WO2020262217A1 - 高圧燃料ポンプ及びその電磁弁 - Google Patents

高圧燃料ポンプ及びその電磁弁 Download PDF

Info

Publication number
WO2020262217A1
WO2020262217A1 PCT/JP2020/024075 JP2020024075W WO2020262217A1 WO 2020262217 A1 WO2020262217 A1 WO 2020262217A1 JP 2020024075 W JP2020024075 W JP 2020024075W WO 2020262217 A1 WO2020262217 A1 WO 2020262217A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable core
peripheral surface
solenoid valve
valve mechanism
core
Prior art date
Application number
PCT/JP2020/024075
Other languages
English (en)
French (fr)
Inventor
唯一 児玉
祐樹 高橋
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2021526896A priority Critical patent/JP7248794B2/ja
Priority to CN202080044180.7A priority patent/CN114127408B/zh
Publication of WO2020262217A1 publication Critical patent/WO2020262217A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • the present invention relates to vehicle parts, and particularly to a high-pressure fuel pump that supplies fuel to an engine at high pressure and its solenoid valve.
  • Patent Document 1 As a prior art of the solenoid valve of the present invention, a high-pressure pump (hereinafter referred to as a high-pressure fuel pump) described in Japanese Patent Application Laid-Open No. 2012-136994 (Patent Document 1) is known. The following configuration and effects are described in the abstract of Patent Document 1.
  • a fixed core 72 is provided inside the diameter of the coil 71.
  • the movable core 73 provided on the suction valve side of the fixed core 72 moves the suction valve in the valve opening direction or the valve closing direction.
  • the second spring 22 housed in the second storage chamber 62 of the chamber 61 and the movable core 73 urges the movable core 73 toward the suction valve.
  • the guide pin 80 formed to have a hardness higher than that of the fixed core 72 is formed.
  • the second spring 22 is locked in the deep part of the first accommodation chamber 61. Erosion on the inner wall of the first accommodation chamber 61 due to the collapse of the cavity generated in the fuel of the first accommodation chamber 61 due to the reciprocating movement of the movable core 73.
  • Patent Document 2 in Japanese Patent Application Laid-Open No. 2016-094913 (Patent Document 2), in a high-pressure fuel supply pump (hereinafter referred to as a high-pressure fuel pump), when an anchor (movable core) is attracted to a second core (fixed core), As the volume between the anchor and the second core rapidly shrinks, the fuel in that space loses its place and is swept away to the outer periphery of the anchor with a high flow velocity, colliding with the thin part of the first core. It is stated that erosion occurs (see paragraph 1981).
  • a through hole penetrating the anchor in the central axis direction is provided on the central side of the anchor, and when the anchor is attracted to the second core side, the space between the anchor and the second core is formed.
  • Most of the fuel does not pass through the narrow passages on the outer periphery of the anchor, but rather through the through holes to the fuel chamber formed between the anchor and the spring seat member, thereby allowing the first core to move. It avoids erosion of the thin part (see paragraph 0083).
  • the movable portion with respect to the second core is composed of an anchor and a rod, and the anchor and the rod are configured to be relatively displaceable in the axial direction (see paragraphs 0053 and 0056).
  • the anchor has a recess on the end surface facing the second core, which is recessed on the opposite side of the second core to accommodate the rod brim, and penetrates the bottom surface of the recess so as to penetrate the anchor in the central axis direction.
  • the inner peripheral surface (inner peripheral wall) of the recess is formed as an inverted tapered surface whose diameter increases from the opening side of the recess toward the bottom surface (see FIG. 7).
  • Patent Document 1 Although consideration is given to erosion (cavitation erosion) caused by the collapse of cavitation that occurs on the inner wall of the first containment chamber of the fixed core, the cavitation erosion that occurs on the inner wall of the second containment chamber of the movable core is described. There is no consideration.
  • a needle (rod) for pressing the suction valve is provided integrally with the movable core, and since this needle is not displaced relative to the movable core, the second accommodating chamber of the movable core Cavitation erosion is unlikely to occur on the inner wall.
  • the inner peripheral surface (inner peripheral wall) of the concave portion accommodating the rod brim portion is formed as an inverted tapered surface
  • the inner peripheral surface (bottom surface and inner peripheral surface) of the concave portion is formed. No consideration is given to the cavitation erosion that occurs.
  • a through hole is formed in the bottom surface of the recess in the direction of the central axis, and cavitation erosion is unlikely to occur on the inner wall of the recess.
  • An object of the present invention is to suppress the occurrence of cavitation erosion in the movable core (anchor) in a structure in which the rod is configured to be relatively displaceable with respect to the movable core (anchor).
  • the solenoid valve mechanism of the present invention is A fixed core and a movable core on which a magnetic attraction force acts between each other and a rod through which the movable core is inserted are provided.
  • the movable core has a recess formed on an opposing surface facing the fixed core, and a through hole that penetrates in the axial direction of the rod and allows the rod to pass through.
  • the rod has a small diameter portion inserted into the through hole and a flange portion having a larger outer diameter than the small diameter portion and coming into contact with the recess in the axial direction, and is configured separately from the movable core.
  • Only a single through hole is formed in the movable core.
  • the gap formed between the inner peripheral surface of the concave portion of the movable core and the outer peripheral surface of the flange portion is configured to expand from the opening side of the concave portion toward the inner peripheral surface.
  • FIG. 3 It is a block diagram of the engine system to which the high pressure fuel pump which concerns on one Example of this invention is applied. It is sectional drawing which shows the cross section (II-II cross section of FIG. 3) along the axis of the plunger 2 about the high pressure fuel pump which concerns on one Example of this invention. It is sectional drawing which shows the III-III cross section of FIG. It is sectional drawing which shows the IV-IV cross section of FIG. It is an enlarged sectional view showing the vicinity of the solenoid valve mechanism 300 of FIG. 2 in an enlarged manner, and is the figure which shows the state which the solenoid valve mechanism 300 opened.
  • the cross-sectional view of the solenoid valve mechanism 300 is a cross-sectional view focusing on the periphery of the fixed core 39, the anchor 36 and the rod 35, and is a view when the solenoid valve mechanism 300 is in a closed state. is there.
  • the cross-sectional view of the solenoid valve mechanism 300'in the comparative example with the present invention is a cross-sectional view showing the periphery of the fixed core 39, the anchor 36', and the rod 35, and when the solenoid valve mechanism 300'is in a closed state. It is a figure.
  • the cross-sectional view of the solenoid valve mechanism 300'in the comparative example with the present invention is a cross-sectional view showing the periphery of the fixed core 39, the anchor 36', and the rod 35, and the solenoid valve mechanism 300'is in the middle of operation when the valve is opened. It is a figure at a certain time.
  • the cross-sectional view of the solenoid valve mechanism 300'in the comparative example with the present invention is a cross-sectional view showing the periphery of the fixed core 39, the anchor 36', and the rod 35, and the state in which the solenoid valve mechanism 300'is in the middle of operation ( It is a figure when it is in the state where time has passed from FIG. 6B).
  • the cross-sectional view of the solenoid valve mechanism 300'in the comparative example with the present invention is a cross-sectional view focusing on the periphery of the fixed core 39, the anchor 36', and the rod 35, and is a state in which the solenoid valve is in the process of opening (from FIG. 6C). It is a figure when it is in the state where time has passed.
  • FIG. 1 is a configuration diagram of an engine system to which the high-pressure fuel pump 100 according to an embodiment of the present invention is applied.
  • the fuel in the fuel tank 20 is pumped by the feed pump 21 based on a signal from the engine control unit 27 (hereinafter referred to as an ECU).
  • This fuel is pressurized to an appropriate feed pressure and sent to the low pressure fuel suction port 10a of the high pressure fuel pump 100 through the suction pipe 28.
  • the fuel that has passed through the low-pressure fuel suction port 10a reaches the suction port 31b of the solenoid valve (solenoid valve mechanism) 300 that constitutes the capacity variable mechanism via the damper chambers (10b, 10c) in which the pressure pulsation reduction mechanism 9 is arranged. ..
  • the solenoid valve mechanism 300 constitutes an electromagnetic suction valve (electromagnetic suction valve mechanism) for sucking fuel into the pressurizing chamber 11.
  • the fuel that has flowed into the solenoid valve mechanism 300 passes through the suction port that is opened and closed by the suction valve 30 and flows into the pressurizing chamber 11. Due to the reciprocating motion of the plunger 2, fuel is sucked from the suction valve 30 in the descending stroke of the plunger 2, and the fuel is pressurized in the ascending stroke. The pressurized fuel is pumped to the common rail 23 on which the pressure sensor 26 is mounted via the discharge valve mechanism 8. Then, the injector 24 injects fuel into the engine based on the signal from the ECU 27.
  • the high-pressure fuel pump 100 of this embodiment is applied to a so-called direct injection engine system in which the injector 24 injects fuel directly into the cylinder cylinder of the engine.
  • the high-pressure fuel pump 100 adjusts the fuel flow rate by a signal from the ECU 27 to the solenoid valve mechanism 300, and discharges a desired fuel flow rate.
  • FIG. 2 is a cross-sectional view showing a cross section (II-II cross section of FIG. 3) along the axial center of the plunger 2 of the high-pressure fuel pump 100 according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a section III-III of FIG.
  • FIG. 4 is a cross-sectional view showing an IV-IV cross section of FIG.
  • the high-pressure fuel pump 100 of this embodiment is closely fixed to the high-pressure fuel pump mounting portion 90 of the internal combustion engine.
