WO2021242063A1 - 초음파 투과 장치 및 파동 제어 방법 - Google Patents

초음파 투과 장치 및 파동 제어 방법 Download PDF

Info

Publication number
WO2021242063A1
WO2021242063A1 PCT/KR2021/006722 KR2021006722W WO2021242063A1 WO 2021242063 A1 WO2021242063 A1 WO 2021242063A1 KR 2021006722 W KR2021006722 W KR 2021006722W WO 2021242063 A1 WO2021242063 A1 WO 2021242063A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
obstacle
equation
phase
wave
Prior art date
Application number
PCT/KR2021/006722
Other languages
English (en)
French (fr)
Inventor
김윤영
박충일
Original Assignee
서울대학교산학협력단
재단법인 파동에너지 극한제어 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 재단법인 파동에너지 극한제어 연구단 filed Critical 서울대학교산학협력단
Priority to US17/637,754 priority Critical patent/US20220291176A1/en
Publication of WO2021242063A1 publication Critical patent/WO2021242063A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/09Analysing solids by measuring mechanical or acoustic impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/35Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams
    • G10K11/352Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams by moving the transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the present invention relates to an ultrasonic transmission apparatus and a wave control method, and more particularly, to an ultrasonic transmission apparatus and a wave control method capable of transmitting ultrasonic waves through an obstacle.
  • the transmittance of the ultrasonic wave increases in proportion to the difference in impedance between the obstacle and the progress medium.
  • the impedance of water and iron differs by about 30 times, the energy of the wave passing through an obstacle such as an iron plate in water is very small. Therefore, when such an obstacle exists, it is very difficult to perform an ultrasound examination of a test object existing on the other side of the obstacle.
  • Fabry-Perot resonance refers to a phenomenon in which the energy of transmitted ultrasonic waves becomes maximum when the thickness of the obstacle is an integer multiple (0.5n ⁇ , n: natural number, ⁇ : wavelength) of the half wavelength of the ultrasonic wave traveling through the obstacle.
  • this technology has a disadvantage that the frequency at which the maximum transmittance of ultrasonic waves is determined is determined according to the thickness of the obstacle, and the ultrasonic transmittance energy is very low in a fairly wide frequency band.
  • the present invention has been devised to solve the above-described problems, and the present invention is to provide an ultrasonic transmission device and a wave control method that can transmit ultrasonic waves over an obstacle.
  • An ultrasonic transmission device that has a medium and an object inside and injects an ultrasonic wave into an object having an obstacle on the outside to perform an ultrasonic examination
  • an ultrasonic wave generating device for generating an incident wave
  • an ultrasonic transmission module positioned between the obstacle and the ultrasonic wave generating device and positioned on a propagation path of an incident wave generated by the ultrasonic wave generating device; includes,
  • the ultrasonic transmission module The ultrasonic transmission module
  • the position variable device The position variable device,
  • the phase and magnitude of the transmitted wave passing through the ultrasound transmitting member and the obstacle are the same as the phase and magnitude of the incident wave generated by the ultrasound generating device.
  • the ultrasonic transmitting member The ultrasonic transmitting member,
  • Impedance and phase are selectively varied
  • the ratio ⁇ between the phase of the obstacle and the phase of the ultrasonic transmitting member and the ratio ⁇ between the impedance of the obstacle and the impedance of the ultrasonic transmitting member are defined.
  • kd (k: wavenumber, d: thickness of dissimilar material)
  • the ratio ⁇ of the impedance of the obstacle to the impedance of the ultrasonic transmitting member and the ratio ⁇ of the phase of the obstacle and the phase of the ultrasonic transmitting member satisfy the following equation (2), respectively.
  • the distance d 0 between the obstacle and the ultrasonic transmission member is,
  • the ultrasonically transmissive member satisfies the following formula (4).
  • the ultrasonic transmitting member The ultrasonic transmitting member,
  • Impedance and phase are selectively varied
  • the distance d 0 between the obstacle and the ultrasonic transmission member satisfies the following formulas (5) to (6).
  • the ultrasonic transmitting member The ultrasonic transmitting member,
  • the ⁇ and ⁇ have values satisfying the following formulas (7) to (9).
  • the ultrasonic transmitting member The ultrasonic transmitting member,
  • the distance d 0 between the obstacle and the ultrasonic transmission member satisfies the following formulas (5) to (6),
  • the ⁇ and the ⁇ have values satisfying the following equations (7) to (8) when the distance d 0 between the obstacle and the ultrasonically transmissive member satisfies the following equation (3).
  • the ultrasonic wave generated by the ultrasonic generating means is transmitted over the obstacle by varying the distance between the ultrasonic transmitting means and the obstacle and the material of the ultrasonic transmitting means.
  • the ratio ⁇ between the phase of the obstacle and the phase of the ultrasonic transmitting member and the ratio ⁇ between the impedance of the obstacle and the impedance of the ultrasonic transmitting member are defined.
  • kd (k: wavenumber, d: thickness of dissimilar material)
  • the ratio ⁇ of the impedance of the obstacle to the impedance of the ultrasonic transmitting member and the ratio ⁇ of the phase of the obstacle and the phase of the ultrasonic transmitting member satisfy the following equation (2), respectively.
  • the distance d 0 between the obstacle and the ultrasonic transmission member is,
  • the ultrasonically transmissive member satisfies the following formula (4).
  • the distance d 0 between the obstacle and the ultrasonic transmission member satisfies the following formulas (5) to (6).
  • the ⁇ and ⁇ have values satisfying the following formulas (7) to (9).
  • the distance d 0 between the obstacle and the ultrasonic transmission member satisfies the following formulas (5) to (6),
  • the ⁇ and ⁇ have values satisfying the following equations (7) to (9) when the distance d 0 between the obstacle and the ultrasonically transmissive member satisfies the following equation (3).
  • the ultrasonic transmitting member is positioned at a predetermined distance in front of the obstacle.
  • high ultrasonic energy may be transmitted over the obstacle due to a resonance phenomenon between the obstacle and the ultrasonic transmitting member.
  • ultrasonic transmission apparatus and the wave control method according to the present invention very high ultrasonic energy (up to 100%) can be transmitted at a desired frequency regardless of the type and thickness of the obstacle.
  • the ultrasonic transmission apparatus and the wave control method according to the present invention can be widely used in underwater ultrasound, acoustics, medical ultrasound, non-destructive testing, and the like.
  • FIG. 1 shows an incident wave (a), a reflected wave (b), and a transmitted wave (c), respectively, when an ultrasonic wave incident into the medium encounters an obstacle composed of a heterogeneous material B and having a thickness d B.
  • 3A and 3B show transmission and reflection of an incident ultrasonic wave when the ultrasonic transmitting member and the obstacle are together.
  • 4A to 4F show examples of applying various ultrasonic transmitting members to a given obstacle.
  • 5A to 5C are diagrams illustrating size matching conditions according to characteristics ( ⁇ , ⁇ ) of various ultrasound transmitting members.
  • 6A to 6C are diagrams illustrating phase matching conditions according to characteristics ( ⁇ , ⁇ ) of various ultrasonic transmission members.
  • FIG. 7 is a diagram showing a diagram that satisfies the size matching condition or 100% transmission condition for various frequencies.
  • FIG 8 and 9 are conceptual views showing the structure of an ultrasonic transmitting apparatus according to an embodiment of the present invention.
  • FIGS. 10 and 11 are conceptual views illustrating a structure of an ultrasonic transmitting member used in an ultrasonic transmitting apparatus according to an embodiment of the present invention.
  • 12a to 12c and 13a to 13c are simulation results showing the performance of the ultrasonic transmission apparatus and the wave control method according to the embodiment of the present invention with respect to various wave sources.
  • FIG. 14A schematically shows an acoustic field scan system used in the experiment
  • FIG. 14B shows the transducer acoustic field measurement results
  • FIG. 15 shows the experimental results.
  • FTC 16 is a graph showing curves representing the maximum transmittance (FTC) at various frequencies.
  • FIG. 17 is a view showing that the frequency indicating the physical properties and the maximum transmittance of the ultrasonic transmission device 1 changes together when the progress medium is water and the obstacle is a 3 mm iron plate.
  • 19 and 20A to 20F are diagrams illustrating simulations of whether an object can be imaged (confirmed) using a linearly generated plane wave.
  • 21 to 25D show a two-dimensional imaging experimental environment, and experimental results.
  • 26 to 28 show an embodiment of an ultrasonic transmission device according to an embodiment of the present invention.
  • 29 is a diagram illustrating an extended magnitude matching condition and an extended phase matching condition.
  • 30A and 30B compare and contrast the range of d that satisfies the phase coincidence condition with the range of d that satisfies the extended phase coincidence condition.
  • 32A to 32G are examples of applying the extended phase matching condition to a 5 mm iron obstacle in water.
  • 33A and 33B compare and contrast the ranges of ⁇ and ⁇ that satisfy the size agreement condition and the ranges of ⁇ and ⁇ that satisfy the expanded size agreement condition.
  • 34A to 34H and 35A to 35H show transmittance diagrams and expanded size matching conditions for iron and aluminum obstacles, respectively.
  • An ultrasonic transmission apparatus is an ultrasonic transmission apparatus for performing an ultrasound examination by incident ultrasonic waves on an object having a medium and a target object therein and having an obstacle on the outside, and an ultrasound generating apparatus generating an incident wave ; an ultrasonic transmission module positioned between the obstacle and the ultrasonic wave generating device and positioned on a propagation path of an incident wave generated by the ultrasonic wave generating device; Including, the ultrasonic transmission module, the ultrasonic transmission member, and a position variable device for changing the position of the ultrasound transmission member.
  • FIG. 1 shows the incident wave (a), the reflected wave (b), and the transmitted wave (c), respectively, when the ultrasonic wave incident into the medium is composed of a heterogeneous material B and encounters an obstacle having a thickness d B
  • FIG. 2 shows the transmitted wave It shows the relationship between energy and frequency.
  • Equation (1) When the ultrasonic wave traveling through the medium meets the obstacle, the equations representing the transmission coefficient R and the reflection coefficient T of the ultrasonic wave are the same as Equation (1) below.
  • z is the impedance
  • is the phase change of the ultrasonic wave processed with a different material.
  • the subscript O stands for the medium, and the subscript B stands for the obstacle.
  • a detailed description of each variable is as follows.
  • kd (k: wavenumber, d: thickness of dissimilar material)
  • Equation (2) the equations representing the transmission coefficient R and the reflection coefficient T of the ultrasonic wave are the same as Equation (2) below.
  • the subscript B indicating that it corresponds to the obstacle in the above equation (1) is changed to L indicating the ultrasonic transmission means in the equation (2) below.
  • the ultrasonic wave when there is only an obstacle or only an ultrasonic transmitting means, the ultrasonic wave is transmitted through a single layer. Therefore, the ultrasonic wave is affected only by the physical properties of the single layer.
  • the equations for deriving the transmittance coefficient and the reflection coefficient of the ultrasonic wave have essentially the same form.
  • the transmitted energy (C/A) 2 of the incident wave passing through the obstacle has a different value depending on the frequency of the incident wave.
  • an iron plate having a thickness of 3 mm was used.
  • the ultrasonic waves cause innumerable reflections in the multiple layers composed of the obstacle and the ultrasonic transmitting means.
  • the final transmittance T and reflectance R are equal to the infinite sum of the ultrasonic waves reflected in n cycles. If this is expressed as an equation, it is as the following equations (3a) and (3b).
  • R L , T L , R B , and T B in Formulas (3a) and (3b) are as defined in Formulas (1) and (2).
  • phase in which the wave travels between the obstacle and the ultrasonic transmission means term that means rearrange the expression for This process is as follows.
  • the system characteristics that determine the propagation characteristics of ultrasonic waves are impedance z and phase ⁇ .
  • the characteristic z, of the ultrasonic transmission means may be expressed as a value relative to the characteristic of a given obstacle.
  • the impedance of the ultrasonic transmitting means is twice the impedance of the obstacle
  • the phase of the ultrasonic transmitting means is 0.8 times of the phase of the obstacle, and the like. To express this mathematically, it is as Equation (6) below.
  • k B , k L , and k 0 are the wavenumbers of the obstacle, the ultrasonic transmission means, and the progress medium, respectively.
  • z B , z L , and z 0 mean the impedance of the obstacle, the ultrasonic transmission means, and the progress medium, respectively.
  • the ratio of the phases of the ultrasonic transmission means and the obstacle is expressed as ⁇ .
  • the ratio of the impedance of the ultrasonic transmission means and the obstacle is expressed as ⁇ .
  • Equation (5) can be expressed in the form of a function with respect to ⁇ and ⁇ . in other words, can be described as
  • Equation (5) the left side and right side are all complex numbers.
  • phase coincidence condition indicating that the phases coincide is described as an equation as follows.
  • k 0 has the following relationship with the angular frequency ⁇ and the propagation speed c p0 of the wave.
  • the size matching condition indicating that the sizes match is looked at.
  • the size agreement condition is that two complex numbers have the same magnitude.
  • the phase coincidence condition can always be obtained by adjusting the distance d 0 between the ultrasonic transmitting means and the obstacle, regardless of the characteristics (phase, impedance) of the ultrasonic transmitting means and the obstacle.
  • the distance at which the maximum transmittance is obtained can be selected through Equation (7b).
  • the maximum transmittance can be obtained by varying the position of the ultrasonic transmitting means (that is, by varying the distance between the ultrasonic transmitting means and the obstacle).
  • FIGS. 4A to 4F show examples of applying various ultrasonic transmission means to a given obstacle.
  • the progress medium is water
  • the obstacle was used a 3 mm thick steel plate.
  • the maximum transmittance was obtained when the distance between the ultrasonic transmitting means and the obstacle was about 8 mm.
  • the maximum transmittance was obtained when the distance between the ultrasonic transmitting means and the obstacle was about 7.8 mm.
  • the maximum transmittance can be obtained by adjusting the distance between the ultrasonic transmitting means and the obstacle.
  • partial maximum value the maximum value of transmittance
  • the distance between the ultrasonic transmission means and the obstacle it is often less than 1 (100%).
  • partial maximum value the maximum value of transmittance
  • FIGS. 4A to 4F it can be seen that, in each case, at a specific distance d 0 , a partial maximum is achieved, but the sizes are different from each other. Therefore, it can be seen that the maximum transmittance can be secured only when the condition for maximizing the partial maximum value is satisfied.
  • the condition for maximizing the partial maximum value is the size matching condition.
  • Equation (8) it is necessary to select the characteristics of the ultrasonic transmission means satisfying Equation (8).
  • the maximum value of the transmittance that satisfies the phase coincidence condition is determined by the physical properties of the ultrasonic transmitting means. If the physical property of the ultrasonic transmission means is set to a specific value, the maximum value of transmittance satisfying the phase matching condition may be 100%. As such, when the maximum value of the transmittance becomes 100%, it can be said that the ultrasonic transmitting means satisfies the size matching condition.
  • the size matching condition deals with the problem of how to determine the physical properties of the ultrasonic transmission means so that the maximum transmittance according to the phase matching condition can achieve 100%.
  • the size matching conditions for the characteristics ( ⁇ , ⁇ ) of various ultrasonic transmitters are as shown in FIGS. 5A to 5C .
  • MMC size matching condition
  • FIGS. 6A to 6C are diagrams showing the transmittance characteristics ( ⁇ , ⁇ ) of the ultrasonic transmission means under the phase coincidence condition.
  • a condition showing a transmittance of 100% is indicated by a dotted line. Comparing FIGS. 5A to 5C and FIGS. 6A to 6C , it can be seen that the portion (dotted line) satisfying the size matching condition (MMC) of FIGS. 5A to 5C matches the portion showing 100% transmittance in FIGS. 6A to 6C have. That is, as shown in FIGS. 6A to 6C , it can be seen that 100% transmittance is exhibited on a line that meets the size matching conditions of FIGS. 5A to 5C .
  • ultrasonic transmission reaching 100% can be obtained.
  • the above problem can be solved by finding a special ultrasonic transmission means that can satisfy the size matching condition at all frequencies.
  • FIG. 7 is a diagram showing a diagram that satisfies the size matching condition or 100% transmission condition for various frequencies.
  • the ultrasonic transmitting means made of a predetermined material when the ultrasonic transmitting means made of a predetermined material is positioned at a position separated from the obstacle by a specific distance, a resonance phenomenon of a wave occurs between the ultrasonic transmitting means and the obstacle, thereby transmitting a high energy wave can be seen to be possible.
  • FIG 8 and 9 are conceptual views showing the structure of the ultrasonic transmitting apparatus 1 according to an embodiment of the present invention.
  • front-back direction indicating the direction will be described with reference to the “front-back direction” shown in FIG. 8 .
  • Ultrasonic transmission device 1 having a medium (A1) and a test object (A2) therein, and an ultrasonic wave incident to an object (A) having an obstacle (A3) on the outside to perform an ultrasonic examination carry out
  • the ultrasound transmission apparatus 1 includes an ultrasound generation device 10 and an ultrasound transmission module 20 , and in addition to include an ultrasound measurement device 30 and a guide 40 . can
  • the ultrasonic wave generating apparatus 10 may generate a predetermined ultrasonic wave. Specific, specifications, types, etc. of the ultrasonic generator 10 are not limited.
  • the frequency of the ultrasonic waves generated by the ultrasonic generator 10 is not specifically limited.
  • the ultrasonic wave generated by the ultrasonic wave generating device 10 becomes an incident wave incident on the object A.
  • the ultrasonic transmission module 20 is positioned between the obstacle A3 and the ultrasonic wave generating device 10 . Accordingly, the ultrasonic transmission module 20 is positioned on the propagation path of the incident wave generated by the ultrasonic wave generating device 10 and incident on the object A. Accordingly, the incident wave passes through the ultrasonic transmission module 20 and then is incident on the object A.
  • the incident wave generated by the ultrasonic generating device 10 passes through the obstacle A3 of the object A and reaches the test object A2 existing inside the object A to do it
