed tomography images.
  • FIG. 9 is a flowchart illustrating an operation of the computed tomography apparatus 100 according to the structure of the first embodiment.
  • the processor 110 of the computed tomography apparatus 100 reduces the rotation angle determined based on the number of the plurality of light sources 531, 533, and 535.
  • the rotation device 521 may be rotated in the first rotation direction.
  • a plurality of light sources 531, 533, and 535 may be disposed in the first rotating device 521 at regular intervals.
  • the determined rotation angle may be a value obtained by dividing 360 degrees by the number of light sources 531, 533, and 535. For example, when the number of the plurality of light sources 531, 533, and 535 is three, the processor 110 may rotate the first rotation device 521 by 120 degrees in the first rotation direction.
  • the processor 110 may transmit X-rays to an object through at least one of the plurality of light sources 531, 533, and 535 while the first rotating device 521 rotates in the first rotation direction. Is irradiated, and X-rays transmitted through the object through the detection device 540 may be detected. While the first rotation device 521 rotates in the first rotation direction, the processor 110 alternates with a plurality of light sources 531, 533, and 535 one by one in a preset order for each unit angle to irradiate a plurality of X-rays to the object. The light sources 531, 533, and 535 of the can be controlled.
  • the detection device 540 may be configured to surround the second rotation device 523.
  • the processor 110 may rotate the second rotation device 523 by a rotation angle determined in the first rotation direction while the first rotation device 521 rotates in the first rotation direction by the determined rotation angle, or 2 Rotating device 523 may not be rotated.
  • Processor 110 according to various embodiments of the present invention, after the first rotation device 521 is rotated by a rotation angle determined in the first rotation direction, the transfer unit 550 on which the object is loaded is moved to the rotation axis of the first rotation device 521. It can be moved as much as a preset amount in the direction.
  • the processor 110 may rotate the first rotation device 521 in a second rotation direction opposite to the first rotation direction by a determined rotation angle in operation 930.
  • the processor 110 may provide X-rays to an object through at least one of the plurality of light sources 531, 533, and 535 while the first rotation device 521 is rotated in the second rotation direction. Is irradiated, and X-rays transmitted through the object through the detection device 540 may be detected. While the first rotation device 521 rotates in the second rotation direction, the processor 110 alternates with a plurality of light sources 531, 533, and 535 one by one in a preset order for each unit angle to irradiate a plurality of X-rays to the object.
  • the light sources 531, 533, and 535 of the can be controlled.
  • the processor 110 may rotate the second rotation device 523 by the rotation angle determined in the second rotation direction while the first rotation device 521 rotates in the second rotation direction by the determined rotation angle, or 2 Rotating device 523 may not be rotated.
  • Processor 110 according to various embodiments of the present invention, after the first rotation device 521 is rotated by a rotation angle determined in the second rotation direction, the transfer unit 550 on which the object is loaded is moved to the rotation axis of the first rotation device 521. It can be moved as much as a preset amount in the direction.
  • 10 to 14 are diagrams for explaining a computed tomography apparatus 100 having a second embodiment structure and a computed tomography method thereof. Contents overlapping with those described in the structure of the first embodiment will be omitted.
  • FIG. 10 is an x-y cross-sectional view of the gantry of the computed tomography apparatus 100 according to the structure of the second embodiment.
  • a computed tomography apparatus 100 may include a gantry, a plurality of light sources 1031, 1033, and 1035, and a plurality of detection devices 1041, 1043, and 1045.
  • the gantry may include a ring-shaped rotation device 1020 that is rotatable about a rotation axis.
  • the plurality of light sources 1031, 1033, and 1035 may be disposed on the rotating device 1020 at regular intervals.
  • the plurality of detection devices 1041, 1043, and 1045 may be disposed at positions facing each other corresponding to each of the plurality of light sources 1031, 1033, and 1035 on the rotating device 1020.
  • the plurality of light sources 1031, 1033, and 1035 may irradiate X-rays to an object loaded in the transfer unit 1050, and the plurality of detection devices 1041, 1043, and 1045 may detect X-rays transmitted through the object.
  • the number of the plurality of light sources is three, but the number of the plurality of light sources is not limited thereto, and the number of the plurality of light sources may be two or more than three.
  • the processor 110 is based on the number of the plurality of light sources 1031, 1033, 1035, the plurality of light sources 1031, 1033, 1035 are arranged in the rotation device 1020 angular interval and rotation The angle at which the device 1020 is rotated can be determined.
  • the processor 110 may determine a value obtained by dividing 360 degrees by the number of light sources as an angular interval at which the plurality of light sources are disposed in the rotating device 1020, and dividing the value by dividing 360 degrees by the number of light sources into the rotating device 1020 ) Can be determined by the rotation angle.
  • the processor 110 may provide a plurality of light sources 1031 , 1033, 1035), even if X-rays are irradiated to the object, the X-rays transmitted through the object may be detected by a detection device at a corresponding location.
  • X-rays transmitted through the object may be detected by the first detection device 1041 disposed at a corresponding position, and the second light source 1033 Among the X-rays irradiated from the object, the X-rays transmitted through the object may be detected by the second detection device 1043 disposed at a corresponding position, and among the X-rays irradiated from the third light source 1035 to the object, X-rays may be detected by the third detection device 1045 disposed at a corresponding position.
  • FIG. 11 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the second embodiment. Specifically, FIG. 11 is a graph showing an operation state of the plurality of light sources 1031, 1033, and 1035, the rotating device 1020, and the transfer unit 1050 over time when there are three light sources.
  • operation state 1 means a state that rotates in the first rotation direction
  • operation state 0 means a state that does not rotate
  • operation state -1 refers to the first rotation direction. It may mean a state of rotating in a second rotation direction that is the opposite direction.
  • operation state 1 means a state in which X-rays are irradiated
  • operation state 0 is a state in which X-rays are not irradiated.
  • operation state 1 means a state moving in the positive direction (+ direction) of the rotation axis
  • operation state -1 is a state moving in the negative direction (- direction) of the rotation axis.
  • the computed tomography apparatus 100 may acquire circular computed tomography images of an object by using the operation method illustrated in graph 1100.
  • the processor 110 may rotate the rotation device 1020 in the first rotation direction by a rotation angle determined based on the number of a plurality of light sources. For example, when the number of the plurality of light sources is three, the rotation angle of the rotation device 1020 may be determined by 120 degrees. Referring to the graph for the rotating device 1020 of graph 1100, the processor 110 from Until the rotation device 1020 can be rotated by 120 degrees in the first rotation direction.
  • the processor 110 may not move the transfer unit 1050 in order to obtain a circular computed tomography image of an object, referring to the graph of the transfer unit 1050 of the graph 1100.
  • the processor 110 may irradiate X-rays to the object through at least one of the plurality of light sources 1031, 1033, and 1035 while the rotating device 1020 rotates in the first rotation direction.
  • the processor 110 may control the plurality of light sources so that all of the plurality of light sources 1031, 1033, and 1035 irradiate X-rays to the object while the rotating device 1020 rotates in the first rotation direction.
  • the processor 110 irradiates X-rays to the object by alternately turning the plurality of light sources 1031, 1033, and 1035 one by one in a preset order for each unit angle. It is possible to control a plurality of light sources so as to be.
  • the processor 110 indicates that the rotating device 1020 is from 0 degrees to 120 degrees. While rotating in the first rotation direction until from During rotation to, X-rays may be irradiated onto the object using all of the first light source 1031, the second light source 1033, and the third light source 1035.
  • the processor 110 alternates one by one in the order of a first light source 1031, a second light source 1033, and a third light source 1035 to irradiate a plurality of X-rays to the object. You can also control the light source. While the first rotating device 1020 rotates 1 degree in the first rotation direction, the first light source 1031, the second light source 1033, and the third light source 1035 are sequentially alternately irradiating X-rays. Assuming a sequence, the processor 110 repeats the sequence 120 times at 1-degree intervals while the first rotating device 1020 rotates from 0 degrees to 120 degrees to generate a plurality of light sources 1031, 1033, and 1035.
  • the plurality of light sources 1031, 1033, and 1035 may be controlled to irradiate the object with X-rays alternately one by one in a set order.
  • the processor 110 may detect X-rays transmitted through an object through the plurality of detection devices 1041, 1043, and 1045 while the rotation device 1020 rotates in the first rotation direction. In this case, the processor 110 may generate at least one raw image of the object based on the X-rays detected using the plurality of detection devices 1041, 1043, and 1045.
  • the processor 110 may generate a 3D image of the object based on at least one raw image of the object. In this case, the 3D image of the object may be a circular computed tomography image.
  • FIG. 12 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the second embodiment. Specifically, FIG. 12 is a graph showing an operation state of the plurality of light sources 1031, 1033, and 1035, the first rotating device 1020, and the transfer unit 1050 over time when there are three light sources.
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object by using the operation method illustrated in graph 1200.
  • the processor 110 may rotate the rotation device 1020 in the first rotation direction by a rotation angle determined based on the number of a plurality of light sources. For example, when the number of the plurality of light sources is three, the processor 110 may determine the rotation angle of the rotating device 1020 by 120 degrees. Referring to the graph for the rotating device 1020 of graph 1200, the processor 110 from Until the first rotation device 1020 can be rotated by 120 degrees in the first rotation direction.
  • the processor 110 may control the transfer unit 1050 to move in the rotation axis direction by a preset distance for a preset time. I can. Referring to the graph for the transfer unit 1050 of the graph 1200, the processor 110 from It is possible to control the transfer unit 1050 to move by a preset distance in the positive direction of the rotation axis.
  • the processor 110 may irradiate an object with X-rays through one of the plurality of light sources 1031, 1033, and 1035 while the rotating device 1020 rotates in the first rotation direction.
  • the processor 110 is from While the rotation device 1020 rotates in the first rotation direction, X-rays may be irradiated onto the object using the first light source 1031. In this case, the second light source 1033 and the third light source 1035 may not irradiate X-rays.
  • the first detection device 1041 disposed at a position facing the first light source 1031 may detect X-rays transmitted through the object.
  • the processor 110 may generate at least one raw image of the object based on the X-rays detected using the first detection device 1041.
  • the processor 110 may rotate the rotating device 1020 in a second rotation direction that is opposite to the first rotation direction.
  • the processor 110 may control the rotation device 1020 to rotate by the rotation angle determined in the second rotation direction after the rotation device 1020 rotates by the rotation angle determined in the first rotation direction.
  • the processor 110 from Until the first rotation device 1020 can be rotated by 120 degrees in the second rotation direction. That is, the processor 110 may return the position of the first rotation device 1020 to the original state before rotation in the first rotation direction.
  • the processor 110 may control the transfer unit 1050 to stop without moving in response to the rotation device 1020 starting to rotate in the second rotation direction. Referring to the graph for the transfer unit 1050 of the graph 1200, the processor 110 from It can be controlled so that the transfer unit 1050 does not move.
  • the processor 110 may control all of the plurality of light sources 1031, 1033, and 1035 not to irradiate X-rays while the rotating device 1020 rotates in the second rotation direction. Referring to the graphs of the first light source 1031, the second light source 1033, and the third light source 1035 of the graph 1200, the processor 110 from Until, the first light source 1031, the second light source 1033, and the third light source 1035 can all be controlled so as not to irradiate X-rays.
  • the processor 110 may repeat the operation of rotating the rotating device 1020 by a rotation angle determined in the first rotation direction and then rotating by the rotation angle determined in the second rotation direction by the number of light sources. I can.
  • the processor 110 may rotate the rotation device 1020 again in the first rotation direction by the determined rotation angle. Referring to the graph for the rotating device 1020 of graph 1200, the processor 110 from Until, the first rotation device 1020 may be rotated again by 120 degrees in the first rotation direction.
  • the processor 110 controls the transfer unit 1050 to move in the rotation axis direction by a preset distance for a preset time. can do. Referring to the graph for the transfer unit 1050 of the graph 1200, the processor 110 from It is possible to control the transfer unit 1050 to move by a preset distance in the positive direction of the rotation axis.
  • the processor 110 may irradiate an object with X-rays through one of the plurality of light sources 1031, 1033, and 1035 while the rotating device 1020 rotates in the first rotation direction.
  • the processor 110 is from While the rotation device 1020 rotates in the first rotation direction, X-rays may be irradiated onto the object using the second light source 1033.
  • the second light source 1033 may be a light source located closest to the first rotation direction from the first light source 1031. In this case, the first light source 1031 and the third light source 1035 may not irradiate X-rays.
  • the second detection device 1043 disposed at a position facing the second light source 1033 may detect X-rays transmitted through the object.
  • the processor 110 may generate at least one raw image of an object based on X-rays detected using the second detection device 1043.
  • the processor 110 may rotate the rotating device 1020 again in a second rotation direction opposite to the first rotation direction. Referring to the graph for the rotating device 1020 of graph 1200, the processor 110 from Until, the first rotation device 1020 can be rotated again by 120 degrees in the second rotation direction.
  • the processor 110 may control the transfer unit 1050 to stop without moving in response to the rotation device 1020 restarting rotation in the second rotation direction. Referring to the graph for the transfer unit 1050 of the graph 1200, the processor 110 from It can be controlled so that the transfer unit 1050 does not move.
  • the processor 110 may control all of the plurality of light sources 1031, 1033, and 1035 to not irradiate X-rays while the rotating device 1020 rotates again in the second rotation direction. Referring to the graphs of the first light source 1031, the second light source 1033, and the third light source 1035 of the graph 1200, the processor 110 from Until, the first light source 1031, the second light source 1033, and the third light source 1035 can all be controlled so as not to irradiate X-rays.
  • Processor 110 according to various embodiments from Until the rotation device 1020 rotates in the first rotation direction, the operation of rotation in the second rotation direction may be repeated once more.
  • the processor 110 is from While the rotation device 1020 is rotated in the first rotation direction, X-rays may be irradiated to the object using the third light source 1035 among the plurality of light sources.
  • the processor 110 may generate at least one raw image of the object, and may generate a spiral computed tomography image of the object based on the at least one raw image.
  • FIG. 13 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the second embodiment. Specifically, FIG. 13 is a graph showing an operation state of the plurality of light sources 1031, 1033, and 1035, the first rotating device 1020, and the transfer unit 1050 over time when there are three light sources.
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object using the operation method shown in graph 1300, and use the obtained spiral computed tomography image to You can create a 3D image of the whole. Contents overlapping with those described in FIG. 12 will be omitted.
  • the processor 110 determines the rotational device 1020 by the determined rotation angle.
  • the rotation device 1020 may be controlled to rotate in the first rotation direction and then repeat the rotation in the second rotation direction.
  • the processor 110 may irradiate X-rays to the object using one of the plurality of light sources 1031, 1033, and 1035 while the rotating device 1020 rotates in the first rotation direction.
  • the processor 110 may control a plurality of light sources to irradiate X-rays to the object in the order of the first light source 1031, the second light source 1033, and the third light source 1035. I can.
  • Processor 110 referring to the graph for the transfer unit 1050 of the graph 1300, from It is possible to control the transfer unit 1050 to move constantly at a preset speed in the positive direction of the rotation axis.
  • the processor 110 may move the transfer unit 1050 again at a preset speed in the negative direction of the rotation axis.
  • the processor 110 from It is possible to control to move the transport unit 1050 to constant at a preset speed in the negative direction of the rotation axis.
  • the processor 110 from Until the rotation device 1020 rotates in the first rotation direction by the determined rotation angle, and then the rotation device 1020 may be controlled to repeat the rotation in the second rotation direction.
  • the processor 110 may irradiate X-rays to the object using one of the plurality of light sources 1031, 1033, and 1035 while the rotating device 1020 rotates in the first rotation direction.
  • the processor 110, from A plurality of light sources may be controlled so that the third light source 1035, the second light source 1033, and the first light source 1031 are sequentially irradiated with X-rays.
  • the processor 110 may generate at least one raw image of the object, and may generate a spiral computed tomography image of the object based on the at least one raw image.
  • the processor 110 of the computed tomography apparatus 100 is rotated by a rotation angle determined based on the number of a plurality of light sources 1031, 1033, and 1035 in operation 1410.
  • the device 1020 can be rotated in a first direction.
  • the processor 110 irradiates X-rays to the object through at least one of the plurality of light sources 1031, 1033, and 1035 while the rotating device 1020 rotates in the first rotation direction.
  • an X-ray transmitted through the object may be detected through one of the plurality of detection devices 1041, 1043, and 1045.
  • the processor 110 may generate at least one raw image of the object based on the X-ray detected through one of the plurality of detection devices 1041, 1043, and 1045.
  • the processor 110 may generate a 3D image of the object by using at least one raw image of the object.
  • the processor 110 may rotate the rotation device 1020 in the second rotation direction by the determined rotation angle in operation 1430.
  • the processor 110 may control all of the plurality of light sources 1031, 1033, and 1035 not to irradiate X-rays while the rotating device 1020 rotates in the second rotation direction by the determined rotation angle.
  • 15A to 16 are diagrams for explaining a computed tomography apparatus 100 having the structure of a third embodiment and a computed tomography method thereof. Contents overlapping with those described in the structure of the second embodiment will be omitted.
  • FIG. 15A is an x-y cross-sectional view of the gantry of the computed tomography apparatus 100 according to the structure of the third embodiment
  • FIG. 15B is a y-z cross-sectional view of the gantry of the structure of the third embodiment.
  • the z-axis arrangement positions of the plurality of light sources are changed in the computed tomography apparatus 100 according to the structure of the second embodiment.
  • a computed tomography apparatus 100 may include a gantry, a plurality of light sources 1531, 1533, and 1535, and a plurality of detection devices 1541, 1543, and 1545.
  • the gantry may include a ring-shaped rotation device 1520 that is rotatable about a rotation axis.
  • the plurality of light sources 1531, 1533, and 1535 may be disposed on the rotating device 1520 at regular intervals.
  • the plurality of detection devices 1541, 1543, 1545 may be disposed at positions facing each other corresponding to the plurality of light sources 1531, 1533, and 1535, respectively.
  • the plurality of light sources 1531, 1533, and 1535 may irradiate X-rays to an object loaded in the transport unit 1550, and the plurality of detection devices 1541, 1543, 1545 may detect X-rays transmitted through the object.
  • the number of the plurality of light sources is three, but the number of the plurality of light sources is not limited thereto, and the number of the plurality of light sources may be two or more than three.
  • the processor 110 is based on the number of the plurality of light sources (1531, 1533, 1535), the plurality of light sources (1531, 1533, 1535) are arranged in the rotation device 1520 angular interval and rotation
  • the angle at which the device 1520 rotates may be determined.
  • the processor 110 may determine a value obtained by dividing 360 degrees by the number of light sources as angular intervals at which the plurality of light sources 1531, 1533, and 1535 are disposed in the rotating device 1520, and determine 360 degrees as the number of light sources.
  • the divided value may be determined as an angle at which the rotating device 1520 rotates.
  • the processor 110 may provide a plurality of light sources 1531.
  • the X-rays transmitted through the object may be detected by a detection device at a corresponding location.
  • X-rays transmitted through the object may be detected by the first detection device 1541 disposed at a corresponding position, and the second light source 1533 Among the X-rays irradiated from the object, the X-rays transmitted through the object may be detected by the second detection device 1543 disposed at a corresponding position, and among the X-rays irradiated from the third light source 1535 to the object, X-rays may be detected by the third detection device 1545 disposed at a corresponding position.
  • a plurality of light sources 1531, 1533, and 1535 may be disposed on the rotation device 1520 with positions on the rotation axis of the rotation device 1520 spaced apart at regular intervals.
  • positions of the plurality of light sources 1531, 1533, and 1535 on the z-axis may be different from each other.
  • a position of the first light source 1531 on the z-axis, a position of the second light source 1533 on the z-axis, and a position of the third light source 1535 on the z-axis may be different from each other.
  • the difference between the position on the z-axis of the first light source 1531 and the position on the z-axis of the second light source 1533 is the difference between the position on the z-axis of the second light source 1533 and the third light source 1535. It can be the same as the position on the z-axis.
  • FIG. 16 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the third embodiment. Specifically, FIG. 16 is a graph showing an operation state of the plurality of light sources 1531, 1533, and 1535, the rotating device 1520, and the transfer unit 1550 over time when there are three light sources.
  • operation state 1 refers to a state that rotates in the first rotation direction
  • operation state 0 refers to a state that does not rotate
  • operation state -1 refers to the first rotation direction. It may mean a state of rotating in a second rotation direction that is the opposite direction.
  • operation state 1 means a state in which X-rays are irradiated
  • operation state 0 is a state in which X-rays are not irradiated.
  • operation state 1 means a state moving in the positive direction (+ direction) of the rotation axis
  • operation state -1 is a state moving in the negative direction (- direction) of the rotation axis.
  • the computed tomography apparatus 100 may acquire spiral computed tomography images of an object by using the operation method illustrated in graph 1600.
  • the processor 110 may rotate the rotating device 1520 in the first rotation direction by a rotation angle determined based on the number of a plurality of light sources. For example, when the number of the plurality of light sources is three, the rotation angle of the rotating device 1520 may be determined by 120 degrees. Referring to the graph for the rotating device 1520 of graph 1600, the processor 110 from Until, the rotating device 1520 can be rotated by 120 degrees in the first rotation direction.
  • Processor 110 referring to the graph of the transfer unit 1550 of the graph 1600, in order to obtain a spiral computed tomography image of the object, from The transfer unit 1550 can be moved at a preset speed in the direction of the rotation axis up to.
  • the transfer unit 1550 is moved together while the rotating apparatus 1520 rotates in the first rotation direction. Even if so, it is possible to obtain a spiral computed tomography image of the object.
  • the processor 110 may irradiate an object with X-rays through at least one of the plurality of light sources 1531, 1533, and 1535 while the rotating device 1520 rotates in the first rotation direction.
  • the processor 110 may control the plurality of light sources so that all of the plurality of light sources 1531, 1533, and 1535 irradiate X-rays to the object while the rotating device 1520 rotates in the first rotation direction.
  • the processor 110 irradiates X-rays to the object one by one while the plurality of light sources 1531, 1533, 1535 alternately in a preset order for each unit angle. It is possible to control a plurality of light sources so as to be.
  • the processor 110 indicates that the rotating device 1520 is from 0 degrees to 120 degrees. While rotating in the first rotation direction until from During rotation until, X-rays may be irradiated onto the object using all of the first light source 1531, the second light source 1533, and the third light source 1535.
  • the processor 110 alternates one by one in the order of a first light source 1531, a second light source 1533, and a third light source 1535 to irradiate a plurality of X-rays to the object.
  • the first light source 1531, the second light source 1533, and the third light source 1535 sequentially irradiate X-rays in one sequence while the first rotating device 1020 rotates 1 degree in the first rotation direction.
  • the processor 110 repeats the sequence 120 times while the first rotating device 1520 rotates from 0° to 120°, alternately rotating a plurality of light sources one by one in a preset order at intervals of 1° It is possible to control a plurality of light sources to irradiate.
  • the processor 110 may detect X-rays transmitted through an object through the plurality of detection devices 1541, 1543, and 1545 while the rotation device 1520 rotates in the first rotation direction.
  • the processor 110 may generate at least one raw image of the object based on the X-rays detected using the plurality of detection devices 1541, 1543, and 1545.
  • the processor 110 may generate a 3D image of the object based on at least one raw image of the object.
  • the 3D image of the object may be a spiral computed tomography image.
  • the processor 110 may rotate the rotation device 1520 in the second rotation direction by the determined rotation angle. That is, the processor 110 may return the position of the rotating device 1520 to a state before rotating in the first rotation direction. Referring to the graph for the rotating device 1520 of graph 1600, the processor 110 from Until, the rotation device 1520 can be rotated by 120 degrees in the second rotation direction.
  • 17 to 21 are diagrams for explaining a computed tomography apparatus 100 having a structure of a fourth embodiment and a computed tomography method thereof.
  • 17 is a diagram illustrating an x-y plan view of the gantry of the computed tomography apparatus 100 according to the structure of the fourth embodiment.
  • the computed tomography apparatus 100 may include a gantry, a plurality of light sources 1731, 1733, 1735, and 1737, and one detection device 1740.
  • the gantry may include a ring-shaped rotating device 1720 that is rotatable about a rotation axis.
  • the gantry may be separable into a first partial device 1721 and a second partial device 1723 according to the separation line X.
  • the second partial device 1722 can be coupled after the object is located inside the first partial device 1721 of the gantry rotating device 1720, the object can be easily positioned inside the gantry. .
  • the rotating device 1720 is divided in half by the separation line X, but the first partial device 1721 and the second partial device 1724 must be based on the center of the rotating device 1720. It does not have to be separated by 180 degrees, but can be separated into various sizes.
  • the first partial device 1721 and the second partial device 1724 may rotate together according to the rotation of the rotating device 1720. .
  • a plurality of light sources 1731, 1733, 1735, and 1737 may be disposed to be spaced apart from the first partial device 1721 at regular intervals.
  • the plurality of light sources may irradiate X-rays onto an object loaded on the transfer unit 1750.
  • the number of the plurality of light sources is four, but the number of the plurality of light sources is not limited thereto, and the number of the plurality of light sources is not limited thereto, and may be two or three, or may be more than four.
  • the detection device 1740 may be disposed on the second partial device 1722.
  • the light source is a point light source
  • the second partial device 1722 is 210 degrees (180 degrees) based on the center of the rotating device 1720. +30 degrees)
  • the detection device 1740 may be configured to completely surround the inner surface of the second partial device 1723.
  • the processor 110 is based on the number of the plurality of light sources, the plurality of light sources (1731, 1733, 1735, 1737) is disposed in the first partial device 1721, the angular interval and rotation device 1720 ) Can determine the rotation angle.
  • the processor 110 may determine a value obtained by dividing 180 degrees by the number of a plurality of light sources as an angular interval at which the plurality of light sources 1731, 1733, 1735, and 1737 are disposed in the first partial device 1721, and a plurality of 180 degrees.
  • a value divided by the number of light sources of may be determined as an angle at which the rotating device 1720 rotates. For example, when the number of the plurality of light sources is four, the plurality of light sources may be disposed at 45° intervals on the first partial device 1721, and an angle at which the rotating device 1720 will rotate may be determined by 45°.
  • the processor 110 may receive an X-ray from any one of a plurality of light sources disposed in the first partial device 1721. Even if is irradiated to the object, X-rays transmitted through the object may be detected by the detection device 1740.
  • FIG. 18 is a graph illustrating a computed tomography method of the computed tomography apparatus 100 according to the structure of the fourth embodiment. Specifically, FIG. 18 is a graph showing operation states of the plurality of light sources 1731, 1733, 1735, 1737, the rotating device 1720, and the transfer unit 1750 over time when there are four light sources.
  • operation state 1 means a state that rotates in the first rotation direction
  • operation state 0 refers to a state that does not rotate
  • operation state -1 refers to the first rotation direction. It may mean a state of rotating in a second rotation direction that is the opposite direction.
  • operation state 1 refers to a state in which X-rays are irradiated
  • operation state 0 may mean a state in which X-rays are not irradiated.
  • operation state 1 means a state moving in the positive direction (+ direction) of the rotation axis
  • operation state -1 is a state moving in the negative direction (- direction) of the rotation axis.
  • the computed tomography apparatus 100 may acquire circular computed tomography images of an object by using the operation method illustrated in graph 1800.
  • the computed tomography apparatus 100 may acquire circular computed tomography images of an object by using the operation method illustrated in graph 1800.
  • the processor 110 may rotate the rotating device 1720 in the first rotation direction by a rotation angle determined based on the number of a plurality of light sources. For example, when the number of the plurality of light sources is four, the rotation angle of the rotating device 1720 may be determined by 45 degrees. Referring to the graph for the rotating device 1720 of graph 1800, the processor 110 from Until the rotation device 1720 can be rotated by 45 degrees in the first rotation direction.
  • the processor 110 may not move the transfer unit 1750 in order to obtain a circular computed tomography image of an object, referring to the graph of the transfer unit 1750 of graph 1800.
  • the processor 110 may irradiate an object with X-rays through at least one of a plurality of light sources 1731, 1733, 1735, and 1737 while the rotating device 1720 rotates in the first rotation direction.
  • the processor 110 includes a plurality of light sources 1731 and 1733 so that all of the light sources 1731, 1733, 1735, and 1737 irradiate X-rays to the object. , 1735, 1737) can be controlled.
  • the processor 110 is a sequence in which the plurality of light sources 1731, 1733, 1735, and 1737 alternately irradiate X-rays to the object in a preset order while the rotating device 1720 rotates in the first rotation direction. It is possible to control a plurality of light sources so as to repeat each unit angle.
  • the processor 110 is a rotating device 1720.
  • the processor 110 While rotating in the first rotation direction from 0 degrees to 45 degrees, i.e. from During rotation to, X-rays may be irradiated onto the object using all of the first light source 11731, the second light source 1733, the third light source 1735, and the fourth light source 1737.
  • the processor 110 alternates one by one in the order of a first light source 1731, a second light source 1733, a third light source 1735, and a fourth light source 1737.
  • the plurality of light sources 1731, 1733, 1735, and 1737 may be controlled to repeat the sequence of irradiating the target with each unit angle.
  • the processor 110 may detect X-rays transmitted through the object through the detection device 1740 while the rotation device 1720 rotates in the first rotation direction. In this case, the processor 110 may generate at least one raw image of the object based on the X-rays detected using the detection device 1740. The processor 110 may generate a 3D image of the object based on at least one raw image of the object. In this case, the 3D image of the object may be a circular computed tomography image.
  • the processor 110 may rotate the rotation device 1720 in the second rotation direction by the determined rotation angle. That is, the processor 110 may return the position of the rotation device 1720 to the original state before rotation in the first rotation direction. Referring to the graph for the rotating device 1720 of graph 1800, the processor 110 from Until the rotating device 1720 can be rotated by 45 degrees in the second rotation direction.
  • FIG. 19 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the fourth embodiment. Specifically, FIG. 19 is a graph showing operation states of the plurality of light sources 1731, 1733, 1735, 1737, the rotating device 1720, and the transfer unit 1750 over time when there are four light sources.
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object by using the operation method illustrated in graph 1900.
  • the processor 110 may rotate the rotating device 1720 in the first rotation direction by a rotation angle determined based on the number of a plurality of light sources. For example, when the number of the plurality of light sources is four, the rotation angle of the rotating device 1720 may be determined by 45 degrees. Referring to the graph for the rotating device 1720 of graph 1900, the processor 110 from Until the first rotation device 1720 can be rotated by 45 degrees in the first rotation direction.
  • the processor 110 may control the transfer unit 1750 to move in the rotation axis direction by a preset distance for a preset time. I can. Referring to the graph for the transfer unit 1750 of graph 1900, the processor 110 from It is possible to control the transport unit 1750 to move by a preset distance in the positive direction of the rotation axis.
  • the processor 110 may irradiate an object with X-rays through one of the plurality of light sources 1731, 1733, 1735, and 1737 while the rotating device 1720 rotates in the first rotation direction.
  • the processor 110 is from While the rotation device 1720 rotates in the first rotation direction, X-rays may be irradiated to the object using the first light source 1173. In this case, the second light source 1733, the third light source 1735, and the fourth light source 1737 may not irradiate X-rays.
  • the detection device 1740 may detect X-rays transmitted through the object.
  • the processor 110 may generate at least one raw image of an object based on the X-rays detected using the detection device 1740.
  • the processor 110 may rotate the rotating device 1720 in a second rotation direction opposite to the first rotation direction.
  • the processor 110 may control the rotation device 1720 to rotate by the rotation angle determined in the second rotation direction after the rotation device 1720 rotates by the rotation angle determined in the first rotation direction.
  • the processor 110 from Until the first rotation device 1720 can be rotated by 45 degrees in the second rotation direction. That is, the processor 110 may return the position of the first rotating device 1720 to the original state before rotating in the first rotation direction.
  • the processor 110 may control the transfer unit 1750 to stop without moving in response to the rotation device 1720 starting to rotate in the second rotation direction. Referring to the graph for the transfer unit 1750 of graph 1900, the processor 110 from It is possible to control the transfer unit 1750 not to move.
  • the processor 110 may control all of the plurality of light sources 1731, 1733, 1735, and 1737 to not irradiate X-rays while the rotating device 1720 rotates in the second rotation direction. Referring to the graphs of the first light source 11731, the second light source 1733, the third light source 1735, and the fourth light source 1737 of the graph 1900, the processor 110 from Until, all of the first light source 11731, the second light source 1733, and the third light source 1735 can be controlled so as not to irradiate X-rays.
  • the processor 110 may repeat an operation in which the rotating device 1720 rotates by a rotation angle determined in the first rotation direction and then rotates by a rotation angle determined in the second rotation direction by the number of light sources. I can.