  • the vertical direction may be specified, but this vertical direction is based on the vertical direction in FIG. 2, and the vertical direction in the mounted state of the high-pressure fuel pump 100 in the internal combustion engine is not specified. Absent.
  • a cylinder 6 that guides the reciprocating motion of the plunger 2 and forms a pressurizing chamber 11 together with the pump body 1 is attached to the pump body 1.
  • the outer peripheral surface of the cylinder 6 is press-fitted into the pump body 1. That is, the plunger 2 reciprocates inside the cylinder 6 to change the volume of the pressurizing chamber 11.
  • the pump body 1 is provided with a solenoid valve 300 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 (see FIG. 3) for discharging fuel from the pressurizing chamber 11 to the discharge passage. Has been done.
  • the plunger 2 is configured to reciprocate up and down in response to the rotational movement of the cam 93.
  • a suction joint 51 constituting the low-pressure fuel suction port 10a is attached to the side surface portion of the pump body 1.
  • the suction joint 51 is connected to a low-pressure suction pipe 28 that supplies fuel from the fuel tank 20 of the vehicle, from which fuel is supplied to the inside of the high-pressure fuel pump 100.
  • the suction filter 52 prevents foreign matter existing between the fuel tank 20 and the low-pressure fuel suction port 10a from being absorbed into the high-pressure fuel pump 100 by the flow of fuel.
  • the fuel that has passed through the low-pressure fuel suction port 10a goes to the damper chambers 10b and 10c in which the pressure pulsation reduction mechanism 9 is arranged through the low-pressure fuel suction passage that communicates vertically with the pump body 1 shown in FIG.
  • the damper chambers 10b and 10c are formed between the damper cover 14 and the upper end surface of the pump body 1 and communicate with the low pressure fuel suction port 10a and the low pressure fuel suction passage.
  • the suction port 31b is formed so as to communicate with the suction valve seat member 31 (see FIG. 5) forming the suction valve seat 31a (see FIG. 5) in the vertical direction.
  • FIG. 5 is an enlarged cross-sectional view showing the vicinity of the solenoid valve mechanism 300 of FIG. 2 in an enlarged manner, and is a diagram showing a state in which the solenoid valve mechanism 300 is opened.
  • a coil 43 (electromagnetic coil) in which a copper wire is wound a plurality of times is provided on the bobbin 45, and both ends of the copper wire of the coil are connected to each of the two terminals 46 (described in FIG. 2) so as to be energized.
  • the terminal 46 is integrally molded with the connector 47 (described in FIG. 2), and the remaining end can be connected to the engine control unit side.
  • the parts surrounding the outer circumference of the coil 43 include a first yoke 42, a second yoke 44, and an outer core 38.
  • the first yoke 42 and the second yoke 44 are arranged so as to surround the coil 43, and are molded and fixed integrally with the connector 47 which is a resin member.
  • the outer core (second core) 38 is press-fitted into the hole in the center of the first yoke 42 and fixed.
  • the outer core 38 is fixed to the pump body 1 by welding or the like.
  • the inner peripheral side of the second yoke 44 is configured to be in contact with or close to the fixed core (first core) 39 with a slight clearance. Further, the outer peripheral side of the second yoke 44 is configured to be in contact with or close to the inner circumference of the first yoke 42 with a slight clearance.
  • a fixing pin 832 is fixed to the fixed core 39, and the fixing pin 832 generates an urging force so as to press the second yoke 44 against the fixed core 39.
  • the fixing pin 832 may be made to bite into the fixing core 39 at the corner on the inner peripheral side, but may be fixed by welding or the like.
  • Both the first yoke 42 and the second yoke 44 are made of magnetic stainless steel in order to form a magnetic circuit and in consideration of corrosion resistance.
  • the bobbin 45 and the connector 47 use high-strength heat-resistant resin in consideration of strength characteristics and heat-resistant characteristics.
  • a seal ring 48 is arranged on the inner circumference of the coil 43, and one end of the seal ring 48 is welded and fixed to the outer core 38, and one end thereof is welded and fixed to the fixed core 39.
  • an anchor 36 movable core
  • a rod 35 which are movable parts
  • a rod guide 37 which is a fixed part
  • a rod urging spring 40 and an anchor urging spring 41 And are placed.
  • the rod 35 is slidably held in the axial direction on the inner peripheral side of the rod guide 37, and the anchor 36 is slidably held.
  • the anchor 36 is held by the clearance between the inner circumference of the anchor 36 and the outer circumference of the rod 35, and the anchor 36 is held by the clearance between the outer circumference of the anchor 36 and the inner circumference of the outer core 38.
  • the anchor 36 is held by the clearance between the inner circumference of the anchor 36 and the outer circumference of the rod 35.
  • the anchor 36 When a current is passed through the coil 43, the anchor 36 is attracted toward the fixed core 39 by the generated magnetic attraction force.
  • the anchor 36 In order to allow the anchor 36 to move freely in the central axis direction in the fuel, usually, the anchor 36 is provided with one or more through holes penetrating in the central axis direction, and the anchor 36 is provided with one end side of the anchor 36 in the central axis direction. A means for removing the restriction of movement due to the pressure difference from the other end side is adopted.
  • a resistance force is applied to the movement of the anchor 36, and the movement speed is reduced.
  • the rod guide 37 is composed of one member together with the suction valve seat member 31, is inserted into the inner peripheral side of the hole 1d into which the suction valve 30 of the pump body 1 is inserted, and is fixed to the pump body 1 in the radial direction and the central axis direction. Will be done.
  • the rod guide 37 and the suction valve seat member 31 are arranged so as to be sandwiched between the outer core 38 welded and fixed to the insertion hole 1f of the pump body 1 and the pump body 1 in the central axial direction. , It has a fixed configuration.
  • the rod guide 37 is provided with a through hole 37a penetrating in the central axial direction, and when the anchor 36 moves in the axial direction, the inside of the anchor accommodating chamber 34 formed between the fixed core 39 and the rod guide 37. It is configured so as not to interfere with the movement of fuel.
  • One end of the outer core 38 is fixed to the pump body 1 by welding or the like, and the seal ring 48 is fixed to the other end.
  • the fixing core 39 is fixed to the end of the seal ring 48 opposite to the end fixed to the outer core 38.
  • a rod urging spring 40 is arranged on the inner peripheral side of the fixed core 39 with a small diameter portion 35c of the rod 35 as a guide, and urges the rod 35 in the right direction in the drawing.
  • the rod 35 engages with the anchor 36 via the flange portion 35b.
  • the rod 35 engages with the suction valve 30 at the tip of the small diameter portion 35a, and exerts an urging force in the direction of pulling the suction valve 30 away from the suction valve seat 31a, that is, in the valve opening direction of the suction valve 30.
  • the rod 35 presses the suction valve 30 in the valve opening direction.
  • the rod 35 is an urging force transmitting member that transmits the urging force of the rod urging spring 40.
  • the anchor urging spring 41 has a flange portion 35b and a fixed core 39 attached to the anchor 36 while maintaining coaxiality with the central bearing portion 37b by inserting a direction end into a cylindrical central bearing portion 37b provided on the center side of the rod guide 37. It is arranged to give an urging force in the direction of (left direction in the figure).
  • the movement amount 36e of the anchor 36 is set to be larger than the movement amount 30e of the suction valve 30 to prevent the suction valve 30 from interfering with the valve when the valve is closed.
  • the outer core 38, the first yoke 42, the second yoke 44, the fixed core 39, and the anchor 36 form a magnetic circuit around the coil 43, and when a current is applied to the coil 43, between the fixed core 39 and the anchor 36. Generates magnetic attraction. Since the anchor 36 and the fixed core 39 form a magnetic attraction surface S, it is desirable to use a material having good magnetic characteristics in terms of performance.
  • the seal ring 48 is preferably made of a non-magnetic material in order to allow magnetic flux to flow between the anchor 36 and the fixed core 39. Further, in order to absorb the impact at the time of collision, it is desirable to use a thin stainless steel material having a large elongation. Specifically, austenitic stainless steel is used.
  • the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 attaches the discharge valve seat 8a, the discharge valve 8b that contacts and separates from the discharge valve seat 8a, and the discharge valve 8b to the discharge valve seat 8a. It is composed of a discharge valve spring 8c that urges the discharge valve 8c and a discharge valve stopper 8d that determines the stroke (moving distance) of the discharge valve 8b.
  • the discharge valve stopper 8d and the pump body 1 are joined by welding at the contact portion 8e.
  • the discharge valve 8b When there is no fuel differential pressure between the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is crimped to the discharge valve seat 8a by the urging force of the discharge valve spring 8c to be in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a does the discharge valve 8b open against the discharge valve spring 8c. Then, the high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12a, the fuel discharge passage 12b, and the fuel discharge port 12. That is, the discharge valve mechanism 8 is a check valve that limits the fuel flow direction.
  • the relief valve mechanism 200 shown in FIG. 3 includes a relief body 201, a relief valve 202, a relief valve holder 203, a relief spring 204, and a spring stopper 205.
  • the relief body 201 is provided with a seat portion.
  • the load of the relief spring 204 is applied via the relief valve holder 203, is pressed against the seat portion of the relief body 201, and shuts off the fuel in cooperation with the seat portion.
  • the valve opening pressure of the relief valve 202 is determined by the load of the relief spring 204.
  • the spring stopper 205 is press-fitted and fixed to the relief body 201, and the load of the relief spring 204 is adjusted according to the press-fitting and fixing position.
  • the pressurizing chamber 11 is composed of a pump body 1, a solenoid valve mechanism 300, a plunger 2, a cylinder 6, and a discharge valve mechanism 8.