  • the phase and magnitude of the transmitted wave passing through the ultrasound transmitting member 100 and the obstacle A3 is the phase and the magnitude of the incident wave generated by the ultrasound generating device 10 , It can be made to be the same size. That is, the transmittance can be 100%.
  • the ultrasonic measuring device 30 is a member that performs an ultrasonic test by measuring a reflected wave reflected from the test object A2 . Specific specifications, types, and arrangements of the ultrasonic measuring device 30 are not limited.
  • the guide 40 may serve as a passage through which the ultrasound generated by the ultrasound generating apparatus 10 is transmitted.
  • the guide 40 may serve as a housing for properly installing the ultrasound generating device 10 and the ultrasound transmitting module 20 .
  • the ultrasonic transmission module 20 will be described in more detail.
  • the ultrasound transmission module 20 may include an ultrasound transmission member 100 and a position variable member 200 .
  • the ultrasound transmitting member 100 may be a member in the form of a predetermined panel positioned on a transmission path of the ultrasound generated by the ultrasound generating apparatus 10 .
  • the ultrasonic transmitting member 100 may have predetermined physical properties and thickness. Accordingly, the ultrasound transmitting member 100 may have a predetermined impedance and a phase with respect to the incident wave.
  • the ultrasonic transmitting member 100 may be selectively replaced. That is, the physical properties and thickness of the ultrasonic transmitting member 100 may be selectively varied. Accordingly, the impedance and phase of the ultrasonic transmitting member 100 with respect to the incident wave may also be selectively replaced.
  • the ultrasound transmitting member 100 may have various shapes such as a rectangle, a circle, an arbitrary polygon, etc., and may have a shape with a straight line and a curvature.
  • the ultrasonic transmitting member 100 may have a structure in which single or multiple media are stacked, but is not limited thereto.
  • it when it is composed of multiple media, it may be partially laminated in addition to a simple laminated form, or may have a configuration with different physical properties of any part.
  • the distribution between the media may also have a regular or irregular distribution.
  • the physical properties, distribution, etc. of the ultrasonic transmitting member 100 may be selected according to an obstacle or may be freely selected.
  • the processing shape of the ultrasonic transmitting member 100 is also not limited. For example, it may be manufactured by applying regular or irregular processing to single or multiple materials, and the processing form may have various forms such as an angled form, a curvature form, or a mixture thereof.
  • the size, shape, width, etc. of the ultrasonic transmitting member 100 may be selected according to an obstacle or freely selected.
  • the position variable member 200 is a member for changing the position of the ultrasonic transmitting member 100 .
  • variable position member 200 is not limited, and it may be composed of any position variable means that can be easily applied by those of ordinary skill in the art.
  • variable position member 200 may include a rack gear and a pinion gear having a forward and backward operation direction.
  • variable position member 200 may include a guide 40 line extending in the front-rear direction and a guide 40 block capable of being moved in the front-rear direction along the guide 40 line.
  • variable position member 200 may include an integral means for changing the position of the ultrasound transmitting member 100 .
  • the position variable member 200 may vary the distance between the obstacle A3 and the ultrasonic transmission member 100 .
  • the incident wave generated by the ultrasonic wave generating device 10 may pass through the ultrasonic transmission module 20 and the obstacle A3 and then reach the test object A2. have.
  • the ultrasonic transmitting member 100 of the ultrasonic transmitting module 20 may satisfy the phase matching condition and size matching condition. Accordingly, the incident wave may pass through the obstacle A3 without being reflected from the obstacle A3 . That is, it can be seen that the ultrasonic transmitting member 100 corresponds to the ultrasonic transmitting means in the wave control method of the present invention described above.
  • the ultrasonic transmission member 100 according to an embodiment capable of satisfying the above-described phase matching condition, size matching condition, and additional condition will be specifically described.
  • the obstacle A3 has a predetermined impedance and phase.
  • the ultrasonic transmitting member 100 may also have a predetermined impedance and phase.
  • the impedance of the obstacle A3 and the impedance of the ultrasound transmitting member 100 have a predetermined ratio.
  • the phase of the obstacle A3 also has a predetermined ratio with the phase of the ultrasonic transmitting member 100 .
  • the ratio of the impedance of the obstacle A3 to the impedance of the ultrasound transmitting member 100 and the ratio of the phase of the obstacle A3 and the phase of the ultrasound transmitting member 100 are the size matching conditions described above can satisfy
  • Equation (6) the impedance ratio ⁇ between the obstacle A3 and the ultrasound transmission member 100 and the phase ratio ⁇ between the obstacle A3 and the ultrasound transmission member 100 are respectively expressed as in Equation (6) below.
  • Equation (6) The following formula (6) is as described in the above formula (6) and related description.
  • the impedance ratio ⁇ between the obstacle A3 and the ultrasound transmitting member 100 and the phase ratio ⁇ between the obstacle A3 and the ultrasound transmitting member 100 may satisfy the following equation (8), respectively.
  • the following formula (2) is as described in the above-described formula (8) and related description.
  • the ultrasonic transmission member 100 that satisfies Equation (8) above, it is possible to first satisfy the size matching condition. Of course, even when the size matching condition is not completely satisfied, a great improvement in transmittance can be achieved compared to when the ultrasonic transmitting member 100 is not present. Accordingly, it is also possible to select the ultrasonic transmitting member 100 that does not completely satisfy the size matching condition.
  • the position of the ultrasound transmission member 100 satisfying the phase matching condition can be derived have. That is, by adjusting the distance d between the obstacle A3 and the ultrasonic transmitting member 100 , a distance d 0 satisfying the phase coincidence condition may be derived.
  • the distance d 0 is a distance that satisfies Equation (7) below, and Equation (7) is as described in Equation (7) and related descriptions described above.
  • the impedance ratio ⁇ between the obstacle A3 and the ultrasonic transmission member 100 satisfying the size matching condition and the phase ratio ⁇ between the obstacle A3 and the ultrasonic transmission member 100 change with frequency. was confirmed.
  • the ultrasonic transmission member 100 satisfying the following equation (9) may be selected. Equation (9) is consistent with the additional condition described above.
  • a predetermined processing device may be provided.
  • the processing device may be configured with a predetermined CPU or the like.
  • the processing apparatus may select the ultrasonic transmission member 100 satisfying the above equation through predetermined calculation and data processing, and may derive a distance between the ultrasonic transmission member 100 and the obstacle A3 .
  • 12A to 13C are simulation results showing the performance of the ultrasonic transmission apparatus 1 and the wave control method according to the embodiment of the present invention with respect to various wave sources.
  • 12A to 13C are simulation examples of applying the ultrasonic transmission device 1 and the wave control method according to the embodiment of the present invention to a single ultrasonic generator and a multiple ultrasonic generator (phase array) system, which are representative technologies widely used in ultrasonic technology, respectively. am.
  • FIGS. 12A and 13A are a case in which a conventional ultrasound technology is used without an obstacle
  • FIGS. 12B and 13B are a case in which a 5 mm bone obstacle is encountered when using an existing ultrasound technology
  • FIGS. 12C and 13C are an embodiment of the present invention The results in the case of using the ultrasonic transmission device 1 and the wave control method according to the present invention are respectively shown.
  • the present ultrasonic transmission device 1 and the wave control method can be applied to various ultrasonic technologies currently in use, and the performance can also be innovatively improved.
  • it is applicable not only to waves that are normally incident, but also waves that travel at an arbitrary angle.
  • FIG. 14A schematically shows an acoustic field scan system used in the experiment
  • FIG. 14B shows a transducer acoustic field measurement result
  • Figure 15 shows the experimental results.
  • the wave generated by the transmitter spreads as it progresses.
  • the acoustic field was measured at the 400 mm transmitter point in three cases: the case of no obstacle (Ref), the installation of an obstacle, and the installation of the ultrasonic transmitter.
  • Experiment A of FIG. 15 is a case in which there is no obstacle
  • Experiment B is a case in which an obstacle is installed
  • Experiment C shows the results of using the ultrasonic transmission apparatus 1 and the wave control method according to an embodiment of the present invention, respectively. did it
  • FTC 16 is a graph showing curves representing the maximum transmittance (FTC) at various frequencies.
  • the progress medium is water and the obstacle is a 3 mm iron plate, as shown in FIG. 17 , when the physical properties of the ultrasonic transmitting device 1 change, it can be seen that the frequency representing the maximum transmittance changes together.
  • the type of the ultrasonic transmissive device 1 or the distance between the ultrasonic transmissive device 1 and the obstacle it is possible to transmit high-energy waves at various desired frequencies.
  • 18A to 18E show the results of this experiment.
  • 18c, 18d, and 18e graphs show the results of 85, 95, and 100 kHz showing the maximum transmittance in the ultrasonic transmitting apparatus 1, 2, and 3.
  • the ultrasonic transmission device 1 when installed, it can be seen that it has a very high transmission efficiency similar to that there is no obstacle.
  • 19 and 20A to 20F are diagrams illustrating simulations of whether an object can be imaged (confirmed) using a linearly generated plane wave.
  • the object When there is no obstacle, the object can be identified using the ultrasonic wave reflected from the object, but when there is an obstacle, the signal level is very small, so it is difficult. For example, when the obstacle transmittance is 10%, the intensity of the ultrasonic signal returning to the measurement point after hitting the object is less than 1%, making measurement very difficult.
  • the ultrasonic transmitting apparatus 1 when the ultrasonic transmitting apparatus 1 according to the embodiment of the present invention is installed, high ultrasonic transmittance can be exhibited, so that an object can be identified as in the case where there is no obstacle.
  • 21 to 25 show a two-dimensional imaging experiment environment and experimental results.
  • FIGS. 21 and 22 show a two-dimensional imaging experimental environment.
  • A is a water tank used as an experimental environment
  • B is an imaging object.
  • C is an obstacle
  • D corresponds to the ultrasonic transmitting member 100 of the ultrasonic transmitting apparatus 1 according to the embodiment of the present invention.
  • E is the receiver and transmitter, and F corresponds to the imaging plane.
  • FIGS. 23A to 23D, 24A to 24D, and 25A to 25D respectively show when an imaging target subjected to the experimental conditions is one disk ( FIGS. 23A to 23D ), two disks ( FIGS. 24A to 24D ), and a rectangular plate, respectively. It is shown when (Figs. 25a to 25d).
  • a indicates an imaging target
  • b indicates no obstacle
  • c indicates a case in which an obstacle is installed
  • d indicates a case in which the ultrasonic transmitting member 100, D is installed.
  • the ultrasonic transmission device 1 and the wave control method according to the present invention by positioning the ultrasonic transmission member 100 at a predetermined distance in front of the obstacle, high ultrasonic energy beyond the obstacle due to the resonance phenomenon between the obstacle and the ultrasonic transmission member 100 can be transmitted.
  • the ultrasonic transmission apparatus 1 and the wave control method according to the embodiment of the present invention it is possible to transmit very high ultrasonic energy (up to 100%) at a desired frequency regardless of the type and thickness of the obstacle.
  • the ultrasonic transmission device 1 and the wave control method according to the present invention can be widely used in underwater ultrasonic waves, acoustics, medical ultrasonic waves, non-destructive testing, etc. that require ultrasonic energy transfer.
  • the ultrasonic transmission device 1 and the wave control method according to the present invention since the signal measured on the opposite side of the obstacle can also be transmitted with a very high transmittance, detection and precision of underwater acoustic technology, medical ultrasound technology, and non-destructive testing technology It can be used for detection.
  • 26 to 28 show an embodiment of the ultrasonic transmission apparatus 1 according to an embodiment of the present invention.
  • the ultrasonic transmission device 1 When the ultrasonic transmission device 1 according to the embodiment of the present invention is installed, only that portion is transmitted, so the wave field on the opposite side of the obstacle can be adjusted by using it.
  • the ultrasonic transmission device 1 may be manufactured in various shapes to form waves of various shapes. Therefore, it may be utilized to collect or disperse materials on the opposite side of the obstacle using the ultrasonic transmission device 1, and it is possible to apply a high-energy wave on the opposite side of the obstacle to a system requiring transmission.
  • the ultrasonic transmission device 1 according to the embodiment of the present invention it is easy to cause ultrasonic cavitation, so it can be used in various places, such as ultrasonic lithotripsy, cleaning purposes in industrial fields, and increasing drug reaction using ultrasonic waves in academia do.
  • MMC magnitude coincidence condition
  • PMC phase coincidence condition
  • EMMC extended magnitude agreement condition
  • EPMC extended phase coincidence condition
  • phase coincidence condition is a condition satisfying Equation (7)
  • magnitude coincidence condition is a condition satisfying Equation (8).
  • the distance of the ultrasonic transmission member capable of achieving a meaningful transmittance is called an extended phase matching condition
  • the range of physical properties of the ultrasound transmitting member is called an extended size matching condition
  • the extended phase coincidence condition and the extended magnitude coincidence condition will be described.
  • ⁇ and ⁇ used below are the same as described above. That is, the ratio of the phase of the obstacle to the phase of the ultrasonic transmitting member is defined as ⁇ , and the ratio of the impedance of the obstacle to the impedance of the ultrasonic transmitting member is defined as ⁇ .
  • the extended phase coincidence condition is described as follows.
  • the transmittance of the ultrasonic transmitting member becomes 100%.
  • the extended phase coincidence condition is derived using transmittance when the distance d between the obstacle A3 and the ultrasonic transmitting member 100 is varied.
  • T transmittance when the ultrasonic transmissive member 100 is positioned at a position satisfying the phase matching condition
  • T T It means a range of d that can achieve a transmittance greater than or equal to a meaningful transmittance (effective transmittance) as a reference.
  • the effective transmittance is defined as a transmittance of 70%. That is, the range of the distance between the ultrasonic transmitting member and the obstacle capable of achieving a transmittance of 0.7T or more is set as a range satisfying the extended phase coincidence condition.
  • FIG. 30 compares and contrasts the range of d that satisfies the phase coincidence condition with the range of d that satisfies the extended phase coincidence condition.
  • the range of d that satisfies the phase coincidence condition shown in Fig. 30A is limited to one point (distance with a specific value).
  • the range of d satisfying the extended phase coincidence condition shown in FIG. 30B is within the shaded range and has a predetermined distance range.
  • the extended phase coincidence condition is shown in Equation 9 below.
  • the extended phase coincidence condition is a modification of the conditional expression for the phase coincidence condition described above.
  • Equation (10) This is a value obtained through parameter study.
  • R B are as previously described, as it follows.
  • FIG. 31 shows a region of distance d that satisfies the extended phase coincidence condition.
  • ⁇ d 0.7T indicating the area of the distance d 0 that can secure the transmittance of 0.7T or more is It can be seen that there is a linearly proportional relationship to .
  • applying the extended phase matching condition to a 5 mm iron obstacle in the water it is possible to predict the area indicated by gray shades in Figs. 32a to 32g.
  • the extended size matching condition is described as follows.
  • the transmittance of the ultrasonic transmitting member becomes 100%.
  • the extended size matching condition is that, when the physical properties of the ultrasonic transmission member 100 are varied in a state that the phase matching condition is satisfied, the transmittance is not 100%, but a transmittance greater than a meaningful transmittance (effective transmittance) can be achieved. It means the range of ⁇ and ⁇ .
  • the ultrasonic transmission member ( ⁇ and ⁇ ) having predetermined physical properties is selected, and the installation distance d 0 at which the transmittance can be maximized using the selected ultrasonic transmission member is calculated according to the phase coincidence condition, which is called the member maximum transmittance. do.
  • the condition in which the maximum transmittance of the member satisfies the ranges of ⁇ and ⁇ for achieving the effective transmittance can be described as the extended size matching condition.
  • the effective transmittance is defined as a transmittance of 70%. That is, when the phase coincidence condition is satisfied, the ranges of ⁇ and ⁇ that can achieve a transmittance of 0.7T or more are taken as a range that satisfies the extended size agreement condition.
  • the ranges of ⁇ and ⁇ satisfying the size matching condition shown in Fig. 33A are defined by solid lines. On the contrary, it can be confirmed that the ranges of ⁇ and ⁇ satisfying the extended size matching condition shown in FIG. 33B have a predetermined area as a region within the dashed-dotted line and the broken line.
  • the extended size matching condition is as Equation (11) below.
  • the extended size matching condition is a modification of the conditional expression for the size matching condition described above.
  • Equations (12), (13), and (14) below are formulas obtained through parameter study for conditions showing transmittance of about 70% or more for various obstacles.
  • 34A to 34H and 35A to 35H show transmittance diagrams and expanded size matching conditions for iron and aluminum obstacles, respectively.
  • EMMC1 is indicated by a dashed line and EMMC2 is indicated by a dashed-dotted line.
  • EMMC is a range that satisfies the expanded size matching condition in the area surrounded by the diagram represented by EMMC1 and the diagram represented by EMMC2. When the conditions in the above range are satisfied, it can be seen that the transmittance is about 70% or more.
  • FIG. 29D the case in which the extended magnitude coincidence condition (EMMC) and the extended phase coincidence condition (EPMC) are satisfied is shown in FIG. 29D .
  • EMMC extended magnitude coincidence condition
  • EPMC extended phase coincidence condition