  • the processor 110 may rotate the rotating device 1720 again in the first rotation direction by the determined rotation angle. Referring to the graph for the rotating device 1720 of graph 1900, the processor 110 from Until, the first rotation device 1720 may be rotated again by 45 degrees in the first rotation direction.
  • the processor 110 controls the transfer unit 1750 to move in the rotation axis direction by a preset distance for a preset time. can do. Referring to the graph for the transfer unit 1750 of graph 1900, the processor 110 from It is possible to control the transport unit 1750 to move by a preset distance in the positive direction of the rotation axis.
  • the processor 110 may irradiate an object with X-rays through one of the plurality of light sources 1731, 1733, 1735, and 1737 while the rotating device 1720 rotates in the first rotation direction.
  • the processor 110 is from While the rotating device 1720 rotates in the first rotation direction, X-rays may be irradiated onto the object using the second light source 1733.
  • the second light source 1733 may be a light source located closest to the first rotation direction from the first light source 1731.
  • the first light source 1731, the third light source 1735, and the fourth light source 1737 may not irradiate X-rays.
  • the detection apparatus 1740 may detect X-rays transmitted through the object.
  • the processor 110 may generate at least one raw image of an object based on the X-rays detected using the detection device 1740.
  • the processor 110 may rotate the rotating device 1720 again in a second rotation direction opposite to the first rotation direction. Referring to the graph for the rotating device 1720 of graph 1900, the processor 110 from Until, the first rotation device 1720 may be rotated again by 45 degrees in the second rotation direction.
  • the processor 110 may control the transfer unit 1750 to stop without moving in response to the rotation device 1720 restarting rotation in the second rotation direction. Referring to the graph for the transfer unit 1750 of graph 1900, the processor 110 from It is possible to control the transfer unit 1750 not to move.
  • the processor 110 may control all of the plurality of light sources 1731, 1733, 1735, and 1737 to not irradiate X-rays while the rotating device 1720 is rotated again in the second rotation direction.
  • the processor 110 from Until, all of the first light source 1731, the second light source 1733, the third light source 1735, and the fourth light source 1737 may be controlled so as not to irradiate X-rays.
  • Processor 110 according to various embodiments from Until the rotation device 1720 rotates in the first rotation direction, the operation of rotation in the second rotation direction may be repeated two more times.
  • the processor 110 is from While the rotation device 1720 rotates in the first rotation direction, X-rays may be irradiated onto the object using the third light source 1735 among the plurality of light sources.
  • the processor 110 is from While the rotation device 1720 rotates in the first rotation direction, X-rays may be irradiated onto the object using the fourth light source 1737 among the plurality of light sources.
  • the processor 110 may generate at least one raw image of the object, and may generate a spiral computed tomography image of the object based on the at least one raw image.
  • FIG. 20 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the fourth embodiment. Specifically, FIG. 20 is a graph showing an operation state of the plurality of light sources 1731, 1733, 1735, 1737, the rotating device 1720, and the transfer unit 1750 over time when there are four light sources.
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object using the operation method shown in graph 1300, and use the obtained spiral computed tomography image to You can create a 3D image of the whole. Descriptions of contents overlapping with those described in FIG. 19 will be omitted.
  • the processor 110 is a rotating device ( The rotation device 1720 may be controlled so that the operation 1720 rotates in the first rotation direction by the determined rotation angle and then repeats the rotation in the second rotation direction.
  • the processor 110 may irradiate the object with X-rays using one of the plurality of light sources 1731, 1733, 1735, and 1737 while the rotating device 1720 rotates in the first rotation direction. For example, as shown in Graph 2000, the processor 110 irradiates X-rays to the object in the order of the first light source 11731, the second light source 1733, the third light source 1735, and the fourth light source 1737.
  • a plurality of light sources 1731, 1733, 1735, and 1737 may be controlled so as to be performed.
  • Processor 110 referring to the graph of the transfer unit 1750 of the graph 2000, from It is possible to control the transfer unit 1750 to move constantly at a preset speed in the positive direction of the rotation axis up to.
  • the processor 110 may move the transfer unit 1750 again at a preset speed in the negative direction of the rotation axis.
  • the processor 110 from It is possible to control the transfer unit 1750 to move constantly at a preset speed in the negative direction of the rotation axis.
  • the processor 110 from Until the rotation device 1720 rotates in the first rotation direction by the determined rotation angle, the rotation device 1720 may be controlled to repeat an operation of rotating in the second rotation direction thereafter.
  • the processor 110 may irradiate the object with X-rays using one of the plurality of light sources 1731, 1733, 1735, and 1737 while the rotating device 1720 rotates in the first rotation direction.
  • the processor 110 from Control a plurality of light sources 1173, 1733, 1735, and 1737 to irradiate X-rays to the object in the order of the fourth light source 1737, the third light source 1735, the second light source 1733, and the first light source 1173 can do.
  • the processor 110 may generate at least one raw image of the object, and may generate a spiral computed tomography image of the object based on the at least one raw image.
  • 21 is a flowchart of the operation of the computed tomography apparatus 100 having the structure of the fourth embodiment.
  • the processor 110 of the computed tomography apparatus 100 first rotates the rotating device 1720 by a rotation angle determined based on the number of light sources in operation 2110. It can be rotated in the direction of rotation.
  • the processor 110 may apply X-rays to the object through at least one of the plurality of light sources 1731, 1733, 1735, and 1737 while the rotating device 1720 rotates in the first rotation direction. You can investigate.
  • the processor 110 may detect X-rays transmitted through the object through the detection device 1740 while the rotation device 1720 rotates in the first rotation direction.
  • the processor 110 may generate at least one raw image of an object based on the X-rays detected through the detection device 1740.
  • the processor 110 may generate a 3D image of the object by using at least one raw image of the object.
  • the processor 110 may rotate the rotating device 1720 in the second rotation direction by the determined rotation angle in operation 2140.
  • the processor 110 may control all of the light sources 1731, 1733, 1735, and 1737 to not irradiate X-rays while the rotation device 1720 is rotated in the second rotation direction by the determined rotation angle.
  • 22 to 26 are views for explaining a computed tomography apparatus 100 having a structure of a fifth embodiment and a computed tomography method thereof. Contents overlapping with those described in the structure of the other embodiment will be omitted.
  • FIG. 22 is an x-y cross-sectional view of the gantry of the computed tomography apparatus 100 according to the structure of the fifth embodiment.
  • the computed tomography apparatus 100 may include a gantry, a plurality of light sources 2231, 2233, and 2235, and a detection device 2240.
  • the gantry may include a first rotation device 2221 and a second rotation device 2223 in a ring shape that share one rotation axis and are rotatable independently of each other.
  • the plurality of light sources 2231, 2233, and 2235 may be disposed on the first rotating device 2221 at regular intervals.
  • the plurality of light sources 2231, 2233, and 2235 may irradiate X-rays onto an object loaded in the transfer unit 2250.
  • the number of the plurality of light sources is three, but the number of the plurality of light sources is not limited thereto, and the number of the plurality of light sources may be two or more than three.
  • the detection device 2240 may be disposed on an area of the second rotation device 2223, and the detection device 2240 may detect X-rays transmitted through the object.
  • the initial position of the second rotating device 2223 may be set to a position that the detection device 2240 can face in response to a specific light source set to irradiate X-rays first among the plurality of light sources 2231, 2233, 2235. I can. For example, if the first light source 2231 among the plurality of light sources 2231, 2233, and 2235 is initially set to irradiate X-rays first, the processor 110 determines that the detection device 2240 is the first light source 2231 A position facing each other may be set as an initial position of the second rotating device 2223.
  • FIG. 23 is a graph illustrating a computed tomography method of the computed tomography apparatus 100 according to the structure of the fifth embodiment. Specifically, FIG. 23 shows the operating states of the plurality of light sources 2231, 2233, 2235, the first rotating device 2221, the second rotating device 2223, and the transfer unit 2250 over time when there are three light sources. It is a graph showing
  • operation state 1 refers to a state that rotates in the first rotation direction
  • operation state 0 refers to a state that does not rotate
  • the operating state -1 may mean a state of rotating in a second rotation direction that is opposite to the first rotation direction.
  • operation state 1 refers to a state where X-rays are irradiated
  • operation state 0 refers to a state in which X-rays are not irradiated.
  • operation state 1 means a state moving in the positive direction (+ direction) of the rotation axis
  • operation state -1 is a state moving in the negative direction (- direction) of the rotation axis.
  • the computed tomography apparatus 100 may acquire circular computed tomography images of an object by using the operation method illustrated in graph 2300.
  • the processor 110 may perform a first operation of rotating the first rotation device 2221 in a first rotation direction by a rotation angle determined based on the number of a plurality of light sources, and a second rotation direction by a determined rotation angle.
  • the first rotating device 2221 may be controlled to repeat the second rotating operation.
  • the processor 110 may determine the rotation angle of the first rotation device 2221 by 120 degrees.
  • the processor 110 may determine the number of times the first rotation device 2221 repeats the first operation and the second operation based on the number of the plurality of light sources. For example, when the number of the plurality of light sources is three, the processor 110 may determine the number of times that the first rotating device 2221 repeats the first operation and the second operation three times.
  • the processor 110 may not move the transfer unit 2250 in order to obtain a circular computed tomography image of an object, referring to the graph of the transfer unit 2250 of graph 2300.
  • the second rotating device 2223 has the same rotational speed as the first rotating device 2221.
  • the second rotation device 2223 may be controlled to rotate in the first rotation direction. Referring to the graph for the second rotating device 2223 of graph 2300, from Until the second rotation device 2223 can be rotated in the first rotation direction. For example, the processor 110 may rotate the second rotation device 2223 in the first rotation direction at the same rotation speed as the first rotation device 2221.
  • the processor 110 may irradiate an object with X-rays through one of a plurality of light sources while the first rotation device 2221 rotates in the first rotation direction.
  • the processor 110 is from Until the first rotation device 2221 rotates in the first rotation direction, X-rays may be irradiated onto the object using the first light source 2231.
  • the second light source 2233 and the third light source 2235 may not irradiate X-rays.
  • the processor 110 may detect X-rays transmitted through the object using the detection device 2240 disposed at a position facing the first light source 2231. I can.
  • the processor 110 may generate at least one raw image of the object based on X-rays detected using the detection device 2240. As above, the processor 110 from Up to, X-rays are irradiated on the object through the second light source 2233, from Up to so far, X-rays may be irradiated to the object through the third light source 2235.
  • the processor 110 may rotate the first rotation device 2221 in the second rotation direction.
  • the processor 110 may control the first rotation device 2221 to rotate by the rotation angle determined in the second rotation direction after the first rotation device 2221 rotates by the rotation angle determined in the first rotation direction.
  • the processor 110 from Until, the first rotation device 2221 may be rotated by 120 degrees in the second rotation direction. That is, the processor 110 may return the position of the first rotation device 2221 to the original state before rotation in the first rotation direction.
  • the processor 110 from Even to rotate the first rotation device 2221 in the second rotation direction by 120 degrees, from Even up to, the first rotation device 2221 may be rotated by 120 degrees in the second rotation direction.
  • the processor 110 may generate at least one raw image of the object, and may generate a circular computed tomography image of the object based on the at least one raw image.
  • FIG. 24 is a graph illustrating a computed tomography method of the computed tomography apparatus 100 according to the structure of the fifth embodiment. Specifically, FIG. 24 shows operating states of the plurality of light sources 2231, 2233, 2235, the first rotating device 2221, the second rotating device 2223, and the transfer unit 2250 over time when there are three light sources. It is a graph showing
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object using the operation method shown in graph 2400, and use the obtained spiral computed tomography image to You can create a 3D image of the whole. Contents overlapping with those described in FIG. 23 will be omitted.
  • the processor 110 is The rotation device may be controlled so that the first rotation device 2221 rotates in the first rotation direction by the determined rotation angle and then repeats the rotation in the second rotation direction.
  • the processor 110 is a second rotation device so that the second rotation device 2223 rotates in the first rotation direction at the same rotational speed as the first rotation device 2221 while the first rotation device 2221 repeats the above operations. (2223) can be controlled.
  • the processor 110 may irradiate the object with X-rays using one of a plurality of light sources while the first rotation device 2221 rotates in the first rotation direction. For example, as shown in graph 2400, the processor 110 may control a plurality of light sources to irradiate X-rays to the object in the order of the first light source 2231, the second light source 2233, and the third light source 2235. I can.
  • the processor 110 may control the transfer unit 2250 to move by a preset distance in the positive direction of the rotation axis while the first rotation device 2221 rotates in the first rotation direction. Referring to the graph for the transfer unit 2250 of graph 2400, the processor 110 from Until, from Until and from The transfer unit 2250 may be moved by a preset distance.
  • the processor 110 may generate at least one raw image of the object, and may generate a spiral computed tomography image of the object based on the at least one raw image.
  • a spiral computed tomography image of the object is obtained. Can be obtained.
  • FIG. 25 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the fifth embodiment. Specifically, FIG. 25 shows the operating states of the plurality of light sources 2231, 2233, 2235, the first rotating device 2221, the second rotating device 2223, and the transfer unit 2250 over time when there are three light sources. It is a graph showing
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object by using the operation method shown in graph 2500, and use the obtained spiral computed tomography image to You can create a 3D image of the whole. Descriptions of contents overlapping with those described in FIG. 24 will be omitted.
  • the processor 110 is The first rotation device 2221 may be controlled so that the first rotation device 2221 rotates in the first rotation direction by the determined rotation angle and then repeats the rotation in the second rotation direction.
  • the processor 110 may irradiate X-rays to the object using one of the plurality of light sources 2231, 2233, and 2235 while the first rotation device 2221 rotates in the first rotation direction.
  • the processor 110 includes a plurality of light sources 2231 to irradiate an object with X-rays in the order of the first light source 2231, the second light source 2233, and the third light source 2235. 2233, 2235) can be controlled.
  • the processor 110 includes the second rotating device 2223 while repeating the operation of rotating the first rotating device 2221 in the first rotating direction by a determined rotating angle and then rotating in the second rotating direction. ) May control the second rotation device 2223 to rotate in the first rotation direction at the same rotational speed as the first rotation device 2221. Referring to the graph for the second rotating device 2223 of graph 2500, the processor 110 from Until the second rotation device 2223 can be rotated in the first rotation direction.
  • Processor 110 referring to the graph for the transfer unit 2250 of the graph 2500, from It is possible to control the transfer unit 2250 to move constantly at a preset speed in the positive direction of the rotation axis.
  • the processor 110 may move the transfer unit 2250 again at a preset speed in the negative direction of the rotation axis. For example, the processor 110 from Until the transfer unit 2250 can be controlled to constantly move at a preset speed in the negative direction of the rotation axis.
  • the processor 110 is from Until the first rotation device 2221 rotates in the first rotation direction by the determined rotation angle, the rotation device may be controlled so that the rotation in the second rotation direction is repeated.
  • the processor 110 may irradiate X-rays to the object using one of the plurality of light sources 2231, 2233, and 2235 while the first rotation device 2221 rotates in the first rotation direction.
  • the processor 110 from The plurality of light sources may be controlled to irradiate X-rays to the object in the order of the third light source 2235, the second light source 2233, and the first light source 2231.
  • the processor 110 may generate at least one raw image of the object, and may generate a spiral computed tomography image of the object based on the at least one raw image.
  • 26 is an operation flowchart of the computed tomography apparatus 100 having the structure of the fifth embodiment.
  • the processor 110 of the computed tomography apparatus 100 in operation 2610, the first rotating device 2221 by the rotation angle determined based on the number of the plurality of light sources.
  • the first rotation device 2221 may be controlled to repeat the first operation of rotating in the first rotation direction and the second operation of rotating in the second rotation direction by the determined rotation angle.
  • the processor 110 may determine, for example, the number of times the first rotating device 2221 repeats the first operation and the second operation based on the number of the plurality of light sources.
  • the processor 110 includes the second rotating device 2223 and the first rotating device 2221 while the first rotating device 2221 repeats the first operation and the second operation.
  • the second rotation device 2223 may be controlled to rotate in the first rotation direction at the same rotation speed.
  • the processor 110 irradiates X-rays to the object through one of the plurality of light sources 2231, 2233, and 2235 while the first rotating device 2221 performs the first operation.
  • X-rays transmitted through the object through the detection device 2240 may be detected.
  • the processor 110 may generate at least one raw image of an object based on X-rays detected through the detection device 2240.
  • the processor 110 may generate a 3D image of the object by using at least one raw image of the object.
  • 27A to 30 are diagrams for explaining a computed tomography apparatus 100 having the structure of a sixth embodiment and a computed tomography method thereof. Contents overlapping with those described in the structure of the other embodiment will be omitted.
  • FIG. 27A is an x-y cross-sectional view of the gantry of the computed tomography apparatus 100 according to the structure of the sixth embodiment
  • FIG. 27B is a y-z cross-sectional view of the gantry of the structure of the sixth embodiment.
  • the computed tomography apparatus 100 includes a gantry, a plurality of first light sources 273, 2732, and 2733, a plurality of second light sources 2734, 2735, 2736, and one detection.
  • Device 2740 may be included.
  • the gantry may include a first rotation device 2721, a second rotation device 2722, and a third rotation device 2725 in a ring shape that share one rotation axis and are rotatable independently of each other.
  • the plurality of first light sources 273, 2732, and 2733 may be disposed on the first rotating device 2721 at regular intervals.
  • the plurality of second light sources 2734, 2735, and 2736 may be disposed at regular intervals on the second rotating device 2923.
  • the plurality of first light sources 273, 2732, and 2733 and the plurality of second light sources 2734, 2735, and 2736 may irradiate X-rays to an object loaded on the transfer unit 2750.
  • the number of the plurality of first light sources is 3 and the number of the plurality of second light sources is 3, but the number of the plurality of first light sources and the number of the plurality of second light sources are It is not limited thereto.
  • the detection device 2740 may be disposed in a region of the third rotation device 2725, and the detection device 2740 may detect X-rays that have passed through the object.
  • the initial position of the third rotating device 2725 is that the detection device 2740 first irradiates X-rays among the plurality of first light sources 271, 2732, 2733 and the plurality of second light sources 2734, 2735, 2736. It may be set to a position facing each other in response to a specific light source set to be. For example, when the light source 1 (2731) is initially set to irradiate X-rays first, the processor 110 determines a position where the detection device 2740 can face each other in response to the light source 1 (2731). It can be set to the initial position of (2725).
  • the arrangement plane of the first rotation device 2721, the arrangement plane of the second rotation device 2923, and the arrangement plane of the third rotation device 2725 may be arranged parallel to each other. have.
  • positions of the plurality of first light sources 273, 2732, and 2733 on the z-axis may be different from positions of the plurality of second light sources 273, 2735, and 2736 on the z-axis.
  • the positions of light source 1 (2731), light source 2 (2732), and light source 3 (2733) on the z-axis are positions of light source 2 (2734), light source b (2735), and light source c (2736) on the z-axis. And can be different from each other.
  • FIG. 28 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the sixth embodiment. Specifically, FIG. 28 shows a plurality of first light sources 273, 2732, and 2733, a plurality of second light sources 2734, 2735, 2736, and a first, when the plurality of first light sources and the plurality of second light sources are three, respectively. It is a graph showing the operating states of the rotating device 2721, the second rotating device 2722, the third rotating device 2725, and the transfer unit 2750 over time.
  • operation state 1 refers to a state rotating in the first rotation direction
  • operation state 0 is It means a non-rotating state
  • the operating state -1 may mean a state of rotating in a second rotation direction opposite to the first rotation direction.
  • operation state 1 is X-ray irradiation.
  • the operation state 0 may mean a state in which X-rays are not irradiated.
  • operation state 1 means a state moving in the positive direction (+ direction) of the rotation axis
  • operation state -1 is a state moving in the negative direction (- direction) of the rotation axis.
  • the computed tomography apparatus 100 may acquire circular computed tomography images of an object by using the operation method illustrated in graph 2800.
  • the processor 110 includes a first rotation device 2721 by a rotation angle determined based on the number of a plurality of first light sources 273, 2732, 2733 and a plurality of second light sources 2734, 2735, 2736.
  • the first rotation device 2721 may be controlled to repeat the first operation of rotating) in the first rotation direction and the second operation of rotating in the second rotation direction by the determined rotation angle.
  • the processor 110 may determine a value obtained by dividing 360 degrees by the number of the plurality of first light sources 273, 2732, 2733 and the plurality of second light sources 2734, 2735, 2736 as the rotation angle of the first device.
  • the processor 110 is the first rotating device 2721 ) Can be determined by 60 degrees.
  • the first rotating device 2721 is based on the number of the plurality of first light sources 273, 2732, 2733 and the plurality of second light sources 2734, 2735, 2736. It is possible to determine the number of times the operation and the second operation are repeated. For example, when the number of the plurality of first light sources 271, 2732, and 2733 and the number of the plurality of second light sources 2734, 2735, and 2736 are 3, respectively, the processor 110 is the first rotating device 2721 The number of times of repeating the first operation and the second operation may be determined three times.
  • the processor 110 performs a second rotation to repeat a third operation of rotating the second rotation device 2722 in a second rotation direction and a fourth operation of rotating the first rotation direction by the determined rotation angle.
  • the device 2722 can be controlled.
  • the processor 110 may control the second rotation device 2722 to rotate at the same rotational speed as the first rotation device 2721.
  • the first operation of the first rotating device 2721 and the third operation of the second rotating device 2722 are performed simultaneously with each other, and the second operation and the second rotation of the first rotating device 2721
  • the fourth operation of the device 2722 may be performed simultaneously with each other. That is, the first rotation device 2721 and the second rotation device 2923 may rotate in different directions. For example, while the processor 110 rotates the first rotation device 2721 in the first rotation direction, the second rotation device 2722 rotates in the second rotation direction, and the first rotation device 2721 2 While rotating in the rotation direction, the second rotation device 2722 may rotate in the first rotation direction.
  • the third rotation device 2725 may be controlled so that the third rotation device 2725 rotates in the first rotation direction at the same rotational speed as the first rotation device 2721 and the second rotation device 2923.
  • the detection device 2740 disposed in the third rotating device 2725 is disposed at a position facing the light source 1 271, from Until, the third rotation device 2725 may rotate in the first rotation direction with the same rotational speed as the first rotation device 2721 and the second rotation device 2923.
  • the detection device ( 2740) may be located at a place facing a specific light source that always irradiates X-rays. Therefore, the detection device 2740 from X-rays that have passed through the object up to can be detected.
  • the processor 110 may not move the transfer unit 2750 in order to obtain a circular computed tomography image of an object, referring to the graph of the transfer unit 2750 of graph 2800.
  • the processor 110 may include a plurality of first light sources while the first rotating device 2721 rotates in a first rotation direction, that is, while the first rotating device 2721 performs a first operation. 2731, 2732, and 2733), the object may be irradiated with X-rays.
  • the processor 110 is from Until the first rotation device 2721 rotates in the first rotation direction, X-rays may be irradiated onto the object using the light source 1 2731.
  • the light source 2 (2732) and the light source 3 (2733) may not irradiate X-rays
  • the plurality of second light sources (2734, 2735, 2736) may also not irradiate X-rays.
  • the processor 110 may detect X-rays transmitted through the object using the detection device 2740 while the light source 1 273 is irradiating X-rays.
  • the processor 110 may generate at least one raw image of an object based on the X-rays detected using the detection device 2740. As above, the processor 110 from Until then, X-rays are irradiated on the object using only light source 2 (2732), from Up to so far, X-rays may be irradiated to the object using only the light source 3 2733.
  • the processor 110 includes a plurality of second light sources (eg, while the second rotating device 2722 rotates in the first rotation direction, that is, while the second rotating device 2722 performs a fifth operation). 2734, 2735, 2736) through one of the object may be irradiated with X-rays. The processor 110 is from Until the second rotation device 2722 rotates in the first rotation direction, X-rays may be irradiated to the object using the light source 2 2734.
  • a plurality of second light sources eg, while the second rotating device 2722 rotates in the first rotation direction, that is, while the second rotating device 2722 performs a fifth operation.
  • 2734, 2735, 2736 through one of the object may be irradiated with X-rays.
  • the processor 110 is from Until the second rotation device 2722 rotates in the first rotation direction, X-rays may be irradiated to the object using the light source 2 2734.
  • the light source b (2735) and the light source c (2736) may not irradiate X-rays, and the plurality of first light sources (2731, 2732, 2733) may also not irradiate X-rays.
  • the processor 110 may detect X-rays transmitted through the object by using the detection device 2740 while the light source 22734 irradiates X-rays.
  • the processor 110 may generate at least one raw image of an object based on the X-rays detected using the detection device 2740.
  • the processor 110 from Up to, X-rays are irradiated on the object using only the light source b (2735), from Up to, X-rays may be irradiated onto the object using only the light source c 2736.
  • the processor 110 may generate at least one raw image of the object, and may generate a circular computed tomography image of the object based on the at least one raw image.
  • the first rotating device 2721 is rotating in the second rotating direction, that is, while the first rotating device 2721 is returning to its original state before rotating in the first rotating direction.
  • the second rotation device 2722 may rotate in the first rotation direction to irradiate X-rays using a plurality of second light sources 2734, 2735, and 2736.
  • FIG. 29 is a graph showing a computed tomography method of the computed tomography apparatus 100 according to the structure of the sixth embodiment. Specifically, FIG. 29 shows a plurality of first light sources 273, 2732, 2733, a plurality of second light sources 2734, 2735, 2736, a first rotating device 2721, a second rotating device 2923, and a third rotation. It is a graph showing the operation state of the device 2725 and the transfer unit 2750 over time.
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of an object using the operation method shown in graph 2900, and use the obtained spiral computed tomography image to You can create a 3D image of the whole. Contents overlapping with those described in FIG. 29 will be omitted.
  • the processor 110 rotates in the first rotation direction by the determined rotation angle, and then in the second rotation direction.
  • the first rotating device 2721 may be controlled to repeat the operation.
  • the processor 110 rotates in the second rotation direction by a rotation angle determined at the same rotation speed as the first rotation device 2721 while the first rotation device 2721 repeats the above operations.
  • the second rotation device 2722 may be controlled to repeat the rotation in the first rotation direction.
  • the processor 110 may irradiate an object with X-rays using one of the plurality of first light sources 2731, 2732, and 2733 while the first rotating device 2721 rotates in the first rotation direction. Also, while the second rotation device 2722 rotates in the first rotation direction, X-rays may be irradiated to the object using one of the plurality of second light sources 2734, 2735, and 2736.
  • the processor 110 includes light source 1 (2731), light source 2 (2734), light source 2 (2732), light source b (2735), light source 3 (2733), and light source c (2736). ), a plurality of first light sources 273, 2732, and 2733 and a plurality of second light sources 2734, 2735, 2736 may be controlled to irradiate X-rays to the object in the order of ).
  • the processor 110 may generate at least one raw image of the object, and may generate a spiral computed tomography image of the object based on the at least one raw image.
  • Fig. 30 is an operation flowchart of the computed tomography apparatus 100 having the structure of the sixth embodiment.
  • the first rotating device 2721 is a plurality of first light sources (2731, 2732, 2733) And a first operation of rotating in the first rotation direction by a rotation angle determined based on the number of the plurality of second light sources 2734, 2735, 2736 and a second operation of rotating in the second rotation direction by the determined rotation angle.
  • the first rotating device 2721 can be controlled.
  • the processor 110 includes a third operation in which the second rotation device 2722 rotates in a second rotation direction by a determined rotation angle, and a third operation in which the second rotation device 2722 rotates in the first rotation direction by the determined rotation angle. 4 It is possible to control the second rotating device 2722 to repeat the operation.
  • the first operation of the first rotating device 2721 and the third operation of the second rotating device 2722 are performed simultaneously, and the second operation of the first rotating device 2721 and the second rotating device 2722 are performed. Four operations can be performed simultaneously with each other.
  • the processor 110 causes the third rotation device 2725 to rotate in the first rotation direction at the same rotational speed as the first rotation device 2721 and the second rotation device 2722.
  • the third rotation device 2725 can be controlled.
  • the processor 110 applies X-rays to the object through one of the plurality of first light sources 271, 2732, and 2733 while the first rotating device 2721 performs a first operation. After irradiation, while the second rotation device 2722 performs the fourth operation, X-rays may be irradiated to the object through one of the plurality of second light sources 2734, 2735, and 2736.
  • the processor 110 may detect an X-ray transmitted through an object through the detection device 2740 in operation 3050.
  • the processor 110 may generate at least one raw image of an object based on the X-rays detected through the detection device 2740.
  • the processor 110 may generate a 3D image of the object by using at least one raw image of the object.
  • 31A and 31B are diagrams illustrating a method of adjusting a visible area of the computed tomography apparatus 100.
  • 32 is a diagram illustrating a method of adjusting a visible region using a plurality of light sources.
  • the visible area may represent an area in which X-rays transmitted through the object O can be detected.
  • a viewable area may be determined by an irradiation angle of a currently operating light source 3133 among a plurality of light sources 3131, 3132, 3133, and 3134. I can.
  • the visible region may be determined by the irradiation angle of the light source.
  • the detection device 3140 may be positioned in the visible region to detect X-rays transmitted through the object O. For example, when the computed tomography apparatus 100 attempts to acquire a computed tomography image of an object O in a narrow area, the visible area may be narrowed.
  • a viewable area when obtaining a computed tomography image of an object O in a wide area, a viewable area may be set wider than an irradiation angle of a light source.
  • the detection device 3140 while moving the detection device 3140 from the first position 3140a to the second position 3140b, it is possible to detect X-rays that have passed through the object O.
  • the amount of X-rays exposed to the object O can be reduced.
  • the computed tomography apparatus 100 includes a plurality of light sources 3131, 3132, 3133, and 3134 even when some of the light sources are not in positions where the detection device 3140 faces each other. ), you can adjust the visible area. In this case, a computed tomography image of the object O may be acquired without moving the detection device 3140.
  • FIG 33 is a diagram illustrating a computed tomography apparatus 100 according to various embodiments of the present disclosure.
  • the power supply device 160 of the computed tomography apparatus 100 may be disposed outside the gantry 120.
  • the power supply 160 may be connected to a plurality of light sources 130 by cables.
  • the cable may be made of a material that does not bend.
  • the plurality of light sources 130 may be supplied with power from the power supply device 160 through the metal part 135.
  • the metal part 135 may be molded using an insulating material. I can.
  • the insulating material may be, for example, insulating oil or silicon.
  • 34A to 35B are diagrams illustrating a structure of a computed tomography apparatus 100 according to various embodiments of the present disclosure.
  • FIG. 34A is an x-y cross-sectional view of the gantry 3420 of the computed tomography apparatus 100 according to various embodiments
  • FIG. 34B is a schematic diagram illustrating a y-z cross-sectional view of the gantry 3420.
  • the computed tomography apparatus 100 may include a gantry 3420 including a first rotating device 3421 and a second rotating device.
  • a plurality of light sources 3430 may be disposed at regular intervals in the first rotating device 3421.
  • the detection device 3440 may be disposed in the second rotation device, and the detection device 3440 may be configured to surround the second rotation device.
  • the plurality of light sources 3430 is described as having eight, but the number of the plurality of light sources is not limited thereto. When the plurality of light sources is 8, the plurality of light sources may be disposed at an interval of 45 degrees in the first rotating device.
  • positions of the plurality of light sources 3430 on the z-axis may be different from each other.
  • a plurality of light sources 3430 may be arranged as shown in FIG. 34B.
  • the structure of the first rotation device 3421 may be changed by applying a force to the first rotation device 3421 in which a plurality of light sources 3430 are disposed in the z-axis direction.
  • the computed tomography apparatus 100 may acquire a spiral computed tomography image of the object.
  • the method can also be implemented as computer-readable code on a computer-readable recording medium.
  • the computer-readable recording medium includes all types of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media may include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the computer-readable recording medium is distributed over a computer system connected through a network, and computer-readable codes can be stored and executed in a distributed manner.
  • functional programs, codes, and code segments for implementing the above embodiments can be easily inferred by programmers in the technical field to which the present disclosure belongs.