  • the solenoid valve mechanism 300 When the plunger 2 moves in the direction of the cam 93 due to the rotation of the cam 93 and is in the suction stroke state, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases.
  • the suction valve 30 When the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure of the suction port 31b in this stroke, the suction valve 30 is opened. 30e indicates the maximum opening degree, and at this time, the suction valve 30 comes into contact with the stopper 32.
  • the opening 31c formed in the suction valve seat member 31 is opened. The fuel passes through the opening 31c and flows into the pressurizing chamber 11 through the hole 1c formed laterally in the pump body 1.
  • the hole 1c also constitutes a part of the pressurizing chamber 11.
  • the plunger 2 After the plunger 2 finishes the inhalation stroke, the plunger 2 shifts to the ascending movement and shifts to the ascending stroke.
  • the coil 43 remains in a non-energized state, and no magnetic urging force is generated.
  • the rod urging spring 40 urges a flange portion 35b (rod convex portion) that is convex on the outer diameter side of the rod 35, and has sufficient urging force to keep the suction valve 30 open in a non-energized state. Is set.
  • the volume of the pressurizing chamber 11 decreases with the ascending movement of the plunger 2, but in a state where no magnetic urging force is generated, the suction valve 30 maintains the valve open state, and once in the pressurizing chamber 11. Since the sucked fuel is returned to the suction passage 10d through the opening 31c of the suction valve 30, the pressure in the pressurizing chamber 11 does not increase. This process is called the return process.
  • the suction valve 30 moves in the valve closing direction in response to the urging force of the suction valve urging spring 33 and the fluid force caused by the fuel flowing into the suction passage 10d, and the suction valve seat moves. It abuts on 31a and closes the valve.
  • the fuel pressure in the pressurizing chamber 11 rises with the upward movement of the plunger 2, and when the pressure exceeds the pressure of the fuel discharge port 12, high-pressure fuel is discharged through the discharge valve mechanism 8 to the common rail 23. Will be supplied. This process is called a discharge process.
  • the ascending stroke from the lower start point to the upper start point of the plunger 2 consists of a return stroke and a discharge stroke. Then, by controlling the energization timing of the solenoid valve mechanism 300 to the coil 43, the amount of high-pressure fuel discharged can be controlled. If the timing of energizing the coil 43 is advanced, the ratio of the return stroke in the compression stroke becomes small and the ratio of the discharge stroke becomes large. That is, less fuel is returned to the suction passage 10d, and more fuel is discharged at high pressure. On the other hand, if the energization timing is delayed, the ratio of the return stroke increases and the ratio of the discharge stroke decreases during the compression stroke.
  • the timing of energizing the coil 43 is controlled by a command from the ECU 27. By controlling the energization timing of the coil 43 as described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine.
  • the outer core 38 has an inner peripheral surface facing the outer peripheral surface of the anchor 36, and fuel is used when the anchor 36 moves in the on-off valve direction between the outer peripheral surface of the anchor 36 and the inner peripheral surface of the outer core 38.
  • a moving flow path (gap) is constructed.
  • the seal ring 48 has a cylindrical shape.
  • the fixed core 39 and the outer core 38 have insertion portions 39 ins and 38 ins to be inserted into the seal ring 48, respectively.
  • the fixed core 39 and the outer core 38 have an outer peripheral surface having the same diameter as the outer peripheral surface CS of the seal ring 48 in a state of being inserted into the seal ring 48. This facilitates the attachment of other components such as the bobbin 45, for example.
  • FIG. 6 is a cross-sectional view focusing on the periphery of the fixed core 39, the anchor 36, and the rod 35 of the solenoid valve mechanism 300 according to the embodiment of the present invention, and the solenoid valve mechanism 300 is in a closed state. It is a figure of time.
  • the solenoid valve mechanism 300 of this embodiment includes a fixed core 39 and a movable core (anchor) 36 on which a magnetic attraction force acts between them, and a rod 35 through which the movable core 36 is inserted.
  • the movable core 36 has a recess 36b formed on the facing surface 36a facing the end surface 39a of the fixed core 39, and a through hole 36d penetrating the axial direction CA of the rod 35 and inserting the rod 35.
  • the rod 35 has a small diameter portion 35a inserted into the through hole 36d, and a flange portion 35b having a larger outer diameter than the small diameter portion 35a and coming into contact with the recess 36b in the axial direction CA. Further, the rod 35 is configured separately from the movable core 36.
  • the movable core 36 is formed with only a single through hole 36d as a through hole penetrating in the axial direction CA.
  • the gap formed between the inner peripheral surface 36b1 of the recess 36b of the movable core 36 and the outer peripheral surface 35b3 of the flange portion 35b is configured to expand from the opening side to the back side of the recess 36b.
  • the opening of the recess 36b is formed on the end surface 36a of the movable core 36 and is located on the fixed core 39 side in the axial direction CA.
  • the back side (back part) of the recess 36b is opposite to the fixed core 39 side when viewed from the opening side of the recess 36b.
  • the axial direction CA of the rod 35 means the central axis direction of the rod 35, which coincides with the central axis of the fixed core 39, the movable core 36, and the rod guide 37 party.
  • the rod 35 is configured separately from the movable core 36, when the movable core 36 collides with the fixed core 39 at the time of valve closing and the movement in the valve closing direction is stopped, the rod 35 is stopped by the movable core 36. Separate from the valve and continue to move in the valve closing direction.
  • the suction valve 30 collides with the stopper 32 and the movement of the rod 35 in the valve opening direction is stopped at the time of valve opening, the movable core 36 is separated from the rod 35 and continues to move in the valve opening direction.
  • the rod 35 has a flange portion 35b, and the flange portion 35b has an end surface 35b1 facing the bottom surface 36b2 of the recess 36b, an end surface 35b2 facing the fixed core 39 side, and an outer peripheral surface 35b3.
  • the solenoid valve mechanism 300 When the solenoid valve mechanism 300 is closed or opened and the movable portion is stationary, the end surface 35b1 of the flange portion 35b and the bottom surface 36b2 of the recess 36b are in contact with each other.
  • the above-mentioned state in which the movable core 36 and the rod 35 are separated means a state in which the end surface 35b1 of the flange portion 35b and the bottom surface 36b2 of the recess 36b are separated from each other.
  • the through hole that penetrates the movable core 36 in the axial direction CA is only a single through hole 36d through which the rod 35 is inserted, an increase in the moving speed of the movable core 36 at the time of the on-off valve is suppressed.
  • the impact force at the time of collision between the movable core 36 and the fixed core 39 and the impact force at the time of collision between the movable core 36 and the flange portion 35b can be reduced.
  • cavitation is more likely to occur in the bottom surface 36b2 of the recess 36b than in the case of forming a through hole through the movable core 36 in the axial direction CA in the bottom surface 36b2 of the recess 36b as in Patent Document 2. As a result, it becomes more susceptible to damage due to erosion (cavitation erosion) due to the collapse of cavitation.
  • the gap formed between the inner peripheral surface 36b1 of the recess 36b of the movable core 36 and the outer peripheral surface 35b3 of the flange portion 35b is configured to expand from the opening side to the back side of the recess 36b. Therefore, the cross-sectional area of the flow path formed between the inner peripheral surface 36b1 of the recess 36b and the flange portion 35b (in this case, the cross-sectional area perpendicular to the axial CA) can be increased, and the cavitation can be increased. The occurrence can be suppressed.
  • the outer peripheral surface 35b3 of the flange portion 35b may be formed parallel to the axial direction CA of the rod 35. Further, it is preferable that a tapered surface is formed on the inner peripheral surface 36b1 of the recess 36b of the movable core 36. In this case, the maximum radial length Lc of the gap formed between the tapered surface and the outer peripheral surface 35b3 of the flange portion 35b is the radial length from the outer peripheral surface of the small diameter portion 35a to the outer peripheral surface 35b3 of the flange portion 35b. It is preferable that it is configured to be smaller than Lf.
  • the tapered surface of the inner peripheral surface 36b1 When viewed from the opening side of the recess 36b, the tapered surface of the inner peripheral surface 36b1 has a reverse taper.
  • the gap formed between the tapered surface and the outer peripheral surface 35b3 of the flange portion 35b has a maximum length Lc at the end portion P36b1 of the tapered surface located on the inner side of the recess 36b.
  • the outermost diameter portion P36b1 of the tapered surface formed on the inner peripheral surface 36b1 of the concave portion 36b of the movable core 36 is relative to the center position C36 in the radial direction between the inner peripheral surface of the through hole 36d and the outer peripheral surface 36c of the movable core 36. , It is preferable to be located inward in the radial direction. As a result, the valve closing operation can be speeded up by securing the cross-sectional area of the magnetic path, and the amount of fuel discharged at high pressure can be accurately controlled.
  • the fixed core 39 may have an annular end face 39a formed in an annular shape on the side of the movable core 36.
  • a tapered surface is formed on the inner peripheral surface 36b1 of the recess 36b of the movable core 36, and the outermost diameter portion P36b1 of the tapered surface is located at the center position C39a between the inner diameter and the outer diameter of the annular end surface 39a of the fixed core 39.
  • a tapered surface is formed on the inner peripheral surface 36b1 of the recess 36b of the movable core 36, and the tapered surface is directed from the opening side (fixed core 39 side) to the back side (anti-fixed core 39 side) of the recess 36b of the movable core 36. It is preferable that the inner diameter is formed so as to be enlarged.