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

본 발명은 초음파 투과 장치 및 파동 제어 방법에 관한 것으로서, 보다 상세하게는, 초음파를 장애물 너머로 투과시킬 수 있는 초음파 투과 장치 및 파동 제어 방법에 관한 것이다.

Description

초음파 투과 장치 및 파동 제어 방법
본 발명은 초음파 투과 장치 및 파동 제어 방법에 관한 것으로서, 보다 상세하게는, 초음파를 장애물 너머로 투과시킬 수 있는 초음파 투과 장치 및 파동 제어 방법에 관한 것이다.
한 매질에서 진행하는 초음파가 이종매질(二種媒質, Dissimilar medium)로 구성되는 장애물을 만나는 경우, 매질과 장애물 사이의 임피던스 차이로 인하여 많은 에너지가 반사되고 일부의 초음파 에너지만이 투과할 수 있다.
일반적으로, 장애물을 만났을 때 초음파의 투과율은 장애물과 진행매질 사이의 임피던스의 차이에 비례하여 커진다. 가령 물과 철의 임피던스는 30배 가량 차이 나기 때문에, 물 속의 철판 같은 장애물을 투과하여 진행하는 파동에너지는 매우 작다. 따라서, 이와 같은 장애물이 존재할 경우, 장애물 건너편에 존재하는 검사체에 대한 초음파 검사가 매우 어렵다.
이를 해결하기 위해서, 초음파가 장애물을 투과할 수 있도록 하는 여러 기술이 개발, 제안되었다. 초음파 투과에 관하여 널리 알려진 기술은 페브리-페로 공진(Fabry-Perot Resonance)을 이용하는 기술이다. 페브리-페로 공진이란 장애물의 두께가 장애물을 진행하는 초음파의 반파장의 정수배 (0.5nλ, n: 자연수, λ: 파장)인 경우 투과하는 초음파의 에너지가 최대가 되는 현상을 말한다.
하지만 본 기술은 장애물의 두께에 따라서 초음파의 최대투과율이 결정되는 주파수가 결정되고, 상당히 넓은 주파수 대역에 대해서는 초음파 투과에너지가 매우 낮다는 단점이 있다.
따라서, 이러한 문제점을 극복할 수 있는 초음파 투과 장치가 필요하다.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명은, 초음파를 장애물 너머로 투과시킬 수 있는 초음파 투과 장치 및 파동 제어 방법을 제공하는 데 있다.
본 발명의 일 실시예에 의한 초음파 투과 장치는,
내부에 매질 및 피검사체를 갖고 외부에 장애물을 갖는 대상물에 초음파를 입사하여 초음파 검사를 수행하는 초음파 투과 장치로서,
입사파를 생성하는 초음파 생성 장치;
상기 장애물과 상기 초음파 생성 장치 사이에 위치하며 상기 초음파 생성 장치에서 생성되는 입사파의 진행 경로 상에 위치하는 초음파 투과 모듈; 을 포함하며,
상기 초음파 투과 모듈은,
초음파 투과 부재, 및
상기 초음파 투과 부재의 위치를 가변시키는 위치 가변 장치를 포함한다.
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 위치 가변 장치는,
상기 장애물과 상기 초음파 투과 부재 사이의 거리를 가변시켜서,
상기 초음파 투과 부재 및 장애물을 통과한 투과파의 위상 및 크기가 상기 초음파 생성 장치에서 생성된 입사파의 위상 및 크기와 동일해지도록 한다.
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 초음파 투과 부재는,
임피던스 및 위상이 선택적으로 가변되며,
하기 식 (1) 에 따라서, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 와, 상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 가 정의된다.
Figure PCTKR2021006722-appb-I000001
,
Figure PCTKR2021006722-appb-I000002
식 (1)
z = ρc (ρ: 밀도 c: 파동 속도)
Φ = kd (k: 파수 Wavenumber, d: 이종물질 두께)
k = ω/c = (ω : 주파수 [Rad/s])
ω = 2πf (f: 주파수 [Hz])
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 와, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 는 각각 하기 식 (2) 를 충족한다.
Figure PCTKR2021006722-appb-I000003
식 (2)
(여기서,
Figure PCTKR2021006722-appb-I000004
,
Figure PCTKR2021006722-appb-I000005
,
Figure PCTKR2021006722-appb-I000006
,
Figure PCTKR2021006722-appb-I000007
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는,
하기 식 (3) 을 충족한다.
Figure PCTKR2021006722-appb-I000008
식 (3)
(여기서,
Figure PCTKR2021006722-appb-I000009
,
Figure PCTKR2021006722-appb-I000010
,
Figure PCTKR2021006722-appb-I000011
,
Figure PCTKR2021006722-appb-I000012
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 초음파 투과 부재는 하기 식 (4) 를 충족한다.
α = 1 , β = 1 (식 4)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 초음파 투과 부재는,
임피던스 및 위상이 선택적으로 가변되며,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족한다.
Figure PCTKR2021006722-appb-I000013
식 (5)
Figure PCTKR2021006722-appb-I000014
식 (6)
(여기서,
Figure PCTKR2021006722-appb-I000015
,
Figure PCTKR2021006722-appb-I000016
,
Figure PCTKR2021006722-appb-I000017
,
Figure PCTKR2021006722-appb-I000018
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 초음파 투과 부재는,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때,
상기 α 와, 상기 β 는 하기 식 (7) 내지 식 (9) 를 충족하는 값을 갖는다.
Figure PCTKR2021006722-appb-I000019
식 (3)
Figure PCTKR2021006722-appb-I000020
식 (7)
Figure PCTKR2021006722-appb-I000021
식 (8)
Figure PCTKR2021006722-appb-I000022
식 (9)
(여기서,
Figure PCTKR2021006722-appb-I000023
,
Figure PCTKR2021006722-appb-I000024
,
Figure PCTKR2021006722-appb-I000025
,
Figure PCTKR2021006722-appb-I000026
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 초음파 투과 장치는,
상기 초음파 투과 부재는,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족하며,
상기 α 와 상기 β 는, 상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때, 하기 식 (7) 내지 (8) 를 충족하는 값을 갖는다.
Figure PCTKR2021006722-appb-I000027
식 (5)
Figure PCTKR2021006722-appb-I000028
식 (6)
Figure PCTKR2021006722-appb-I000029
식 (3)
Figure PCTKR2021006722-appb-I000030
식 (7)
Figure PCTKR2021006722-appb-I000031
식 (8)
Figure PCTKR2021006722-appb-I000032
식 (9)
(여기서,
Figure PCTKR2021006722-appb-I000033
,
Figure PCTKR2021006722-appb-I000034
,
Figure PCTKR2021006722-appb-I000035
,
Figure PCTKR2021006722-appb-I000036
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 파동 제어 방법은,
초음파 생성 수단과 장애물 사이에 초음파 투과 수단이 위치한 상태에서 상기 초음파 투과 수단과 상기 장애물 사이의 거리 및 상기 초음파 투과 수단의 재질을 가변하여 상기 초음파 생성 수단에서 발생한 초음파를 상기 장애물 너머로 전달한다.
본 발명의 일 실시예에 의한 파동 제어 방법은,
하기 식 (1) 에 따라서, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 와, 상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 가 정의된다.
Figure PCTKR2021006722-appb-I000037
,
Figure PCTKR2021006722-appb-I000038
식 (1)
z = ρc (ρ: 밀도 c: 파동 속도)
Φ = kd (k: 파수 Wavenumber, d: 이종물질 두께)
k = ω/c = (ω : 주파수 [Rad/s])
ω = 2πf (f: 주파수 [Hz])
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 파동 제어 방법은,
상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 와, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 는 각각 하기 식 (2) 를 충족한다.
Figure PCTKR2021006722-appb-I000039
식 (2)
(여기서,
Figure PCTKR2021006722-appb-I000040
,
Figure PCTKR2021006722-appb-I000041
,
Figure PCTKR2021006722-appb-I000042
,
Figure PCTKR2021006722-appb-I000043
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 파동 제어 방법은,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는,
하기 식 (3) 를 충족한다.
Figure PCTKR2021006722-appb-I000044
식 (3)
(여기서,
Figure PCTKR2021006722-appb-I000045
,
Figure PCTKR2021006722-appb-I000046
,
Figure PCTKR2021006722-appb-I000047
,
Figure PCTKR2021006722-appb-I000048
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 파동 제어 방법은,
상기 초음파 투과 부재는 하기 식 (4) 를 충족한다.
α = 1 , β = 1 식 (4)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 파동 제어 방법은,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족한다.
Figure PCTKR2021006722-appb-I000049
식 (5)
Figure PCTKR2021006722-appb-I000050
식 (6)
(여기서,
Figure PCTKR2021006722-appb-I000051
,
Figure PCTKR2021006722-appb-I000052
,
Figure PCTKR2021006722-appb-I000053
,
Figure PCTKR2021006722-appb-I000054
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 파동 제어 방법은,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때,
상기 α 와, 상기 β 는 하기 식 (7) 내지 식 (9) 를 충족하는 값을 갖는다.
Figure PCTKR2021006722-appb-I000055
식 (3)
Figure PCTKR2021006722-appb-I000056
식 (7)
Figure PCTKR2021006722-appb-I000057
식 (8)
Figure PCTKR2021006722-appb-I000058
식 (9)
(여기서,
Figure PCTKR2021006722-appb-I000059
,
Figure PCTKR2021006722-appb-I000060
,
Figure PCTKR2021006722-appb-I000061
,
Figure PCTKR2021006722-appb-I000062
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명의 일 실시예에 의한 파동 제어 방법은,
상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족하며,
상기 α 와 상기 β 는, 상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때, 하기 식 (7) 내지 (9) 를 충족하는 값을 갖는다.
Figure PCTKR2021006722-appb-I000063
식 (5)
Figure PCTKR2021006722-appb-I000064
식 (6)
Figure PCTKR2021006722-appb-I000065
식 (3)
Figure PCTKR2021006722-appb-I000066
식 (7)
Figure PCTKR2021006722-appb-I000067
식 (8)
Figure PCTKR2021006722-appb-I000068
식 (9)
(여기서,
Figure PCTKR2021006722-appb-I000069
,
Figure PCTKR2021006722-appb-I000070
,
Figure PCTKR2021006722-appb-I000071
,
Figure PCTKR2021006722-appb-I000072
)
(아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
본 발명에 따른 초음파 투과 장치 및 파동 제어 방법에 의하면, 장애물 앞에 일정 거리에 초음파 투과 부재가 위치한다. 아울러, 장애물과 초음파 투과 부재 사이의 공명현상으로 인해 장애물 너머로 높은 초음파 에너지가 전달될 수 있도록 할 수 있다.
본 발명에 따른 초음파 투과 장치 및 파동 제어 방법에 의하면, 장애물의 종류와 두께에 관계없이 원하는 주파수에서 매우 높은 초음파 에너지(최대 100%)를 투과시킬 수 있다.
본 발명에 따른 초음파 투과 장치 및 파동 제어 방법은, 수중 초음파, 음향, 의료 초음파, 비파괴검사 등에 폭넓게 사용될 수 있다.
도 1 은 매질 내에 입사한 초음파가 이종물질 B 로 구성되며 두께 dB 를 갖는 장애물을 만났을 때, 입사파(a), 반사파(b), 투과파(c)를 각각 나타낸 것이다.
도 2 는 투과 에너지와 주파수 사이의 관계를 나타낸 것이다.
도 3a, 3b 는, 초음파 투과 부재와 장애물이 함께 있는 경우에 입사된 초음파의 투과 및 반사를 나타낸 것이다.