Abstract

다양한 실시예에 따른 컴퓨터 단층 촬영 장치는, 하나의 회전 축을 공유하고 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치, 제2 회전 장치 및 제3 회전 장치를 포함하는 갠트리, 상기 제1 회전 장치에 일정한 간격으로 배치되고, 대상체에 엑스선을 조사하도록 구성된 복수의 제1 광원, 상기 제2 회전 장치에 일정한 간격으로 배치되고, 대상체에 엑스선을 조사하도록 구성된 복수의 제2 광원, 상기 제3 회전 장치의 일 영역에 배치되고, 상기 대상체를 투과한 엑스선을 검출하도록 구성된 검출 장치 및 하나 이상의 프로세서를 포함할 수 있다.

Description

복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
본 개시는 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법에 관한 것이다.
컴퓨터 단층 촬영(computed tomography, CT)은 비침습적인 생체 영상화 촬영 방법이다. 컴퓨터 단층 촬영 장치는 대상체에 엑스선을 여러 방향에서 조사하고, 대상체를 투과한 일부 엑스선을 검출 장치로 검출하며, 검출 장치의 출력 데이터를 전기 신호로 변환해서 영상을 재구성함으로써 대상체의 컴퓨터 단층 영상을 획득할 수 있다. 일반적으로 컴퓨터 단층 촬영 장치는 엑스선원(X-ray source)이 배치된 고리 형태의 갠트리(gantry) 내부에 대상체가 위치하고, 갠트리가 회전하는 동안 엑스선을 대상체에 조사함으로써 대상체에 대한 단면 영상을 획득하고, 대상체에 대한 단면 영상을 재구성하여 대상체에 대한 3차원 입체 영상을 획득할 수 있다.
하나의 광원(예: 엑스선원)을 사용하는 컴퓨터 단층 촬영 장치는 대상체의 컴퓨터 단층 영상을 획득하기 위해서 대상체 주위를 360도 회전 하면서 엑스선을 조사해야 한다. 하나의 광원이 배치된 갠트리의 회전 각도가 커지는 경우, 갠트리에 연결된 선들(예: 광원에 전원을 공급하기 위한 선)의 꼬임 현상이 발생할 수 있다.
광원이 엑스선을 조사하기 위해서 고전력이 필요하므로 복수의 광원을 사용하는 컴퓨터 단층 촬영 장치의 경우, 복수의 광원들을 동시에 구동하지 못할 수 있다. 상기의 경우, 복수의 광원의 배치 및 엑스선을 조사하는 순서를 적절하게 설정해야만 대상체에 대한 컴퓨터 단층 촬영 영상을 획득할 수 있다.
본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치는, 하나의 회전 축을 공유하고 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치, 제2 회전 장치 및 제3 회전 장치를 포함하는 갠트리; 상기 제1 회전 장치에 일정한 간격으로 배치되고, 대상체에 엑스선을 조사하도록 구성된 복수의 제1 광원; 상기 제2 회전 장치에 일정한 간격으로 배치되고, 대상체에 엑스선을 조사하도록 구성된 복수의 제2 광원; 상기 제3 회전 장치의 일 영역에 배치되고, 상기 대상체를 투과한 엑스선을 검출하도록 구성된 검출 장치; 및 하나 이상의 프로세서를 포함할 수 있다. 상기 하나 이상의 프로세서는, 상기 제1 회전 장치가 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수에 기초하여 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 제1 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 제2 동작을 반복하도록 상기 제1 회전 장치를 제어하고, 상기 제2 회전 장치가 상기 결정된 회전 각도만큼 상기 제2 회전 방향으로 회전하는 제3 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향으로 회전하는 제4 동작을 반복하도록 상기 제2 회전 장치를 제어하고, 상기 제1 회전 장치가 상기 제1 동작 및 상기 제2 동작을 반복하고, 상기 제2 회전 장치가 상기 제3 동작 및 상기 제4 동작을 반복하는 동안, 상기 제3 회전 장치가 상기 제1 회전 장치 및 상기 제2 회전 장치와 동일한 회전 속력으로 상기 제1 회전 방향으로 회전하도록 상기 제3 회전 장치를 제어하고, 상기 제1 회전 장치가 상기 제1 동작을 수행하는 동안 상기 복수의 제1 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하고, 상기 제2 회전 장치가 상기 제4 동작을 수행하는 동안 상기 복수의 제2 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하며, 상기 검출 장치를 통해 상기 대상체를 투과한 엑스선을 검출하도록 구성될 수 있다.
본 개시의 다양한 실시예에 따른 하나의 회전 축을 공유하고 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치, 제2 회전 장치 및 제3 회전 장치를 포함하는 갠트리, 상기 제1 회전 장치에 일정한 간격으로 배치되고 대상체에 엑스선을 조사하도록 구성된 복수의 제1 광원, 상기 제2 회전 장치에 일정한 간격으로 배치되고 대상체에 엑스선을 조사하도록 구성된 복수의 제2 광원, 상기 제3 회전 장치의 일 영역에 배치되고 상기 대상체를 투과한 엑스선을 검출하도록 구성된 검출 장치를 포함하는 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법은, 상기 제1 회전 장치가 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수에 기초하여 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 제1 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 제2 동작을 반복하도록 상기 제1 회전 장치를 제어하는 동작; 상기 제2 회전 장치가 상기 결정된 회전 각도만큼 상기 제2 회전 방향으로 회전하는 제3 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향으로 회전하는 제4 동작을 반복하도록 상기 제2 회전 장치를 제어하는 동작; 상기 제3 회전 장치가 상기 제1 회전 장치 및 상기 제2 회전 장치와 동일한 회전 속력으로 상기 제1 회전 방향으로 회전하도록 상기 제3 회전 장치를 제어하는 동작; 상기 제1 회전 장치가 상기 제1 동작을 수행하는 동안 상기 복수의 제1 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하고, 상기 제2 회전 장치가 상기 제4 동작을 수행하는 동안 상기 복수의 제2 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하는 동작; 및 상기 검출 장치를 통해 상기 대상체를 투과한 엑스선을 검출하는 동작을 포함할 수 있다.
본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치는 대상체에 엑스선을 조사할 수 있는 복수의 광원을 포함하므로, 갠트리의 회전 각도 범위를 줄일 수 있다. 갠트리의 회전 각도 범위를 줄일 수 있으므로, 컴퓨터 단층 촬영 장치의 안정성을 높일 수 있다.
본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치는 광원 및 검출 장치의 개수 및 배치 위치에 따라 복수의 광원들의 엑스선 조사 순서를 설정함으로써, 컴퓨터 단층 촬영 장치의 구조 별로 최적의 촬영 방법을 이용하여 대상체에 대한 컴퓨터 단층 촬영 영상을 획득할 수 있다.
도 1은 본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치의 블록도이다.
도 2는 다양한 실시예에 따른 컴퓨터 단층 촬영 장치를 도시한 도면이다.
도 3a 및 3b는 본 개시의 다양한 실시예에 따른 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 획득하는 방법을 도시한 도면이다.
도 4는 본 개시의 다양한 실시예에 따른 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득하는 방법을 도시한 도면이다.
도 5는 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치를 도시한 도면이고, 도 6은 제1 실시예 구조에 따른 갠트리의 x-y 평면 단면도이다.
도 7은 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 8은 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 9는 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 동작 흐름도이다.
도 10는 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 갠트리의 x-y 평면 단면도이다.
도 11은 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 12는 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 13은 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 14는 제2 실시예 구조를 갖는 컴퓨터 단층 촬영 장치의 동작 흐름도이다.
도 15a는 제3 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 갠트리의 x-y 평면 단면도이고, 도 15b는 제3 실시예 구조에 따른 갠트리의 y-z 평면 단면도이다.
도 16은 제3 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 17은 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 갠트리의 x-y 평면도를 도시한 도면이다.
도 18은 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 19는 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 20은 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 21은 제4 실시예 구조를 갖는 컴퓨터 단층 촬영 장치의 동작 흐름도이다.
도 22는 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 갠트리의 x-y 평면 단면도이다.
도 23은 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 24는 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 25는 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 26은 제5 실시예 구조를 갖는 컴퓨터 단층 촬영 장치의 동작 흐름도이다.
도 27a는 제6 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 갠트리의 x-y 평면 단면도이고, 도 27b는 제6 실시예 구조에 따른 갠트리의 y-z 평면 단면도이다.
도 28은 제6 실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 29는 제6실시예 구조에 따른 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법을 도시한 그래프이다.
도 30은 제6 실시예 구조를 갖는 컴퓨터 단층 촬영 장치의 동작 흐름도이다.
도 31a 및 도 31b는 컴퓨터 단층 촬영 장치의 가시 영역을 조정하는 방법을 도시한 도면이다.
도 32는 복수의 광원을 이용하여 가시 영역을 조정하는 방법을 도시한 도면이다.
도 33은 본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치를 도시한 도면이다.
도 34a는 다양한 실시예에 따른 컴퓨터 단층 촬영 장치의 갠트리의 x-y 평면 단면도이고, 도 34b는 갠트리의 y-z 단면도를 간략하게 도시한 도면이다.
도 35a는 다양한 실시예에 따른 컴퓨터 단층 촬영 장치의 갠트리의 x-y 평면 단면도이고, 도 35b는 갠트리의 y-z 단면도를 간략하게 도시한 도면이다.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.
본 개시에서 사용되는 용어 "부"는, 소프트웨어, 또는 FPGA(field-programmable gate array), ASIC(application specific integrated circuit)과 같은 하드웨어 구성요소를 의미한다. 그러나, "부"는 하드웨어 및 소프트웨어에 한정되는 것은 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고, 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서, "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세서, 함수, 속성, 프로시저, 서브루틴, 프로그램 코드의 세그먼트, 드라이버, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조, 테이블, 어레이 및 변수를 포함한다. 구성요소와 "부" 내에서 제공되는 기능은 더 작은 수의 구성요소 및 "부"로 결합되거나 추가적인 구성요소와 "부"로 더 분리될 수 있다.
본 개시에서 사용되는 "~에 기초하여"라는 표현은, 해당 표현이 포함되는 어구 또는 문장에서 기술되는, 결정, 판단의 행위 또는 동작에 영향을 주는 하나 이상의 인자를 기술하는데 사용되며, 이 표현은 결정, 판단의 행위 또는 동작에 영향을 주는 추가적인 인자를 배제하지 않는다.
본 개시에서, 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 경우, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결될 수 있거나 접속될 수 있는 것으로, 또는 새로운 다른 구성요소를 매개로 하여 연결될 수 있거나 접속될 수 있는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
도 1은 본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 블록도이다.
도 1을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 프로세서(110) 및 갠트리(120)(gantry)를 포함할 수 있다. 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 이송부(150) 및 전원 공급 장치(160)를 더 포함할 수 있다. 도 1에 도시된 구성 중 일부가 생략 또는 치환되더라도 본 문서에 개시된 다양한 실시예를 구현함에는 지장이 없을 것이다.
다양한 실시예에 따른 프로세서(110)는 컴퓨터 단층 촬영 장치(100)의 각 구성 요소들의 제어 및/또는 통신에 관한 연산이나 데이터 처리를 수행할 수 있는 구성일 수 있다. 프로세서(110)는, 예를 들어, 컴퓨터 단층 촬영 장치(100)의 구성 요소들과 작동적으로 연결될 수 있다. 프로세서(110)는 컴퓨터 단층 촬영 장치(100)의 다른 구성 요소로부터 수신된 명령 또는 데이터를 메모리(미도시)에 로드(load)하고, 메모리에 저장된 명령 또는 데이터를 처리하고, 결과 데이터를 저장할 수 있다. 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 하나 이상의 프로세서(110)를 포함할 수 있다.
다양한 실시예에 따른 갠트리(120)는 복수의 광원(130) 및 검출 장치(140)가 배치된 구조물일 수 있다. 갠트리(120)는 복수의 광원(130) 및 검출 장치(140)가 일정한 축을 중심으로 회전할 수 있도록 된 고리 형태(또는 터널 형태)의 구조물일 수 있다.
다양한 실시예에 따른 광원(130)은 엑스선(X-ray)를 방출할 수 있는 엑스선원(X-ray source)일 수 있다. 광원(130)은, 프로세서(110)의 제어 하에, 대상체에 엑스선을 조사할 수 있다. 대상체는, 예를 들어, 갠트리(120)의 보어(bore)(또는 내부 홀, 내부 구멍)에 위치할 수 있다. 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 복수의 광원(130)을 포함할 수 있다. 복수의 광원(130)은, 예를 들어, 탄소나노튜브(carbon nanotube, CNT)를 이용한 엑스선 광원일 수 있다.
다양한 실시예에 따른 검출 장치(140)는 엑스선의 양(또는 엑스선의 세기)을 검출하는 엑스선 검출 장치(140)(X-ray detector)일 수 있다. 검출 장치(140)는 광원(130)으로부터 대상체에 조사된 엑스선 중 대상체를 투과한 엑스선의 양을 검출할 수 있다. 대상체의 내부 밀도가 균일하지 않은 경우, 엑스선이 조사된 방향에 따라 대상체가 흡수하는 양이 달라질 수 있다. 검출 장치(140)는 다양한 각도에서 조사된 엑스선이 대상체를 통과하면서 감소되는 양을 측정하고, 프로세서(110)는 검출 장치(140)가 측정한 데이터에 기초하여 대상체 내부의 밀도를 결정하며, 결정한 대상체 내부의 밀도를 이용하여 대상체 내부의 자세한 단면을 재구성하여 3차원 영상을 생성할 수 있다. 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 적어도 하나의 검출 장치(140)를 포함할 수 있다.
일 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리(120), 복수의 광원(130) 및 하나의 검출 장치(140)를 포함할 수 있다. 갠트리(120)는 하나의 회전 축을 공유하고 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치 및 제2 회전 장치를 포함할 수 있다. 복수의 광원(130)은 제1 회전 장치에 일정한 간격으로 배치될 수 있고, 검출 장치(140)는 제2 회전 장치에 배치될 수 있다. 예를 들어, 복수의 광원(130)은 제1 회전 장치의 내측면에 일정한 간격으로 배치되어 갠트리(120) 내부에 위치한 대상체에 엑스선을 조사할 수 있다. 예를 들어, 검출 장치(140)는 제2 회전 장치의 내측면 전부를 둘러싸는 형태로 구성될 수 있다. 상기의 경우, 복수의 광원(130) 중 어느 하나의 광원(130)에서 엑스선을 조사하더라도 검출 장치(140)는 대상체를 투과한 엑스선을 검출할 수 있다.
일 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리(120), 복수의 광원(130) 및 복수의 검출 장치(140)를 포함할 수 있다. 갠트리(120)는 회전 축을 중심으로 회전 가능한 고리 형태의 하나의 회전 장치를 포함할 수 있다. 복수의 광원(130)은 회전 장치에 일정한 간격으로 배치될 수 있다. 복수의 검출 장치(140)는 복수의 광원(130) 각각에 대응하여 마주보는 위치에 배치될 수 있다. 복수의 광원(130)은 이송부(150)에 적재된 대상체에 엑스선을 조사할 수 있으며, 복수의 검출 장치(140)는 대상체를 투과한 엑스선을 검출할 수 있다. 복수의 광원(130)은 회전 장치의 회전 축 상의 위치가 동일할 수 있다. 예를 들어, 복수의 광원(130)의 z축 상의 위치는 서로 동일할 수 있다.
일 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리(120), 복수의 광원(130) 및 복수의 검출 장치(140)를 포함할 수 있다. 갠트리(120)는 회전 축을 중심으로 회전 가능한 고리 형태의 회전 장치를 포함할 수 있다. 복수의 광원(130)은 회전 장치에 일정한 간격으로 배치될 수 있다. 복수의 검출 장치(140)는 복수의 광원(130) 각각에 대응하여 마주보는 위치에 배치될 수 있다. 복수의 광원(130)은 회전 장치의 회전 축 상의 위치가 일정한 간격으로 이격되어 배치될 수 있다. 예를 들어, 복수의 광원(130)의 z축 상의 위치는 서로 상이할 수 있다.
일 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리(120), 복수의 광원(130) 및 하나의 검출 장치(140)를 포함할 수 있다. 갠트리(120)는 회전 축을 중심으로 회전 가능한 고리 형태의 회전 장치를 포함할 수 있다. 갠트리(120)는 제1 부분 장치 및 제2 부분 장치로 분리될 수 있다. 복수의 광원(130)은 제1 부분 장치에 일정한 간격으로 이격되어 배치될 수 있다. 검출 장치(140)는 제2 부분 장치에 배치될 수 있다.
일 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리(120), 복수의 광원(130) 및 하나의 검출 장치(140)를 포함할 수 있다. 갠트리(120)는 하나의 회전 축을 공유하고, 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치 및 제2 회전 장치를 포함할 수 있다. 복수의 광원(130)은 제1 회전 장치에 일정한 간격으로 배치될 수 있다. 검출 장치(140)는 제2 회전 장치의 일 영역에 배치될 수 있다.
일 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리(120), 복수의 제1 광원(130), 복수의 제2 광원(130) 및 하나의 검출 장치(140)를 포함할 수 있다. 갠트리(120)는 하나의 회전 축을 공유하고, 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치, 제2 회전 장치 및 제3 회전 장치를 포함할 수 있다. 복수의 제1 광원(130)은 제1 회전 장치에 일정한 간격으로 배치될 수 있다. 복수의 제2 광원(130)은 제2 회전 장치에 일정한 간격을 배치될 수 있다. 검출 장치(140)는 제3 회전 장치의 일 영역에 배치될 수 있다.
다양한 실시예에 따른 이송부(150)는 고리 형태의 갠트리(120)의 보어에서 갠트리(120)의 회전 축 방향으로 이동할 수 있는 장치일 수 있다. 이송부(150)는 컴퓨터 단층 촬영의 대상이 되는 대상체가 적재될 수 있다.
다양한 실시예에 따른 전원 공급 장치(160)는 컴퓨터 단층 촬영 장치(100)의 각 구성 요소를 동작 시키는데 필요한 전력을 공급할 수 있다. 전원 공급 장치(160)는 복수의 광원(130)이 엑스선을 출력하는데 필요한 전력을 공급할 수 있다.
도 2는 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)를 도시한 도면이다. 예를 들어, 도 2는 컴퓨터 단층 촬영 장치(100)의 동작 방법을 설명하기 위하여 필수 구성만을 간략하게 도시한 도면이다.
도 2를 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 복수의 광원 및 적어도 하나의 검출 장치를 포함하고, 복수의 광원을 이용하여 대상체(O)로 엑스선을 조사하고, 적어도 하나의 검출 장치를 이용하여 대상체(O)를 투과한 엑스선을 검출할 수 있다.
다양한 실시예에 따른 대상체(O)는 이송부(150) 위에 위치할 수 있고, 이송부(150)는 갠트리(120)의 보어를 통해 갠트리(120)의 회전 축 방향으로 이동할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리(120)의 보어에 위치한 대상체(O)의 컴퓨터 단층 촬영 영상을 획득하기 위하여, 갠트리(120)에 배치된 복수의 광원이 대상체(O)를 중심으로 회전하는 동안 대상체(O)에 엑스선을 조사할 수 있고, 적어도 하나의 검출 장치를 이용하여 대상체(O)를 투과한 엑스선을 검출할 수 있다.
도 3a 및 3b는 본 개시의 다양한 실시예에 따른 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 획득하는 방법을 도시한 도면이다.
도 3a 및 3b를 참조하면, 다양한 실시예에 따른, 컴퓨터 단층 촬영 장치(100)는 대상체(O)의 서로 다른 부위에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득하고, 획득한 원형의 컴퓨터 단층 촬영 영상을 조합하여 대상체(O) 전체에 대한 이미지를 생성할 수 있다. 컴퓨터 단층 촬영 장치(100)의 프로세서(110)는 대상체(O)를 적재한 이송부(150)를 기 설정된 거리만큼 이동시키고, 대상체(O)의 컴퓨터 단층 촬영 영상을 획득하는 동작들을 기 설정된 횟수 반복할 수 있다.
도 3a에 도시된 예시와 같이, 프로세서(110)는 대상체(O)를 적재한 이송부(150)가 갠트리(120)의 회전 축 방향으로 이동시켜 대상체(O)의 머리 부분이 보어에 위치했을 때, 이송부(150)를 정지시킬 수 있다. 프로세서(110)는 이송부(150)가 정지된 상태에서 복수의 광원(130) 및 적어도 하나의 검출 장치(140)를 이용하여, 대상체(O)의 머리 부분에 대한 원형의 컴퓨터 단층 촬영 영상을 획득할 수 있다. 이후, 프로세서(110)는 이송부(150)를 기 설정된 거리만큼 이동시킨 후 정지시킬 수 있다. 상기의 경우, 도 3b에 도시된 것과 같이, 대상체(O)의 가슴 부분이 보어에 위치할 수 있다. 프로세서(110)는 복수의 광원(130) 및 적어도 하나의 검출 장치(140)를 이용하여, 대상체(O)의 가슴 부분에 대한 원형의 컴퓨터 단층 촬영 영상을 획득할 수 있다. 프로세서(110)는 상기의 동작을 복수 회 반복하여 대상체(O)의 서로 다른 부분에 대한 원형의 컴퓨터 단층 촬영 영상을 획득할 수 있고, 획득한 원형의 컴퓨터 단층 촬영 영상을 조합하여 대상체(O) 전체에 대한 이미지를 생성할 수 있다.
도 4는 본 개시의 다양한 실시예에 따른 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득하는 방법을 도시한 도면이다.
도 4를 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 대상체(O)에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득하고, 나선형의 컴퓨터 단층 촬영 영상을 이용하여 대상체(O) 전체에 대한 이미지를 생성할 수 있다. 예를 들어, 컴퓨터 단층 촬영 장치(100)의 프로세서(110)는 대상체(O)를 적재한 이송부(150)를 기 설정된 속도로 일정하게 이동시킬 수 있다. 프로세서(110)는 이송부(150)가 기 설정된 속도로 이동하는 동안 복수의 광원(130) 및 적어도 하나의 검출 장치(140)를 이용하여, 대상체(O)에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있다. 프로세서(110)는 대상체(O)에 대한 나선형의 컴퓨터 단층 촬영 영상을 이용하여, 대상체(O) 전체에 대한 이미지를 생성할 수 있다.
<제1 실시예 구조>
도 5 내지 도 9는 제1 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100) 및 그의 컴퓨터 단층 촬영 방법을 설명하기 위한 도면이다.
도 5는 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)를 도시한 도면이고, 도 6은 제1 실시예 구조에 따른 갠트리의 x-y 평면 단면도이다.
도 5 및 6을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리, 복수의 광원(531, 533, 535) 및 하나의 검출 장치(540)를 포함할 수 있다. 갠트리는 하나의 회전 축을 공유하고 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치(521) 및 제2 회전 장치(523)를 포함할 수 있다. 복수의 광원(531, 533, 535)은 제1 회전 장치(521)에 일정한 간격으로 배치될 수 있다. 검출 장치(540)는 제2 회전 장치(523)의 내측면을 전부 둘러싸는 형태로 구성될 수 있다. 복수의 광원은 이송부(550)에 적재된 대상체(O)에 엑스선을 조사할 수 있으며, 검출 장치(540)는 대상체(O)를 투과한 엑스선을 검출할 수 있다. 본 도면에서는 설명의 편의를 위하여 복수의 광원의 수가 3개로 가정하여 설명하겠으나, 복수의 광원의 수는 이에 제한되지 않으며, 2개일 수도 있고, 3개를 초과하는 수일 수도 있다.
다양한 실시예에 따르면, 프로세서(110)는 복수의 광원(531, 533, 535)의 수에 기초하여, 복수의 광원(531, 533, 535)이 제1 회전 장치(521) 내에 배치되는 각도 간격 및 제1 회전 장치(521)가 회전하는 각도를 결정할 수 있다. 프로세서(110)는 360도를 복수의 광원(531, 533, 535)의 수로 나눈 값을 복수의 광원(531, 533, 535)이 제1 회전 장치(521) 내에 배치되는 각도 간격으로 결정할 수 있고, 360도를 복수의 광원(531, 533, 535)의 수로 나눈 값을 제1 회전 장치(521)가 회전하는 각도로 결정할 수 있다. 예를 들어, 복수의 광원(531, 533, 535)의 수가 3개인 경우, 복수의 광원(531, 533, 535)은 제1 회전 장치(521)에 120도 간격으로 배치될 수 있고, 제1 회전 장치(521)가 회전할 각도를 120도로 결정할 수 있다. 상기의 경우, 제1 회전 장치(521)가 120도만 회전하더라도, 120도 간격으로 배치된 광원이 3개이므로, 대상체(O)에 대한 3차원 이미지를 생성할 수 있다.
다양한 실시예에 따른 검출 장치(540)가 제2 회전 장치(523)의 내측면을 전부 둘러싸는 형태로 구성된 경우, 프로세서는 복수의 광원(531, 533, 535) 중 어느 하나에서 엑스선을 대상체(O)에 조사하더라도 검출 장치(540)에 의해 대상체(O)를 투과한 엑스선을 검출할 수 있다.
도 7은 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 7은 복수의 광원(531, 533, 535)이 3개인 경우, 복수의 광원(531, 533, 535), 제1 회전 장치(521) 및 이송부(550)의 시간에 따른 동작 상태를 나타내는 그래프이다.
그래프 700 중 제1 회전 장치(521)에 대한 그래프에서 동작 상태 1은 제1 회전 방향으로 회전하는 상태를 의미하고, 동작 상태 0은 회전하지 않는 상태를 의미하며, 동작 상태 -1은 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 상태를 의미할 수 있다. 그래프 700 중 제1 광원(531), 제2 광원(533) 및 제3 광원(535)에 대한 그래프에서, 동작 상태 1은 엑스선을 조사하는 상태를 의미하고, 동작 상태 0은 엑스선을 조사하지 않는 상태를 의미할 수 있다. 그래프 700 중 이송부(550)에 대한 그래프에서 동작 상태 1은 회전 축의 양의 방향(+방향)으로 이동하는 상태를 의미하고, 동작 상태 -1은 회전 축의 음의 방향(-방향)으로 이동하는 상태를 의미할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 700에 도시된 동작 방법을 사용하여 대상체에 서로 다른 부위에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득할 수 있고, 획득한 원형의 컴퓨터 단층 촬영 영상들을 조합하여 대상체 전체에 대한 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원(531, 533, 535)의 수에 기초하여 결정된 회전 각도만큼 제1 회전 장치(521)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 복수의 광원(531, 533, 535)의 수가 3개인 경우, 제1 회전 장치(521)의 회전 각도를 120도로 결정할 수 있다. 그래프 700의 제1 회전 장치(521)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000001
부터
Figure PCTKR2020008416-appb-img-000002
까지 제1 회전 장치(521)를 제1 회전 방향으로 120도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(531, 533, 535) 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원(531, 533, 535)이 기 설정된 순서대로 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 예를 들어, 제1 회전 장치(521)가 1도 회전할 때마다 기 설정된 순서대로 엑스선을 조사할 광원을 변경할 수 있다.
그래프 700의 제1 광원(531), 제2 광원(533) 및 제3 광원(535)에 대한 그래프를 참조하면, 프로세서(110)는 제1 회전 장치(521)가 0도부터 1도까지 제1 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000003
부터
Figure PCTKR2020008416-appb-img-000004
까지 회전하는 동안 제1 광원(531), 제2 광원(533) 및 제3 광원(535)이 순서대로 번갈아 가며 대상체에 엑스선을 조사하도록 제어할 수 있다. 예를 들어, 프로세서(110)는 제1 회전 장치(521)가 0도부터 1/3도까지 제1 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000005
부터
Figure PCTKR2020008416-appb-img-000006
까지 회전하는 동안 복수의 광원 중 제1 광원(531)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 1/3도부터 2/3도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000007
부터
Figure PCTKR2020008416-appb-img-000008
까지 회전하는 동안 복수의 광원 중 제2 광원(533)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 2/3도부터 1도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000009
부터
Figure PCTKR2020008416-appb-img-000010
까지 복수의 광원 중 제3 광원(535)을 통해 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 이후, 프로세서(110)는 다시 제1 광원(531), 제2 광원(533) 및 제3 광원(535)의 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 제1 회전 장치(521)가 제1 회전 방향으로 1도 회전하는 동안, 제1 광원(531), 제2 광원(533) 및 제3 광원(535)이 순차적으로 엑스선을 조사하는 것을 하나의 시퀀스로 가정한다면, 프로세서(110)는 0도부터 120도까지 제1 회전 장치(521)가 회전하는 동안 상기 시퀀스를 1도 간격으로 120번 반복하여 복수의 광원을 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 검출 장치(540)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 상기의 경우, 프로세서(110)는 검출 장치(540)를 이용하여 검출된 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 3차원 이미지를 생성할 수 있다. 상기의 경우, 대상체에 대한 3차원 이미지는 원형의 컴퓨터 단층 촬영 영상일 수 있다. 다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 회전하는 동안 검출 장치(540)가 배치된 제2 회전 장치(523)를 같은 방향으로 회전시킬 수도 있고, 회전시키지 않을 수도 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(521)가 제1 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 제1 회전 장치(521)를 정지시키고, 이송부(550)를 기 설정된 거리만큼 이동시킬 수 있다. 그래프 700 중 이송부(550)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000011
부터
Figure PCTKR2020008416-appb-img-000012
까지 이송부(550)를 기 설정된 거리만큼 이동시킬 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000013
부터
Figure PCTKR2020008416-appb-img-000014
사이에는 복수의 광원(531, 533, 535)을 동작시키지 않고, 제1 회전 장치(521)도 회전시키지 않을 수 있다.
다양한 실시예에 따른 프로세서(110)는 상기 결정된 회전 각도만큼 제1 회전 장치(521)를 제1 회전 방향의 반대 방향인 제2 회전 방향으로 회전시킬 수 있다. 그래프 700의 제1 회전 장치(521)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000015
부터
Figure PCTKR2020008416-appb-img-000016
까지 제1 회전 장치(521)를 제2 회전 방향으로 120도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 복수의 광원(531, 533, 535) 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원(531, 533, 535)이 기 설정된 순서대로 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 예를 들어, 제1 회전 장치(521)가 1도 회전할 때마다 기 설정된 순서대로 엑스선을 조사할 광원을 변경할 수 있다.
그래프 700의 제1 광원(531), 제2 광원(533) 및 제3 광원(535)에 대한 그래프를 참조하면, 프로세서(110)는 제1 회전 장치(521)가 120도부터 119도까지 제2 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000017
부터
Figure PCTKR2020008416-appb-img-000018
까지 회전하는 동안, 제3 광원(535), 제2 광원(533) 및 제1 광원(531)이 순서대로 번갈아 가며 대상체에 엑스선을 조사하도록 제어할 수 있다. 예를 들어, 프로세서(110)는 제1 회전 장치(521)가 120도부터
Figure PCTKR2020008416-appb-img-000019
도까지 제2 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000020
부터
Figure PCTKR2020008416-appb-img-000021
까지 제2 회전 방향으로 회전하는 동안 복수의 광원 중 제3 광원(535)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가
Figure PCTKR2020008416-appb-img-000022
도부터
Figure PCTKR2020008416-appb-img-000023
도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000024
부터
Figure PCTKR2020008416-appb-img-000025
까지 회전하는 동안 복수의 광원 중 제2 광원(533)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가
Figure PCTKR2020008416-appb-img-000026
도부터 119도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000027
부터
Figure PCTKR2020008416-appb-img-000028
까지 복수의 광원 중 제1 광원(531)을 통해 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 이후, 프로세서(110)는 다시 제3 광원(535), 제2 광원(533) 및 제1 광원(531)의 순서대로 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 제1 회전 장치(521)가 제2 회전 방향으로 1도 회전하는 동안, 제3 광원(535), 제2 광원(533) 및 제1 광원(531)이 순차적으로 엑스선을 조사하는 것을 하나의 시퀀스로 가정한다면, 프로세서(110)는 120도부터 0도까지 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안 상기 시퀀스를 1도 간격으로 120번 반복하여 복수의 광원을 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 본 도면에서는 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 제3 광원(535), 제2 광원(533) 및 제1 광원(531)의 순서대로 번갈아 가며 엑스선을 대상체에 조사하는 것으로 설명하였지만, 제1 광원(531), 제2 광원(533) 및 제3 광원(535)의 순서대로 번갈아 가며 엑스선을 대상체에 조사할 수도 있음은 물론이다.