  • the case where the inner peripheral surface 36b1 of the recess 36b is formed like 36b1 ′ and the case where it is formed like 36b1 ′′ are compared.
  • the inner peripheral surface of the recess 36b is formed of a cylindrical surface.
  • the radial length of the gap formed between the inner peripheral surface 36b1'and the outer peripheral surface 35b3 of the flange portion 35b is Ar, which is equivalent to that of the present embodiment, but the fixed core 39.
  • the area of the end surface 36a of the movable core 36 facing the end surface 39a of the above is smaller than that of this embodiment. That is, in the case of 36b1 ′′, the magnetic attraction force on the movable core 36 is lower than that in this embodiment.
  • the magnetic flux flowing through the movable core 36 also flows to the center side of the movable core 36 on the end face 36a side, but with the end face 36a.
  • the opposite end face side tends to be biased toward the outer peripheral side of the movable core 36. Therefore, by forming a tapered surface on the inner peripheral surface 36b1 of the recess 36b, a flow path can be secured on the outer peripheral portion of the flange portion 35b, and the magnetic path can be made into a more preferable shape.
  • the tapered surface formed on the inner peripheral surface 36b1 may be formed from the opening of the recess 36b of the movable core 36 toward the back side.
  • the end face 36a of the movable core 36 can be expanded inward in the radial direction to increase the area of the end face 36a, and the processing is simplified to improve productivity.
  • the tapered surface may be formed over the entire area from the opening of the recess 36b of the movable core 36 to the bottom surface 36b2 of the recess 36b.
  • the impact force at the time of collision between the movable core 36 and the fixed core 39 and the impact force at the time of collision between the movable core 36 and the flange portion 35b can be reduced.
  • the movable core 36 can be configured so that plating as a protective film is not formed.
  • a surrounding member 38 having an inner peripheral surface 38a that surrounds the movable core 36 and faces the outer peripheral surface 36c of the movable core 36 is provided, and is formed between the inner peripheral surface 38a of the surrounding member 38 and the outer peripheral surface 36c of the movable core 36.
  • the cross-sectional area of the gap to be formed (in this case, the cross-sectional area perpendicular to the axial CA) is larger than the cross-sectional area of the gap formed between the inner peripheral surface of the through hole 36d and the outer peripheral surface of the small diameter portion 35a. It is good to be done.
  • the movable core 36 when the movable core 36 reciprocates, the fuel passes through the gap formed between the inner peripheral surface 38a of the surrounding member 38 and the outer peripheral surface 36c of the movable core 36, and the fuel of the movable core 36 in the axial direction CA You can go back and forth between one end side and the other end side. Therefore, the movable core 36 can reciprocate in the axial direction CA without providing the movable core 36 with a through hole other than the through hole 36d.
  • the surrounding member 38 is composed of an outer core.
  • the inner peripheral surface 38a of the surrounding member 38 may form a guide portion that guides the sliding of the outer peripheral surface 36c of the movable core 36.
  • the guide method (support method) of the movable core 36 includes a method of guiding by the clearance between the inner circumference of the movable core 36 and the outer circumference of the rod 35, and a guide method by the clearance between the outer circumference of the movable core 36 and the inner circumference of the surrounding member 38. There is a way to do it.
  • the inner peripheral surface 38a of the surrounding member 38 is used as the guide portion, the sliding area of the guide portion can be increased, which is advantageous in terms of wear resistance.
  • the radial length of the gap formed between the inner peripheral surface of the through hole 36d and the outer peripheral surface of the small diameter portion 35a is between the inner peripheral surface 38a of the surrounding member 38 and the outer peripheral surface 36c of the movable core 36. It may be configured to be smaller than the radial length of the gap to be formed.
  • the movable core 36 is guided by the clearance between the inner circumference of the movable core 36 and the outer circumference of the rod 35.
  • the length of the gap formed between the inner peripheral surface 38a of the surrounding member 38 and the outer peripheral surface 36c of the movable core 36 in the radial direction can be increased, and the cross-sectional area of this gap can be adjusted. It will be easier. As a result, it is possible to appropriately adjust the speed of the reciprocating motion of the movable core 36 and the impact force at the time of collision between the movable core 36 and the fixed core 39.
  • the movable core 36 has an annular end surface 36a that forms an annular shape and faces the end surface 39a of the fixed core 39, and the portion of the movable core 36 where the annular end surface 36a is formed and the portion where the through hole 36d is formed are , It is preferable to make it composed of one part. As a result, the number of parts can be reduced and the cost can be reduced.
  • the solenoid valve mechanism 300 may be provided with a spring (anchor urging spring) 41 that urges the movable core 36 toward the fixed core 39.
  • a spring anchor urging spring 41 that urges the movable core 36 toward the fixed core 39.
  • FIGS. 7A to 7D show a mechanism in which the contact portion between the flange portion 35b of the rod 35 and the bottom surface 36b2 of the recess 36b of the anchor 36 becomes a severe environment for cavitation erosion.
  • the inner peripheral surface 36b1'of the recess 36b of the anchor (movable core) 36 is composed of a cylindrical surface parallel to the axial direction CA.
  • the configuration other than the inner peripheral surface 36b1' is the same as that of the above-described embodiment, and the same reference numerals as those of the above-described embodiment are added to the same configurations as those of the above-described embodiment, and the description thereof will be omitted.
  • FIG. 7A is a cross-sectional view focusing on the periphery of the fixed core 39, the anchor 36, and the rod 35 for the solenoid valve mechanism 300'in the comparative example with the present invention, in a state where the solenoid valve mechanism 300'is closed. It is a figure at a certain time.
  • FIG. 6B is a cross-sectional view focusing on the periphery of the fixed core 39, the anchor 36', and the rod 35 for the solenoid valve mechanism 300'in the comparative example with the present invention, and the operation of opening the solenoid valve mechanism 300'. It is a figure when it is in the middle state.
  • the anchor 36 When the solenoid valve mechanism 300'starts the valve opening operation from the state of FIG. 7A, the anchor 36 is separated from the fixed core 39, but in the state of FIG. 7B, the anchor 36 and the flange portion 35b of the rod 35 maintain the contact state. ing. That is, in the state of FIG. 7B, the suction valve 30 engaged with the rod 35 is not in contact with the stopper 32.
  • the mainstream fuel flow is from the radial outside of the anchor 36 to the fuel chamber (fluid chamber) surrounded by the fixed core 39, the anchor 36, and the seal ring 48.
  • Some fuels may form a flow from the radial outside of the anchor 36 towards the suction valve 30.
  • FIG. 7C is a cross-sectional view focusing on the periphery of the fixed core 39, the anchor 36', and the rod 35 for the solenoid valve mechanism 300'in the comparative example with the present invention, and the operation of opening the solenoid valve mechanism 300'. It is a figure in the middle state (the state which time has passed from FIG. 6B).
  • FIG. 7C shows a state in which the suction valve 30 is fully opened and is in contact with the stopper 32.
  • the rod 35 in contact with the suction valve 30 is stationary, and the anchor 36 continues to move in the direction of the suction valve 30 due to the inertial force.
  • the anchor 36 separates from the flange portion 35b of the rod 35, the region around the contact portion between the anchor 36 and the flange portion 35b (the region surrounded by the broken line) causes a rapid decompression, and the pressure becomes lower than the saturated vapor pressure. Then, cavitation Cav is generated.
  • FIG. 7D is a cross-sectional view focusing on the periphery of the fixed core 39, the anchor 36', and the rod 35 for the solenoid valve mechanism 300'in the comparative example with the present invention, and the operation of opening the solenoid valve mechanism 300'. It is a figure in the middle state (the state which time has passed from FIG. 6C).
  • FIG. 7D the region where the cavitation cav was generated due to the pressure wave reflected by the fuel flowing out due to the movement of the anchor 36 colliding with other parts or the re-inflow of the fuel due to the low pressure.
  • the cavitation Cav collapses (Cal) causes the anchor 36 to be eroded.
  • the volume around the contact portion between the anchor 36 and the flange portion 35b is larger than that in the comparative example of FIG. 7A. Since it becomes large, it is easy to supply fuel to the region surrounded by the broken line while the anchor 36 is moving, and the generation of cavitation cav can be suppressed. Therefore, it can contribute to the reduction of the impact force at the time of cavitation collapse.
  • the solenoid valve mechanism 300 of this embodiment can also be applied to a fluid machine that handles fluids other than fuel.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations. Further, it is possible to add or replace a part of the configuration of the embodiment with another configuration.
  • Electromagnetic valve mechanism 35 ... Rod, 35a ... Small diameter part of rod 35, 35b ... Flange part of rod 35, 35b3 ... Outer peripheral surface of flange part 35b, 36 ... Movable core (anchor), 36a ... End face of movable core 36 (Arc end face), 36b ... Recessed portion formed on the end surface 36a of the movable core 36, 36b1 ... Inner peripheral surface of the concave portion 36b of the movable core 36, 36b2 ... Bottom surface of the concave portion 36b, 36c ... Outer peripheral surface of the movable core 36, 36d ... Through hole of movable core 36, 38 ... Surrounding member (outer core), 38a ...
  • the maximum length in the radial direction of the gap to be formed, Lf ... The radial length from the outer peripheral surface of the small diameter portion 35a to the outer peripheral surface 35b3 of the flange portion 35b, P36b1 ... The outermost diameter portion of the tapered surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