도 4a 내지 4f 는 주어진 장애물에 대해 다양한 초음파 투과 부재를 적용한 예시를 도시한 것이다.
도 5a 내지 5c는, 다양한 초음파 투과 부재의 특성(α, β)에 따른 크기 일치 조건에 대해서 도시한 것이다.
도 6a 내지 6c 는 다양한 초음파 투과 부재의 특성(α, β)에 따른 위상 일치 조건에 대해서 도시한 것이다.
도 7 은 다양한 주파수에 대해서 크기 일치 조건 혹은 100% 투과 조건을 충족하는 선도를 나타낸 것이다.
도 8 및 9 는 본 발명의 일 실시예에 의한 초음파 투과 장치의 구조를 나타낸 개념도이다.
도 10 및 도 11 은, 본 발명의 일 실시예에 의한 초음파 투과 장치에 사용되는 초음파 투과 부재의 구조를 나타낸 개념도이다.
도 12a 내지 12c 및 13a 내지 13c 는 다양한 파동원에 대해서 본 발명의 실시예에 의한 초음파 투과 장치 및 파동 제어 방법의 성능을 보여주는 시뮬레이션 결과이다.
도 14a 는 실험에 사용된 음향장 스캔 시스템을 개략적으로 나타낸 것이며, 도 14b 는 트랜스듀서 음향장 측정 결과를 나타낸 것이며, 도 15 는 실험 결과를 나타낸 것이다.
도 16 은, 최대 투과율(FTC)를 나타내는 곡선을 다양한 주파수에서 도시한 그래프이다.
도 17 은, 진행 매질이 물이며, 장애물이 3 mm 철판인 경우, 초음파 투과 장치(1)의 물성과 최대 투과율을 나타내는 주파수가 함께 변하는 것을 나타낸 도면이다.
도 18a 내지 18e 는, 장애물인 3 mm 두께의 철판에 대해서 α = β = 1 을 만족하는 초음파 투과 장치를 설치하고 초음파 투과 장치와 장애물 사이의 거리를 조절하여 다양한 주파수에서 검증한 결과이다.
[규칙 제91조에 의한 정정 13.08.2021] 
도 19 및 20a 내지 20f는 선형으로 생성된 초음파(Plane wave)를 이용하여 물체를 이미징(확인) 가능 여부를 시뮬레이션 한 것을 나타낸 도면이다.
도 21 내지 도 25d 는 2 차원 이미징 실험 환경, 및 실험 결과를 나타낸 것이다.
[규칙 제91조에 의한 정정 13.08.2021] 
도 26 내지 도 28 은 본 발명의 실시예에 의한 초음파 투과 장치의 구현 예를 나타낸 것이다.
도 29 는 확장된 크기 일치 조건 및 확장된 위상 일치 조건을 도시한 도면이다.
도 30a, 30b 는 위상 일치 조건을 충족하는 d 의 범위와 확장된 위상 일치 조건을 충족하는 d 의 범위를 비교, 대조한 것이다.
도 31 은 확장된 위상 일치 조건을 충족하는 거리 d 의 영역을 나타낸 것이다.
도 32a 내지 32g 는 물 속에 있는 5 mm 철 장애물에 확장된 위상 일치 조건을 적용한 예이다.
도 33a 및 33b 는 크기 일치 조건을 충족하는 α 와 β 의 범위와 확장된 크기 일치 조건을 충족하는 α 와 β 의 범위를 비교, 대조한 것이다.
도 34a 내지 34h 및 35a 내지 35h 는 각각 철과 알루미늄 장애물에 대한 투과율 선도 및 확장된 크기 일치 조건을 나타낸다.
본 발명의 일 실시예에 의한 초음파 투과 장치는, 내부에 매질 및 피검사체를 갖고 외부에 장애물을 갖는 대상물에 초음파를 입사하여 초음파 검사를 수행하는 초음파 투과 장치로서, 입사파를 생성하는 초음파 생성 장치; 상기 장애물과 상기 초음파 생성 장치 사이에 위치하며 상기 초음파 생성 장치에서 생성되는 입사파의 진행 경로 상에 위치하는 초음파 투과 모듈; 를 포함하며, 상기 초음파 투과 모듈은, 초음파 투과 부재, 및 상기 초음파 투과 부재의 위치를 가변시키는 위치 가변 장치를 포함한다.
이하, 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다. 먼저, 본 발명의 실시예에 의한 파동 제어 방법을 설명한 후, 상기 파동 제어 방법을 토대로 본 발명의 구체적인 실시 형태에 대해서 설명한다.
1. 본 발명의 실시예에 의한 파동 제어 방법
<초음파의 진행 경로 상에 장애물 또는 초음파 투과 수단이 있을 때의 초음파 투과식>
도 1 은 매질 내에 입사한 초음파가 이종물질 B 로 구성되며 두께 dB 를 갖는 장애물을 만났을 때, 입사파(a), 반사파(b), 투과파(c)를 각각 나타낸 것이며, 도 2 는 투과 에너지와 주파수 사이의 관계를 나타낸 것이다.
매질을 진행하던 초음파가 상기 장애물을 만난 경우, 초음파의 투과계수 R 과 반사계수 T 를 나타내는 식은 아래 식 (1) 과 같다.
Figure PCTKR2021006722-appb-I000073
,
Figure PCTKR2021006722-appb-I000074
식(1)
여기서 z는 임피던스, φ 는 이종 물질을 진행한 초음파의 위상변화이다. 아래첨자 O 은 매질을 의미하며, 아래첨자 B 는 장애물을 의미한다. 또한, 각각의 변수에 대한 구체적인 설명은 아래와 같다.
z = ρc (: 밀도 c: 파동 속도)
Φ = kd (k: 파수 Wavenumber, d: 이종물질 두께)
k = ω/c = (ω : 주파수 [Rad/s])
ω = 2πf (f: 주파수 [Hz]))
만일, 상기 장애물 대신에 초음파 투과 수단이 놓인 경우에는, 상기 장애물이 제거되고, 초음파가 초음파 투과 수단만을 통과하게 된다. 따라서, 초음파의 투과계수 R 과 반사계수 T 를 나타내는 식은 아래 식 (2) 와 같다. 위 식 (1) 의 장애물에 해당하는 것을 나타내는 아래 첨자 B 은 아래 식 (2) 에서 초음파 투과 수단을 나타내는 L 로 변경되었다.
Figure PCTKR2021006722-appb-I000075
,
Figure PCTKR2021006722-appb-I000076
,
Figure PCTKR2021006722-appb-I000077
식 (2)
즉, 장애물만이 있거나, 초음파 투과 수단만이 있는 경우에는, 초음파가 단일층을 투과하는 형태가 된다. 따라서, 초음파는 단일층의 물성에만 영향을 받는다. 또한, 초음파가 장애물, 또는 초음파 투과 수단만을 통과하는 경우에는, 초음파의 투과계수와 반사계수를 도출하는 식은 본질적으로 같은 형태를 갖는다.
도 2 에 도시된 바와 같이, 장애물을 통과하는 입사파의 투과 에너지 (C/A)2 는, 입사한 입사파의 주파수에 따라서 상이한 값을 갖는다. 도 2 의 예에서는, 3 mm 두께의 철판이 사용되었다.
<초음파 투과 수단과 장애물이 함께 있는 경우의 초음파 투과식>
초음파 투과 수단과 장애물이 함께 있는 경우에는, 다중층을 투과하는 경우로 시뮬레이션 될 수 있다. 이것을 도면으로 도시하면 도면 3 과 같다.
이 경우, 초음파가 장애물과 초음파 투과 수단으로 이루어진 다중 층에서 무수히 많은 반사를 일으키게 된다.
최종적인 투과율인 T 와 반사율인 R 은, n 회차에서 반사된 초음파들의 무한합과 같다. 이를 수식으로 표현하면, 아래 식 (3a), (3b) 과 같다.
Figure PCTKR2021006722-appb-I000078
식 (3a)
Figure PCTKR2021006722-appb-I000079
식 (3b)
상기 식 (3a) 및 식 (3b)의 RL, TL, RB, TB 는 상기 식 (1), (2)에 정의된 바와 같다.
초음파가 완전히 투과할 경우를 상정하면, R = 0, T = 1이 된다. 둘은 서로 필요충분 조건이기 때문에 동일하다.
상기 식을, R = 0 인 조건으로 식을 전개하면 아래와 같은 조건으로 다시 기술된다.
Figure PCTKR2021006722-appb-I000080
식 (4)
여기서 장애물과 초음파 투과 수단 사이에서 파동이 진행하는 위상인,
Figure PCTKR2021006722-appb-I000081
를 의미하는 항인
Figure PCTKR2021006722-appb-I000082
에 대해서 식을 정리한다. 이 과정은 아래와 같다.
Figure PCTKR2021006722-appb-I000083
상기 과정을 통해, 아래 식 (5) 가 유도된다.
Figure PCTKR2021006722-appb-I000084
,
Figure PCTKR2021006722-appb-I000085
식 (5)
상기 식 (5) 에 대해서 부연 설명하면, 이하와 같다.
초음파의 전파특성을 결정하는 시스템의 특성은 임피던스 z 와 위상 Φ 이다.
이때, 초음파 투과 수단의 특성 z, 는 주어진 장애물이 갖는 특성에 대해 상대적인 값으로 표현할 수 있다. 예를 들어, 초음파 투과 수단의 임피던스는 장애물의 임피던스의 2 배이며, 초음파 투과 수단의 위상은 장애물의 위상의 0.8배 등이다. 이를 수식적으로 표현하면 아래 식 (6) 과 같다.
Figure PCTKR2021006722-appb-I000086
,
Figure PCTKR2021006722-appb-I000087
식 (6)
여기서, kB, kL, k0 는 각각 장애물과 초음파 투과 수단 및 진행매질의 파수(wavenumber)이다. 또한, zB, zL, z0 는 각각 장애물과 초음파 투과 수단 및 진행매질의 임피던스를 의미한다.
상기 식에서 나타낸 바와 같이, 초음파 투과 수단과 장애물의 위상의 비율은 α로 나타내었다. 아울러, 초음파 투과 수단과 장애물의 임피던스의 비율은 β 로 나타내었다.
상기와 같이 식(5) 에 기술된 함수는 α, β 에 관한 함수형태로 나타날 수 있다. 즉,
Figure PCTKR2021006722-appb-I000088
로 기술될 수 있다.
<위상일치와 크기일치>
식(5)의 조건을 살펴보면 좌변
Figure PCTKR2021006722-appb-I000089
과 우변
Figure PCTKR2021006722-appb-I000090
은 모두 복소수이다.
R=0 으로부터 식 (5)가 도출되었기 때문에 식 (5)와 R=0 인 것은 필요충분조건이 된다. 즉, 식(5)가 성립하려면 두 복소수
Figure PCTKR2021006722-appb-I000091
Figure PCTKR2021006722-appb-I000092
가 같아야 한다. 따라서, R=0 이면 두 복소수
Figure PCTKR2021006722-appb-I000093
Figure PCTKR2021006722-appb-I000094
가 같다.
즉, 두 복소수
Figure PCTKR2021006722-appb-I000095
Figure PCTKR2021006722-appb-I000096
가 일치하게 되면 R=0 인 것이며, 초음파의 반사파가 0 인 것이다. 따라서 초음파가 완전히 투과하는 것이다.
여기서, 복소수가 일치하다는 것은 두 복소수의 위상과 크기가 일치한다는 것을 의미한다. 즉, 두 복소수, A, B의 일치조건인 A = B 은 아래와 같이 위상과 크기가 일치하는 조건으로 기술된다.
∠A=∠B (위상일치조건, Phase matching condition (PMC))
│A│=│B│ (크기일치조건, Magnitude matching condition (MMC))
이는 식(5)의 경우에도 마찬가지이다.
먼저, 위상이 일치하는 것을 나타내는 위상 일치 조건을 식으로 기술하면 아래와 같다.
Figure PCTKR2021006722-appb-I000097
and
Figure PCTKR2021006722-appb-I000098
식 (A3.1)
상기 식 (A3.1)를 거리 d0에 대한 식으로 변형한다. 이 과정은 아래와 같다.
먼저,
Figure PCTKR2021006722-appb-I000099
는 다음과 같이 표현된다.
Figure PCTKR2021006722-appb-I000100
(k: 파수, d: 거리) 식(A3.2)
k0 는 각주파수 ω 및 파동의 진행속도 cp0 와 다음 관계를 갖는다.
ω = cp0 k0 or k0 = ω/cpo
최종적으로, 상기 식(A3.1), 식(A3.2), 식(A3.3)을 종합하면 아래와 같다.
Figure PCTKR2021006722-appb-I000101
결과적으로, 아래 식 (7)가 된다.
Figure PCTKR2021006722-appb-I000102
식 (7)
이어서, 크기가 일치하는 것을 나타내는 크기 일치 조건을 살펴본다. 크기 일치조건은 두 복소수의 크기가 같은 것이다.
상기 식 (5)에 이를 적용하면 아래와 같은 식이 성립한다.
Figure PCTKR2021006722-appb-I000103
드 무아브르의 정리(e = cosθ + isinθ) 에 의하면 그 크기는 아래와 같이 1이 된다.
Figure PCTKR2021006722-appb-I000104
식 (A4.2)
이를 식(A4.1) 적용하면 좌변은
Figure PCTKR2021006722-appb-I000105
이 성립한다.
따라서 최종적으로 아래 식 (8) 이 도출된다.
Figure PCTKR2021006722-appb-I000106
식 (8)
<위상 일치 조건에 대한 고찰>
위상 일치 조건은 초음파 투과 수단과 장애물의 특성(위상, 임피던스)과 무관하게, 초음파 투과 수단과 장애물 사이의 거리 d0 를 조절함으로서 항상 획득될 수 있다.
초음파 투과 수단과 장애물의 위상 및 임피던스가 주어지면, 식(7b)를 통해 최대 투과율이 되는 거리를 선정할 수 있다. 달리 말하면, 초음파 투과 수단의 위치를 가변시킴으로서(즉, 초음파 투과 수단과 장애물 사이의 거리를 가변시킴으로서) 최대 투과율을 획득할 수 있다.
도 4a 내지 4f 는 주어진 장애물에 대해 다양한 초음파 투과 수단을 적용한 예시를 도시한 것이다. 도 4a 내지 4f 에서는, 진행매질은 물이며, 장애물은 3 mm 두께의 철판이 사용되었다.
예컨대, 도 4a 에서 α= 0.5, β=0.8 인 경우에는, 초음파 투과 수단과 장애물 사이의 거리가 약 8 mm 일 때, 최대 투과율이 획득되었다. 다른 예로, α= 0.5, β=3.0 인 경우에는, 이때 초음파 투과 수단과 장애물 사이의 거리가 약 7.8 mm 일 때, 최대 투과율이 획득되었다.
도 4a 내지 4f 에 도시된 바와 같이, 초음파 투과 수단과 장애물 사이의 거리를 조절함으로서, 최대 투과율을 획득할 수 있음을 확인할 수 있다.
<크기 일치 조건에 대한 고찰>
상기 설명 및 도면을 참조하면, 주어진 장애물에 대해서 다양한 초음파 투과 수단을 적용했을 때, 특정한 특성을 갖는 초음파 투과 수단에서 높은 투과율이 획득된다는 것을 알 수 있다. (주어진 조건에서 장애물의 투과율은 12.7% 이다.) 이때의 거리 d0는 식(7b)의 위상 일치 조건을 따른다.
하지만 투과율의 최대값(부분 최대값이라 명명)을 초음파 투과 수단과 장애물 사이의 거리를 조절해서 맞추어도 1(100%)이 안되는 경우가 많은 것을 확인할 수 있다. 예컨대, 도 4a 내지 4f 를 고찰해 보면, 각각의 경우에서 특정 거리 d0 일 때, 부분 최대값을 달성하고 있으나, 그 크기는 서로 상이함을 알 수 있다. 따라서, 부분 최대값을 최대로 하는 조건을 만족해야 최대의 투과율을 확보할 수 있음을 알 수 있다.
상기와 같이 부분 최대값을 최대로 하는 조건이 크기 일치 조건이다.
식(5)의 좌변
Figure PCTKR2021006722-appb-I000107
은 주파수, 장애물과 초음파 투과 수단의 특성(임피던스, 위상)에 의해서만 결정되는 항이다.
즉, 주어진 장애물과, 선택한 초음파 투과 수단의 특성(α, β)에 따라서, 상기 식(8)의 크기 일치 조건을 만족하지 못할 수도 있다. 따라서 식(8)을 만족하는 초음파 투과 수단의 특성 선정이 필요하다.
이와 같은 초음파 투과 수단의 물성에 의해서, 위상 일치 조건을 충족(부분 최대값 달성 조건 충족)한 투과율의 최대값이 결정된다. 초음파 투과 수단의 물성을 특정 값으로 하면, 위상 일치 조건을 충족한 투과율의 최대값이 100% 가 될 수 있다. 이와 같이 투과율의 최대값이 100% 가 되면, 초음파 투과 수단은 크기 일치 조건을 만족한다고 할 수 있다.