다양한 실시예에 따른 프로세서(110)는, 결정된 회전 각도만큼 제1 회전 장치(521)를 제1 회전 방향으로 회전시키는 동작, 제1 회전 장치(521)가 제1 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 이송부(550)를 회전 축 방향으로 기 설정된 거리만큼 이동시키는 동작, 제1 회전 장치(521)를 결정된 회전 각도만큼 제2 회전 방향으로 회전시키는 동작, 및 제1 회전 장치(521)가 제2 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 이송부(550)를 회전 축 방향으로 기 설정된 거리만큼 이동시키는 동작을 포함하는 사이클을 기 설정된 횟수 반복할 수 있다. 상기 사이클을 기 설정된 횟수 반복하는 경우, 대상체의 서로 다른 부위에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다. 프로세서(110)는 획득한 원형의 컴퓨터 단층 촬영 영상들을 조합하여 대상체 전체에 대한 3차원 이미지를 획득할 수 있다.
도 8은 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 8은 복수의 광원이 3개인 경우, 복수의 광원(531, 533, 535), 제1 회전 장치(521) 및 이송부(550)의 시간에 따른 동작 상태를 나타내는 그래프이다.
그래프 800 중 제1 회전 장치(521)에 대한 그래프에서 동작 상태 1은 제1 회전 방향으로 회전하는 상태를 의미하고, 동작 상태 0은 회전하지 않는 상태를 의미하며, 동작 상태 -1은 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 상태를 의미할 수 있다. 그래프 800 중 제1 광원(531), 제2 광원(533) 및 제3 광원(535)에 대한 그래프에서, 동작 상태 1은 엑스선을 조사하는 상태를 의미하고, 동작 상태 0은 엑스선을 조사하지 않는 상태를 의미할 수 있다. 그래프 800 중 이송부(550)에 대한 그래프에서 동작 상태 1은 회전 축의 양의 방향(+방향)으로 이동하는 상태를 의미하고, 동작 상태 -1은 회전 축의 음의 방향(-방향)으로 이동하는 상태를 의미할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 800에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있고, 획득한 나선형의 컴퓨터 단층 촬영 영상을 이용하여 대상체 전체에 대한 3차원 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원(531, 533, 535)의 수에 기초하여 결정된 회전 각도만큼 제1 회전 장치(521)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 복수의 광원의 수가 3개인 경우, 제1 회전 장치(521)의 회전 각도를 120도로 결정할 수 있다. 그래프 800의 제1 회전 장치(521)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000029
부터
Figure PCTKR2020008416-appb-img-000030
까지 제1 회전 장치(521)를 제1 회전 방향으로 120도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 제1 회전 방향으로 회전을 시작하는 것에 응답하여, 이송부(550)를 회전 축 방향으로 기 설정된 속도로 이동하도록 제어할 수 있다. 그래프 800의 이송부(550)에 대한 그래프를 참조하면 프로세서(110)는
Figure PCTKR2020008416-appb-img-000031
부터 이송부(550)를 회전 축의 양의 방향으로 기 설정된 속도로 일정하게 이동하도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(531, 533, 535) 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원(531, 533, 535)이 기 설정된 순서대로 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 예를 들어, 제1 회전 장치(521)가 1도 회전할 때마다 기 설정된 순서대로 엑스선을 조사할 광원을 변경할 수 있다.
그래프 800의 제1 광원(531), 제2 광원(533) 및 제3 광원(535)에 대한 그래프를 참조하면, 프로세서(110)는 제1 회전 장치(521)가 0도부터 1도까지 제1 회전 방향으로 회전하는 동안, 즉,
Figure PCTKR2020008416-appb-img-000032
부터
Figure PCTKR2020008416-appb-img-000033
까지 회전하는 동안 제1 광원(531), 제2 광원(533) 및 제3 광원(535)이 순서대로 번갈아 가며 대상체에 엑스선을 조사하도록 제어할 수 있다. 예를 들어, 프로세서(110)는 제1 회전 장치(521)가 0도부터 1/3도까지 제1 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000034
부터
Figure PCTKR2020008416-appb-img-000035
까지 회전하는 동안 복수의 광원 중 제1 광원(531)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 1/3도부터 2/3도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000036
부터
Figure PCTKR2020008416-appb-img-000037
까지 회전하는 동안 복수의 광원 중 제2 광원(533)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 2/3도부터 1도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000038
부터
Figure PCTKR2020008416-appb-img-000039
까지 복수의 광원 중 제3 광원(535)을 통해 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 이후, 프로세서(110)는 다시 제1 광원(531), 제2 광원(533) 및 제3 광원(535)의 순서대로 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 제1 회전 장치(521)가 제1 회전 방향으로 1도 회전하는 동안, 제1 광원(531), 제2 광원(533) 및 제3 광원(535)이 순차적으로 엑스선을 조사하는 것을 하나의 시퀀스로 가정한다면, 프로세서(110)는 0도부터 120도까지 제1 회전 장치(521)가 회전하는 동안 상기 시퀀스를 1도 간격으로 120번 반복하여 복수의 광원을 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 검출 장치(540)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 상기의 경우, 프로세서(110)는 검출 장치(540)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지에 기초하여 대상체에 대한 3차원 이미지를 생성할 수 있다. 상기의 경우, 대상체에 대한 3차원 이미지는 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상일 수 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(521)가 제1 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 상기 결정된 회전 각도만큼 제1 회전 장치(521)를 제1 회전 방향의 반대 방향인 제2 회전 방향으로 회전시킬 수 있다. 그래프 800의 제1 회전 장치(521)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000040
부터
Figure PCTKR2020008416-appb-img-000041
까지 제1 회전 장치(521)를 제2 회전 방향으로 120도만큼 회전시킬 수 있다. 상기의 경우, 프로세서(110)는 이송부(550)를 여전히 회전 축 방향으로 일정한 속도로 이동시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 복수의 광원 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원이 기 설정된 순서대로 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 예를 들어, 제1 회전 장치(521)가 1도 회전할 때마다 기 설정된 순서대로 엑스선을 조사할 광원을 변경할 수 있다.
그래프 800의 제1 광원(531), 제2 광원(533) 및 제3 광원(535)에 대한 그래프를 참조하면, 프로세서(110)는 제1 회전 장치(521)가 120도부터 119도까지 제2 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000042
부터
Figure PCTKR2020008416-appb-img-000043
까지 제2 회전 방향으로 회전하는 동안 제3 광원(535), 제2 광원(533) 및 제1 광원(531)이 순서대로 번갈아 가며 대상체에 엑스선을 조사하도록 제어할 수 있다. 예를 들어, 프로세서(110)는 제1 회전 장치(521)가 120도부터
Figure PCTKR2020008416-appb-img-000044
도까지 제2 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000045
부터
Figure PCTKR2020008416-appb-img-000046
까지 제2 회전 방향으로 회전하는 동안 복수의 광원 중 제3 광원(535)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가
Figure PCTKR2020008416-appb-img-000047
도부터
Figure PCTKR2020008416-appb-img-000048
도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000049
부터
Figure PCTKR2020008416-appb-img-000050
까지 회전하는 동안 복수의 광원 중 제2 광원(533)을 통해 엑스선을 대상체에 조사할 수 있다. 프로세서(110)는 제1 회전 장치(521)가
Figure PCTKR2020008416-appb-img-000051
도부터 119도까지 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000052
부터
Figure PCTKR2020008416-appb-img-000053
까지 복수의 광원 중 제1 광원(531)을 통해 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 이후, 프로세서(110)는 다시 제3 광원(535), 제2 광원(533) 및 제1 광원(531)의 순서대로 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 제1 회전 장치(521)가 제2 회전 방향으로 1도 회전하는 동안 제3 광원(535), 제2 광원(533) 및 제1 광원(531)이 순차적으로 엑스선을 조사하는 것을 하나의 시퀀스로 가정한다면, 프로세서(110)는 120도부터 0도까지 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안 상기 시퀀스를 1도 간격으로 120번 반복하여 복수의 광원을 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다. 본 도면에서는 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 제3 광원(535), 제2 광원(533) 및 제1 광원(531)의 순서대로 번갈아 가며 엑스선을 대상체에 조사하는 것으로 설명하였지만, 제1 광원(531), 제2 광원(533) 및 제3 광원(535)의 순서대로 번갈아 가며 엑스선을 대상체에 조사할 수도 있음은 물론이다.
다양한 실시예에 따른 프로세서(110)는, 이송부(550)가 회전 축 방향으로 기 설정된 속도로 이동하는 동안 결정된 회전 각도만큼 제1 회전 장치(521)를 제1 회전 방향으로 회전시키는 동작 및 이송부(550)가 회전 축 방향으로 기 설정된 속도로 이동하는 동안 제1 회전 장치(521)를 결정된 회전 각도만큼 제2 회전 방향으로 회전시키는 동작을 포함하는 사이클을 기 설정된 횟수 반복할 수 있다. 상기 사이클을 기 설정된 횟수 반복하는 경우, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다. 프로세서(110)는 획득한 나선형의 컴퓨터 단층 촬영 영상들을 이용하여 대상체 전체에 대한 3차원 이미지를 획득할 수 있다.
도 9는 제1 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 동작 흐름도이다.
동작 흐름도 900을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 프로세서(110)는, 동작 910에서, 복수의 광원(531, 533, 535)의 수에 기초하여 결정된 회전 각도만큼 제1 회전 장치(521)를 제1 회전 방향으로 회전시킬 수 있다. 제1 회전 장치(521)에는 복수의 광원(531, 533, 535)이 일정한 간격으로 배치될 수 있다. 상기 결정된 회전 각도는, 360도를 복수의 광원(531, 533, 535)의 수로 나눈 값일 수 있다. 예를 들어, 복수의 광원(531, 533, 535) 수가 3개인 경우, 프로세서(110)는 제1 회전 장치(521)를 제1 회전 방향으로 120도 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 920에서, 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(531, 533, 535) 중 적어도 하나를 통해 대상체에 엑스선을 조사하며, 검출 장치(540)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 제1 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원(531, 533, 535)이 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원(531, 533, 535)을 제어할 수 있다. 검출 장치(540)는 제2 회전 장치(523)를 둘러싸는 형태로 구성될 수 있다. 프로세서(110)는 제1 회전 장치(521)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 동안, 제2 회전 장치(523)를 제1 회전 방향으로 결정된 회전 각도만큼 같이 회전시킬 수도 있고, 제2 회전 장치(523)를 회전시키지 않을 수도 있다. 다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 제1 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 대상체가 적재된 이송부(550)를 제1 회전 장치(521)의 회전 축 방향으로 기 설정된 만큼 이동시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 930에서, 제1 회전 장치(521)를 결정된 회전 각도만큼 제1 회전 방향의 반대 방향인 제2 회전 방향으로 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 940에서, 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 복수의 광원(531, 533, 535) 중 적어도 하나를 통해 대상체에 엑스선을 조사하며, 검출 장치(540)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 제2 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원(531, 533, 535)이 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원(531, 533, 535)을 제어할 수 있다. 프로세서(110)는 제1 회전 장치(521)가 결정된 회전 각도만큼 제2 회전 방향으로 회전하는 동안, 제2 회전 장치(523)를 제2 회전 방향으로 결정된 회전 각도만큼 같이 회전시킬 수도 있고, 제2 회전 장치(523)를 회전시키지 않을 수도 있다. 다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(521)가 제2 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 대상체가 적재된 이송부(550)를 제1 회전 장치(521)의 회전 축 방향으로 기 설정된 만큼 이동시킬 수 있다.
<제2 실시예 구조>
도 10 내지 도 14는 제2 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100) 및 그의 컴퓨터 단층 촬영 방법을 설명하기 위한 도면이다. 상기 제1 실시예 구조에서 설명한 내용과 중복되는 내용은 생략한다.
도 10는 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 갠트리의 x-y 평면 단면도이다.
도 10을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리, 복수의 광원(1031, 1033, 1035) 및 복수의 검출 장치(1041, 1043, 1045)를 포함할 수 있다. 갠트리는 회전 축을 중심으로 회전 가능한 고리 형태의 회전 장치(1020)를 포함할 수 있다. 복수의 광원(1031, 1033, 1035)은 회전 장치(1020)에 일정한 간격으로 배치될 수 있다. 복수의 검출 장치(1041, 1043, 1045)는 회전 장치(1020) 상의 복수의 광원(1031, 1033, 1035) 각각에 대응하여 마주보는 위치에 배치될 수 있다. 복수의 광원(1031, 1033, 1035)은 이송부(1050)에 적재된 대상체에 엑스선을 조사할 수 있으며, 복수의 검출 장치(1041, 1043, 1045)는 대상체를 투과한 엑스선을 검출할 수 있다. 본 도면에서는 설명의 편의를 위하여 복수의 광원의 수가 3개로 가정하여 설명하겠으나, 복수의 광원의 수는 이에 제한되지 않으며, 2개일 수도 있고, 3개를 초과하는 수일 수도 있다.
다양한 실시예에 따르면, 프로세서(110)는 복수의 광원(1031, 1033, 1035)의 수에 기초하여, 복수의 광원(1031, 1033, 1035)이 회전 장치(1020) 내에 배치되는 각도 간격 및 회전 장치(1020)가 회전하는 각도를 결정할 수 있다. 프로세서(110)는 360도를 복수의 광원의 수로 나눈 값을 복수의 광원이 회전 장치(1020) 내에 배치되는 각도 간격으로 결정할 수 있고, 360도를 복수의 광원의 수로 나눈 값을 회전 장치(1020)가 회전하는 각도로 결정할 수 있다.
다양한 실시예에 따른 복수의 검출 장치(1041, 1043, 1045) 각각이 복수의 광원(1031, 1033, 1035) 각각에 대응하여 마주보는 위치에 배치된 경우, 프로세서(110)는 복수의 광원(1031, 1033, 1035) 중 어느 하나에서 엑스선을 대상체에 조사하더라도 대응하는 위치의 검출 장치에 의해 대상체를 투과한 엑스선을 검출할 수 있다. 예를 들어, 제1 광원(1031)에서부터 대상체로 조사된 엑스선 중 대상체를 투과한 엑스선은, 대응하는 위치에 배치된 제1 검출 장치(1041)에 의해 검출될 수 있고, 제2 광원(1033)에서부터 대상체로 조사된 엑스선 중 대상체를 투과한 엑스선은 대응하는 위치에 배치된 제2 검출 장치(1043)에 의해 검출될 수 있으며, 제3 광원(1035)에서부터 대상체로 조사된 엑스선 중 대상체를 투과한 엑스선은 대응하는 위치에 배치된 제3 검출 장치(1045)에 의해 검출될 수 있다.
도 11은 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 11은 복수의 광원이 3개인 경우, 복수의 광원(1031, 1033, 1035), 회전 장치(1020) 및 이송부(1050)의 시간에 따른 동작 상태를 나타내는 그래프이다.
그래프 1100 중 회전 장치(1020)에 대한 그래프에서 동작 상태 1은 제1 회전 방향으로 회전하는 상태를 의미하고, 동작 상태 0은 회전하지 않는 상태를 의미하며, 동작 상태 -1은 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 상태를 의미할 수 있다. 그래프 1100 중 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)에 대한 그래프에서, 동작 상태 1은 엑스선을 조사하는 상태를 의미하고, 동작 상태 0은 엑스선을 조사하지 않는 상태를 의미할 수 있다. 그래프 1100 중 이송부(1050)에 대한 그래프에서 동작 상태 1은 회전 축의 양의 방향(+방향)으로 이동하는 상태를 의미하고, 동작 상태 -1은 회전 축의 음의 방향(-방향)으로 이동하는 상태를 의미할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1100에 도시된 동작 방법을 사용하여 대상체에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 회전 장치(1020)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 복수의 광원의 수가 3개인 경우, 회전 장치(1020)의 회전 각도를 120도로 결정할 수 있다. 그래프 1100의 회전 장치(1020)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000054
부터
Figure PCTKR2020008416-appb-img-000055
까지 회전 장치(1020)를 제1 회전 방향으로 120도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 1100의 이송부(1050)에 대한 그래프를 참조하면, 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 획득하기 위하여 이송부(1050)를 이동시키지 않을 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1031, 1033, 1035) 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1031, 1033, 1035) 모두 대상체에 엑스선을 조사하도록 복수의 광원을 제어할 수 있다. 예를 들어, 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원(1031, 1033, 1035)이 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다.
예를 들어, 그래프 1100의 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)에 대한 그래프를 참조하면, 프로세서(110)는 회전 장치(1020)가 0도부터 120도까지 제1 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000056
부터
Figure PCTKR2020008416-appb-img-000057
까지 회전하는 동안 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035) 모두를 이용하여 엑스선을 대상체에 조사할 수 있다.
예를 들어, 도 7에 도시된 것처럼, 프로세서(110)는 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)의 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수도 있다. 제1 회전 장치(1020)가 제1 회전 방향으로 1도 회전하는 동안 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)이 순차적으로 번갈아가며 엑스선을 조사하는 것을 하나의 시퀀스로 가정한다면, 프로세서(110)는 0도부터 120도까지 제1 회전 장치(1020)가 회전하는 동안 상기 시퀀스를 1도 간격으로 120번 반복하여 복수의 광원(1031, 1033, 1035)을 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원(1031, 1033, 1035)을 제어할 수 있다. 다양한 실시예에 따른 프로세서(110)는, 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 복수의 검출 장치(1041, 1043, 1045)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 상기의 경우, 프로세서(110)는 복수의 검출 장치(1041, 1043, 1045)를 이용하여 검출된 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 3차원 이미지를 생성할 수 있다. 상기의 경우, 대상체에 대한 3차원 이미지는 원형의 컴퓨터 단층 촬영 영상일 수 있다.
도 12는 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 12는 복수의 광원이 3개인 경우, 복수의 광원(1031, 1033, 1035), 제1 회전 장치(1020) 및 이송부(1050)의 시간에 따른 동작 상태를 나타내는 그래프이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1200에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 회전 장치(1020)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 복수의 광원의 수가 3개인 경우, 프로세서(110)는 회전 장치(1020)의 회전 각도를 120도로 결정할 수 있다. 그래프 1200의 회전 장치(1020)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000058
부터
Figure PCTKR2020008416-appb-img-000059
까지 제1 회전 장치(1020)를 제1 회전 방향으로 120도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전을 시작하는 것에 응답하여, 이송부(1050)를 회전 축 방향으로 기 설정된 시간 동안 기 설정된 거리만큼 이동하도록 제어할 수 있다. 그래프 1200의 이송부(1050)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000060
부터
Figure PCTKR2020008416-appb-img-000061
까지 이송부(1050)를 회전 축의 양의 방향으로 기 설정된 거리만큼 이동하도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1031, 1033, 1035) 중 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000062
부터
Figure PCTKR2020008416-appb-img-000063
까지 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 제1 광원(1031)을 이용하여 대상체에 엑스선을 조사할 수 있다. 상기의 경우, 제2 광원(1033) 및 제3 광원(1035)은 엑스선을 조사하지 않을 수 있다. 제1 광원(1031)이 엑스선을 조사하는 동안 제1 광원(1031)에 대응하여 마주보는 위치에 배치된 제1 검출 장치(1041)는 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는, 제1 검출 장치(1041)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)를 제1 회전 방향의 반대 방향인 제2 회전 방향으로 회전시킬 수 있다. 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 제2 회전 방향으로 결정된 회전 각도만큼 회전하도록 회전 장치(1020)를 제어할 수 있다. 그래프 1200의 회전 장치(1020)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000064
부터
Figure PCTKR2020008416-appb-img-000065
까지 제1 회전 장치(1020)를 제2 회전 방향으로 120도만큼 회전시킬 수 있다. 즉, 프로세서(110)는 제1 회전 장치(1020)의 위치를 제1 회전 방향으로 회전하기 전 상태로 원상 복귀시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제2 회전 방향으로 회전을 시작하는 것에 응답하여, 이송부(1050)를 이동시키지 않고 정지하도록 제어할 수 있다. 그래프 1200의 이송부(1050)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000066
부터
Figure PCTKR2020008416-appb-img-000067
까지 이송부(1050)가 이동하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제2 회전 방향으로 회전하는 동안, 복수의 광원(1031, 1033, 1035) 모두 엑스선을 조사하지 않도록 제어할 수 있다. 그래프 1200의 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)의 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000068
부터
Figure PCTKR2020008416-appb-img-000069
까지 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035) 모두 엑스선을 조사하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 결정된 회전 각도만큼 회전하고, 이후 제2 회전 방향으로 결정된 회전 각도만큼 회전하는 동작을 복수의 광원의 수만큼 반복할 수 있다.
다양한 실시예에 따른 프로세서(110)는 결정된 회전 각도만큼 회전 장치(1020)를 다시 제1 회전 방향으로 회전시킬 수 있다. 그래프 1200의 회전 장치(1020)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000070
부터
Figure PCTKR2020008416-appb-img-000071
까지 제1 회전 장치(1020)를 제1 회전 방향으로 120도만큼 다시 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전을 다시 시작하는 것에 응답하여, 이송부(1050)를 회전 축 방향으로 기 설정된 시간 동안 기 설정된 거리만큼 이동하도록 제어할 수 있다. 그래프 1200의 이송부(1050)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000072
부터
Figure PCTKR2020008416-appb-img-000073
까지 이송부(1050)를 회전 축의 양의 방향으로 기 설정된 거리만큼 이동하도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1031, 1033, 1035) 중 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000074
부터
Figure PCTKR2020008416-appb-img-000075
까지 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 제2 광원(1033)을 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 제2 광원(1033)은 제1 광원(1031)으로부터 제1 회전 방향 상에 가장 가깝게 위치한 광원일 수 있다. 상기의 경우, 제1 광원(1031) 및 제3 광원(1035)은 엑스선을 조사하지 않을 수 있다. 제2 광원(1033)이 엑스선을 조사하는 동안 제2 광원(1033)에 대응하여 마주보는 위치에 배치된 제2 검출 장치(1043)는 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는, 제2 검출 장치(1043)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)를 제1 회전 방향의 반대 방향인 제2 회전 방향으로 다시 회전시킬 수 있다. 그래프 1200의 회전 장치(1020)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000076
부터
Figure PCTKR2020008416-appb-img-000077
까지 제1 회전 장치(1020)를 제2 회전 방향으로 120도만큼 다시 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제2 회전 방향으로 회전을 다시 시작하는 것에 응답하여, 이송부(1050)를 이동시키지 않고 정지하도록 제어할 수 있다. 그래프 1200의 이송부(1050)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000078
부터
Figure PCTKR2020008416-appb-img-000079
까지 이송부(1050)가 이동하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1020)가 제2 회전 방향으로 다시 회전하는 동안, 복수의 광원(1031, 1033, 1035) 모두 엑스선을 조사하지 않도록 제어할 수 있다. 그래프 1200의 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)의 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000080
부터
Figure PCTKR2020008416-appb-img-000081
까지 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035) 모두 엑스선을 조사하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는
Figure PCTKR2020008416-appb-img-000082
부터
Figure PCTKR2020008416-appb-img-000083
까지 회전 장치(1020)가 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 한 번 더 반복할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000084
부터
Figure PCTKR2020008416-appb-img-000085
까지 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안 복수의 광원 중 제3 광원(1035)을 이용하여 대상체에 엑스선을 조사할 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 생성할 수 있다.
도 13은 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 13은 복수의 광원이 3개인 경우, 복수의 광원(1031, 1033, 1035), 제1 회전 장치(1020) 및 이송부(1050)의 시간에 따른 동작 상태를 나타내는 그래프이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1300에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있고, 획득한 나선형의 컴퓨터 단층 촬영 영상을 이용하여 대상체 전체에 대한 3차원 이미지를 생성할 수 있다. 도 12에서 설명한 내용과 중복되는 내용은 설명을 생략한다.
다양한 실시예에 따르면,
Figure PCTKR2020008416-appb-img-000086
부터
Figure PCTKR2020008416-appb-img-000087
까지 회전 장치(1020), 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)의 동작 상태는 도 12와 동일하다. 그래프 1300의 회전 장치(1020), 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)의 그래프를 참조하면, 프로세서(110)는 회전 장치(1020)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 회전 장치(1020)를 제어할 수 있다. 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안 복수의 광원(1031, 1033, 1035) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 1300에 도시된 것처럼, 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035) 순서대로 대상체에 엑스선을 조사하도록 복수의 광원을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 1300의 이송부(1050)에 대한 그래프를 참조하면,
Figure PCTKR2020008416-appb-img-000088
부터
Figure PCTKR2020008416-appb-img-000089
까지 이송부(1050)를 회전 축의 양의 방향으로 기 설정된 속도로 일정하게 이동하도록 제어할 수 있다. 회전 장치(1020)가 제2 회전 방향으로 회전하는 동안, 즉 회전 장치(1020)가 원래 위치로 원상 복귀하는 동안 이송부(1050)를 정지시키지 않는 경우, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상에는 일부 데이터가 누락될 수 있다. 상기 누락된 데이터를 보완하기 위하여, 프로세서(110)는 이송부(1050)를 회전 축의 음의 방향으로 기 설정된 속도로 다시 이동시킬 수 있다. 예를 들어, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000090
부터
Figure PCTKR2020008416-appb-img-000091
까지 이송부(1050)를 회전 축의 음의 방향으로 기 설정된 속도로 일정하게 이동하도록 제어할 수 있다.
그래프 1300의 회전 장치(1020), 제1 광원(1031), 제2 광원(1033) 및 제3 광원(1035)의 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000092
부터
Figure PCTKR2020008416-appb-img-000093
까지 회전 장치(1020)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 회전 장치(1020)를 제어할 수 있다. 프로세서(110)는 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안 복수의 광원(1031, 1033, 1035) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 1300에 도시된 것처럼,
Figure PCTKR2020008416-appb-img-000094
부터
Figure PCTKR2020008416-appb-img-000095
까지 제3 광원(1035), 제2 광원(1033) 및 제1 광원(1031) 순서대로 대상체에 엑스선을 조사하도록 복수의 광원을 제어할 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 생성할 수 있다.
도 14는 제2 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100)의 동작 흐름도이다.
동작 흐름도 1400을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 프로세서(110)는, 동작 1410에서, 복수의 광원(1031, 1033, 1035)의 수에 기초하여 결정된 회전 각도만큼 회전 장치(1020)를 제1 방향으로 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 1420에서, 회전 장치(1020)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1031, 1033, 1035) 중 적어도 하나를 통해 대상체에 엑스선을 조사하며, 복수의 검출 장치(1041, 1043, 1045) 중 하나를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는 복수의 검출 장치(1041, 1043, 1045) 중 하나를 통해 검출한 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 이용하여, 대상체에 대한 3차원 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 1430에서, 회전 장치(1020)를 결정된 회전 각도만큼 제2 회전 방향으로 회전시킬 수 있다. 프로세서(110)는 회전 장치(1020)가 결정된 회전 각도만큼 제2 회전 방향으로 회전하는 동안, 복수의 광원(1031, 1033, 1035) 모두 엑스선을 조사하지 않도록 제어할 수 있다.