本発明の目的は、可動コア(36)に対してロッドが相対変位可能に構成された構造において、可動コア(36)におけるキャビテーション・エロージョンの発生を抑制することにある。そのため、可動コア(36)は、固定コア(39)と対向する対向面(36a)に形成された凹部(36b)と、ロッド(35)の軸方向に貫通しロッド(35)が挿通する貫通孔(36d)と、を有する。ロッド(35)は、貫通孔(36d)に挿入される小径部(35a)と、小径部(35a)より外径が大きく軸方向において凹部(36b)と接触するフランジ部(35b)と、を有して可動コア(36)と別体に構成される。可動コア(36)には単一の貫通孔(36d)のみが形成される。可動コア(36)の凹部(36b)の内周面(36b1)とフランジ部(35b)の外周面(35b3)との間に形成される隙間は凹部(36b)の開口側から奥側に向かって拡大するように構成される。

Description

高圧燃料ポンプ及びその電磁弁
 本発明は車両用部品に係わり、特にエンジンに燃料を高圧で供給する高圧燃料ポンプ及びその電磁弁に関する。
 本発明の電磁弁の従来技術として、特開2012-136994号公報(特許文献1)に記載の高圧ポンプ(以下、高圧燃料ポンプという)が知られている。特許文献1の要約には、下記構成及び効果が記載されている。
 「コイル71の径内側に固定コア72が設けられる。固定コア72の吸入弁側に設けられる可動コア73は、吸入弁を開弁方向又は閉弁方向に移動する。固定コア72の第1収容室61及び可動コア73の第2収容室62に収容される第2スプリング22は、可動コア73を吸入弁側に付勢する。固定コア72よりも高硬度に形成されたガイドピン80が、第1収容室61の深部で第2スプリング22を係止する。可動コア73の往復移動に起因して第1収容室61の燃料に発生するキャビティの崩壊により第1収容室61の内壁にエロージョンが生じることをガイドピンにより抑制することができる。」
 なおこの記載における符号は、特許文献1における符号をそのまま記載しており、本明細書の符号とは関係がない。さらに特許文献1の高圧燃料ポンプでは、可動コアの第2収容室よりも径方向外側に複数の呼吸孔が設けられ、この呼吸孔は可動コアを収容する可動コア室内において可動コアの軸方向における一方と他方とを燃料が流通するように設けられている(段落0027参照)。また可動コアには、吸入弁を押圧するニードル(ロッド)が可動コアと一体に設けられている(段落0033参照)。
 また特開2016-094913号公報(特許文献2)には、高圧燃料供給ポンプ(以下、高圧燃料ポンプという)において、アンカー(可動コア)が第二コア(固定コア)に引き寄せされる際に、アンカーと第二コアとの間にある体積が急速に縮小することで、その空間にある燃料は行き場を失い速い流速を持ってアンカー外周側へ押し流され、第一コアの薄肉部に衝突して壊食が発生することが記載されている(段落0081参照)。特許文献2の高圧燃料ポンプでは、アンカーの中心側に、アンカーを中心軸方向に貫通する貫通穴を設け、アンカーが第二コア側に引き寄せられる際、アンカーと第二コアとの間の空間の燃料のほとんどは、アンカーの外周側の狭い通路を通過せず、貫通穴を通過してアンカーとばね座部材との間に形成された燃料室に移動するようにすることで、第一コアの薄肉部の壊食を回避している(段落0083参照)。なお特許文献2の高圧燃料ポンプでは、第二コアに対する可動部がアンカーとロッドとで構成され、アンカーとロッドとは軸方向に相対変位可能に構成されている(段落0053,0056参照)。さらにアンカーは、第二コアと対向する端面に、第二コアに対して反対側に窪んでロッドつば部を収容する凹部を有し、この凹部の底面部にアンカーを中心軸方向に貫通する貫通穴が形成されると共に、この凹部の内周面(内周壁)は凹部の開口側から底面部に向かって拡径する逆テーパ状の面として形成されている(図7参照)。
特開2012-136994号公報 特開2016-094913号公報
 特許文献1では、固定コアの第1収容室の内壁に生じる、キャビテーションの崩壊によるエロージョン(キャビテーション・エロージョン)に配慮しているものの、可動コアの第2収容室の内壁に生じるキャビテーション・エロージョンについては配慮がない。そもそも特許文献1の高圧燃料ポンプでは、吸入弁を押圧するニードル(ロッド)が可動コアと一体に設けられており、このニードルが可動コアに対して相対変位しないため可動コアの第2収容室の内壁にキャビテーション・エロージョンが生じ難い。
 また、特許文献2の高圧燃料ポンプでは、ロッドつば部を収容する凹部の内周面(内周壁)が逆テーパ状の面として形成されているものの、凹部の内壁(底面及び内周面)に生じるキャビテーション・エロージョンについては配慮がない。そもそも特許文献1の高圧燃料ポンプでは、凹部の底面部にアンカーを中心軸方向に貫通する貫通穴が形成されており、凹部の内壁にキャビテーション・エロージョンが生じ難い。
 本発明の目的は、可動コア(アンカー)に対してロッドが相対変位可能に構成された構造において、可動コア(アンカー)におけるキャビテーション・エロージョンの発生を抑制することにある。
 上記目的を達成するために、本発明の電磁弁機構は、
 相互の間に磁気吸引力が作用する固定コア及び可動コアと、前記可動コアを挿通するロッドとを備え、
 前記可動コアは、前記固定コアと対向する対向面に形成された凹部と、前記ロッドの軸方向に貫通し前記ロッドが挿通する貫通孔と、を有し、
 前記ロッドは、前記貫通孔に挿入される小径部と、前記小径部より外径が大きく前記軸方向において前記凹部と接触するフランジ部と、を有して前記可動コアと別体に構成された電磁弁機構において、
 前記可動コアには単一の前記貫通孔のみが形成され、
 前記可動コアの前記凹部の内周面と前記フランジ部の外周面との間に形成される隙間が前記凹部の開口側から奥側に向かって拡大するように構成される。
 本発明によれば、可動コア(アンカー)におけるキャビテーション・エロージョンの発生を抑制することが可能となる。
 本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。
本発明の一実施例に係る高圧燃料ポンプが適用されたエンジンシステムの構成図である。 本発明の一実施例に係る高圧燃料ポンプについて、プランジャ2の軸心に沿う断面(図3のII-II断面)を示す断面図である。 図2のIII-III断面を示す断面図である。 図3のIV-IV断面を示す断面図である。 図2の電磁弁機構300の近傍を拡大して示す拡大断面図であり、電磁弁機構300が開弁した状態を示す図である。 本発明の一実施例に係る電磁弁機構300について、固定コア39及びアンカー36及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300が閉弁した状態にあるときの図である。 本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36’及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300’が閉弁した状態にあるときの図である。 本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36’及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300’が開弁する動作途中の状態にあるときの図である。 本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36’及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300’が開弁する動作途中の状態(図6Bから時間が経過した状態)にあるときの図である。 本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36’及びロッド35の周囲を重点的に示す断面図であり、電磁弁が開弁する動作途中の状態(図6Cから時間が経過した状態)にあるときの図である。
 以下、本発明の一実施例に係る電磁弁300を用いた高圧燃料ポンプ100について、図面を用いて説明する。
 図1は、本発明の一実施例に係る高圧燃料ポンプ100が適用されたエンジンシステムの構成図である。燃料タンク20の燃料は、エンジンコントロールユニット27(以下ECUと称す)からの信号に基づき、フィードポンプ21によって汲み上げられる。この燃料は適切なフィード圧力に加圧されて吸入配管28を通して高圧燃料ポンプ100の低圧燃料吸入口10aに送られる。
 低圧燃料吸入口10aを通過した燃料は、圧力脈動低減機構9が配置されるダンパ室(10b,10c)を介して容量可変機構を構成する電磁弁(電磁弁機構)300の吸入ポート31bに至る。具体的には、電磁弁機構300は加圧室11に燃料を吸入する電磁吸入弁(電磁吸入弁機構)を構成する。
 電磁弁機構300に流入した燃料は、吸入弁30により開閉される吸入口を通過し、加圧室11に流入する。プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁30から燃料を吸入し、上昇行程には燃料が加圧される。加圧された燃料は、吐出弁機構8を介し、圧力センサ26が装着されているコモンレール23へ燃料が圧送される。そしてECU27からの信号に基づきインジェクタ24がエンジンへ燃料を噴射する。
 本実施例の高圧燃料ポンプ100は、インジェクタ24がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムに適用される。高圧燃料ポンプ100は、ECU27から電磁弁機構300への信号により燃料流量を調整して、所望の燃料流量を吐出する。
 図2は、本発明の一実施例に係る高圧燃料ポンプ100について、プランジャ2の軸心に沿う断面(図3のII-II断面)を示す断面図である。図3は、図2のIII-III断面を示す断面図である。図4は、図3のIV-IV断面を示す断面図である。
 本実施例の高圧燃料ポンプ100は内燃機関の高圧燃料ポンプ取付け部90に密着して固定される。以下の説明において上下方向を指定して説明する場合があるが、この上下方向は図2の上下方向に基づいており、高圧燃料ポンプ100の内燃機関への実装状態における上下方向を指定するものではない。
 図2、4に示すように、ポンプボディ1には、プランジャ2の往復運動をガイドし、ポンプボディ1と共に加圧室11を形成するシリンダ6が取り付けられている。シリンダ6はその外周面がポンプボディ1に圧入される。つまり、プランジャ2はシリンダ6の内部を往復運動することで加圧室11の容積を変化させる。またポンプボディ1には、燃料を加圧室11に供給するための電磁弁300と、加圧室11から吐出通路に燃料を吐出するための吐出弁機構8(図3参照)と、が設けられている。
 プランジャ2は、カム93の回転運動を受けて上下に往復運動するように構成されている。
 図3、4に示すように、ポンプボディ1の側面部には、低圧燃料吸入口10aを構成する吸入ジョイント51が取り付けられている。吸入ジョイント51は、車両の燃料タンク20からの燃料を供給する低圧の吸入配管28に接続されており、燃料はここから高圧燃料ポンプ100内部に供給される。吸入フィルタ52は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって高圧燃料ポンプ100内に吸収することを防ぐ。
 低圧燃料吸入口10aを通過した燃料は、図4に示すポンプボディ1に上下方向に連通した低圧燃料吸入通路を通って圧力脈動低減機構9が配置されたダンパ室10b,10cに向かう。ダンパ室10b,10cはダンパカバー14とポンプボディ1の上端面との間に形成され、低圧燃料吸入口10a及び低圧燃料吸入通路と連通する。
 ダンパ室10b,10cを通った燃料は、次にポンプボディ1に上下方向に延設された吸入通路10d(低圧燃料吸入通路)を介して電磁弁機構300の吸入ポート31bに至る。なお、吸入ポート31bは吸入弁シート31a(図5参照)を形成する吸入弁シート部材31(図5参照)に上下方向に連通して形成される。
 図5に基づいて電磁弁機構300(電磁吸入弁)について詳細に説明する。図5は、図2の電磁弁機構300の近傍を拡大して示す拡大断面図であり、電磁弁機構300が開弁した状態を示す図である。
 ボビン45に銅線が複数回巻かれたコイル43(電磁コイル)があり、二つの端子46(図2記載)のそれぞれの方端にコイルの銅線の両端がそれぞれ通電可能に接続される。
端子46はコネクタ47(図2記載)と一体にモールドされ、残りの方端がエンジン制御ユニット側と接続可能となっている。
 コイル43の外周を取り囲む部品には、第1ヨーク42、第2ヨーク44、アウターコア38がある。第1ヨーク42と第2ヨーク44はコイル43を取り囲む形で配置され、樹脂部材であるコネクタ47と一体にモールドされ固定される。第1ヨーク42の中心部の穴部に、アウターコア(第2コア)38が圧入され固定される。アウターコア38はポンプボディ1に溶接等により固定されている。
 第2ヨーク44の内周側は、固定コア(第1コア)39と接触もしくは僅かなクリアランスで近接する構成とする。また、第2ヨーク44の外周側は、第1ヨーク42の内周と接触もしくは僅かなクリアランスで近接する構成とする。固定コア39には固定ピン832が固定されており、固定ピン832は第2ヨーク44を固定コア39に押し当てるように付勢力を発生する。固定ピン832は内周側の角部で固定コア39に食い込ませてもよいが、溶接等により固定してもよい。