즉, 크기 일치 조건은 초음파 투과 수단의 물성을 어떻게 결정하여야 위상 일치 조건을 맞춘 투과율이 최댓값이 100%을 달성할 수 있냐는 문제를 다룬다고 할 수 있다.
크기 일치 조건을 다양한 초음파 투과기의 특성(α, β)에 대해서 도시하면 도 5a 내지 도 5c 에 도시된 바와 같다.
도 5a 내지 5c 에서,
Figure PCTKR2021006722-appb-I000108
인 조건, 즉, 크기 일치 조건(MMC)을 만족하는 선은 점선으로 표시되었다. 따라서 표시된 선을 따라서 초음파 투과 수단의 물성을 선정해주면 된다. 주파수에 따라서 만족하는 점이 다르기 때문에 목적하는 주파수에 맞추어 선정하여야 한다.
도 6a 내지 6c 는 위상 일치 조건 하에서 투과율을 초음파 투과 수단의 특성(α, β)에 대해서 도시한 도면이다. 도 6a 내지 6c 에서는, 100% 의 투과율을 보이는 조건이 점선으로 표시되었다. 도 5a 내지 5c 와 도 6a 내지 6c 를 비교해 보면, 도 5a 내지 5c 의 크기 일치 조건(MMC)을 만족시키는 부분(점선)과 도 6a 내지 6c 의 100% 의 투과율을 보이는 부분이 일치하는 것을 확인할 수 있다. 즉, 도 6a 내지 6c 에 도시된 바와 같이, 도 5a 내지 5c 의 크기 일치 조건이 맞는 선 상에서 100%의 투과율을 보이는 것을 알 수 있다.
<추가 조건에 대한 고찰>
크기 일치 조건을 만족하는 초음파 투과 수단을 선정하여, 위상 일치 조건을 만족시키는 거리 d0 에 설치하면, 100%에 달하는 초음파 투과를 얻을 수 있다.
그러나, 도 5a 내지 5c 를 다시 고찰하면, 크기 일치 조건을 만족하는 선들은 도 5a 내지 5c 에 도시된 것 같이 주파수에 따라서 변하는 것을 알 수 있다. 즉, 목적하는 주파수마다 크기 일치 조건을 만족하는 초음파 투과 수단을 찾아야 하는 단점이 있다.
만일, 주파수에 무관하게 d0 만 조절하여도 크기 일치 조건을 충족할 수 있도록 하는 초음파 투과 수단을 찾을 수 있다면 상기 문제가 해결될 것이다.
즉, 모든 주파수에서 크기 일치 조건을 만족시킬 수 있는 특별한 초음파 투과 수단 특성을 찾으면 상기 문제를 해결할 수 있다.
도 7 은 다양한 주파수에 대해서 크기 일치 조건 혹은 100% 투과 조건을 충족하는 선도를 나타낸 것이다.
도 7 에 도시된 바와 같이, 다양한 주파수에서 대해서 모든 선도가 α = 1 , β = 1 인 지점(C)을 지남을 알 수 있다. 여기서, α, β 는 앞서 정의한 바와 같다.
즉, α = 1 , β = 1 을 충족하는 조건하에서는 위상 일치 조건만 맞추게 되면(즉, d0 만 조절하면) 주파수에 상관없이 항상 투과율이 100% 를 달성할 수 있다.
<파동 제어 방법에 의한 초음파의 투과율>
위와 같은 파동 제어 방법에 의하면, 장애물로부터 특정 거리만큼 떨어진 위치에 소정의 재질로 구성된 초음파 투과 수단을 위치시키면 초음파 투과 수단과 장애물 사이에 파동의 공진 현상이 발생하고, 이에 의해서 높은 에너지의 파동이 투과될 수 있게 됨을 알 수 있다.
즉, 초음파 투과 수단의 재질을 적절히 선정하고, 초음파 투과 수단과 장애물 사이의 거리를 적절하게 설정하는 경우, 반사 없이, 100% 의 투과율을 가지며 파동 에너지를 투과시킬 수 있다.
2. 본 발명의 실시예에 의한 초음파 투과 장치
이하에서는 상기 이론적 근거를 바탕으로 하여, 본 발명의 일 실시예에 의한 초음파 투과 장치(1)에 대해서 설명한다.
도 8 및 9 는 본 발명의 일 실시예에 의한 초음파 투과 장치(1)의 구조를 나타낸 개념도이다.
편의상, 이후에서 방향을 나타내는 전후 방향이라 함은 도 8 에 도시된 "전후 방향" 을 기준으로 설명한다.
본 발명의 일 실시예에 의한 초음파 투과 장치(1)는, 내부에 매질(A1) 및 검사체(A2)를 갖고 외부에 장애물(A3)을 갖는 대상물(A)에 초음파를 입사하여 초음파 검사를 수행한다.
본 발명의 일 실시예에 의한 초음파 투과 장치(1)는, 초음파 생성 장치(10), 및 초음파 투과 모듈(20)을 포함하며, 이에 더하여 초음파 측정 장치(30) 및 가이드(40)를 포함할 수 있다.
초음파 생성 장치(10)는, 소정의 초음파를 생성할 수 있다. 초음파 생성 장치(10)의 구제적인, 제원, 종류 등은 한정하지 아니한다.
초음파 생성 장치(10)에서 생성되는 초음파의 주파수 등은 구체적으로 한정하지 않는다. 초음파 생성 장치(10)에서 생성된 상기 초음파는 대상물(A)에 대해 입사하는 입사파가 된다.
초음파 투과 모듈(20)은, 장애물(A3)과 초음파 생성 장치(10) 사이에 위치한다. 따라서, 초음파 투과 모듈(20)은 상기 초음파 생성 장치(10)에서 생성되어 대상물(A)에 입사하는 입사파의 진행 경로 상에 위치한다. 따라서, 상기 입사파는 초음파 투과 모듈(20)을 통과한 후, 대상물(A)에 입사하게 된다.
이때, 초음파 투과 모듈(20)은, 초음파 생성 장치(10)에서 생성된 입사파가 상기 대상물(A)의 장애물(A3)을 통과하며 대상물(A) 내부에 존재하는 검사체(A2)에 도달하도록 한다. 바람직하게는, 상기 초음파 투과 모듈(20)은, 상기 초음파 투과 부재(100) 및 장애물(A3)을 통과한 투과파의 위상 및 크기가 상기 초음파 생성 장치(10)에서 생성된 입사파의 위상 및 크기와 동일해지도록 할 수 있다. 즉, 투과율이 100% 가 되도록 할 수 있다.
초음파 측정 장치(30)는 검사체(A2)에서 반사된 반사파를 측정하여 초음파 검사를 수행하는 부재이다. 초음파 측정 장치(30)의 구체적인 제원, 종류, 및 배치 등은 한정하지 아니한다.
가이드(40)는 초음파 생성 장치(10)에서 생성된 초음파가 전달되는 통로 역할을 할 수 있다. 아울러, 가이드(40)는 초음파 생성 장치(10)와 초음파 투과 모듈(20)이 적절하게 설치되도록 하는 하우징 역할을 할 수 있다.
이하에서는 초음파 투과 모듈(20)에 대해서 보다 상세하게 설명한다.
초음파 투과 모듈(20)은 초음파 투과 부재(100), 및 위치 가변 부재(200)를 포함할 수 있다.
초음파 투과 부재(100)는, 초음파 생성 장치(10)에서 생성된 초음파의 전달 경로 상에 위치하는 소정의 패널 형태의 부재일 수 있다.
초음파 투과 부재(100)는, 소정의 물성 및 두께를 가질 수 있다. 따라서, 초음파 투과 부재(100)는 입사파에 대해서 소정의 임피던스 및 위상을 가질 수 있다.
일 실시예에 의하면, 초음파 투과 부재(100)는 선택적으로 교체될 수 있다. 즉, 초음파 투과 부재(100)가 갖는 물성 및 두께는 선택적으로 가변될 수 있다. 따라서, 초음파 투과 부재(100)가 입사파에 대해서 갖는 임피던스 및 위상 또한 선택적으로 교체될 수 있다.
초음파 투과 부재(100)의 구체적인 물성, 형태, 및 두께, 크기 등은 한정하지 아니한다. 예컨대, 초음파 투과 부재(100)는 사각형, 원형, 임의의 다각형 등 다양한 형태를 가질 수 있으며, 직선 및 곡률이 있는 형상을 가질 수도 있다.
또한, 초음파 투과 부재(100)는 단일 또는 다중 매질을 적층한 구조를 가질 수 있으며, 이에 한정하지 않는다. 아울러, 다중 매질로 구성될 경우, 단순하게 적층된 형태 외에 부분적으로 적층되거나 임의의 부분의 물성이 상이한 구성을 가질 수도 있다. 아울러, 매질 간의 분포 또한 규칙적이거나 불규칙한 분포를 가질 수도 있다.
이를 도면을 참조하여 설명하면 도 10 과 같다. 즉, 초음파 투과 부재(100)의 물성, 분포 등은 장애물에 따라서 선택되거나, 또는 자유롭게 선택될 수 있다.
초음파 투과 부재(100)의 가공 형태 또한 한정하지 않는다. 예컨대 단일 또는 다중 물질에 규칙적, 또는 비규칙적인 가공을 가하여 제작될 수 있으며, 가공 형태는 각도 있는 형태, 곡률이 있는 형태 또는 이를 혼합한 형태 등 다양한 형태가 가능하다.
이를 도면을 참조하여 설명하면 도 11 과 같다. 즉, 초음파 투과 부재(100)의 크기, 형상, 폭 등은 장애물에 따라서 선택되거나, 또는 자유롭게 선택될 수 있다.
위치 가변 부재(200)는, 상기 초음파 투과 부재(100)의 위치를 가변시키는 부재이다.
위치 가변 부재(200)의 구체적인 형태, 구성은 한정하지 아니하며, 통상의 기술자가 쉽게 적용할 수 있는 일체의 위치 가변 수단으로 구성될 수 있다.
예컨대, 위치 가변 부재(200)는 전후 방향 작동 방향을 갖는 렉 기어 및 피니언 기어를 포함할 수 있다.
다른 예로, 위치 가변 부재(200)는 전후 방향으로 연장되는 가이드(40) 라인 및 상기 가이드(40) 라인을 따라서 전후 방향으로 위치 이동 가능한 가이드(40) 블록을 포함할 수 있다.
단, 이는 어디까지나 예시이며, 위치 가변 부재(200)는 초음파 투과 부재(100)의 위치를 가변시키는 일체의 수단을 포함할 수 있다.
상기와 같은 구성을 가짐으로서, 상기 위치 가변 부재(200)는, 상기 장애물(A3)과 상기 초음파 투과 부재(100) 사이의 거리를 가변시킬 수 있다.
상기와 같은 초음파 투과 모듈(20)이 구비됨으로서, 상기 초음파 생성 장치(10)에서 생성된 입사파는 초음파 투과 모듈(20) 및 장애물(A3)을 통과한 후, 검사체(A2)에 도달할 수 있다. 이때, 상기 초음파 투과 모듈(20)의 초음파 투과 부재(100)는, 상기 위상 일치 조건 및 크기 일치 조건을 충족할 수 있다. 따라서, 상기 입사파가 장애물(A3)에서 반사되지 않고 장애물(A3)을 통과하도록 할 수 있다. 즉, 초음파 투과 부재(100)는, 상기 설명한 본 발명의 파동 제어 방법에 있어서 초음파 투과 수단에 대응한다고 볼 수 있다.
이하에서는 구체적으로, 상기 설명한 위상 일치 조건, 크기 일치 조건, 및 추가 조건을 충족할 수 있는 실시 형태에 따른 초음파 투과 부재(100)에 대해서 설명한다.
먼저, 크기 일치 조건에 대해서 고찰한다.
장애물(A3)은 소정의 임피던스와 위상을 갖는다. 아울러 상기 초음파 투과 부재(100) 또한 소정의 임피던스와 위상을 가질 수 있다. 상기 장애물(A3)의 임피던스와 상기 초음파 투과 부재(100)의 임피던스는 소정의 비율을 갖는다. 아울러, 장애물(A3)의 위상 또한, 초음파 투과 부재(100)의 위상과 소정의 비율을 갖는다.
실시예에 의하면, 상기 장애물(A3)의 임피던스와 상기 초음파 투과 부재(100)의 임피던스의 비율, 및 장애물(A3)의 위상과 초음파 투과 부재(100)의 위상의 비율은, 앞서 설명한 크기 일치 조건을 충족할 수 있다.
먼저, 장애물(A3)과 초음파 투과 부재(100)의 임피던스 비 β 와, 장애물(A3)과 초음파 투과 부재(100)의 위상 비 α는 각각 하기 식 (6) 과 같이 표현된다. 하기 식 (6) 은 상기 식 (6) 및 관련 설명에서 기술한 바와 같다.
Figure PCTKR2021006722-appb-I000109
,
Figure PCTKR2021006722-appb-I000110
식 (6)
또한, 상기 장애물(A3)과 초음파 투과 부재(100)의 임피던스 비 β 와, 장애물(A3)과 초음파 투과 부재(100)의 위상 비 α 는 각각 하기 식 (8) 을 충족할 수 있다. 하기 식 (2) 은, 상기 설명한 식 (8) 및 관련 설명에서 기술한 바와 같다.
Figure PCTKR2021006722-appb-I000111
식 (8)
실시예에 의하면, 상기 식 (8) 을 충족시키는 초음파 투과 부재(100)를 선정하여, 크기 일치 조건을 먼저 충족하도록 할 수 있다. 물론, 크기 일치 조건을 완벽하게 만족하지 않을 경우에도, 초음파 투과 부재(100)가 없을 때에 비해서 큰 투과율의 향상을 달성할 수 있다. 따라서, 크기 일치 조건을 완벽하게 만족하지 않는 초음파 투과 부재(100)를 선택하는 것도 가능하다.
이어서, 위상 일치 조건에 대해서 고찰한다.
상기와 같이 장애물(A3)의 임피던스, 및 위상이 설정되고, 초음파 투과 부재(100)의 임피던스, 및 위상이 설정되면, 상기 위상 일치 조건을 충족하는 초음파 투과 부재(100)의 위치가 도출될 수 있다. 즉, 상기 장애물(A3)과 초음파 투과 부재(100) 사이의 거리 d 를 조절하여, 위상 일치 조건을 충족하는 거리 d0 가 도출될 수 있다. 상기 거리 d0 는, 아래 식 (7) 을 충족하는 거리이며, 식 (7) 은, 상기 설명한 식 (7) 및 관련 설명에서 기술한 바와 같다.
Figure PCTKR2021006722-appb-I000112
식 (7)
한편, 앞서 설명한 바와 같이, 크기 일치 조건을 만족하는 장애물(A3)과 초음파 투과 부재(100)의 임피던스 비 β 와, 장애물(A3)과 초음파 투과 부재(100)의 위상 비 α 는 주파수에 따라서 변함을 확인하였다. 이를 해결하기 위해서, 바람직하게는, 앞서 설명한 바와 같이, 주파수에 무관하게 위상 일치 조건만 충족하면(즉, 장애물(A3)과 초음파 투과 부재(100) 사이의 거리 d0 만 조절하여위상 일치 조건을 만족하도록 하면) 100% 투과 조건을 만족하도록 하는 것이 바람직하다. 이를 위해서는, 아래 식 (9) 를 충족하는 초음파 투과 부재(100)를 선정할 수 있다. 식 (9) 는, 상기 설명한 추가 조건에 관한 것과 상통하는 것이다.
α = 1 , β = 1 식 (9)
한편, 상기 식 (6) 내지 (9) 를 충족하는 초음파 투과 부재(100)의 물성, 및 초음파 투과 부재(100)와 장애물(A3) 사이의 거리를 도출하기 위하여, 소정의 처리 장치가 구비될 수 있다.
상기 처리 장치는 소정의 CPU 등으로 구성될 수 있다. 상기 처리 장치는 소정의 연산 및 데이터 처리 등을 통해 상기 식을 충족하는 초음파 투과 부재(100)를 선정하고, 초음파 투과 부재(100)와 장애물(A3) 사이의 거리를 도출할 수 있다.
3. 본 발명의 실험 결과
도 12a 내지 13c 는 다양한 파동원에 대해서 본 발명의 실시예에 의한 초음파 투과 장치(1) 및 파동 제어 방법의 성능을 보여주는 시뮬레이션 결과이다.
도 12a 내지 13c 는, 각각 초음파 기술에서 널리 활용되고 있는 대표적인 기술인 단일 초음파생성기와 다중 초음파생성기(위상배열) 시스템에 본 발명의 실시예에 의한 초음파 투과 장치(1) 및 파동 제어 방법을 적용한 시뮬레이션 예시이다.
도 12a 및 13a 는 장애물 없이 기존의 초음파 기술을 사용한 경우이며, 도 12b 및 13b 는 기존의 초음파 기술을 사용했을 때 5mm 뼈 장애물을 만났을 때의 경우이고, 도 12c 및 13c 는 본 발명의 실시예에 의한 초음파 투과 장치(1) 및 파동 제어 방법을 사용하는 경우의 결과를 각각 도시한 것이다.
도면에 도시된 시뮬레이션 결과에서 알 수 있듯이, 본 초음파 투과 장치(1) 및 파동 제어 방법은, 현재 사용중인 다양한 초음파 기술에 응용이 가능하며, 성능 또한 혁신적으로 개선할 수 있는 것을 알 수 있다. 또한 수직으로 입사하는 파동 뿐만 아니라 임의의 각도를 갖고 진행하는 파동에 대해서도 적용 가능하다.
도 14a 는 실험에 사용된 음향장 스캔 시스템을 개략적으로 나타낸 것이며, 도 14b 는 트랜스듀서 음향장 측정 결과를 나타낸 것이다. 아울러, 도 15 는 실험 결과를 나타낸 것이다.
도 14b 를 살펴보면, 송신기(Transmitter, TX) 의해서 생성된 파동이 진행하면서 퍼져나가는 것을 알 수 있다. 초음파 투과실험 검증을 위해서 장애물이 없는 경우(Ref), 장애물 설치, 초음파 투과기 설치의 세가지 경우에 대해서 400 mm 송신기 지점에서 음향장을 측정하였다.
측정 결과는 도 15 에 도시된 바와 같다. 도 15 의 실험 A 는 장애물이 없는 경우이며, 실험 B 는 장애물이 설치된 경우이고, 실험 C 는 본 발명의 실시예에 의한 초음파 투과 장치(1) 및 파동 제어 방법을 사용하는 경우의 결과를 각각 도시한 것이다.