<제3 실시예 구조>
도 15a 내지 도 16은 제3 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100) 및 그의 컴퓨터 단층 촬영 방법을 설명하기 위한 도면이다. 상기 제2 실시예 구조에서 설명한 내용과 중복되는 내용은 생략한다.
도 15a는 제3 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 갠트리의 x-y 평면 단면도이고, 도 15b는 제3 실시예 구조에 따른 갠트리의 y-z 평면 단면도이다. 제3 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)는, 제2 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)에서 복수의 광원의 z축 배치 위치가 변경된 것이다.
도 15a를 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리, 복수의 광원(1531, 1533, 1535) 및 복수의 검출 장치(1541, 1543, 1545)를 포함할 수 있다. 갠트리는 회전 축을 중심으로 회전 가능한 고리 형태의 회전 장치(1520)를 포함할 수 있다. 복수의 광원(1531, 1533, 1535)은 회전 장치(1520)에 일정한 간격으로 배치될 수 있다. 복수의 검출 장치(1541, 1543, 1545)는 복수의 광원(1531, 1533, 1535) 각각에 대응하여 마주보는 위치에 배치될 수 있다. 복수의 광원(1531, 1533, 1535)은 이송부(1550)에 적재된 대상체에 엑스선을 조사할 수 있으며, 복수의 검출 장치(1541, 1543, 1545)는 대상체를 투과한 엑스선을 검출할 수 있다. 본 도면에서는 설명의 편의를 위하여 복수의 광원의 수가 3개로 가정하여 설명하겠으나, 복수의 광원의 수는 이에 제한되지 않으며, 2개일 수도 있고, 3개를 초과하는 수일 수도 있다.
다양한 실시예에 따르면, 프로세서(110)는 복수의 광원(1531, 1533, 1535)의 수에 기초하여, 복수의 광원(1531, 1533, 1535)이 회전 장치(1520) 내에 배치되는 각도 간격 및 회전 장치(1520)가 회전하는 각도를 결정할 수 있다. 프로세서(110)는 360도를 복수의 광원의 수로 나눈 값을 복수의 광원(1531, 1533, 1535)이 회전 장치(1520) 내에 배치되는 각도 간격으로 결정할 수 있고, 360도를 복수의 광원의 수로 나눈 값을 회전 장치(1520)가 회전하는 각도로 결정할 수 있다.
다양한 실시예에 따른 복수의 검출 장치(1541, 1543, 1545) 각각이 복수의 광원(1531, 1533, 1535) 각각에 대응하여 마주보는 위치에 배치된 경우, 프로세서(110)는 복수의 광원(1531, 1533, 1535) 중 어느 하나에서 엑스선을 대상체에 조사하더라도 대응하는 위치의 검출 장치에 의해 대상체를 투과한 엑스선을 검출할 수 있다. 예를 들어, 제1 광원(1531)에서부터 대상체로 조사된 엑스선 중 대상체를 투과한 엑스선은, 대응하는 위치에 배치된 제1 검출 장치(1541)에 의해 검출될 수 있고, 제2 광원(1533)에서부터 대상체로 조사된 엑스선 중 대상체를 투과한 엑스선은 대응하는 위치에 배치된 제2 검출 장치(1543)에 의해 검출될 수 있으며, 제3 광원(1535)에서부터 대상체로 조사된 엑스선 중 대상체를 투과한 엑스선은 대응하는 위치에 배치된 제3 검출 장치(1545)에 의해 검출될 수 있다.
도 15b를 참조하면, 다양한 실시예에 따른 복수의 광원(1531, 1533, 1535)은 회전 장치(1520)의 회전 축 상의 위치가 일정한 간격으로 이격되어 회전 장치(1520)에 배치될 수 있다. 예를 들어, 복수의 광원(1531, 1533, 1535)의 z축 상의 위치는 서로 상이할 수 있다. 예를 들어, 제1 광원(1531)의 z축 상의 위치, 제2 광원(1533)의 z축 상의 위치 및 제3 광원(1535)의 z축 상의 위치는 서로 상이할 수 있다. 예를 들어, 제1 광원(1531)의 z축 상의 위치 및 제2 광원(1533)의 z축 상의 위치의 차이는, 제2 광원(1533)의 z축 상의 위치 및 제3 광원(1535)의 z축 상의 위치와 동일할 수 있다.
도 16은 제3 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 16은 복수의 광원이 3개인 경우, 복수의 광원(1531, 1533, 1535), 회전 장치(1520) 및 이송부(1550)의 시간에 따른 동작 상태를 나타내는 그래프이다.
그래프 1600 중 회전 장치(1520)에 대한 그래프에서 동작 상태 1은 제1 회전 방향으로 회전하는 상태를 의미하고, 동작 상태 0은 회전하지 않는 상태를 의미하며, 동작 상태 -1은 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 상태를 의미할 수 있다. 그래프 1100 중 제1 광원(1531), 제2 광원(1533) 및 제3 광원(1535)에 대한 그래프에서, 동작 상태 1은 엑스선을 조사하는 상태를 의미하고, 동작 상태 0은 엑스선을 조사하지 않는 상태를 의미할 수 있다. 그래프 1100 중 이송부(1550)에 대한 그래프에서 동작 상태 1은 회전 축의 양의 방향(+방향)으로 이동하는 상태를 의미하고, 동작 상태 -1은 회전 축의 음의 방향(-방향)으로 이동하는 상태를 의미할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1600에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 회전 장치(1520)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 복수의 광원의 수가 3개인 경우, 회전 장치(1520)의 회전 각도를 120도로 결정할 수 있다. 그래프 1600의 회전 장치(1520)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000096
부터
Figure PCTKR2020008416-appb-img-000097
까지 회전 장치(1520)를 제1 회전 방향으로 120도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 1600의 이송부(1550)에 대한 그래프를 참조하면, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득하기 위하여,
Figure PCTKR2020008416-appb-img-000098
부터
Figure PCTKR2020008416-appb-img-000099
까지 까지 이송부(1550)를 회전 축 방향으로 기 설정된 속도로 이동시킬 수 있다. 제3 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)는 복수의 광원 각각의 z축 상의 위치가 서로 상이하므로, 회전 장치(1520)가 제1 회전 방향으로 회전하는 동안 이송부(1550)를 함께 이동시켜도, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1520)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1531, 1533, 1535) 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 회전 장치(1520)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1531, 1533, 1535) 모두 대상체에 엑스선을 조사하도록 복수의 광원을 제어할 수 있다. 예를 들어, 프로세서(110)는 회전 장치(1520)가 제1 회전 방향으로 회전하는 동안, 단위 각도마다 복수의 광원(1531, 1533, 1535)이 기 설정된 순서대로 번갈아 가며 하나씩 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다.
예를 들어, 그래프 1600의 제1 광원(1531), 제2 광원(1533) 및 제3 광원(1535)에 대한 그래프를 참조하면, 프로세서(110)는 회전 장치(1520)가 0도부터 120도까지 제1 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000100
부터
Figure PCTKR2020008416-appb-img-000101
까지 회전하는 동안 제1 광원(1531), 제2 광원(1533) 및 제3 광원(1535) 모두를 이용하여 엑스선을 대상체에 조사할 수 있다.
예를 들어, 도 7에 도시된 것처럼, 프로세서(110)는 제1 광원(1531), 제2 광원(1533) 및 제3 광원(1535)의 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수도 있다. 제1 회전 장치(1020)가 제1 회전 방향으로 1도 회전하는 동안 제1 광원(1531), 제2 광원(1533) 및 제3 광원(1535)이 순차적으로 엑스선을 조사하는 것을 하나의 시퀀스로 가정한다면, 프로세서(110)는 0도부터 120도까지 제1 회전 장치(1520)가 회전하는 동안 상기 시퀀스를 120번 반복하여 1도 간격으로 복수의 광원을 기 설정된 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하도록 복수의 광원을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 회전 장치(1520)가 제1 회전 방향으로 회전하는 동안, 복수의 검출 장치(1541, 1543, 1545)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 상기의 경우, 프로세서(110)는 복수의 검출 장치(1541, 1543, 1545)를 이용하여 검출된 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 3차원 이미지를 생성할 수 있다. 상기의 경우, 대상체에 대한 3차원 이미지는 나선형의 컴퓨터 단층 촬영 영상일 수 있다.
다양한 실시예에 따른 프로세서(110)는 결정된 회전 각도만큼 회전 장치(1520)를 제2 회전 방향으로 회전시킬 수 있다. 즉, 프로세서(110)는 회전 장치(1520)의 위치를 제1 회전 방향으로 회전하기 전 상태로 원상 복귀시킬 수 있다. 그래프 1600의 회전 장치(1520)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000102
부터
Figure PCTKR2020008416-appb-img-000103
까지 회전 장치(1520)를 제2 회전 방향으로 120도만큼 회전시킬 수 있다.
<제4 실시예 구조>
도 17 내지 도 21은 제4 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100) 및 그의 컴퓨터 단층 촬영 방법을 설명하기 위한 도면이다.
도 17은 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 갠트리의 x-y 평면도를 도시한 도면이다.
도 17을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리, 복수의 광원(1731, 1733, 1735, 1737) 및 하나의 검출 장치(1740)를 포함할 수 있다. 갠트리는 회전 축을 중심으로 회전 가능한 고리 형태의 회전 장치(1720)를 포함할 수 있다. 갠트리는 분리선 X에 따라 제1 부분 장치(1721) 및 제2 부분 장치(1723)로 분리 가능할 수 있다. 상기의 경우, 갠트리의 회전 장치(1720)의 제1 부분 장치(1721) 내부에 대상체가 위치한 이후 제2 부분 장치(1723)를 결합할 수 있기 때문에, 갠트리 내부에 대상체가 위치하기 용이해질 수 있다. 설명의 편의를 위하여 분리선 X에 의해 회전 장치(1720)가 절반으로 분리되는 것으로 설명하였으나, 제1 부분 장치(1721) 및 제2 부분 장치(1723)가 반드시 회전 장치(1720)의 중심을 기준으로 180도씩 분리될 필요는 없으며, 다양한 크기로 분리될 수 있다. 제1 부분 장치(1721)와 제2 부분 장치(1723)가 결합된 경우, 제1 부분 장치(1721) 및 제2 부분 장치(1723)는 회전 장치(1720)의 회전에 따라 같이 회전할 수 있다.
다양한 실시예에 따른 복수의 광원(1731, 1733, 1735, 1737)은 제1 부분 장치(1721)에 일정한 간격으로 이격되어 배치될 수 있다. 복수의 광원은 이송부(1750)에 적재된 대상체에 엑스선을 조사할 수 있다. 본 도면에서는 설명의 편의를 위하여 복수의 광원의 수가 4개로 가정하여 설명하겠으나, 복수의 광원의 수는 이에 제한되지 않으며, 2개 또는 3개일 수도 있고, 4개를 초과하는 수일 수도 있다.
다양한 실시예에 따른 검출 장치(1740)는 제2 부분 장치(1723)에 배치될 수 있다. 예를 들어, 광원을 점광원으로 가정할 때 광원의 조사 각도(cone beam angle)는 30도 정도이므로, 제2 부분 장치(1723)는 회전 장치(1720)의 중심을 기준으로 210도(180도+30도)를 차지하는 크기일 수 있고, 검출 장치(1740)는 상기 제2 부분 장치(1723)의 내측면을 전부 둘러 싸는 형태로 구성될 수 있다.
다양한 실시예에 따르면, 프로세서(110)는 복수의 광원의 수에 기초하여, 복수의 광원(1731, 1733, 1735, 1737)이 제1 부분 장치(1721) 내에 배치되는 각도 간격 및 회전 장치(1720)가 회전하는 각도를 결정할 수 있다. 프로세서(110)는 180도를 복수의 광원의 수로 나눈 값을 복수의 광원(1731, 1733, 1735, 1737)이 제1 부분 장치(1721) 내에 배치되는 각도 간격으로 결정할 수 있고, 180도를 복수의 광원의 수로 나눈 값을 회전 장치(1720)가 회전하는 각도로 결정할 수 있다. 예를 들어, 복수의 광원의 수가 4개인 경우, 복수의 광원은 제1 부분 장치(1721)에 45도 간격으로 배치될 수 있고, 회전 장치(1720)가 회전할 각도를 45도로 결정할 수 있다.
다양한 실시예에 따른 검출 장치(1740)가 제2 부분 장치(1723)를 전부 둘러싸는 형태로 구성된 경우, 프로세서(110)는 제1 부분 장치(1721)에 배치된 복수의 광원 중 어느 하나에서 엑스선을 대상체에 조사하더라도 검출 장치(1740)에 의해 대상체를 투과한 엑스선을 검출할 수 있다.
도 18은 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 18은 복수의 광원이 4개인 경우, 복수의 광원(1731, 1733, 1735, 1737), 회전 장치(1720) 및 이송부(1750)의 시간에 따른 동작 상태를 나타내는 그래프이다.
그래프 1800 중 회전 장치(1720)에 대한 그래프에서 동작 상태 1은 제1 회전 방향으로 회전하는 상태를 의미하고, 동작 상태 0은 회전하지 않는 상태를 의미하며, 동작 상태 -1은 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 상태를 의미할 수 있다. 그래프 1800 중 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)에 대한 그래프에서, 동작 상태 1은 엑스선을 조사하는 상태를 의미하고, 동작 상태 0은 엑스선을 조사하지 않는 상태를 의미할 수 있다. 그래프 1800 중 이송부(1750)에 대한 그래프에서 동작 상태 1은 회전 축의 양의 방향(+방향)으로 이동하는 상태를 의미하고, 동작 상태 -1은 회전 축의 음의 방향(-방향)으로 이동하는 상태를 의미할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1800에 도시된 동작 방법을 사용하여 대상체에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1800에 도시된 동작 방법을 사용하여 대상체에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 회전 장치(1720)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 복수의 광원의 수가 4개인 경우, 회전 장치(1720)의 회전 각도를 45도로 결정할 수 있다. 그래프 1800의 회전 장치(1720)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000104
부터
Figure PCTKR2020008416-appb-img-000105
까지 회전 장치(1720)를 제1 회전 방향으로 45도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 1800의 이송부(1750)에 대한 그래프를 참조하면, 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 획득하기 위하여, 이송부(1750)를 이동시키지 않을 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737) 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737) 모두 대상체에 엑스선을 조사하도록 복수의 광원(1731, 1733, 1735, 1737)을 제어할 수 있다. 예를 들어, 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737)이 기 설정된 순서대로 번갈아 가며 엑스선을 대상체에 조사하는 시퀀스를 단위 각도마다 반복하도록 복수의 광원을 제어할 수 있다.
예를 들어, 그래프 1800의 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)에 대한 그래프를 참조하면, 프로세서(110)는 회전 장치(1720)가 0도부터 45도까지 제1 회전 방향으로 회전하는 동안, 즉
Figure PCTKR2020008416-appb-img-000106
부터
Figure PCTKR2020008416-appb-img-000107
까지 회전하는 동안 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737) 모두를 이용하여 엑스선을 대상체에 조사할 수 있다.
예를 들어, 도 7에 도시된 것처럼, 프로세서(110)는 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)의 순서대로 하나씩 번갈아 가며 엑스선을 대상체에 조사하는 시퀀스를 단위 각도마다 반복하도록 복수의 광원(1731, 1733, 1735, 1737)을 제어할 수도 있다.
다양한 실시예에 따른 프로세서(110)는, 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 검출 장치(1740)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 상기의 경우, 프로세서(110)는 검출 장치(1740)를 이용하여 검출된 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 3차원 이미지를 생성할 수 있다. 상기의 경우, 대상체에 대한 3차원 이미지는 원형의 컴퓨터 단층 촬영 영상일 수 있다.
다양한 실시예에 따른 프로세서(110)는 결정된 회전 각도만큼 회전 장치(1720)를 제2 회전 방향으로 회전시킬 수 있다. 즉, 프로세서(110)는 회전 장치(1720)의 위치를 제1 회전 방향으로 회전하기 전 상태로 원상 복귀시킬 수 있다. 그래프 1800의 회전 장치(1720)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000108
부터
Figure PCTKR2020008416-appb-img-000109
까지 회전 장치(1720)를 제2 회전 방향으로 45도만큼 회전시킬 수 있다.
도 19는 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 19는 복수의 광원이 4개인 경우, 복수의 광원(1731, 1733, 1735, 1737), 회전 장치(1720) 및 이송부(1750)의 시간에 따른 동작 상태를 나타내는 그래프이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1900에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 회전 장치(1720)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 복수의 광원의 수가 4개인 경우, 회전 장치(1720)의 회전 각도를 45도로 결정할 수 있다. 그래프 1900의 회전 장치(1720)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000110
부터
Figure PCTKR2020008416-appb-img-000111
까지 제1 회전 장치(1720)를 제1 회전 방향으로 45도만큼 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전을 시작하는 것에 응답하여, 이송부(1750)를 회전 축 방향으로 기 설정된 시간 동안 기 설정된 거리만큼 이동하도록 제어할 수 있다. 그래프 1900의 이송부(1750)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000112
부터
Figure PCTKR2020008416-appb-img-000113
까지 이송부(1750)를 회전 축의 양의 방향으로 기 설정된 거리만큼 이동하도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737) 중 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000114
부터
Figure PCTKR2020008416-appb-img-000115
까지 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 제1 광원(1731)을 이용하여 대상체에 엑스선을 조사할 수 있다. 상기의 경우, 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)은 엑스선을 조사하지 않을 수 있다. 제1 광원(1731)이 엑스선을 조사하는 동안 검출 장치(1740)는 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는, 검출 장치(1740)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)를 제1 회전 방향의 반대 방향인 제2 회전 방향으로 회전시킬 수 있다. 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 제2 회전 방향으로 결정된 회전 각도만큼 회전하도록 회전 장치(1720)를 제어할 수 있다. 그래프 1900의 회전 장치(1720)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000116
부터
Figure PCTKR2020008416-appb-img-000117
까지 제1 회전 장치(1720)를 제2 회전 방향으로 45도만큼 회전시킬 수 있다. 즉, 프로세서(110)는 제1 회전 장치(1720)의 위치를 제1 회전 방향으로 회전하기 전 상태로 원상 복귀시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제2 회전 방향으로 회전을 시작하는 것에 응답하여, 이송부(1750)를 이동시키지 않고 정지하도록 제어할 수 있다. 그래프 1900의 이송부(1750)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000118
부터
Figure PCTKR2020008416-appb-img-000119
까지 이송부(1750)가 이동하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제2 회전 방향으로 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737) 모두 엑스선을 조사하지 않도록 제어할 수 있다. 그래프 1900의 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)의 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000120
부터
Figure PCTKR2020008416-appb-img-000121
까지 제1 광원(1731), 제2 광원(1733) 및 제3 광원(1735) 모두 엑스선을 조사하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 결정된 회전 각도만큼 회전하고, 이후 제2 회전 방향으로 결정된 회전 각도만큼 회전하는 동작을 복수의 광원의 수만큼 반복할 수 있다.
다양한 실시예에 따른 프로세서(110)는 결정된 회전 각도만큼 회전 장치(1720)를 다시 제1 회전 방향으로 회전시킬 수 있다. 그래프 1900의 회전 장치(1720)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000122
부터
Figure PCTKR2020008416-appb-img-000123
까지 제1 회전 장치(1720)를 제1 회전 방향으로 45도만큼 다시 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전을 다시 시작하는 것에 응답하여, 이송부(1750)를 회전 축 방향으로 기 설정된 시간 동안 기 설정된 거리만큼 이동하도록 제어할 수 있다. 그래프 1900의 이송부(1750)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000124
부터
Figure PCTKR2020008416-appb-img-000125
까지 이송부(1750)를 회전 축의 양의 방향으로 기 설정된 거리만큼 이동하도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737) 중 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000126
부터
Figure PCTKR2020008416-appb-img-000127
까지 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안, 제2 광원(1733)을 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 제2 광원(1733)은 제1 광원(1731)으로부터 제1 회전 방향 상에 가장 가깝게 위치한 광원일 수 있다. 상기의 경우, 제1 광원(1731), 제3 광원(1735) 및 제4 광원(1737)은 엑스선을 조사하지 않을 수 있다. 제2 광원(1733)이 엑스선을 조사하는 동안 검출 장치(1740)는 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는, 검출 장치(1740)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)를 제1 회전 방향의 반대 방향인 제2 회전 방향으로 다시 회전시킬 수 있다. 그래프 1900의 회전 장치(1720)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000128
부터
Figure PCTKR2020008416-appb-img-000129
까지 제1 회전 장치(1720)를 제2 회전 방향으로 45도만큼 다시 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제2 회전 방향으로 회전을 다시 시작하는 것에 응답하여, 이송부(1750)를 이동시키지 않고 정지하도록 제어할 수 있다. 그래프 1900의 이송부(1750)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000130
부터
Figure PCTKR2020008416-appb-img-000131
까지 이송부(1750)가 이동하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 회전 장치(1720)가 제2 회전 방향으로 다시 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737) 모두 엑스선을 조사하지 않도록 제어할 수 있다. 그래프 1900의 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)의 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000132
부터
Figure PCTKR2020008416-appb-img-000133
까지 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737) 모두 엑스선을 조사하지 않도록 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는
Figure PCTKR2020008416-appb-img-000134
부터
Figure PCTKR2020008416-appb-img-000135
까지 회전 장치(1720)가 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 2 번 더 반복할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000136
부터
Figure PCTKR2020008416-appb-img-000137
까지 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안 복수의 광원 중 제3 광원(1735)을 이용하여 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000138
부터
Figure PCTKR2020008416-appb-img-000139
까지 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안 복수의 광원 중 제4 광원(1737)을 이용하여 대상체에 엑스선을 조사할 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 생성할 수 있다.
도 20은 제4 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 20은 복수의 광원이 4개인 경우, 복수의 광원(1731, 1733, 1735, 1737), 회전 장치(1720) 및 이송부(1750)의 시간에 따른 동작 상태를 나타내는 그래프이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 1300에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있고, 획득한 나선형의 컴퓨터 단층 촬영 영상을 이용하여 대상체 전체에 대한 3차원 이미지를 생성할 수 있다. 도 19에서 설명한 내용과 중복되는 내용은 설명을 생략한다.
다양한 실시예에 따르면,
Figure PCTKR2020008416-appb-img-000140
부터
Figure PCTKR2020008416-appb-img-000141
까지 회전 장치(1720), 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)의 동작 상태는 도 19와 동일하다. 그래프 2000의 회전 장치(1720), 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)의 그래프를 참조하면, 프로세서(110)는 회전 장치(1720)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 회전 장치(1720)를 제어할 수 있다. 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안 복수의 광원(1731, 1733, 1735, 1737) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 2000에 도시된 것처럼, 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737) 순서대로 대상체에 엑스선을 조사하도록 복수의 광원(1731, 1733, 1735, 1737)을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 2000의 이송부(1750)에 대한 그래프를 참조하면,
Figure PCTKR2020008416-appb-img-000142
부터
Figure PCTKR2020008416-appb-img-000143
까지 까지 이송부(1750)를 회전 축의 양의 방향으로 기 설정된 속도로 일정하게 이동하도록 제어할 수 있다. 회전 장치(1720)가 제2 회전 방향으로 회전하는 동안, 즉 회전 장치(1720)가 원래 위치로 원상 복귀하는 동안 이송부(1750)를 정지시키지 않는 경우, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상에는 일부 데이터가 누락될 수 있다. 상기 누락된 데이터를 보완하기 위하여, 프로세서(110)는 이송부(1750)를 회전 축의 음의 방향으로 기 설정된 속도로 다시 이동시킬 수 있다. 예를 들어, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000144
부터
Figure PCTKR2020008416-appb-img-000145
까지 이송부(1750)를 회전 축의 음의 방향으로 기 설정된 속도로 일정하게 이동하도록 제어할 수 있다.
그래프 2000의 회전 장치(1720), 제1 광원(1731), 제2 광원(1733), 제3 광원(1735) 및 제4 광원(1737)의 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000146
부터
Figure PCTKR2020008416-appb-img-000147
까지 회전 장치(1720)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 회전 장치(1720)를 제어할 수 있다. 프로세서(110)는 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안 복수의 광원(1731, 1733, 1735, 1737) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 2000에 도시된 것처럼,
Figure PCTKR2020008416-appb-img-000148
부터
Figure PCTKR2020008416-appb-img-000149
까지 제4 광원(1737), 제3 광원(1735), 제2 광원(1733) 및 제1 광원(1731) 순서대로 대상체에 엑스선을 조사하도록 복수의 광원(1731, 1733, 1735, 1737)을 제어할 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 생성할 수 있다.
도 21은 제4 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100)의 동작 흐름도이다.
동작 흐름도 2100을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 프로세서(110)는, 동작 2110에서, 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 회전 장치(1720)를 제1 회전 방향으로 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 2120에서, 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안 복수의 광원(1731, 1733, 1735, 1737) 중 적어도 하나를 통해 대상체에 엑스선을 조사할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 2130에서, 회전 장치(1720)가 제1 회전 방향으로 회전하는 동안 검출 장치(1740)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는 검출 장치(1740)를 통해 검출한 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 이용하여, 대상체에 대한 3차원 이미지를 생성할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 2140에서, 회전 장치(1720)를 결정된 회전 각도만큼 제2 회전 방향으로 회전시킬 수 있다. 프로세서(110)는 회전 장치(1720)가 결정된 회전 각도만큼 제2 회전 방향으로 회전하는 동안, 복수의 광원(1731, 1733, 1735, 1737) 모두 엑스선을 조사하지 않도록 제어할 수 있다.
<제5 실시예 구조>
도 22 내지 도 26은 제5 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100) 및 그의 컴퓨터 단층 촬영 방법을 설명하기 위한 도면이다. 다른 실시예 구조에서 설명한 내용과 중복되는 내용은 생략한다.
도 22는 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 갠트리의 x-y 평면 단면도이다.
도 22를 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리, 복수의 광원(2231, 2233, 2235) 및 하나의 검출 장치(2240)를 포함할 수 있다. 갠트리는 하나의 회전 축을 공유하고, 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치(2221) 및 제2 회전 장치(2223)를 포함할 수 있다. 복수의 광원(2231, 2233, 2235)은 제1 회전 장치(2221)에 일정한 간격으로 배치될 수 있다. 복수의 광원(2231, 2233, 2235)은 이송부(2250)에 적재된 대상체에 엑스선을 조사할 수 있다. 본 도면에서는 설명의 편의를 위하여 복수의 광원의 수가 3개로 가정하여 설명하겠으나, 복수의 광원의 수는 이에 제한되지 않으며, 2개일 수도 있고, 3개를 초과하는 수일 수도 있다.
다양한 실시예에 따른 검출 장치(2240)는 제2 회전 장치(2223)의 일 영역에 배치될 수 있으며, 검출 장치(2240)는 대상체를 투과한 엑스선을 검출할 수 있다. 제2 회전 장치(2223)의 초기 위치는, 검출 장치(2240)가 복수의 광원(2231, 2233, 2235) 중 가장 먼저 엑스선을 조사하는 것으로 설정된 특정 광원에 대응하여 마주볼 수 있는 위치로 설정될 수 있다. 예를 들어, 복수의 광원(2231, 2233, 2235) 중 제1 광원(2231)이 가장 먼저 엑스선을 조사하는 것으로 초기 설정된 경우, 프로세서(110)는 검출 장치(2240)가 제1 광원(2231)에 대응하여 마주볼 수 있는 위치를 제2 회전 장치(2223)의 초기 위치로 설정할 수 있다.
도 23은 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 23은 복수의 광원이 3개인 경우, 복수의 광원(2231, 2233, 2235), 제1 회전 장치(2221), 제2 회전 장치(2223) 및 이송부(2250)의 시간에 따른 동작 상태를 나타내는 그래프이다.
그래프 2300 중 제1 회전 장치(2221) 및 제2 회전 장치(2223)에 대한 그래프에서 동작 상태 1은 제1 회전 방향으로 회전하는 상태를 의미하고, 동작 상태 0은 회전하지 않는 상태를 의미하며, 동작 상태 -1은 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 상태를 의미할 수 있다. 그래프 2300 중 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235)에 대한 그래프에서, 동작 상태 1은 엑스선을 조사하는 상태를 의미하고, 동작 상태 0은 엑스선을 조사하지 않는 상태를 의미할 수 있다. 그래프 2300 중 이송부(2250)에 대한 그래프에서 동작 상태 1은 회전 축의 양의 방향(+방향)으로 이동하는 상태를 의미하고, 동작 상태 -1은 회전 축의 음의 방향(-방향)으로 이동하는 상태를 의미할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 2300에 도시된 동작 방법을 사용하여 대상체에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 제1 회전 장치(2221)를 제1 회전 방향으로 회전하는 제1 동작 및 결정된 회전 각도만큼 제2 회전 방향으로 회전하는 제2 동작을 반복하도록 제1 회전 장치(2221)를 제어할 수 있다. 예를 들어, 복수의 광원의 수가 3개인 경우, 프로세서(110)는 제1 회전 장치(2221)의 회전 각도를 120도로 결정할 수 있다. 프로세서(110)는 복수의 광원의 수에 기초하여 제1 회전 장치(2221)가 제1 동작 및 제2 동작을 반복하는 횟수를 결정할 수 있다. 예를 들어, 복수의 광원의 수가 3개인 경우, 프로세서(110)는 제1 회전 장치(2221)가 제1 동작 및 제2 동작을 반복하는 횟수를 3회로 결정할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 2300의 이송부(2250)에 대한 그래프를 참조하면, 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 획득하기 위하여, 이송부(2250)를 이동시키지 않을 수 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(2221)가 제1 동작 및 제2 동작을 반복하는 동안, 제2 회전 장치(2223)가 제1 회전 장치(2221)와 동일한 회전 속력으로 제1 회전 방향으로 회전하도록 제2 회전 장치(2223)를 제어할 수 있다. 그래프 2300의 제2 회전 장치(2223)에 대한 그래프를 참조하면,