 第1ヨーク42及び第2ヨーク44は共に、磁気回路を構成するために、また耐食性を考慮し、磁性ステンレス材料とする。ボビン45及びコネクタ47は強度特性、耐熱特性を考慮し、高強度耐熱樹脂を用いる。
 コイル43の内周にはシールリング48が配置され、シールリング48は一端がアウターコア38に溶接固定され、その反対側の端で固定コア39に溶接固定される。シールリング48またはアウターコア38の内周側には、可動部であるアンカー36(可動コア)及びロッド35と、固定部であるロッドガイド37と、ロッド付勢ばね40と、アンカー付勢ばね41と、が配置される。ロッド35はロッドガイド37の内周側で軸方向に摺動自在に保持され、且つ、アンカー36を摺動自在に保持する。
 アンカー36の保持方法(支持方法)には、アンカー36の内周とロッド35の外周とのクリアランスで保持する方法と、アンカー36の外周とアウターコア38の内周とのクリアランスで保持する方法とがあるが、本実施例では、アンカー36の内周とロッド35の外周とのクリアランスでアンカー36を保持している。
 アンカー36は、コイル43に電流が流されると、発生する磁気吸引力によって固定コア39の方向へ引き寄せられる。燃料中でアンカー36がその中心軸方向に自在に移動できるようにするために、通常、アンカー36に中心軸方向に貫通する貫通孔を1つ以上設け、中心軸方向におけるアンカー36の一端側と他端側との圧力差による移動の制限を排除する手段が採用される。しかし本実施例では、敢えて貫通孔を設けないことで、アンカー36の移動に抵抗力を作用させ、移動速度を小さくする。
 ロッドガイド37は、吸入弁シート部材31と共に一部材で構成され、ポンプボディ1の吸入弁30が挿入される穴1dの内周側に挿入され、径方向及び中心軸方向においてポンプボディ1に固定される。本実施例では、ロッドガイド37及び吸入弁シート部材31は、中心軸方向において、ポンプボディ1の挿入穴1fに溶接固定されるアウターコア38とポンプボディ1との間に挟み込まれる形で配置され、固定される構成としている。ロッドガイド37には、中心軸方向に貫通する貫通孔37aが設けられ、アンカー36が軸方向に移動したときに、固定コア39とロッドガイド37との間に形成されたアンカー収容室34内部の燃料の移動を妨げない様に構成している。
 アウターコア38は、一端部が溶接等によってポンプボディ1に固定され、他端部にはシールリング48が固定される。シールリング48のアウターコア38に固定される側の端部とは反対側の端部には、固定コア39が固定される。固定コア39の内周側にはロッド付勢ばね40が、ロッド35の小径部35cをガイドに配置され、ロッド35を図右方向に付勢する。ロッド35は、フランジ部35bを介して、アンカー36に係合する。また、同時にロッド35は小径部35aの先端にて吸入弁30と係合し、吸入弁30を吸入弁シート31aから引き離す方向、すなわち吸入弁30の開弁方向に付勢力を与える。このために、ロッド35は吸入弁30を開弁方向に押圧する。言い換えれば、ロッド35はロッド付勢ばね40の付勢力を伝達する付勢力伝達部材である。
 アンカー付勢ばね41は、ロッドガイド37の中心側に設けた円筒形の中央軸受部37bに方端を挿入し、中央軸受部37bと同軸を保ちながら、アンカー36にフランジ部35b及び固定コア39の方向(図左方向)に付勢力を与える配置としている。アンカー36の移動量36eは吸入弁30の移動量30eよりも大きく設定されており、吸入弁30が閉弁時に干渉することを防ぐ。
 アウターコア38、第1ヨーク42、第2ヨーク44、固定コア39、及びアンカー36はコイル43の周りで磁気回路を形成し、コイル43に電流を与えると、固定コア39とアンカー36との間に磁気吸引力を発生させる。アンカー36と固定コア39とは磁気吸引面Sを形成するため、性能的に磁気特性の良い材料を使うことが望ましい。
 シールリング48は、アンカー36と固定コア39間に磁束を流すために、非磁性材であることが望ましい。また、衝突時の衝撃を吸収するために、薄肉で伸びの大きいステンレス材を使うことが望ましい。具体的にはオーステナイト系ステンレスを使う。
 図3に示すように加圧室11の出口に設けられた吐出弁機構8は、吐出弁シート8aと、吐出弁シート8aと接離する吐出弁8bと、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8cと、吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8dと、から構成される。吐出弁ストッパ8dとポンプボディ1は当接部8eで溶接により接合されている。
 加圧室11と吐出弁室12aとに燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、吐出弁室12aの燃料圧力よりも大きくなったときに初めて、吐出弁8bは吐出弁ばね8cに逆らって開弁する。そして、加圧室11内の高圧の燃料は吐出弁室12a、燃料吐出通路12b、燃料吐出口12を経てコモンレール23へと吐出される。すなわち、吐出弁機構8は燃料の流通方向を制限する逆止弁となる。
 図3に示すリリーフ弁機構200は、リリーフボディ201、リリーフ弁202、リリーフ弁ホルダ203、リリーフばね204、及びばねストッパ205からなる。リリーフボディ201には、シート部が設けられている。リリーフ弁202はリリーフばね204の荷重がリリーフ弁ホルダ203を介して負荷され、リリーフボディ201のシート部に押圧され、シート部と協働して燃料を遮断している。リリーフ弁202の開弁圧力はリリーフばね204の荷重によって決定される。ばねストッパ205はリリーフボディ201に圧入固定されており、圧入固定の位置によってリリーフばね204の荷重を調整する。
 高圧燃料ポンプの電磁弁機構300の故障等により、燃料吐出口12の圧力が異常に高圧になり、リリーフ弁機構200のセット圧力より大きくなると、異常高圧燃料はリリーフ通路を介して加圧室11にリリーフされる。
 以上に説明したように、加圧室11は、ポンプボディ1、電磁弁機構300、プランジャ2、シリンダ6、及び吐出弁機構8にて構成される。
 図5を用いて電磁弁機構300の動作を詳細に説明する。カム93の回転により、プランジャ2がカム93の方向に移動して吸入行程状態にあるときは、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この行程で加圧室11内の燃料圧力が吸入ポート31bの圧力よりも低くなると、吸入弁30は開弁状態になる。30eは最大開度を示しており、このとき、吸入弁30はストッパ32に接触する。吸入弁30が開弁することにより、吸入弁シート部材31に形成された開口部31cが開口する。燃料は開口部31cを通り、ポンプボディ1に横方向に形成された穴1cを介して加圧室11に流入する。
なお、穴1cも加圧室11の一部を構成する。
 プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ上昇行程に移る。ここでコイル43は無通電状態を維持したままであり、磁気付勢力は発生していない。
ロッド付勢ばね40はロッド35の外径側に凸となるフランジ部35b(ロッド凸部)を付勢し、無通電状態において吸入弁30を開弁維持するのに必要十分な付勢力を有するよう設定されている。加圧室11の容積は、プランジャ2の上昇運動に伴い減少するが、磁気付勢力の発生していない状態では、吸入弁30は開弁状態を維持しており、一度、加圧室11に吸入された燃料が、再び吸入弁30の開口部31cを通して吸入通路10dへと戻されるので、加圧室11の圧力が上昇することは無い。この行程を戻し行程と称する。
 この状態で、ECU27からの制御信号が電磁弁機構300に印加されると、コイル43には端子46を介して電流が流れる。固定コア39の端面39aとアンカー36の端面36aとの間に磁気吸引力が作用する。固定コア39の端面39a及びアンカー36の端面36aは磁気吸引面Sを構成する。磁気吸引面Sに磁気吸引力が作用し、この磁気吸引力を含む閉弁方向の付勢力がロッド付勢ばね40の付勢力に打ち勝つと、アンカー36がフランジ部35bと係合して、ロッド35を吸入弁30から離れる方向(閉弁方向)に移動させる。最終的に、固定コア39及びアンカー36は磁気吸引面Sで衝突する。このときの閉弁方向の付勢力には、磁気吸引力のほかに、アンカー付勢ばね41及び吸入弁付勢ばね33の付勢力が含まれる。
 ロッド35が閉弁方向に移動すると、吸入弁30は、吸入弁付勢ばね33による付勢力と燃料が吸入通路10dに流れ込むことによる流体力とを受けて閉弁方向に移動し、吸入弁シート31aに当接して閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12の圧力以上になると、吐出弁機構8を介して高圧燃料の吐出が行われ、コモンレール23へと供給される。この行程を吐出行程と称する。
 すなわち、プランジャ2の下始点から上始点までの間の上昇行程は、戻し行程と吐出行程とからなる。そして、電磁弁機構300のコイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。コイル43へ通電するタイミングを早くすれば、圧縮行程中における、戻し行程の割合が小さくなり、吐出行程の割合が大きくなる。すなわち、吸入通路10dに戻される燃料が少なくなり、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば、圧縮行程中における、戻し行程の割合が大きくなり、吐出行程の割合が小さくなる。すなわち、吸入通路10dに戻される燃料が多くなり、高圧吐出される燃料は少なくなる。コイル43への通電タイミングは、ECU27からの指令によって制御される。以上のようにコイル43への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。
 アウターコア38は、アンカー36の外周面と対向する内周面を有し、アンカー36の外周面とアウターコア38の内周面との間に、アンカー36が開閉弁方向に移動する際に燃料の移動する流路(隙間)が構成される。
 シールリング48は、円筒形状である。固定コア39とアウターコア38は、シールリング48へ挿入される挿入部39ins、38insをそれぞれ有する。固定コア39とアウターコア38は、シールリング48に挿入された状態でシールリング48の外周面CSと同径の外周面を有する。これにより、例えば、ボビン45等の他の部品の取り付けが容易となる。
 次に、図6を用いて、本発明の構成を示す。図6は、本発明の一実施例に係る電磁弁機構300について、固定コア39及びアンカー36及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300が閉弁した状態にあるときの図である。
 本実施例の電磁弁機構300は、相互の間に磁気吸引力が作用する固定コア39及び可動コア(アンカー)36と、可動コア36を挿通するロッド35とを備えている。可動コア36は、固定コア39の端面39aと対向する対向面36aに形成された凹部36bと、ロッド35の軸方向CAに貫通しロッド35が挿通する貫通孔36dと、を有する。ロッド35は、貫通孔36dに挿入される小径部35aと、小径部35aより外径が大きく軸方向CAにおいて凹部36bと接触するフランジ部35bと、を有している。さらにロッド35は、可動コア36と別体に構成されている。
 可動コア36には、軸方向CAに貫通する貫通孔として、単一の貫通孔36dのみが形成されている。可動コア36の凹部36bの内周面36b1とフランジ部35bの外周面35b3との間に形成される隙間は、凹部36bの開口側から奥側に向かって拡大するように構成されている。凹部36bの開口は、可動コア36の端面36aに形成され、軸方向CAにおいて固定コア39側に位置している。凹部36bの奥側(奥部)は、凹部36bの開口側から見て、固定コア39側とは反対側である。
 本実施例において、ロッド35の軸方向CAは、ロッド35の中心軸線方向を意味しており、固定コア39、可動コア36、ロッドガイド37党の中心軸線と一致している。
 ロッド35は可動コア36と別体に構成されていることにより、閉弁時に可動コア36が固定コア39に衝突して閉弁方向への移動を止められた際に、ロッド35は可動コア36から分離して閉弁方向の移動を継続する。或いは開弁時に、吸入弁30がストッパ32に衝突してロッド35の開弁方向への移動が止められた際に、可動コア36はロッド35から分離して開弁方向の移動を継続する。
 ロッド35はフランジ部35bを有しており、フランジ部35bは凹部36bの底面36b2と対向する端面35b1と、固定コア39側を向く端面35b2と、外周面35b3とを有する。電磁弁機構300が閉弁又は開弁して可動部が静止した状態にある場合、フランジ部35bの端面35b1と凹部36bの底面36b2とは当接した状態にある。
上述した、可動コア36とロッド35とが分離した状態とは、フランジ部35bの端面35b1と凹部36bの底面36b2とが離れた状態を意味する。