도 15 에서 볼 수 있는 것처럼 장애물이 있을 때는 투과되는 초음파의 세기가 매우 작다. 하지만 초음파 투과기를 설치한 경우, 마치 장애물이 없는 것 같은 매우 높은 투과율로 초음파가 투과하는 것을 확인할 수 있다.
이하에서는 추가 조건에 대한 고찰로서, 하나의 초음파 투과 장치(1)를 사용하며 초음파 투과 장치(1)와 장애물 사이의 거리만 조절하여 다양한 주파수가 적용 가능한 것에 대해서 설명한다.
도 16 은, 최대 투과율(FTC)를 나타내는 곡선을 다양한 주파수에서 도시한 그래프이다.
예컨대, 진행 매질이 물이며, 장애물이 3 mm 철판인 경우, 도 17 에 도시된 바와 같이, 초음파 투과 장치(1)의 물성이 변하면 최대 투과율을 나타내는 주파수가 함께 변하는 것을 알 수 있다.
특별히 FTC 조건 중에서 상기 기술한 α=β=1의 경우에는 하나의 초음파 투과 장치(1)를 이용하여도 모든 주파수에서 사용이 가능하다. 이 경우 초음파 투과 장치(1)의 종류 혹은 초음파 투과 장치(1)와 장애물 사이의 거리를 조절함으로써 목적하는 다양한 주파수에서 높은 에너지의 파동을 투과시킬 수 있다.
도 18a 내지 18e 는 이를 실험한 결과를 나타낸 것이다. 도 18a 내지 18e 는, 장애물인 3 mm 두께의 철판에 대해서 α=β=1 을 만족하는 초음파 투과 장치(1)를 설치하고 초음파 투과 장치(1)와 장애물 사이의 거리를 조절하여 다양한 주파수에서 검증한 결과이다.
도 18a 내지 18e 에 도시된 바와 같이, 검증 결과는 상기 이론에 부합되는 것을 확인할 수 있다. 도 18c, 18d, 18e 의 그래프는 초음파 투과 장치 1, 2, 3 에서 최대의 투과율을 보이는 85, 95, 100 kHz의 결과를 도시한 것이다.
여기서도 알 수 있듯이 초음파 투과 장치(1)를 설치하면 마치 장애물이 없는 것과 비슷한 매우 높은 투과 효율을 갖는 것을 알 수 있다.
[규칙 제91조에 의한 정정 13.08.2021] 
도 19 및 20a 내지 20f는 선형으로 생성된 초음파(Plane wave)를 이용하여 물체를 이미징(확인) 가능 여부를 시뮬레이션 한 것을 나타낸 도면이다.
장애물이 없는 경우에는 물체에서 반사되는 초음파를 이용하여 물체를 확인할 수 있으나 장애물이 있는 경우에는 신호크기가 매우 작아서 어렵다. 일례로 장애물 투과율이 10%인 경우, 물체를 다시 맞고 측정점으로 돌아오는 초음파 신호의 세기는 1% 이하가 되기 때문에 측정이 매우 어렵게 된다.
하지만 본 발명의 실시예에 의한 초음파 투과 장치(1)를 설치한 경우에는 높은 초음파 투과율을 보일 수 있기 때문에, 장애물이 없는 경우와 마찬가지로 물체 확인이 가능하다.
도 21 내지 도 25 는 2 차원 이미징 실험 환경, 및 실험 결과를 나타낸 것이다.
먼저, 도 21 및 도 22 는 2 차원 이미징 실험 환경을 나타낸다. 도 21 및 22 에서, A 는 실험 환경이 된 수조이며, B 는 이미징 대상물이다. 아울러, C 는 장애물이며, D 는 본 발명의 실시예에 의한 초음파 투과 장치(1)의 초음파 투과 부재(100)에 해당한다. 또한, E 는 수신기 및 송신기이며, F 는 이미징 평면에 해당한다.
도 23a 내지 23d, 24a 내지 24d, 25a 내지 25d 는 각각, 실험 조건이 된 이미징 대상을 원판 1 개로 했을 때(도 23a 내지 23d), 원판 2 개로 했을 때(도 24a 내지 24d), 및 사각형판으로 했을 때(도 25a 내지 25d)를 나타낸 것이다. 각각에 있어서, 각각의 도면의 a 는 이미징 대상을 나타내며, b 는 장애물이 없는 경우, c 는 장애물이 설치된 경우, 및 d 는 초음파 투과 부재(100, D)가 설치된 경우를 나타낸다.
각각의 도면의 b 와 같이, 장애물이 없는 경우에는 모든 이미징 대상에 대해서 식별이 가능한 결과가 도출되었다. 그러나, c 와 같이 장애물이 설치된 경우에는 낮은 투과율로 인해서 이미징 대상에 대한 식별이 거의 불가능함을 알 수 있다. 한편, d 와 같이 초음파 투과 부재(100, D)가 설치된 경우에는 비교적 식별이 가능한 정도의 이미징 결과를 얻을 수 있음을 알 수 있다.
4. 본 발명의 효과 및 활용 범위
본 발명에 따른 초음파 투과 장치(1) 및 파동 제어 방법에 의하면, 장애물 앞에 일정 거리에 초음파 투과 부재(100)를 위치시킴으로서 장애물과 초음파 투과 부재(100) 사이의 공명현상으로 인해 장애물 너머로 높은 초음파 에너지가 전달될 수 있도록 할 수 있다.
또한, 본 발명의 실시예에 따른 초음파 투과 장치(1) 및 파동 제어 방법에 의하면, 장애물의 종류와 두께에 관계없이 원하는 주파수에서 매우 높은 초음파 에너지(최대 100%)를 투과시킬 수 있다.
본 발명에 따른 초음파 투과 장치(1) 및 파동 제어 방법은, 초음파 에너지 전달이 필요한, 수중 초음파, 음향, 의료 초음파, 비파괴검사 등에 폭넓게 사용될 수 있다. 또한, 본 발명에 따른 초음파 투과 장치(1) 및 파동 제어 방법은, 장애물 반대쪽에 계측된 신호 역시 매우 높은 투과율로 전달이 가능하기 때문에, 수중음향기술, 의료초음파기술, 비파괴검사기술의 탐지 및 정밀 탐지에 활용 될 수 있다.
도 26 내지 도 28 은 본 발명의 실시예에 의한 초음파 투과 장치(1)의 구현 예를 나타낸 것이다.
본 발명의 실시예에 의한 초음파 투과 장치(1)를 설치하면 그 부분만 투과가 되기 때문에 이를 이용하여 장애물 반대편의 파동장을 조절할 수 있다.
즉, 파동의 위상을 조절하여 하나의 위상배열 시스템과 같이 구성할 수 있다. 도 26 내지 28 에 도시된 바와 같이 초음파 투과 장치(1)는 다양한 형태로 제작되어 다양한 형태의 파동을 형성시킬 수 있다. 따라서, 초음파 투과 장치(1)를 이용하여 장애물 반대편의 물질을 모으거나 분산시키는 데 활용될 수도 있으며, 장애물 반대편의 높은 에너지의 파동을 전송이 필요한 시스템에 적용할 수 있다. 예를 들어, 본 발명의 실시예에 의한 초음파 투과 장치(1)를 이용하면, 초음파 Cavitation을 일으키기 용이하므로, 초음파 쇄석술, 산업현장에서 청소 목적, 학계에서 초음파를 이용한 약물 반응 증가등 다양한 곳에 활용 가능하다.
5. 확장된 크기 일치 조건 및 확장된 위상 일치 조건
<확장된 크기 일치 조건 및 확장된 위상 일치 조건 개념>
도 29 는 크기 일치 조건(MMC), 위상 일치 조건(PMC), 확장된 크기 일치 조건(EMMC), 및 확장된 위상 일치 조건(EPMC)의 관계를 나타낸 도면이다.
위에서 설명한 바와 같이, 위상 일치 조건은 식 (7)을 충족하는 조건이며, 크기 일치 조건은 식 (8)을 충족하는 조건이다.
Figure PCTKR2021006722-appb-I000113
식 (7)
Figure PCTKR2021006722-appb-I000114
식 (8)
위상 일치 조건과 크기 일치 조건을 동시에 충족하면, 투과율의 최대값이 100% 가 된다. 이는 도 29 의 (A)와 같다.
그러나, 위상 일치 조건과 크기 일치 조건을 동시에 충족하는 조건의 범위는 매우 한정된다.
이에, 의미있는 투과율(유효 투과율)을 달성할 수 있는 초음파 투과 부재의 거리를 확장된 위상 일치 조건으로 명명하고, 초음파 투과 부재의 물성 범위를 확장된 크기 일치 조건으로 명명한다.
이하에서는, 확장된 위상 일치 조건과 확장된 크기 일치 조건에 대해서 설명한다. 이하에서 사용되는 α 와 β 는, 앞서 설명한 바와 동일하다. 즉, 장애물의 위상과 상기 초음파 투과 부재의 위상의 비를 α 로 정의하며, 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비를 β 로 정의한다.
<확장된 위상 일치 조건 (Expanded phase matching condition :EPMC)>
확장된 위상 일치 조건은 이하와 같이 설명된다.
앞서 설명한 바와 같이, 위상 일치 조건(PMC)과 크기 일치 조건(MMC)을 모두 충족하면 초음파 투과 부재의 투과율이 100% 가 된다.
확장된 위상 일치 조건은, 장애물(A3)과 초음파 투과 부재(100) 사이의 거리 d 를 가변시켰을 때의 투과율을 이용하여 도출된다. 임의의 물성을 갖는 초음파 투과 부재(100)가 발휘할 수 있는 최대 투과율(즉, 초음파 투과 부재(100)가 위상 일치 조건을 충족하는 위치에 위치할 때의 투과율)을 T 라고 정의할 때, T 를 기준으로 하여 의미있는 투과율(유효 투과율) 이상의 투과율을 달성할 수 있는 d 의 범위를 의미한다.
이를 달리 설명하면, 상기 초음파 투과 부재(100)를 소정의 위치에 놓아서 초음파 투과 부재(100)와 장애물(A3) 사이의 거리가 소정의 값을 가질 때, 초음파 투과 부재(100)가 발휘하는 투과율의 값이 비록 T 는 아니나, 의미있는 투과율(유효 투과율)이상의 투과율이 달성되면, 해당 초음파 투과 부재와 장애물 사이의 거리는 확장된 위상 일치 조건을 충족한다고 설명할 수 있다.
본 발명에서는, 상기 유효 투과율은 70% 의 투과율로 정의한다. 즉, 0.7T 이상의 투과율을 달성할 수 있는 초음파 투과 부재와 장애물 사이의 거리의 범위를 확장된 위상 일치 조건을 충족하는 범위로 한다.
도 30 은 위상 일치 조건을 충족하는 d 의 범위와 확장된 위상 일치 조건을 충족하는 d 의 범위를 비교, 대조한 것이다. 도 30A 에 도시된 위상 일치 조건을 충족하는 d 의 범위는 일 점(특정 값을 갖는 거리)으로 한정되어 있다. 이에 반하여, 도 30B 에 도시된 확장된 위상 일치 조건을 충족하는 d 의 범위는, 음영 표시된 범위 내로서, 소정의 거리 범위를 가짐을 확인할 수 있다.
확장된 위상 일치 조건은 아래 식 9 와 같다. 확장된 위상 일치 조건은 앞서 설명한 위상 일치 조건에 관한 조건식을 변형한 것이다.
Figure PCTKR2021006722-appb-I000115
식 (9)
여기서, 확장된 위상 일치 조건의 범위를 표현하는 표현하는
Figure PCTKR2021006722-appb-I000116
는, 식 (10) 과 같이 표시될 수 있다. 이는, Parameter study를 통해서 구한 값이다.
Figure PCTKR2021006722-appb-I000117
식 (10)
여기서, RB 는 앞서 설명한 바와 같이, 아래와 같다.
Figure PCTKR2021006722-appb-I000118
도 31 은 확장된 위상 일치 조건을 충족하는 거리 d 의 영역을 나타낸 것이다. 도 31 에 도시된 것 같이 0.7T 이상의 투과율을 확보할 수 있는 거리 d 0의 영역을 나타내는 Δd0.7T
Figure PCTKR2021006722-appb-I000119
에 선형적으로 비례하는 관계를 가짐을 알 수 있다. 실제로 물 속에 있는 5 mm 철 장애물에 확장된 위상 일치 조건을 적용하면, 도 32a 내지 32g 에 회색 음영으로 표시된 영역을 예측할 수 있다.
<확장된 크기 일치 조건(Expanded magnitude matching condition : EMMC)
확장된 크기 일치 조건은, 이하와 같이 설명된다.
앞서 설명한 바와 같이, 위상 일치 조건(PMC)과 크기 일치 조건(MMC)을 모두 충족하면 초음파 투과 부재의 투과율이 100% 가 된다.
확장된 크기 일치 조건은, 위상 일치 조건을 충족하는 상태에서, 초음파 투과 부재(100)의 물성을 가변시켰을 때, 투과율이 100% 는 아니나, 의미있는 투과율(유효 투과율)이상의 투과율을 달성할 수 있는 α 와 β 의 범위를 의미한다.
이를 달리 설명하면, 이하와 같다. 소정의 물성을 갖는 초음파 투과 부재(α 와 β)를 선정하고, 선정된 초음파 투과 부재를 이용하여 투과율을 최대로 높일 수 있는 설치거리 d0가 위상 일치 조건을 따라서 계산되며 이를 부재 최대 투과율이라 명명한다. 이때, 부재 최대 투과율이 유효 투과율을 달성할 수 있는 α 와 β 의 범위를 충족하는 조건이 확장된 크기 일치 조건이라 설명할 수 있다.
본 발명에서는, 상기 유효 투과율은 70% 의 투과율로 정의한다. 즉, 위상 일치 조건을 충족할 때, 0.7T 이상의 투과율을 달성할 수 있는 α 와 β 의 범위를 확장된 크기 일치 조건을 충족하는 범위로 한다.
도 33a 및 33b 는 크기 일치 조건을 충족하는 α 와 β 의 범위와 확장된 크기 일치 조건을 충족하는 α 와 β 의 범위를 비교, 대조한 것이다. 도 33a 에 도시된 크기 일치 조건을 충족하는 α 와 β 의 범위는 실선으로 한정되어 있다. 이에 반하여, 도 33b 에 도시된 확장된 크기 일치 조건을 충족하는 α 와 β 의 범위는, 일점쇄선과 파선 내 영역으로 소정의 면적을 가짐을 확인할 수 있다.
확장된 크기 일치 조건은 아래 식 (11) 과 같다. 확장된 크기 일치 조건은 앞서 설명한 크기 일치 조건에 관한 조건식을 변형한 것이다.
Figure PCTKR2021006722-appb-I000120
식 (11)
여기서, 확장된 크기 일치 조건의 범위를 표현하는
Figure PCTKR2021006722-appb-I000121
Figure PCTKR2021006722-appb-I000122
는 각각 아래 식 (12), (13) 과 같이 표시될 수 있다. 식 (12), (13) 를 구성하는 RB 는 식 (14) 와 같다. 아래 식 (12), (13), (14) 는, 다양한 장애물에 대해서 약 70% 이상의 투과율을 보이는 조건들을 Parameter study를 통해서 구한 식이다.
Figure PCTKR2021006722-appb-I000123
식 (12)
Figure PCTKR2021006722-appb-I000124
식 (13)
Figure PCTKR2021006722-appb-I000125
식 (14)
도 34a 내지 34h 및 35a 내지 35h 는 각각 철과 알루미늄 장애물에 대한 투과율 선도 및 확장된 크기 일치 조건을 나타낸다.
도 34a 내지 34h 및 35a 내지 35h 에서, EMMC1은 파선, EMMC2는 일점쇄선으로 표시하였다. 전체적으로 EMMC는 EMMC1이 나타내는 선도와 EMMC2가 나타내는 선도에 둘러 쌓인 영역이 확장된 크기 일치 조건을 충족하는 범위가 된다. 상기 범위의 조건을 충족하면, 약 70% 이상의 투과율을 보이는 것을 알 수 있다.
<확장된 위상 일치 조건과 확장된 크기 일치 조건의 조합>
이하에서는, 다시 도 29 를 참조하여, 확장된 위상 일치 조건과 확장된 크기 일치 조건의 관계에 대해서 설명한다.
앞서 설명한 바와 같이, 위상 일치 조건과 크기 일치 조건을 동시에 충족하면, 투과율의 최대값이 100% 가 된다. 이는 도 29 의 (A)와 같다.
크기 일치 조건(MMC)을 충족하는 초음파 투과 부재가 확장된 위상 일치 조건(EPMC)을 충족하는 위치에 위치하는 경우(MMC+EPMC)는 도 29 의 (B) 와 같다. 이 경우에도, 최대 투과율의 70% 의 투과율이 달성됨을 알 수 있다.
확장된 크기 일치 조건(EMMC)을 충족하는 물성을 갖는 초음파 투과 부재가, 위상 일치 조건(PMC)을 충족하는 위치에 위치하는 경우(EMMC+PMC)는 도 29 의 (C) 와 같다. 이 경우에는, 최대 투과율의 70% 의 투과율이 달성됨을 알 수 있다.
이어서, 확장된 크기 일치 조건(EMMC)과 확장된 위상 일치 조건(EPMC)를 충족하는 경우는 도 29 의 (D) 와 같다. 경우에는, 최대 투과율의 약 50% (0.7×0.7)이 달성될 수 있다.
이상에서는 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (17)