Figure PCTKR2020008416-appb-img-000150
부터
Figure PCTKR2020008416-appb-img-000151
까지 제2 회전 장치(2223)를 제1 회전 방향으로 회전시킬 수 있다. 예를 들어, 프로세서(110)는 제2 회전 장치(2223)를 제1 회전 장치(2221)와 동일한 회전 속력으로 제1 회전 방향으로 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치가(2221) 제1 회전 방향으로 회전하는 동안, 복수의 광원 중 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000152
부터
Figure PCTKR2020008416-appb-img-000153
까지 제1 회전 장치(2221)가 제1 회전 방향으로 회전하는 동안, 제1 광원(2231)을 이용하여 대상체에 엑스선을 조사할 수 있다. 상기의 경우, 제2 광원(2233) 및 제3 광원(2235)은 엑스선을 조사하지 않을 수 있다. 프로세서(110)는, 제1 광원(2231)이 엑스선을 조사하는 동안, 제1 광원(2231)에 대응하여 마주보는 위치에 배치된 검출 장치(2240)를 이용하여 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는, 검출 장치(2240)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 상기와 같이 프로세서(110)는
Figure PCTKR2020008416-appb-img-000154
부터
Figure PCTKR2020008416-appb-img-000155
까지는 제2 광원(2233)을 통해 대상체에 엑스선을 조사하고,
Figure PCTKR2020008416-appb-img-000156
부터
Figure PCTKR2020008416-appb-img-000157
까지는 제3 광원(2235)을 통해 대상체에 엑스선을 조사할 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(2221)를 제2 회전 방향으로 회전시킬 수 있다. 프로세서(110)는 제1 회전 장치(2221)가 제1 회전 방향으로 결정된 회전 각도만큼 회전한 이후, 제2 회전 방향으로 결정된 회전 각도만큼 회전하도록 제1 회전 장치(2221)를 제어할 수 있다. 그래프 2300의 제1 회전 장치(2221)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000158
부터
Figure PCTKR2020008416-appb-img-000159
까지 제1 회전 장치(2221)를 제2 회전 방향으로 120도만큼 회전시킬 수 있다. 즉, 프로세서(110)는 제1 회전 장치(2221)의 위치를 제1 회전 방향으로 회전하기 전 상태로 원상 복귀시킬 수 있다. 상기와 같이 프로세서(110)는
Figure PCTKR2020008416-appb-img-000160
부터
Figure PCTKR2020008416-appb-img-000161
까지도 제1 회전 장치(2221)를 제2 회전 방향으로 120도만큼 회전시키고,
Figure PCTKR2020008416-appb-img-000162
부터
Figure PCTKR2020008416-appb-img-000163
까지도 제1 회전 장치(2221)를 제2 회전 방향으로 120도만큼 회전시킬 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 생성할 수 있다.
도 24는 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 24는 복수의 광원이 3개인 경우, 복수의 광원(2231, 2233, 2235), 제1 회전 장치(2221), 제2 회전 장치(2223) 및 이송부(2250)의 시간에 따른 동작 상태를 나타내는 그래프이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 2400에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있고, 획득한 나선형의 컴퓨터 단층 촬영 영상을 이용하여 대상체 전체에 대한 3차원 이미지를 생성할 수 있다. 도 23에서 설명한 내용과 중복되는 내용은 설명을 생략한다.
다양한 실시예에 따르면,
Figure PCTKR2020008416-appb-img-000164
부터
Figure PCTKR2020008416-appb-img-000165
까지 제1 회전 장치(2221), 제2 회전 장치(2223), 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235)의 동작 상태는 도 23과 동일하다. 그래프 2400의 제1 회전 장치(2221), 제2 회전 장치(2223), 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235)의 그래프를 참조하면, 프로세서(110)는 제1 회전 장치(2221)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 회전 장치를 제어할 수 있다. 프로세서(110)는 제1 회전 장치(2221)가 상기 동작들을 반복하는 동안 제2 회전 장치(2223)가 제1 회전 장치(2221)와 동일한 회전 속력으로 제1 회전 방향으로 회전하도록 제2 회전 장치(2223)를 제어할 수 있다. 프로세서(110)는 제1 회전 장치(2221)가 제1 회전 방향으로 회전하는 동안 복수의 광원 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 2400에 도시된 것처럼, 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235) 순서대로 대상체에 엑스선을 조사하도록 복수의 광원을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(2221)가 제1 회전 방향으로 회전하는 동안, 이송부(2250)를 회전 축의 양의 방향으로 기 설정된 거리만큼 이동하도록 제어할 수 있다. 그래프 2400의 이송부(2250)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000166
부터
Figure PCTKR2020008416-appb-img-000167
까지,
Figure PCTKR2020008416-appb-img-000168
부터
Figure PCTKR2020008416-appb-img-000169
까지 및
Figure PCTKR2020008416-appb-img-000170
부터
Figure PCTKR2020008416-appb-img-000171
까지 이송부(2250)를 기 설정된 거리만큼 이동시킬 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 생성할 수 있다. 그래프 2400과 같은 방법을 사용하는 경우, 복수의 광원(2231, 2233, 2235) 중 하나를 통해 엑스선을 대상체에 조사하는 동안에만 이송부(2250)를 이동시키므로, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있다.
도 25는 제5 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 25는 복수의 광원이 3개인 경우, 복수의 광원(2231, 2233, 2235), 제1 회전 장치(2221), 제2 회전 장치(2223) 및 이송부(2250)의 시간에 따른 동작 상태를 나타내는 그래프이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 2500에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있고, 획득한 나선형의 컴퓨터 단층 촬영 영상을 이용하여 대상체 전체에 대한 3차원 이미지를 생성할 수 있다. 도 24에서 설명한 내용과 중복되는 내용은 설명을 생략한다.
다양한 실시예에 따르면,
Figure PCTKR2020008416-appb-img-000172
부터
Figure PCTKR2020008416-appb-img-000173
까지 제1 회전 장치(2221), 제2 회전 장치(2223), 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235)의 동작 상태는 도 24와 동일하다. 그래프 2500의 제1 회전 장치(2221), 제2 회전 장치(2223), 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235)의 그래프를 참조하면, 프로세서(110)는 제1 회전 장치(2221)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 제1 회전 장치(2221)를 제어할 수 있다. 프로세서(110)는 제1 회전 장치(2221)가 제1 회전 방향으로 회전하는 동안 복수의 광원(2231, 2233, 2235) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 2500에 도시된 것처럼, 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235) 순서대로 대상체에 엑스선을 조사하도록 복수의 광원(2231, 2233, 2235)을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(2221)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고 이후 제2 회전 방향으로 회전하는 동작을 반복하는 동안, 제2 회전 장치(2223)가 제1 회전 장치(2221)와 동일한 회전 속력으로 제1 회전 방향으로 회전하도록 제2 회전 장치(2223)를 제어할 수 있다. 그래프 2500의 제2 회전 장치(2223)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000174
부터
Figure PCTKR2020008416-appb-img-000175
까지 제2 회전 장치(2223)를 제1 회전 방향으로 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 2500의 이송부(2250)에 대한 그래프를 참조하면,
Figure PCTKR2020008416-appb-img-000176
부터
Figure PCTKR2020008416-appb-img-000177
까지 이송부(2250)를 회전 축의 양의 방향으로 기 설정된 속도로 일정하게 이동하도록 제어할 수 있다. 제1 회전 장치(2221)가 제2 회전 방향으로 회전하는 동안, 즉 제1 회전 장치(2221)가 원래 위치로 원상 복귀하는 동안 이송부(2250)를 정지시키지 않는 경우, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상에는 일부 데이터가 누락될 수 있다. 상기 누락된 데이터를 보완하기 위하여, 프로세서(110)는 이송부(2250)를 회전 축의 음의 방향으로 기 설정된 속도로 다시 이동시킬 수 있다. 예를 들어, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000178
부터
Figure PCTKR2020008416-appb-img-000179
까지 이송부(2250)를 회전 축의 음의 방향으로 기 설정된 속도로 일정하게 이동하도록 제어할 수 있다.
그래프 2500의 제1 회전 장치(2221), 제2 회전 장치(2223), 제1 광원(2231), 제2 광원(2233) 및 제3 광원(2235)의 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000180
부터
Figure PCTKR2020008416-appb-img-000181
까지 제1 회전 장치(2221)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 회전 장치를 제어할 수 있다. 프로세서(110)는 제1 회전 장치(2221)가 제1 회전 방향으로 회전하는 동안 복수의 광원(2231, 2233, 2235) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 2500에 도시된 것처럼,
Figure PCTKR2020008416-appb-img-000182
부터
Figure PCTKR2020008416-appb-img-000183
까지 제3 광원(2235), 제2 광원(2233) 및 제1 광원(2231) 순서대로 대상체에 엑스선을 조사하도록 복수의 광원을 제어할 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 생성할 수 있다.
도 26은 제5 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100)의 동작 흐름도이다.
동작 흐름도 2600을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 프로세서(110)는, 동작 2610에서, 제1 회전 장치(2221)가 복수의 광원의 수에 기초하여 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 제1 동작 및 결정된 회전 각도만큼 제2 회전 방향으로 회전하는 제2 동작을 반복하도록 제1 회전 장치(2221)를 제어할 수 있다. 프로세서(110)는, 예를 들어, 복수의 광원의 수에 기초하여 제1 회전 장치(2221)가 제1 동작 및 제2 동작을 반복하는 횟수를 결정할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 2620에서, 제1 회전 장치(2221)가 제1 동작 및 제2 동작을 반복하는 동안 제2 회전 장치(2223)가 제1 회전 장치(2221)와 동일한 회전 속력으로 제1 회전 방향으로 회전하도록 제2 회전 장치(2223)를 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 2630에서, 제1 회전 장치(2221)가 제1 동작을 수행하는 동안 복수의 광원(2231, 2233, 2235) 중 하나를 통해 대상체에 엑스선을 조사하며, 검출 장치(2240)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는 검출 장치(2240)를 통해 검출한 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 이용하여, 대상체에 대한 3차원 이미지를 생성할 수 있다.
<제6 실시예 구조>
도 27a 내지 도 30은 제6 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100) 및 그의 컴퓨터 단층 촬영 방법을 설명하기 위한 도면이다. 다른 실시예 구조에서 설명한 내용과 중복되는 내용은 생략한다.
도 27a는 제6 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 갠트리의 x-y 평면 단면도이고, 도 27b는 제6 실시예 구조에 따른 갠트리의 y-z 평면 단면도이다.
도 27a를 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 갠트리, 복수의 제1 광원(2731, 2732, 2733), 복수의 제2 광원(2734, 2735, 2736) 및 하나의 검출 장치(2740)를 포함할 수 있다. 갠트리는 하나의 회전 축을 공유하고, 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치(2721), 제2 회전 장치(2723) 및 제3 회전 장치(2725)를 포함할 수 있다. 복수의 제1 광원(2731, 2732, 2733)은 제1 회전 장치(2721)에 일정한 간격으로 배치될 수 있다. 복수의 제2 광원(2734, 2735, 2736)은 제2 회전 장치(2723)에 일정한 간격을 배치될 수 있다. 복수의 제1 광원(2731, 2732, 2733) 및 복수의 제2 광원(2734, 2735, 2736)은 이송부(2750)에 적재된 대상체에 엑스선을 조사할 수 있다. 본 도면에서는 설명의 편의를 위하여 복수의 제1 광원의 수를 3개, 복수의 제2 광원의 수를 3개로 가정하여 설명하겠으나, 복수의 제1 광원의 수 및 복수의 제2 광원의 수는 이에 제한되지 않는다.
다양한 실시예에 따른 검출 장치(2740)는 제3 회전 장치(2725)의 일 영역에 배치될 수 있으며, 검출 장치(2740)는 대상체를 투과한 엑스선을 검출할 수 있다. 제3 회전 장치(2725)의 초기 위치는, 검출 장치(2740)가 복수의 제1 광원(2731, 2732, 2733) 및 복수의 제2 광원(2734, 2735, 2736) 중 가장 먼저 엑스선을 조사하는 것으로 설정된 특정 광원에 대응하여 마주볼 수 있는 위치로 설정될 수 있다. 예를 들어, 광원 1(2731)이 가장 먼저 엑스선을 조사하는 것으로 초기 설정된 경우, 프로세서(110)는 검출 장치(2740)가 광원 1(2731)에 대응하여 마주볼 수 있는 위치를 제3 회전 장치(2725)의 초기 위치로 설정할 수 있다.
도 27b를 참조하면, 다양한 실시예에 따른 제1 회전 장치(2721)의 배치 평면, 제2 회전 장치(2723)의 배치 평면 및 제3 회전 장치(2725)의 배치 평면을 서로 평행하게 배치될 수 있다. 예를 들어, 복수의 제1 광원(2731, 2732, 2733)의 z축 상의 위치는, 복수의 제2 광원(2734, 2735, 2736)의 z축 상의 위치와 서로 상이할 수 있다. 예를 들어, 광원 1(2731), 광원 2(2732) 및 광원 3(2733)의 z축 상의 위치는, 광원 2(2734), 광원 b(2735) 및 광원 c(2736)의 z축 상의 위치와 서로 상이할 수 있다.
도 28은 제6 실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 28은 복수의 제1 광원 및 복수의 제2 광원이 각각 3개인 경우, 복수의 제1 광원(2731, 2732, 2733), 복수의 제2 광원(2734, 2735, 2736), 제1 회전 장치(2721), 제2 회전 장치(2723), 제3 회전 장치(2725) 및 이송부(2750)의 시간에 따른 동작 상태를 나타내는 그래프이다.
그래프 2800 중 제1 회전 장치(2721), 제2 회전 장치(2723) 및 제3 회전 장치(2725)에 대한 그래프에서 동작 상태 1은 제1 회전 방향으로 회전하는 상태를 의미하고, 동작 상태 0은 회전하지 않는 상태를 의미하며, 동작 상태 -1은 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 상태를 의미할 수 있다. 그래프 2800 중 광원 1(2731), 광원 2(2732), 광원 3(2733), 광원 2(2734), 광원 b(2735) 및 광원 c(2736)에 대한 그래프에서, 동작 상태 1은 엑스선을 조사하는 상태를 의미하고, 동작 상태 0은 엑스선을 조사하지 않는 상태를 의미할 수 있다. 그래프 2800 중 이송부(2750)에 대한 그래프에서 동작 상태 1은 회전 축의 양의 방향(+방향)으로 이동하는 상태를 의미하고, 동작 상태 -1은 회전 축의 음의 방향(-방향)으로 이동하는 상태를 의미할 수 있다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 2800에 도시된 동작 방법을 사용하여 대상체에 대한 원형의 컴퓨터 단층 촬영 영상들을 획득할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 제1 광원(2731, 2732, 2733) 및 복수의 제2 광원(2734, 2735, 2736)의 수에 기초하여 결정된 회전 각도만큼 제1 회전 장치(2721)를 제1 회전 방향으로 회전시키는 제1 동작 및 결정된 회전 각도만큼 제2 회전 방향으로 회전시키는 제2 동작을 반복하도록 제1 회전 장치(2721)를 제어할 수 있다. 프로세서(110)는 360도를 복수의 제1 광원(2731, 2732, 2733) 및 복수의 제2 광원(2734, 2735, 2736)의 수로 나눈 값을 제1 장치의 회전 각도로 결정할 수 있다. 예를 들어, 복수의 제1 광원(2731, 2732, 2733)의 수 3개이고, 복수의 제2 광원(2734, 2735, 2736)의 수가 3개인 경우, 프로세서(110)는 제1 회전 장치(2721)의 회전 각도를 60도로 결정할 수 있다.
다양한 실시예에 따른 프로세서(110)는 복수의 제1 광원(2731, 2732, 2733) 및 복수의 제2 광원(2734, 2735, 2736)의 수에 기초하여 제1 회전 장치(2721)가 제1 동작 및 제2 동작을 반복하는 횟수를 결정할 수 있다. 예를 들어, 복수의 제1 광원(2731, 2732, 2733)의 수 및 복수의 제2 광원(2734, 2735, 2736)의 수가 각각 3개인 경우, 프로세서(110)는 제1 회전 장치(2721)가 제1 동작 및 제2 동작을 반복하는 횟수를 3회로 결정할 수 있다.
다양한 실시예에 따른 프로세서(110)는 상기 결정된 회전 각도만큼 제2 회전 장치(2723)를 제2 회전 방향으로 회전시키는 제3 동작 및 제1 회전 방향으로 회전시키는 제4 동작을 반복하도록 제2 회전 장치(2723)를 제어할 수 있다. 프로세서(110)는 제2 회전 장치(2723)가 제1 회전 장치(2721)와 동일한 회전 속력으로 회전하도록 제어할 수 있다.
다양한 실시예에 따르면, 제1 회전 장치(2721)의 제1 동작 및 제2 회전 장치(2723)의 제3 동작은 서로 동시에 수행되고, 제1 회전 장치(2721)의 제2 동작 및 제2 회전 장치(2723)의 제4 동작은 서로 동시에 수행될 수 있다. 즉, 제1 회전 장치(2721) 및 제2 회전 장치(2723)는 서로 다른 방향으로 회전할 수 있다. 예를 들어, 프로세서(110)는 제1 회전 장치(2721)를 제1 회전 방향으로 회전시키는 동안 제2 회전 장치(2723)는 제2 회전 방향으로 회전시키고, 제1 회전 장치(2721)가 제2 회전 방향으로 회전시키는 동안 제2 회전 장치(2723)는 제1 회전 방향으로 회전시킬 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(2721)가 제1 동작 및 제2 동작을 반복하고, 제2 회전 장치(2723)가 제3 동작 및 제4 동작을 반복하는 동안, 제3 회전 장치(2725)가 제1 회전 장치(2721) 및 제2 회전 장치(2723)와 동일한 회전 속력으로 제1 회전 방향으로 회전하도록 제3 회전 장치(2725)를 제어할 수 있다. 예를 들어,
Figure PCTKR2020008416-appb-img-000184
일 때 제3 회전 장치(2725)에 배치된 검출 장치(2740)가 광원 1(2731)에 대응하여 마주보는 위치에 배치되고,
Figure PCTKR2020008416-appb-img-000185
부터
Figure PCTKR2020008416-appb-img-000186
까지 제3 회전 장치(2725)가 제1 회전 장치(2721)와 제2 회전 장치(2723)와 동일한 회전 속력을 가지고 제1 회전 방향으로 회전할 수 있다. 상기의 경우, 광원 1(2731), 광원 2(2734), 광원 2(2732), 광원 b(2735), 광원 3(2733) 및 광원 c(2736)의 순서대로 엑스선을 조사하더라도, 검출 장치(2740)는 항상 엑스선을 조사하는 특정 광원의 마주보는 곳에 위치할 수 있다. 따라서, 검출 장치(2740)는
Figure PCTKR2020008416-appb-img-000187
부터
Figure PCTKR2020008416-appb-img-000188
까지 대상체를 투과한 엑스선을 검출할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 그래프 2800의 이송부(2750)에 대한 그래프를 참조하면, 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 획득하기 위하여, 이송부(2750)를 이동시키지 않을 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(2721)가 제1 회전 방향으로 회전하는 동안, 즉 제1 회전 장치(2721)가 제1 동작을 수행하는 동안, 복수의 제1 광원(2731, 2732, 2733) 중 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000189
부터
Figure PCTKR2020008416-appb-img-000190
까지 제1 회전 장치(2721)가 제1 회전 방향으로 회전하는 동안, 광원 1(2731)을 이용하여 대상체에 엑스선을 조사할 수 있다. 상기의 경우, 광원 2(2732) 및 광원 3(2733)은 엑스선을 조사하지 않을 수 있으며, 복수의 제2 광원(2734, 2735, 2736) 역시 엑스선을 조사하지 않을 수 있다. 프로세서(110)는, 광원 1(2731)이 엑스선을 조사하는 동안, 검출 장치(2740)를 이용하여 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는, 검출 장치(2740)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 상기와 같이 프로세서(110)는
Figure PCTKR2020008416-appb-img-000191
부터
Figure PCTKR2020008416-appb-img-000192
까지는 광원 2(2732)만을 이용해 대상체에 엑스선을 조사하고,
Figure PCTKR2020008416-appb-img-000193
부터
Figure PCTKR2020008416-appb-img-000194
까지는 광원 3(2733)만을 이용해 대상체에 엑스선을 조사할 수 있다.
다양한 실시예에 따른 프로세서(110)는 제2 회전 장치(2723)가 제1 회전 방향으로 회전하는 동안, 즉 제2 회전 장치(2723)가 제5 동작을 수행하는 동안, 복수의 제2 광원(2734, 2735, 2736) 중 하나를 통해 대상체에 엑스선을 조사할 수 있다. 프로세서(110)는
Figure PCTKR2020008416-appb-img-000195
부터
Figure PCTKR2020008416-appb-img-000196
까지 제2 회전 장치(2723)가 제1 회전 방향으로 회전하는 동안, 광원 2(2734)을 이용하여 대상체에 엑스선을 조사할 수 있다. 상기의 경우, 광원 b(2735) 및 광원 c(2736)는 엑스선을 조사하지 않을 수 있으며, 복수의 제1 광원(2731, 2732, 2733) 역시 엑스선을 조사하지 않을 수 있다. 프로세서(110)는, 광원 2(2734)가 엑스선을 조사하는 동안, 검출 장치(2740)를 이용하여 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는, 검출 장치(2740)를 이용하여 검출한 엑스선에 기초하여 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 상기와 같이 프로세서(110)는
Figure PCTKR2020008416-appb-img-000197
부터
Figure PCTKR2020008416-appb-img-000198
까지는 광원 b(2735)만을 이용해 대상체에 엑스선을 조사하고,
Figure PCTKR2020008416-appb-img-000199
부터
Figure PCTKR2020008416-appb-img-000200
까지는 광원 c(2736)만을 이용해 대상체에 엑스선을 조사할 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 원형의 컴퓨터 단층 촬영 영상을 생성할 수 있다. 그래프 2800에 도시된 방법을 사용하는 경우, 제1 회전 장치(2721)가 제2 회전 방향으로 회전하는 동안 즉 제1 회전 장치(2721)가 제1 회전 방향으로 회전하기 전 상태로 원상 복귀하는 동안에도, 제2 회전 장치(2723)가 제1 회전 방향으로 회전하여 복수의 제2 광원(2734, 2735, 2736)을 이용하여 엑스선을 조사할 수 있다.
도 29는 제6실시예 구조에 따른 컴퓨터 단층 촬영 장치(100)의 컴퓨터 단층 촬영 방법을 도시한 그래프이다. 구체적으로 도 29는 복수의 제1 광원(2731, 2732, 2733), 복수의 제2 광원(2734, 2735, 2736), 제1 회전 장치(2721), 제2 회전 장치(2723), 제3 회전 장치(2725) 및 이송부(2750)의 시간에 따른 동작 상태를 나타내는 그래프이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 그래프 2900에 도시된 동작 방법을 사용하여 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있고, 획득한 나선형의 컴퓨터 단층 촬영 영상을 이용하여 대상체 전체에 대한 3차원 이미지를 생성할 수 있다. 도 29에서 설명한 내용과 중복되는 내용은 설명을 생략한다.
다양한 실시예에 따르면,
Figure PCTKR2020008416-appb-img-000201
부터
Figure PCTKR2020008416-appb-img-000202
까지 제1 회전 장치(2721), 제2 회전 장치(2723), 제3 회전 장치(2725), 광원 1(2731), 광원 2(2732), 광원 3(2733), 광원 2(2734), 광원 b(2735) 및 광원 c(2736)의 동작 상태는 도 28과 동일하다. 그래프 2900의 제1 회전 장치(2721), 제2 회전 장치(2723), 제3 회전 장치(2725), 광원 1(2731), 광원 2(2732), 광원 3(2733), 광원 2(2734), 광원 b(2735) 및 광원 c(2736)의 그래프를 참조하면, 프로세서(110)는 제1 회전 장치(2721)가 결정된 회전 각도만큼 제1 회전 방향으로 회전하고, 이후 제2 회전 방향으로 회전하는 동작을 반복하도록 제1 회전 장치(2721)를 제어할 수 있다. 프로세서(110)는 제1 회전 장치(2721)가 상기 동작들을 반복하는 동안 제2 회전 장치(2723)가 제1 회전 장치(2721)와 동일한 회전 속력으로 결정된 회전 각도만큼 제2 회전 방향으로 회전하고, 이후 제1 회전 방향으로 회전하는 동작을 반복하도록 제2 회전 장치(2723)를 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는 제1 회전 장치(2721)가 제1 회전 방향으로 회전하는 동안 복수의 제1 광원(2731, 2732, 2733) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있고, 제2 회전 장치(2723)가 제1 회전 방향으로 회전하는 동안 복수의 제2 광원(2734, 2735, 2736) 중 하나를 이용하여 대상체에 엑스선을 조사할 수 있다. 예를 들어, 프로세서(110)는 그래프 2900에 도시된 것처럼, 광원 1(2731), 광원 2(2734), 광원 2(2732), 광원 b(2735), 광원 3(2733) 및 광원 c(2736)의 순서대로 대상체에 엑스선을 조사하도록 복수의 제1 광원(2731, 2732, 2733) 및 복수의 제2 광원(2734, 2735, 2736)을 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 제1 회전 장치(2721) 및 제2 회전 장치(2723)가 회전하는 동안 이송부(2750)를 회전 축의 양의 방향으로 기 설정된 속도로 이동하도록 제어할 수 있다. 그래프 2900의 이송부(2750)에 대한 그래프를 참조하면, 프로세서(110)는
Figure PCTKR2020008416-appb-img-000203
부터
Figure PCTKR2020008416-appb-img-000204
까지 이송부(2750)를 기 설정된 속도로 이동시킬 수 있다.
상기의 동작들을 통해 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있고, 적어도 하나의 로우 이미지에 기초하여, 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 생성할 수 있다.
도 30은 제6 실시예 구조를 갖는 컴퓨터 단층 촬영 장치(100)의 동작 흐름도이다.
동작 흐름도 300을 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 프로세서(110)는, 동작 3010에서, 제1 회전 장치(2721)가 복수의 제1 광원(2731, 2732, 2733) 및 복수의 제2 광원(2734, 2735, 2736)의 수에 기초하여 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 제1 동작 및 결정된 회전 각도만큼 제2 회전 방향으로 회전하는 제2 동작을 반복하도록 제1 회전 장치(2721)를 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 3020에서, 제2 회전 장치(2723)가 결정된 회전 각도만큼 제2 회전 방향으로 회전하는 제3 동작 및 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 제4 동작을 반복하도록 제2 회전 장치(2723)를 제어할 수 있다. 제1 회전 장치(2721)의 제1 동작 및 제2 회전 장치(2723)의 제3 동작은 서로 동시에 수행되고, 제1 회전 장치(2721)의 제2 동작 및 제2 회전 장치(2723)의 제4 동작은 서로 동시에 수행될 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 3030에서, 제3 회전 장치(2725)가 제1 회전 장치(2721) 및 제2 회전 장치(2723)와 동일한 회전 속력으로 제1 회전 방향으로 회전하도록 제3 회전 장치(2725)를 제어할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 3040에서, 제1 회전 장치(2721)가 제1 동작을 수행하는 동안 복수의 제1 광원(2731, 2732, 2733) 중 하나를 통해 대상체에 엑스선을 조사하고, 제2 회전 장치(2723)가 제4 동작을 수행하는 동안 복수의 제2 광원(2734, 2735, 2736) 중 하나를 통해 대상체에 엑스선을 조사할 수 있다.
다양한 실시예에 따른 프로세서(110)는, 동작 3050에서, 검출 장치(2740)를 통해 대상체를 투과한 엑스선을 검출할 수 있다. 프로세서(110)는 검출 장치(2740)를 통해 검출한 엑스선에 기초하여, 대상체에 대한 적어도 하나의 로우 이미지를 생성할 수 있다. 프로세서(110)는 대상체에 대한 적어도 하나의 로우 이미지를 이용하여, 대상체에 대한 3차원 이미지를 생성할 수 있다.
<기타 실시예 구조>
도 31a 및 도 31b는 컴퓨터 단층 촬영 장치(100)의 가시 영역을 조정하는 방법을 도시한 도면이다. 도 32는 복수의 광원을 이용하여 가시 영역을 조정하는 방법을 도시한 도면이다. 가시 영역은 대상체(O)를 투과한 엑스선을 검출할 수 있는 영역을 나타낼 수 있다.
도 31a를 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 일반적으로 복수의 광원(3131, 3132, 3133, 3134) 중 현재 동작 중인 광원(3133)의 조사 각도에 의해 가시 영역이 결정될 수 있다. 광원의 조사 각도 내에 대상체(O)가 포함되는 경우, 가시 영역은 광원의 조사 각도에 의해 결정될 수 있다. 상기의 경우, 검출 장치(3140)는 가시 영역에 위치하여 대상체(O)를 투과한 엑스선을 검출할 수 있다. 예를 들어, 컴퓨터 단층 촬영 장치(100)는 좁은 영역의 대상체(O)에 대한 컴퓨터 단층 촬영 영상을 획득하려고 하는 경우, 가시 영역을 좁게 조정할 수 있다.
도 31b를 참조하면, 넓은 영역의 대상체(O)에 대한 컴퓨터 단층 촬영 영상을 획득하려고 하는 경우, 광원의 조사 각도보다 가시 영역이 넓게 설정될 수 있다. 상기의 경우, 검출 장치(3140)를 제1 위치(3140a)에서 제2 위치(3140b)로 이동해가면서 대상체(O)를 투과한 엑스선을 검출할 수 있다. 상기의 경우, 대상체(O)에 대한 컴퓨터 단층 촬영 영상을 획득하기 위하여 엑스선을 복수 회 조사할 필요가 없기 때문에 대상체(O)에 피폭되는 엑스선량을 감소시킬 수 있다.
도 32를 참조하면, 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는, 일부 광원들이 검출 장치(3140)가 서로 마주보는 위치에 있지 않은 경우에도, 복수의 광원(3131, 3132, 3133, 3134)을 모두 구동시켜서 가시 영역을 조정할 수 있다. 상기의 경우, 검출 장치(3140)를 이동시키지 않고도 대상체(O)에 대한 컴퓨터 단층 촬영 영상을 획득할 수 있다.
도 33은 본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)를 도시한 도면이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 전원 공급 장치(160)는 갠트리(120) 외부에 배치될 수 있다. 전원 공급 장치(160)가 갠트리(120) 외부에 배치되는 경우, 갠트리(120)가 회전하여도 전원 공급 장치(160)가 같이 회전하지 않기 때문에 안정성을 높일 수 있다. 전원 공급 장치(160)는 복수의 광원(130)과 케이블로 연결될 수 있다. 케이블은 휘어지지 않는 재질로 이루어질 수 있다. 복수의 광원(130)은 금속부(135)를 통해 전원 공급 장치(160)로부터 전원을 공급 받을 수 있는데, 안정성을 높이기 위하여, 금속부(135) 주변에 절연 물질을 이용하여 몰딩(molding)할 수 있다. 절연 물질은, 예를 들어, 절연유 또는 실리콘을 이용할 수 있다.
도 34a 내지 35b는 본 개시의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 구조를 도시한 도면이다.
도 34a는 다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)의 갠트리(3420)의 x-y 평면 단면도이고, 도 34b는 갠트리(3420)의 y-z 단면도를 간략하게 도시한 도면이다.
다양한 실시예에 따른 컴퓨터 단층 촬영 장치(100)는 제1 회전 장치(3421) 및 제2 회전 장치를 포함하는 갠트리(3420)를 포함할 수 있다. 제1 회전 장치(3421)에는 복수의 광원(3430)이 일정한 간격으로 배치될 수 있다. 제2 회전 장치에는 검출 장치(3440)가 배치될 수 있고, 검출 장치(3440)는 제2 회전 장치를 둘러싸는 형태로 구성될 수 있다. 본 도면에서는 복수의 광원(3430)이 8개인 것으로 설명하지만 복수의 광원의 수가 이에 한정되는 것은 아니다. 복수의 광원이 8개인 경우, 복수의 광원은 제1 회전 장치에 45도 간격으로 배치될 수 있다.
다양한 실시예에 따르면, 복수의 광원(3430)의 z축 상의 위치는 서로 상이할 수 있다. 예를 들어, 복수의 광원(3430)은 도 34b에 도시된 것처럼 배치될 수 있다. 도 35a 및 35b에 도시된 것처럼, 복수의 광원(3430)이 배치된 제1 회전 장치(3421)를 z축 방향으로 힘을 가하여 제1 회전 장치(3421)의 구조를 변경할 수 있다. 도 35a 및 35b에 도시된 구조를 갖는 제1 회전 장치(3421)를 사용하는 경우, 컴퓨터 단층 촬영 장치(100)는 대상체에 대한 나선형의 컴퓨터 단층 촬영 영상을 획득할 수 있다.
동작 흐름도에서 프로세스 단계들, 방법 단계들, 알고리즘들 등이 순차적인 순서로 설명되었지만, 그러한 프로세스들, 방법들 및 알고리즘들은 임의의 적합한 순서로 작동하도록 구성될 수 있다. 다시 말하면, 본 개시의 다양한 실시예들에서 설명되는 프로세스들, 방법들 및 알고리즘들의 단계들이 본 개시에서 기술된 순서로 수행될 필요는 없다. 또한, 일부 단계들이 비동시적으로 수행되는 것으로서 설명되더라도, 다른 실시예에서는 이러한 일부 단계들이 동시에 수행될 수 있다. 또한, 도면에서의 묘사에 의한 프로세스의 예시는 예시된 프로세스가 그에 대한 다른 변화들 및 수정들을 제외하는 것을 의미하지 않으며, 예시된 프로세스 또는 그의 단계들 중 임의의 것이 본 개시의 다양한 실시예들 중 하나 이상에 필수적임을 의미하지 않으며, 예시된 프로세스가 바람직하다는 것을 의미하지 않는다.
상기 방법은 특정 실시예들을 통하여 설명되었지만, 상기 방법은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등을 포함할 수 있다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 실시예들을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 개시가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.