 本実施例では、軸方向CAに可動コア36を貫通する貫通孔を、ロッド35が挿通する単一の貫通孔36dのみにしたため、開閉弁時における可動コア36の移動速度の上昇を抑制し、可動コア36と固定コア39との衝突時の衝撃力及び可動コア36とフランジ部35bとの衝突時の衝撃力を小さくすることができる。一方で、特許文献2のように、凹部36bの底面部36b2に可動コア36を軸方向CAに貫通する貫通穴を形成する場合と比べて、特に凹部36bの底面部36b2にキャビテーションが発生し易くなり、キャビテーションの崩壊によるエロージョン(キャビテーション・エロージョン)によるダメージを受けやすくなる。
 しかし本実施例では、可動コア36の凹部36bの内周面36b1とフランジ部35bの外周面35b3との間に形成される隙間が凹部36bの開口側から奥側に向かって拡大するように構成されているため、凹部36bの内周面36b1とフランジ部35bとの間に構成される流路の断面積(この場合、軸方向CAに垂直な断面積)を大きくすることができ、キャビテーションの発生を抑制することができる。
 フランジ部35bの外周面35b3はロッド35の軸方向CAと平行に形成されるとよい。また可動コア36の凹部36bの内周面36b1にはテーパ面が形成されるとよい。
この場合、テーパ面とフランジ部35bの外周面35b3との間に形成される隙間の径方向における最大長さLcが小径部35aの外周面からフランジ部35bの外周面35b3までの径方向長さLfよりも小さくなるように構成されるとよい。
 テーパ面のテーパ角度を大きくすると、可動コア36における磁路の断面積(この場合、軸方向CAに垂直な断面積)を小さくすることになる。Lc<Lfとすることにより、磁路の断面積を確保することで閉弁動作を高速化し、高圧吐出される燃料量のコントロールを正確に行うことができる。
 なお、凹部36bの開口側から見た場合、内周面36b1のテーパ面は逆テーパとなる。ここで、テーパ面とフランジ部35bの外周面35b3との間に形成される隙間は、凹部36bの奥側に位置するテーパ面の端部P36b1において最大長さLcとなる。
 可動コア36の凹部36bの内周面36b1に形成されたテーパ面の最外径部P36b1は、貫通孔36dの内周面と可動コア36の外周面36cとの径方向における中心位置C36に対し、径方向内側に位置するようにするとよい。これにより、磁路の断面積を確保することで閉弁動作を高速化し、高圧吐出される燃料量のコントロールを正確に行うことができる。
 固定コア39は、可動コア36の側に環状を成して形成される環状端面39aを有するようにするとよい。また可動コア36の凹部36bの内周面36b1にはテーパ面が形成され、テーパ面の最外径部P36b1は、固定コア39の環状端面39aの内径と外径との間の中心位置C39aに対して、径方向内側に位置するようにするとよい。これにより、磁路の断面積を確保することで閉弁動作を高速化し、高圧吐出される燃料量のコントロールを正確に行うことができる。
 可動コア36の凹部36bの内周面36b1にはテーパ面が形成され、テーパ面は可動コア36の凹部36bの開口側(固定コア39側)から奥側(反固定コア39側)に向かって内径が拡大するように形成されるようにするとよい。図6において、凹部36bの内周面36b1を36b1’のように形成した場合と36b1’’のように形成した場合とを比較する。36b1’及び36b1’’は、凹部36bの内周面を円筒面で構成したものである。
 36b1’の場合、固定コア39の端面39aと対向する可動コア36の端面36aの面積を大きくできる代わりに、内周面36b1’とフランジ部35bの外周面35b3との間に形成される隙間の径方向長さArよりも小さくなる。Arは本実施例のテーパ面とフランジ部35bの外周面35b3との間に形成される隙間の径方向長さの最小値である。すなわち36b1’の場合、キャビテーションの発生を抑制する効果が小さくなる。
 一方、36b1’’ の場合、内周面36b1’とフランジ部35bの外周面35b3との間に形成される隙間の径方向長さはArとなり、本実施例と同等であるが、固定コア39の端面39aと対向する可動コア36の端面36aの面積は本実施例よりも小さくなる。すなわち36b1’’ の場合、可動コア36に対する磁気吸引力が本実施例よりも低下する。
 図5に示す、固定コア39、可動コア36及び第1ヨーク42の配置から分かるように、可動コア36を流れる磁束は、端面36a側では可動コア36の中心側にも流れるものの、端面36aとは反対側の端面側では可動コア36の外周側に偏る傾向がある。このため、凹部36bの内周面36b1にテーパ面を形成することにより、フランジ部35bの外周部に流路を確保した上で、磁路をより好ましい形状にすることができる。
 内周面36b1に形成されるテーパ面は、可動コア36の凹部36bの開口から奥側に向かって形成されるようにするとよい。可動コア36の端面36aを径方向内側に拡げ、端面36aの面積を大きくすることができと共に、加工も単純化されて生産性が向上する。この場合、テーパ面は可動コア36の凹部36bの開口から凹部36bの底面36b2までの全域に亘って形成されるようにするとよい。
 上述した様に、本実施例では、可動コア36と固定コア39との衝突時の衝撃力及び可動コア36とフランジ部35bとの衝突時の衝撃力を小さくすることができる。その結果、可動コア36は、保護膜としてのめっきが形成されないように構成することができる。
可動コア36にめっきを形成する場合、めっきに割れが生じないように、めっきの耐久性を高める必要がある。しかし、めっきを形成しないことで、めっきの耐久性等に配慮する必要がなくなり、生産性が向上し、低コスト化を実現できる。
 可動コア36を囲繞して可動コア36の外周面36cと対向する内周面38aを有する囲繞部材38を備え、囲繞部材38の内周面38aと可動コア36の外周面36cとの間に形成される隙間の断面積(この場合、軸方向CAに垂直な断面積)が、貫通孔36dの内周面と小径部35aの外周面との間に形成される隙間の断面積よりも大きく構成されるようにするとよい。
 これにより、可動コア36が往復動する際に、燃料は囲繞部材38の内周面38aと可動コア36の外周面36cとの間に形成される隙間を通って軸方向CAにおける可動コア36の一端側と他端側とを行き来できる。このため、可動コア36に貫通孔36d以外の貫通孔を設けなくても、可動コア36は軸方向CAに往復動することができる。なお本実施例では、囲繞部材38はアウターコアにより構成される。
 囲繞部材38の内周面38aは、可動コア36の外周面36cの摺動をガイドするガイド部を構成するようにしてもよい。可動コア36のガイド方法(支持方法)には、可動コア36の内周とロッド35の外周とのクリアランスでガイドする方法と、可動コア36の外周と囲繞部材38の内周とのクリアランスでガイドする方法とがある。囲繞部材38の内周面38aをガイド部とする場合、ガイド部における摺動面積を大きくすることができるので、耐摩耗性において有利である。
 貫通孔36dの内周面と小径部35aの外周面との間に形成される隙間の径方向における長さは、囲繞部材38の内周面38aと可動コア36の外周面36cとの間に形成される隙間の径方向における長さよりも小さく構成されるようにしてもよい。この場合、可動コア36の内周とロッド35の外周とのクリアランスで可動コア36をガイドする。これにより、囲繞部材38の内周面38aと可動コア36の外周面36cとの間に形成される隙間の径方向における長さを大きくすることができ、この隙間の断面積を調整することが容易になる。その結果、可動コア36における往復動作の速度調整と、可動コア36と固定コア39との衝突時の衝撃力の調整とを適切に行うことができる。
 可動コア36は、環状を成して固定コア39の端面39aと対向する環状端面36aを有し、可動コア36における、環状端面36aが形成される部位と貫通孔36dが形成される部位とは、一部品で構成されるようにするとよい。これにより、部品点数を削減し、コストを削減することができる。
 電磁弁機構300は、可動コア36を固定コア39の側に付勢するスプリング(アンカー付勢ばね)41を備えるようにするとよい。これにより、ロッド35のフランジ部35bが可動コア36の凹部35bの底面35b2から離れ難くし、凹部36bの底面部36b2近傍におけるキャビテーション・エロージョンの発生を抑制することができる。
 次に、図7A~図7Dを用いて、本実施例との比較例である電磁弁機構300’の課題を説明する。図7A~図7Dでは、ロッド35のフランジ部35bとアンカー36の凹部36bの底面36b2との当接部がキャビテーション・エロージョンに対して厳しい環境となるメカニズムを示す。
 図7A~図7Dの比較例では、アンカー(可動コア)36の凹部36bの内周面36b1’が軸方向CAに平行な円筒面で構成されている。内周面36b1’以外の構成は、上述した実施例と同様であり、上述した実施例と同様な構成には上述した実施例と同じ符号を付して説明を省略する。
 図7Aは、本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300’が閉弁した状態にあるときの図である。
 電磁弁機構300の閉弁状態においては、ロッド35のフランジ部35bの端面35b1がアンカー36の凹部36bの底面36b2に当接した状態である。
 図6Bは、本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36’及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300’が開弁する動作途中の状態にあるときの図である。
 電磁弁機構300’が図7Aの状態から開弁動作を開始すると固定コア39からアンカー36が分離するが、図7Bの状態ではアンカー36とロッド35のフランジ部35bとは当接状態を維持している。すなわち図7Bの状態では、ロッド35に係合した吸入弁30がストッパ32に当接していない状態である。
 この場合の燃料の流れとしては、アンカー36の径方向外側から固定コア39とアンカー36とシールリング48とに囲まれた燃料室(流体室)へ向かう流れが主流となる。一部の燃料は、アンカー36の径方向外側から吸入弁30へ向かう流れを形成する場合もある。
 図7Cは、本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36’及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300’が開弁する動作途中の状態(図6Bから時間が経過した状態)にあるときの図である。
 図7Cでは、吸入弁30が全開となり、ストッパ32に当接した状態を示している。この場合、吸入弁30に当接しているロッド35は静止し、アンカー36は慣性力によって吸入弁30の方向へ移動を継続する。そして、アンカー36がロッド35のフランジ部35bから離れる際に、アンカー36とフランジ部35bの当接部周囲の領域(破線で囲む領域)が急激な減圧を生じ、その圧力が飽和蒸気圧以下になるとキャビテーションCavが発生する。
 図7Dは、本発明との比較例における電磁弁機構300’について、固定コア39及びアンカー36’及びロッド35の周囲を重点的に示す断面図であり、電磁弁機構300’が開弁する動作途中の状態(図6Cから時間が経過した状態)にあるときの図である。
 図7Dでは、アンカー36の移動に伴って流れ出した燃料が他の部品と衝突して反射した圧力波か、或いは、低圧となったことによる燃料の再流入により、キャビテーションCavが発生していた領域(破線で囲む領域)の圧力が回復することにより、キャビテーションCavが崩壊し(Cal)、その衝撃力によりアンカー36が壊食されることとなる。しかしながら、図6に示すような構成でアンカー36の凹部36bの内周面36b1に逆テーパを設けることによって、アンカー36とフランジ部35bとの当接部周囲の体積が図7Aの比較例よりも大きくなるため、アンカー36が可動している間に破線で囲む領域への燃料の供給がし易く、キャビテーションCavの発生を抑制することができる。そのため、キャビテーション崩壊時の衝撃力の低減に寄与することができる。
 本実施例では流体として燃料を扱う高圧燃料ポンプについて説明したが、本実施例の電磁弁機構300は燃料以外の流体を扱う流体機械にも適用可能である。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・置換をすることが可能である。
 300…電磁弁機構、35…ロッド、35a…ロッド35の小径部、35b…ロッド35のフランジ部、35b3…フランジ部35bの外周面、36…可動コア(アンカー)、36a…可動コア36の端面(環状端面)、36b…可動コア36の端面36aに形成された凹部、36b1…可動コア36の凹部36bの内周面、36b2…凹部36bの底面、36c…可動コア36の外周面、36d…可動コア36の貫通孔、38…囲繞部材(アウターコア)、38a…囲繞部材38の内周面、39…固定コア、39a…固定コア39の端面(環状端面)、41…アンカー付勢ばね、C36…貫通孔36dの内周面と可動コア36の外周面36cとの径方向における中心位置、CA…ロッド35の軸方向、Lc…テーパ面とフランジ部35bの外周面35b3との間に形成される隙間の径方向における最大長さ、Lf…小径部35aの外周面からフランジ部35bの外周面35b3までの径方向長さ、P36b1…テーパ面の最外径部。