  1. 내부에 매질 및 피검사체를 갖고 외부에 장애물을 갖는 대상물에 초음파를 입사하여 초음파 검사를 수행하는 초음파 투과 장치에 있어서,
    입사파를 생성하는 초음파 생성 장치;
    상기 장애물과 상기 초음파 생성 장치 사이에 위치하며 상기 초음파 생성 장치에서 생성되는 입사파의 진행 경로 상에 위치하는 초음파 투과 모듈; 를 포함하며,
    상기 초음파 투과 모듈은,
    초음파 투과 부재, 및
    상기 초음파 투과 부재의 위치를 가변시키는 위치 가변 장치를 포함하는 초음파 투과 장치.
  2. 제1항에 있어서,
    상기 위치 가변 장치는,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리를 가변시켜서,
    상기 초음파 투과 부재 및 장애물을 통과한 투과파의 위상 및 크기가 상기 초음파 생성 장치에서 생성된 입사파의 위상 및 크기와 동일해지도록 하는 초음파 투과 장치.
  3. 제1항에 있어서,
    상기 초음파 투과 부재는,
    임피던스 및 위상이 선택적으로 가변되며,
    하기 식 (1) 에 따라서, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 와, 상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 가 정의되는 초음파 투과 장치.
    Figure PCTKR2021006722-appb-I000126
    ,
    Figure PCTKR2021006722-appb-I000127
    식 (1)
    z = ρc (ρ: 밀도 c: 파동 속도)
    Φ = kd (k: 파수 Wavenumber, d: 이종물질 두께)
    k = ω/c = (ω : 주파수 [Rad/s])
    ω = 2πf (f: 주파수 [Hz])
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  4. 제3항에 있어서,
    상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 와, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 는 각각 하기 식 (2) 를 충족하는 초음파 투과 장치.
    Figure PCTKR2021006722-appb-I000128
    식 (2)
    (여기서,
    Figure PCTKR2021006722-appb-I000129
    ,
    Figure PCTKR2021006722-appb-I000130
    ,
    Figure PCTKR2021006722-appb-I000131
    ,
    Figure PCTKR2021006722-appb-I000132
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  5. 제3항에 있어서,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는,
    하기 식 (3) 을 충족하는 초음파 투과 장치.
    Figure PCTKR2021006722-appb-I000133
    식 (3)
    (여기서,
    Figure PCTKR2021006722-appb-I000134
    ,
    Figure PCTKR2021006722-appb-I000135
    ,
    Figure PCTKR2021006722-appb-I000136
    ,
    Figure PCTKR2021006722-appb-I000137
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  6. 제3항에 있어서,
    상기 초음파 투과 부재는 하기 식 (4) 를 충족하는 초음파 투과 장치.
    α = 1 , β = 1 (식 4)
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  7. 제1항에 있어서,
    상기 초음파 투과 부재는,
    임피던스 및 위상이 선택적으로 가변되며,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족하는 초음파 투과 장치.
    Figure PCTKR2021006722-appb-I000138
    식 (5)
    Figure PCTKR2021006722-appb-I000139
    식 (6)
    (여기서,
    Figure PCTKR2021006722-appb-I000140
    ,
    Figure PCTKR2021006722-appb-I000141
    ,
    Figure PCTKR2021006722-appb-I000142
    ,
    Figure PCTKR2021006722-appb-I000143
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  8. 제3항에 있어서,
    상기 초음파 투과 부재는,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때,
    상기 α 와, 상기 β 는 하기 식 (7) 내지 식 (9) 를 충족하는 값을 갖는 초음파 투과 장치.
    Figure PCTKR2021006722-appb-I000144
    식 (3)
    Figure PCTKR2021006722-appb-I000145
    식 (7)
    Figure PCTKR2021006722-appb-I000146
    식 (8)
    Figure PCTKR2021006722-appb-I000147
    식 (9)
    (여기서,
    Figure PCTKR2021006722-appb-I000148
    ,
    Figure PCTKR2021006722-appb-I000149
    ,
    Figure PCTKR2021006722-appb-I000150
    ,
    Figure PCTKR2021006722-appb-I000151
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  9. 제3항에 있어서,
    상기 초음파 투과 부재는,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족하며,
    상기 α 와 상기 β 는, 상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때, 하기 식 (7) 내지 (8) 를 충족하는 값을 갖는 초음파 투과 장치.
    Figure PCTKR2021006722-appb-I000152
    식 (5)
    Figure PCTKR2021006722-appb-I000153
    식 (6)
    Figure PCTKR2021006722-appb-I000154
    식 (3)
    Figure PCTKR2021006722-appb-I000155
    식 (7)
    Figure PCTKR2021006722-appb-I000156
    식 (8)
    Figure PCTKR2021006722-appb-I000157
    식 (9)
    (여기서,
    Figure PCTKR2021006722-appb-I000158
    ,
    Figure PCTKR2021006722-appb-I000159
    ,
    Figure PCTKR2021006722-appb-I000160
    ,
    Figure PCTKR2021006722-appb-I000161
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  10. 파동 제어 방법에 있어서,
    초음파 생성 수단과 장애물 사이에 초음파 투과 수단이 위치한 상태에서 상기 초음파 투과 수단과 상기 장애물 사이의 거리 및 상기 초음파 투과 수단의 재질을 가변하여 상기 초음파 생성 수단에서 발생한 초음파를 상기 장애물 너머로 전달하는 파동 제어 방법.
  11. 제10항에 있어서,
    하기 식 (1) 에 따라서, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 와, 상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 가 정의되는 파동 제어 방법.
    Figure PCTKR2021006722-appb-I000162
    ,
    Figure PCTKR2021006722-appb-I000163
    식 (1)
    z = ρc (ρ: 밀도 c: 파동 속도)
    Φ = kd (k: 파수 Wavenumber, d: 이종물질 두께)
    k = ω/c = (ω : 주파수 [Rad/s])
    ω = 2πf (f: 주파수 [Hz])
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  12. 제11항에 있어서,
    상기 장애물의 임피던스와 초음파 투과 부재의 임피던스의 비 β 와, 상기 장애물의 위상과 상기 초음파 투과 부재의 위상의 비 α 는 각각 하기 식 (2) 를 충족하는 파동 제어 방법.
    Figure PCTKR2021006722-appb-I000164
    식 (2)
    (여기서,
    Figure PCTKR2021006722-appb-I000165
    ,
    Figure PCTKR2021006722-appb-I000166
    ,
    Figure PCTKR2021006722-appb-I000167
    ,
    Figure PCTKR2021006722-appb-I000168
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  13. 제11항에 있어서,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는,
    하기 식 (3) 를 충족하는 파동 제어 방법.
    Figure PCTKR2021006722-appb-I000169
    식 (3)
    (여기서,
    Figure PCTKR2021006722-appb-I000170
    ,
    Figure PCTKR2021006722-appb-I000171
    ,
    Figure PCTKR2021006722-appb-I000172
    ,
    Figure PCTKR2021006722-appb-I000173
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  14. 제11항에 있어서,
    상기 초음파 투과 부재는 하기 식 (4) 를 충족하는 파동 제어 방법
    α = 1 , β = 1 식 (4)
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  15. 제11항에 있어서,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족하는 파동 제어 방법.
    Figure PCTKR2021006722-appb-I000174
    식 (5)
    Figure PCTKR2021006722-appb-I000175
    식 (6)
    (여기서,
    Figure PCTKR2021006722-appb-I000176
    ,
    Figure PCTKR2021006722-appb-I000177
    ,
    Figure PCTKR2021006722-appb-I000178
    ,
    Figure PCTKR2021006722-appb-I000179
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  16. 제11항에 있어서,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때,
    상기 α 와, 상기 β 는 하기 식 (7) 내지 식 (9) 를 충족하는 값을 갖는 파동 제어 방법.
    Figure PCTKR2021006722-appb-I000180
    식 (3)
    Figure PCTKR2021006722-appb-I000181
    식 (7)
    Figure PCTKR2021006722-appb-I000182
    식 (8)
    Figure PCTKR2021006722-appb-I000183
    식 (9)
    (여기서,
    Figure PCTKR2021006722-appb-I000184
    ,
    Figure PCTKR2021006722-appb-I000185
    ,
    Figure PCTKR2021006722-appb-I000186
    ,
    Figure PCTKR2021006722-appb-I000187
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
  17. 제11항에 있어서,
    상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 는 하기 식 (5) 내지 (6) 을 충족하며,
    상기 α 와 상기 β 는, 상기 장애물과 상기 초음파 투과 부재 사이의 거리 d0 가 하기 식 (3) 을 충족할 때, 하기 식 (7) 내지 (9) 를 충족하는 값을 갖는 파동 제어 방법.
    Figure PCTKR2021006722-appb-I000188
    식 (5)
    Figure PCTKR2021006722-appb-I000189
    식 (6)
    Figure PCTKR2021006722-appb-I000190
    식 (3)
    Figure PCTKR2021006722-appb-I000191
    식 (7)
    Figure PCTKR2021006722-appb-I000192
    식 (8)
    Figure PCTKR2021006722-appb-I000193
    식 (9)
    (여기서,
    Figure PCTKR2021006722-appb-I000194
    ,
    Figure PCTKR2021006722-appb-I000195
    ,
    Figure PCTKR2021006722-appb-I000196
    ,
    Figure PCTKR2021006722-appb-I000197
    )
    (아래 첨자)0: 진행매질, B: 장애물, L: 초음파 투과기
PCT/KR2021/006722 2020-05-29 2021-05-31 초음파 투과 장치 및 파동 제어 방법 WO2021242063A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/637,754 US20220291176A1 (en) 2020-05-29 2021-05-31 Ultrasonic transmission device and wave control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0065393 2020-05-29
KR1020200065393A KR102414654B1 (ko) 2020-05-29 2020-05-29 초음파 투과 장치 및 파동 제어 방법