Claims (20)

  1. 컴퓨터 단층 촬영 장치에 있어서,
    하나의 회전 축을 공유하고 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치, 제2 회전 장치 및 제3 회전 장치를 포함하는 갠트리;
    상기 제1 회전 장치에 일정한 간격으로 배치되고, 대상체에 엑스선을 조사하도록 구성된 복수의 제1 광원;
    상기 제2 회전 장치에 일정한 간격으로 배치되고, 대상체에 엑스선을 조사하도록 구성된 복수의 제2 광원;
    상기 제3 회전 장치의 일 영역에 배치되고, 상기 대상체를 투과한 엑스선을 검출하도록 구성된 검출 장치; 및
    하나 이상의 프로세서를 포함하고,
    상기 하나 이상의 프로세서는,
    상기 제1 회전 장치가 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수에 기초하여 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 제1 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 제2 동작을 반복하도록 상기 제1 회전 장치를 제어하고,
    상기 제2 회전 장치가 상기 결정된 회전 각도만큼 상기 제2 회전 방향으로 회전하는 제3 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향으로 회전하는 제4 동작을 반복하도록 상기 제2 회전 장치를 제어하고,
    상기 제1 회전 장치가 상기 제1 동작 및 상기 제2 동작을 반복하고, 상기 제2 회전 장치가 상기 제3 동작 및 상기 제4 동작을 반복하는 동안, 상기 제3 회전 장치가 상기 제1 회전 장치 및 상기 제2 회전 장치와 동일한 회전 속력으로 상기 제1 회전 방향으로 회전하도록 상기 제3 회전 장치를 제어하고,
    상기 제1 회전 장치가 상기 제1 동작을 수행하는 동안 상기 복수의 제1 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하고, 상기 제2 회전 장치가 상기 제4 동작을 수행하는 동안 상기 복수의 제2 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하며,
    상기 검출 장치를 통해 상기 대상체를 투과한 엑스선을 검출하도록 구성되는, 컴퓨터 단층 촬영 장치.
  2. 제1항에 있어서,
    상기 제1 동작 및 상기 제3 동작은 서로 동시에 수행되며,
    상기 제2 동작 및 상기 제4 동작은 서로 동시에 수행되는, 컴퓨터 단층 촬영 장치.
  3. 제1항에 있어서,
    상기 하나 이상의 프로세서는,
    기 설정된 순서에 기초하여 상기 복수의 제1 광원 및 복수의 제2 광원 중 엑스선을 조사할 하나의 광원을 변경하고,
    상기 제1 회전 장치가 상기 제1 동작 및 상기 제2 동작을 반복하는 횟수 및 상기 제2 회전 장치가 상기 제3 동작 및 상기 제4 동작을 반복하는 횟수는 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수에 기초하여 결정되는, 컴퓨터 단층 촬영 장치.
  4. 제3항에 있어서,
    상기 하나 이상의 프로세서는,
    상기 기 설정된 순서에 기초하여 상기 복수의 제1 광원 및 복수의 제2 광원 중 특정 광원부터 엑스선을 조사하는 것으로 초기 설정된 경우, 상기 검출 장치가 상기 특정 광원에 대응하여 마주보는 곳에 위치할 수 있도록 상기 제3 회전 장치의 초기 위치를 제어하는, 컴퓨터 단층 촬영 장치.
  5. 제1항에 있어서,
    상기 하나 이상의 프로세서는,
    상기 검출 장치를 통해 상기 대상체를 투과한 엑스선을 검출한 것에 응답하여, 상기 대상체에 대한 적어도 하나의 로우 이미지를 생성하고,
    상기 대상체에 대한 적어도 하나의 로우 이미지에 기초하여, 상기 대상체에 대한 3차원 이미지를 생성하도록 구성된, 컴퓨터 단층 촬영 장치.
  6. 제1항에 있어서,
    상기 대상체를 적재한 이송부를 더 포함하고,
    상기 하나 이상의 프로세서는,
    상기 이송부를 상기 회전 축 방향으로 기 설정된 속도로 이동시키도록 구성된, 컴퓨터 단층 촬영 장치.
  7. 제1항에 있어서,
    상기 결정된 회전 각도는, 360도를 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수로 나눈 값인, 컴퓨터 단층 촬영 장치.
  8. 제1항에 있어서,
    상기 복수의 제1 광원 및 상기 복수의 제2 광원은 탄소나노튜브를 이용한 엑스선 광원인, 컴퓨터 단층 촬영 장치.
  9. 제1항에 있어서,
    상기 회전 축과 수직인 상기 제1 회전 장치의 배치 평면, 상기 제2 회전 장치의 배치 평면 및 상기 제3 회전 장치의 배치 평면은 서로 평행한 평면인, 컴퓨터 단층 촬영 장치.
  10. 제1항에 있어서,
    상기 복수의 제1 광원 및 상기 복수의 제2 광원에 고전압을 공급하도록 구성된 전원 공급 장치를 더 포함하고,
    상기 전원 공급 장치는 상기 갠트리 외부에 배치되는, 컴퓨터 단층 촬영 장치.
  11. 하나의 회전 축을 공유하고 서로 독립적으로 회전 가능한 고리 형태의 제1 회전 장치, 제2 회전 장치 및 제3 회전 장치를 포함하는 갠트리, 상기 제1 회전 장치에 일정한 간격으로 배치되고 대상체에 엑스선을 조사하도록 구성된 복수의 제1 광원, 상기 제2 회전 장치에 일정한 간격으로 배치되고 대상체에 엑스선을 조사하도록 구성된 복수의 제2 광원, 상기 제3 회전 장치의 일 영역에 배치되고 상기 대상체를 투과한 엑스선을 검출하도록 구성된 검출 장치를 포함하는 컴퓨터 단층 촬영 장치의 컴퓨터 단층 촬영 방법에 있어서,
    상기 제1 회전 장치가 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수에 기초하여 결정된 회전 각도만큼 제1 회전 방향으로 회전하는 제1 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향에 반대 방향인 제2 회전 방향으로 회전하는 제2 동작을 반복하도록 상기 제1 회전 장치를 제어하는 동작;
    상기 제2 회전 장치가 상기 결정된 회전 각도만큼 상기 제2 회전 방향으로 회전하는 제3 동작 및 상기 결정된 회전 각도만큼 상기 제1 회전 방향으로 회전하는 제4 동작을 반복하도록 상기 제2 회전 장치를 제어하는 동작;
    상기 제3 회전 장치가 상기 제1 회전 장치 및 상기 제2 회전 장치와 동일한 회전 속력으로 상기 제1 회전 방향으로 회전하도록 상기 제3 회전 장치를 제어하는 동작;
    상기 제1 회전 장치가 상기 제1 동작을 수행하는 동안 상기 복수의 제1 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하고, 상기 제2 회전 장치가 상기 제4 동작을 수행하는 동안 상기 복수의 제2 광원 중 하나의 광원을 통해 상기 대상체에 엑스선을 조사하는 동작; 및
    상기 검출 장치를 통해 상기 대상체를 투과한 엑스선을 검출하는 동작을 포함하는, 컴퓨터 단층 촬영 방법.
  12. 제11항에 있어서,
    상기 제1 동작 및 상기 제3 동작은 서로 동시에 수행되며,
    상기 제2 동작 및 상기 제4 동작은 서로 동시에 수행되는, 컴퓨터 단층 촬영 방법.
  13. 제11항에 있어서,
    기 설정된 순서에 기초하여 상기 복수의 제1 광원 및 복수의 제2 광원 중 엑스선을 조사할 하나의 광원을 변경하는 동작을 더 포함하고,
    상기 제1 회전 장치가 상기 제1 동작 및 상기 제2 동작을 반복하는 횟수 및 상기 제2 회전 장치가 상기 제3 동작 및 상기 제4 동작을 반복하는 횟수는 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수에 기초하여 결정되는, 컴퓨터 단층 촬영 방법.
  14. 제13항에 있어서,
    상기 기 설정된 순서에 기초하여 상기 복수의 제1 광원 및 복수의 제2 광원 중 특정 광원부터 엑스선을 조사하는 것으로 초기 설정된 경우, 상기 검출 장치가 상기 특정 광원에 대응하여 마주보는 곳에 위치할 수 있도록 상기 제3 회전 장치의 초기 위치를 제어하는 동작을 더 포함하는, 컴퓨터 단층 촬영 방법.
  15. 제11항에 있어서,
    상기 검출 장치를 통해 상기 대상체를 투과한 엑스선을 검출한 것에 응답하여, 상기 대상체에 대한 적어도 하나의 로우 이미지를 생성하는 동작; 및
    상기 대상체에 대한 적어도 하나의 로우 이미지에 기초하여, 상기 대상체에 대한 3차원 이미지를 생성하는 동작을 더 포함하는, 컴퓨터 단층 촬영 방법.
  16. 제11항에 있어서,
    상기 대상체를 적재한 이송부를 상기 회전 축 방향으로 기 설정된 속도로 이동시키는 동작을 더 포함하는, 컴퓨터 단층 촬영 방법.
  17. 제11항에 있어서,
    상기 결정된 회전 각도는, 360도를 상기 복수의 제1 광원 및 상기 복수의 제2 광원의 수로 나눈 값인, 컴퓨터 단층 촬영 방법.
  18. 제11항에 있어서,
    상기 복수의 제1 광원 및 상기 복수의 제2 광원은 탄소나노튜브를 이용한 엑스선 광원인, 컴퓨터 단층 촬영 방법.
  19. 제11항에 있어서,
    상기 회전 축과 수직인 상기 제1 회전 장치의 배치 평면, 상기 제2 회전 장치의 배치 평면 및 상기 제3 회전 장치의 배치 평면은 서로 평행한 평면인, 컴퓨터 단층 촬영 방법.
  20. 제11항에 있어서,
    상기 복수의 제1 광원 및 상기 복수의 제2 광원에 고전압을 공급하도록 구성된 전원 공급 장치는 상기 갠트리 외부에 배치되는, 컴퓨터 단층 촬영 방법.
PCT/KR2020/008416 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법 WO2020263044A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20831813.9A EP3991661B1 (en) 2019-06-26 2020-06-26 Computed tomography apparatus using plurality of light sources and computed tomography method
JP2021577632A JP7340632B2 (ja) 2019-06-26 2020-06-26 複数の光源を用いたコンピュータ断層撮影装置及びコンピュータ断層撮影方法
KR1020247007329A KR20240033189A (ko) 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
KR1020217042641A KR102645067B1 (ko) 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
CN202080047007.2A CN114040712A (zh) 2019-06-26 2020-06-26 利用多个光源的计算机断层扫描装置及计算机断层扫描方法
US17/623,127 US11969272B2 (en) 2020-06-26 Computed tomography apparatus and method using plurality of light sources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962866967P 2019-06-26 2019-06-26
US62/866,967 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020263044A1 true WO2020263044A1 (ko) 2020-12-30