Claims (14)

  1.  相互の間に磁気吸引力が作用する固定コア及び可動コアと、前記可動コアを挿通するロッドとを備え、
     前記可動コアは、前記固定コアと対向する対向面に形成された凹部と、前記ロッドの軸方向に貫通し前記ロッドが挿通する貫通孔と、を有し、
     前記ロッドは、前記貫通孔に挿入される小径部と、前記小径部より外径が大きく前記軸方向において前記凹部と接触するフランジ部と、を有して前記可動コアと別体に構成された電磁弁機構において、
     前記可動コアには単一の前記貫通孔のみが形成され、
     前記可動コアの前記凹部の内周面と前記フランジ部の外周面との間に形成される隙間が前記凹部の開口側から奥側に向かって拡大するように構成された電磁弁機構。
  2.  請求項1に記載の電磁弁機構において、
     前記フランジ部の外周面は前記ロッドの軸方向と平行に形成され、
     前記可動コアの前記凹部の内周面にはテーパ面が形成され、
     前記テーパ面と前記フランジ部の外周面との間に形成される前記隙間の径方向における最大長さが前記小径部の外周面から前記フランジ部の外周面までの径方向長さよりも小さくなるように構成される電磁弁機構。
  3.  請求項1に記載の電磁弁機構において、
     前記可動コアの前記凹部の内周面にはテーパ面が形成され、
     前記テーパ面の最外径部は、前記貫通孔の内周面と前記可動コアの外周面との径方向における中心位置に対し、径方向内側に位置する電磁弁機構。
  4.  請求項1に記載の電磁弁機構において、
     前記固定コアは、前記可動コアの側に環状を成して形成される環状端面を有し、
     前記可動コアの前記凹部の内周面にはテーパ面が形成され、
     前記テーパ面の最外径部は、前記固定コアの前記環状端面の内径と外径との間の中心位置に対し、径方向内側に位置する電磁弁機構。
  5.  請求項1に記載の電磁弁機構において、
     前記可動コアの前記凹部の内周面にはテーパ面が形成され、
     前記テーパ面は、前記可動コアの前記凹部の開口側から奥側に向かって内径が拡大するように形成される電磁弁機構。
  6.  請求項5に記載の電磁弁機構において、
     前記テーパ面は、前記可動コアの前記凹部の開口から奥側に向かって形成される電磁弁機構。
  7.  請求項5に記載の電磁弁機構において、
     前記テーパ面は、前記可動コアの前記凹部の開口から前記凹部の底面までの全域に亘って形成される電磁弁機構。
  8.  請求項1に記載の電磁弁機構において、
     前記可動コアは、めっきが形成されないように構成される電磁弁機構。
  9.  請求項1に記載の電磁弁機構において、
     前記可動コアを囲繞して前記可動コアの外周面と対向する内周面を有する囲繞部材を備え、
     前記囲繞部材の前記内周面と前記可動コアの前記外周面との間に形成される隙間の断面積が、前記貫通孔の内周面と前記小径部の外周面との間に形成される隙間の断面積よりも大きく構成される電磁弁機構。
  10.  請求項9に記載の電磁弁機構において、
     前記囲繞部材の前記内周面は、前記可動コアの外周面の摺動をガイドするガイド部を構成する電磁弁機構。
  11.  請求項9に記載の電磁弁機構において、
     前記貫通孔の内周面と前記小径部の外周面との間に形成される隙間の径方向における長さは、前記囲繞部材の前記内周面と前記可動コアの前記外周面との間に形成される隙間の径方向における長さよりも小さく構成される電磁弁機構。
  12.  請求項1に記載の電磁弁機構において、
     前記可動コアは、環状を成して前記固定コアと対向する環状端面を有し、
     前記可動コアにおける、前記環状端面が形成される部位と前記貫通孔が形成される部位とは、一部品で構成される電磁弁機構。
  13.  請求項1に記載の電磁弁機構において、
     前記可動コアを前記固定コアの側に付勢するスプリングを備える電磁弁機構。
  14.  請求項1に記載の電磁弁機構を備えた高圧燃料ポンプ。
PCT/JP2020/024075 2019-06-27 2020-06-19 高圧燃料ポンプ及びその電磁弁 WO2020262217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021526896A JP7248794B2 (ja) 2019-06-27 2020-06-19 高圧燃料ポンプ
CN202080044180.7A CN114127408B (zh) 2019-06-27 2020-06-19 高压燃料泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119242 2019-06-27
JP2019119242 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262217A1 true WO2020262217A1 (ja) 2020-12-30

Family

ID=74059726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024075 WO2020262217A1 (ja) 2019-06-27 2020-06-19 高圧燃料ポンプ及びその電磁弁

Country Status (3)

Country Link
JP (1) JP7248794B2 (ja)
CN (1) CN114127408B (ja)
WO (1) WO2020262217A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064368U (ja) * 1992-06-19 1994-01-21 本田技研工業株式会社 電磁式燃料噴射弁
JP2016094913A (ja) * 2014-11-17 2016-05-26 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
WO2019003719A1 (ja) * 2017-06-27 2019-01-03 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285883B2 (ja) * 2000-04-18 2009-06-24 株式会社デンソー 電磁弁およびそれを用いた燃料供給装置
JP4353288B2 (ja) * 2007-08-08 2009-10-28 トヨタ自動車株式会社 燃料ポンプ
JP5178683B2 (ja) * 2009-10-21 2013-04-10 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁
JP5768536B2 (ja) * 2010-10-05 2015-08-26 株式会社デンソー 燃料噴射弁
JP5517068B2 (ja) * 2010-12-27 2014-06-11 株式会社デンソー 高圧ポンプ
JP2015137578A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 高圧ポンプ
DE102015212387A1 (de) * 2015-07-02 2017-01-05 Robert Bosch Gmbh Elektromagnetisch betätigbares Saugventil für eine Hochdruckpumpe sowie Verfahren zur Herstellung eines solchen Saugventils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064368U (ja) * 1992-06-19 1994-01-21 本田技研工業株式会社 電磁式燃料噴射弁
JP2016094913A (ja) * 2014-11-17 2016-05-26 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
WO2019003719A1 (ja) * 2017-06-27 2019-01-03 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ

Also Published As

Publication number Publication date
CN114127408B (zh) 2023-12-01
JP7248794B2 (ja) 2023-03-29
CN114127408A (zh) 2022-03-01
JPWO2020262217A1 (ja) 2020-12-30

Similar Documents

Publication Publication Date Title
US10731615B2 (en) Flow rate control valve and high-pressure fuel supply pump
JP2016094913A (ja) 高圧燃料供給ポンプ
CN111373139B (zh) 高压燃料泵
JP2018087548A (ja) 高圧燃料供給ポンプ
EP3521608B1 (en) High-pressure fuel supply pump
JP6840238B2 (ja) 弁機構、電磁吸入弁機構、及び高圧燃料ポンプ
JP2015218678A (ja) リリーフ弁を備えた高圧燃料供給ポンプ
WO2020262217A1 (ja) 高圧燃料ポンプ及びその電磁弁
JP7055898B2 (ja) ソレノイド機構及び高圧燃料ポンプ
WO2019107101A1 (ja) 高圧燃料供給ポンプ
JP7012149B2 (ja) 電磁弁、高圧ポンプおよびエンジンシステム
US20230003215A1 (en) Electromagnetic valve mechanism and high-pressure fuel supply pump
JP2019167897A (ja) 燃料供給ポンプ
JP2018100651A (ja) 弁機構及びこれを備えた高圧燃料供給ポンプ
CN110678642B (zh) 高压燃料供给泵
JP2017145731A (ja) 高圧燃料供給ポンプ
JP2017141725A (ja) 高圧燃料供給ポンプ
JP5120726B2 (ja) 高圧ポンプ
JP7248783B2 (ja) 電磁弁機構及びそれを備えた高圧燃料供給ポンプ
JP7077212B2 (ja) 高圧燃料ポンプ
JP7110384B2 (ja) 燃料ポンプ
JP2019090365A (ja) 燃料供給ポンプ
JP6932629B2 (ja) 高圧燃料ポンプ
JP2021059991A (ja) 高圧燃料供給ポンプ
JP2020020276A (ja) 電磁弁機構及びこれを備えた燃料ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832647

Country of ref document: EP

Kind code of ref document: A1