Publications (1)

Publication Number Publication Date
WO2021242063A1 true WO2021242063A1 (ko) 2021-12-02

Family

ID=78744824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006722 WO2021242063A1 (ko) 2020-05-29 2021-05-31 초음파 투과 장치 및 파동 제어 방법

Country Status (3)

Country Link
US (1) US20220291176A1 (ko)
KR (1) KR102414654B1 (ko)
WO (1) WO2021242063A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102569510B1 (ko) * 2022-10-24 2023-08-24 한국과학기술원 초음파 변환 구조물 및 이를 구비하는 홀로그램 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588532B1 (ko) * 2004-12-21 2006-06-14 재단법인 포항산업과학연구원 반사형 광검지기를 이용한 초음파 측정장치
KR20070065934A (ko) * 2005-10-31 2007-06-27 한국전력공사 위상배열 초음파 결함길이평가 장치 및 그 방법
KR100777239B1 (ko) * 2006-06-30 2007-11-19 재단법인 포항산업과학연구원 자동 가변 입사각 초음파 탐촉자
KR100844173B1 (ko) * 2006-12-29 2008-07-07 한국표준과학연구원 과실의 물성 측정을 위한 초음파 탐촉자
WO2020027409A1 (en) * 2018-08-01 2020-02-06 Seoul National University R&Db Foundation Ultrasonic transducers for flow velocity measurement with meta slab

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120136985A (ko) 2011-06-10 2012-12-20 채희천 초음파 에너지의 피부 투과 효율이 향상된 초음파 프로브

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588532B1 (ko) * 2004-12-21 2006-06-14 재단법인 포항산업과학연구원 반사형 광검지기를 이용한 초음파 측정장치
KR20070065934A (ko) * 2005-10-31 2007-06-27 한국전력공사 위상배열 초음파 결함길이평가 장치 및 그 방법
KR100777239B1 (ko) * 2006-06-30 2007-11-19 재단법인 포항산업과학연구원 자동 가변 입사각 초음파 탐촉자
KR100844173B1 (ko) * 2006-12-29 2008-07-07 한국표준과학연구원 과실의 물성 측정을 위한 초음파 탐촉자
WO2020027409A1 (en) * 2018-08-01 2020-02-06 Seoul National University R&Db Foundation Ultrasonic transducers for flow velocity measurement with meta slab

Also Published As

Publication number Publication date
KR102414654B1 (ko) 2022-07-01
US20220291176A1 (en) 2022-09-15
KR20210147731A (ko) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2009157715A2 (en) Codebook design method for multiple input multiple output system and method for using the codebook
WO2014208844A1 (ko) 빔 트레이닝 장치 및 방법
WO2019135495A1 (ko) 거리 산출 방법 및 이를 수행하는 라이다 장치
WO2020145718A1 (ko) 디스플레이용 기판
WO2014035146A2 (ko) 환 동형 사상을 이용한 동형 암호화 방법과 복호화 방법 및 이를 이용한 장치
WO2021242063A1 (ko) 초음파 투과 장치 및 파동 제어 방법
WO2018182170A1 (ko) 운항선의 표준 운항 상태 선속-동력 해석 시스템
WO2015183050A1 (ko) 옵티컬 트래킹 시스템 및 옵티컬 트래킹 시스템의 마커부 자세 및 위치 산출방법
WO2017078279A1 (ko) 무선 통신 시스템에서 코드북을 이용한 동기 신호 전송 방법
WO2018182171A1 (ko) 운항선의 표준운항상태 선속-동력 해석 방법
WO2017155137A1 (ko) 빔포밍 방법 및 이를 위한 장치
WO2021235750A1 (ko) 강인음성인식을 위한 방향벡터 추정을 겸한 온라인 우도최대화를 이용한 빔포밍 방법 및 그 장치
WO2020263042A1 (ko) 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
WO2011002260A2 (en) Rotating reference codebook that is used in a multiple-input multiple-output (mimo) communication system
WO2017018593A1 (ko) 단말간 통신 시스템에서 전송 전력을 결정하는 장치 및 방법
WO2022030715A1 (ko) 촉각센서, 이를 이용한 촉각 자극 감지방법, 이를 포함하는 로봇 피부 및 로봇
WO2011040707A2 (en) Multiple-input multiple-output communication system using explicit feedback
WO2020059977A1 (ko) 연속적으로 스티어링 가능한 2차 디퍼런셜 마이크로폰 어레이 및 그것을 구성하는 방법
WO2023113267A1 (ko) 생존 경로 정보 기반 가비지 컬렉션 방법
WO2019132553A1 (en) Sound output system and voice processing method
WO2021100936A1 (en) Power factor adjustment method and apparatus in a waveguide circuit and a transmission line circuit, and power generating transmission line system using the same
CN105850095A (zh) 认证关联方法及系统
WO2011083900A1 (en) Codebook design method for multiple-input multiple-output (mimo) communication system and method for using the codebook
WO2023146262A1 (ko) 두께 측정 장치 및 방법
WO2020209621A1 (ko) 자동차 원격 제어 장치, 이에 적합한 휴대형 장치 그리고 원격 도어 개폐 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813684

Country of ref document: EP

Kind code of ref document: A1