Family

ID=74060085

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2020/008411 WO2020263040A1 (ko) 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
PCT/KR2020/008416 WO2020263044A1 (ko) 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
PCT/KR2020/008414 WO2020263042A1 (ko) 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008411 WO2020263040A1 (ko) 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008414 WO2020263042A1 (ko) 2019-06-26 2020-06-26 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법

Country Status (6)

Country Link
US (2) US20220257201A1 (ko)
EP (3) EP3991661B1 (ko)
JP (4) JP7329629B2 (ko)
KR (4) KR20240033189A (ko)
CN (3) CN114040712A (ko)
WO (3) WO2020263040A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210275039A1 (en) * 2020-03-04 2021-09-09 Cardiac Pacemakers, Inc. Body vibration analysis systems and methods
KR20230158151A (ko) * 2022-05-10 2023-11-20 주식회사 고영테크놀러지 대상체 또는 수술 도구의 위치를 결정하는 방법 및 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100055972A (ko) * 2008-11-18 2010-05-27 (주)바텍이우홀딩스 듀얼 소스 엑스선 ct 촬영 장치
KR20140013403A (ko) * 2012-07-23 2014-02-05 삼성전자주식회사 엑스선 촬영 장치 및 그 촬영 방법
WO2014047518A1 (en) * 2012-09-20 2014-03-27 Virginia Tech Intellectual Properties, Inc. Stationary source computed tomography and ct-mri systems
KR20150024736A (ko) * 2013-08-27 2015-03-09 주식회사바텍 Ct 촬영 장치 및 ct 촬영 방법
KR20160057935A (ko) * 2014-11-14 2016-05-24 삼성전자주식회사 단층 영상 장치 및 그에 따른 단층 영상 복원 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817119A (en) * 1977-08-25 1989-03-28 National Biomedical Research Foundation Method and apparatus for computerized tomographic scanning with plural intersecting sets of parallel radiation beams
US4196352A (en) * 1978-04-28 1980-04-01 General Electric Company Multiple purpose high speed tomographic x-ray scanner
DE2823859A1 (de) * 1978-05-31 1979-12-13 Siemens Ag Roentgenschichtgeraet fuer transversalschichtbilder
JPS62167538A (ja) * 1985-12-31 1987-07-23 株式会社島津製作所 X線ct装置
US5966422A (en) * 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
JP2005519688A (ja) * 2002-03-13 2005-07-07 ブレークアウェイ・イメージング・エルエルシー 擬似同時多平面x線画像化システムおよび方法
US6944260B2 (en) * 2003-11-11 2005-09-13 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for artifact reduction in computed tomography imaging systems
DE10354900A1 (de) 2003-11-24 2005-06-30 Siemens Ag Verfahren zur Erzeugung von tomographischen Schnittbildern eines sich periodisch bewegenden Objektes mit mehreren Fokus-Detektor-Kombinationen
US10064584B2 (en) 2005-12-22 2018-09-04 Visen Medical, Inc. Combined x-ray and optical tomographic imaging system
US7486760B2 (en) * 2006-08-15 2009-02-03 Ge Security, Inc. Compact systems and methods for generating a diffraction profile
JP4851296B2 (ja) * 2006-10-26 2012-01-11 富士フイルム株式会社 放射線断層画像取得装置および放射線断層画像取得方法
JP5166042B2 (ja) 2008-01-08 2013-03-21 株式会社東芝 X線ct装置、及びx線ct画像生成方法
US8451972B2 (en) 2009-10-23 2013-05-28 Arineta Ltd. Methods, circuits, devices, apparatus, assemblies and systems for computer tomography
US9974493B2 (en) 2013-08-27 2018-05-22 Vatech Co., Ltd. Apparatus and method for obtaining computed tomography
JP2015144809A (ja) * 2014-01-06 2015-08-13 株式会社東芝 X線コンピュータ断層撮影装置及びフォトンカウンティングct装置
US10178980B2 (en) * 2014-06-19 2019-01-15 Analogic Corporation Radiation sources and detector array for imaging modality
KR101610142B1 (ko) * 2014-09-01 2016-04-11 연세대학교 산학협력단 컴퓨터 단층촬영 장치 및 방법
US9775579B2 (en) * 2015-02-18 2017-10-03 Guy M. Besson Multi-source CT system and imaging method
US10390774B2 (en) * 2014-11-19 2019-08-27 Guy M. Besson Annular ring target multi-source CT system
US20170172526A1 (en) * 2015-10-29 2017-06-22 Teratech Corporation X-ray detector system
US10013780B2 (en) * 2016-02-29 2018-07-03 General Electric Company Systems and methods for artifact removal for computed tomography imaging
JP7336984B2 (ja) * 2016-03-24 2023-09-01 エヌビュー メディカル インク 画像再構築のためのシステム及び方法
EP3559911B1 (en) * 2016-12-21 2020-05-20 Koninklijke Philips N.V. Redundancy weighting for short scan off-center detector x-ray tomography
WO2019136660A1 (en) * 2018-01-11 2019-07-18 Shenzhen United Imaging Healthcare Co., Ltd. Systems and methods for intrafractional ct imaging in image-guided radiotherapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100055972A (ko) * 2008-11-18 2010-05-27 (주)바텍이우홀딩스 듀얼 소스 엑스선 ct 촬영 장치
KR20140013403A (ko) * 2012-07-23 2014-02-05 삼성전자주식회사 엑스선 촬영 장치 및 그 촬영 방법
WO2014047518A1 (en) * 2012-09-20 2014-03-27 Virginia Tech Intellectual Properties, Inc. Stationary source computed tomography and ct-mri systems
KR20150024736A (ko) * 2013-08-27 2015-03-09 주식회사바텍 Ct 촬영 장치 및 ct 촬영 방법
KR20160057935A (ko) * 2014-11-14 2016-05-24 삼성전자주식회사 단층 영상 장치 및 그에 따른 단층 영상 복원 방법

Also Published As

Publication number Publication date
WO2020263040A1 (ko) 2020-12-30
KR102645067B1 (ko) 2024-03-08
US20220265227A1 (en) 2022-08-25
JP2022540358A (ja) 2022-09-15
CN114007511A (zh) 2022-02-01
EP3991661C0 (en) 2023-12-06
JP2023075303A (ja) 2023-05-30
EP3991660A4 (en) 2022-08-10
EP3991661B1 (en) 2023-12-06
WO2020263042A1 (ko) 2020-12-30
KR20220018986A (ko) 2022-02-15
US20220257201A1 (en) 2022-08-18
KR102638624B1 (ko) 2024-02-21
KR20220005594A (ko) 2022-01-13
JP2022539766A (ja) 2022-09-13
CN114040711A (zh) 2022-02-11
US20230240627A1 (en) 2023-08-03
KR20240033189A (ko) 2024-03-12
JP7248827B2 (ja) 2023-03-29
EP3991661A4 (en) 2022-08-24
JP7329629B2 (ja) 2023-08-18
EP3991662A1 (en) 2022-05-04
EP3991662A4 (en) 2022-08-10
EP3991660A1 (en) 2022-05-04
JP2022539191A (ja) 2022-09-07
JP7340632B2 (ja) 2023-09-07
KR20220019716A (ko) 2022-02-17
EP3991661A1 (en) 2022-05-04
KR102636869B1 (ko) 2024-02-19
CN114040712A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2020263044A1 (ko) 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
WO2015030343A1 (en) Optical element rotation type mueller-matrix ellipsometer and method for measuring mueller-matrix of sample using the same
WO2022055194A1 (ko) 스캔 거울과 트랜슬레이션 스테이지를 사용한 플라잉 오버 빔 패턴 스캐닝 홀로그램 현미경 장치
WO2016195388A1 (ko) 패널을 구동하는 기술
EP3053268A1 (en) Impedance matching method and impedance matching system
WO2020045852A1 (ko) 시편 두께 측정 장치 및 시편 두께 측정 방법
CN107113177A (zh) 数据连接、传送、接收、交互的方法及系统,及存储器、飞行器
WO2021251549A1 (en) Display device
WO2019146812A1 (ko) 차량용 업데이트 시스템 및 제어 방법
WO2017204463A1 (ko) 머시닝 센터
WO2011065697A2 (ko) 레이저 거리측정기를 이용한 맥파측정로봇장치 및 이를 이용한 맥파측정방법
WO2017155137A1 (ko) 빔포밍 방법 및 이를 위한 장치
WO2022181899A1 (ko) 신호 처리 장치, 및 이를 구비하는 차량용 디스플레이 장치
WO2021101263A1 (en) Planetary gear transmission device and robot having the same
WO2017142299A1 (ko) 공간분할 세그먼트에 대한 동적이동 추적 기반 수기서명 인증 시스템 및 방법
WO2014171642A1 (ko) 여유구동형 기구 형성 방법 및 구동기 힘 분배 시스템
WO2014178578A1 (en) Apparatus and method for generating image data in portable terminal
WO2021235750A1 (ko) 강인음성인식을 위한 방향벡터 추정을 겸한 온라인 우도최대화를 이용한 빔포밍 방법 및 그 장치
WO2019151613A1 (ko) 엑스선 영상장치
WO2022124860A1 (ko) 기지국 안테나의 기울기 각도 최적화 방법 및 장치
WO2021242063A1 (ko) 초음파 투과 장치 및 파동 제어 방법
WO2011002260A2 (en) Rotating reference codebook that is used in a multiple-input multiple-output (mimo) communication system
WO2021256843A1 (ko) 동형 암호문에 대한 통계 연산 수행하는 장치 및 방법
WO2019022336A1 (ko) 디스플레이 장치 및 상기 디스플레이 장치의 제어 방법
WO2021230449A1 (ko) 연합 학습을 위한 전자 장치를 제어하는 방법 및 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577632

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20217042641

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020831813

Country of ref document: EP

Effective date: 20220126