WO2020261502A1 - フォトクロミックポリマーを含む眼用医療機器およびその製造方法 - Google Patents

フォトクロミックポリマーを含む眼用医療機器およびその製造方法 Download PDF

Info

Publication number
WO2020261502A1
WO2020261502A1 PCT/JP2019/025687 JP2019025687W WO2020261502A1 WO 2020261502 A1 WO2020261502 A1 WO 2020261502A1 JP 2019025687 W JP2019025687 W JP 2019025687W WO 2020261502 A1 WO2020261502 A1 WO 2020261502A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituent
medical device
monomer
Prior art date
Application number
PCT/JP2019/025687
Other languages
English (en)
French (fr)
Inventor
友美 冨田
中田 和彦
雅樹 馬場
理 新居田
百田 潤二
真行 宮崎
竹中 潤治
Original Assignee
株式会社メニコン
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン, 株式会社トクヤマ filed Critical 株式会社メニコン
Priority to CN201980097891.8A priority Critical patent/CN114096911A/zh
Priority to US17/617,615 priority patent/US20220244428A1/en
Priority to JP2021528798A priority patent/JP7274577B2/ja
Priority to PCT/JP2019/025687 priority patent/WO2020261502A1/ja
Priority to EP19934953.1A priority patent/EP3992695A4/en
Publication of WO2020261502A1 publication Critical patent/WO2020261502A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1659Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having variable absorption coefficient for electromagnetic radiation, e.g. photochromic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/102Photochromic filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Definitions

  • the present invention relates to an ophthalmic medical device containing a photochromic polymer and a method for producing the same.
  • Photochromic compounds have at least two states with the same molecular weight but different absorption spectra, eg, switching from a first state to a second state by light irradiation, in response to light blocking or thermal energy, or , It is possible to return to the first state in response to light irradiation of another wavelength.
  • the property of the photochromic compound capable of reversibly isomerizing between at least two states having different absorption spectra for example, by blending the photochromic compound in the spectacle lens, in a room where the amount of ultraviolet irradiation is small.
  • Photochromic eyeglasses that can be used as ordinary eyeglasses and can be used as sunglasses outdoors with a large amount of ultraviolet rays are commercially available.
  • the contact lens is obtained by polymerizing a photochromic contact lens in which a non-polymerizable photochromic compound is mixed in the polymer lens (for example, Patent Document 1) and a monomer component containing the polymerizable photochromic compound.
  • Photochromic contact lenses formed from polymers eg, Patent Document 2 have been proposed.
  • a polymerizable photochromic compound (hereinafter referred to as a photochromic monomer) may be used from the viewpoint of stability and safety in a moist environment such as on the cornea or in the eye. It is preferable and it is desirable to have high transparency in the inactive state. On the other hand, the photochromic monomer has insufficient compatibility with other monomers, and the transparency of the obtained lens may be impaired.
  • a uniform reactive mixture is obtained by adding an organic solvent when mixing the monomer components containing a photochromic monomer, but there is room for improvement in the transparency of the obtained polymer.
  • the use of an organic solvent may cause frequent chain transfers during polymerization, which may make the obtained photochromic polymer brittle. Further, since a large amount of water-soluble organic solvent and water are required in the step of removing the organic solvent from the photochromic polymer, it is not preferable from the viewpoint of environmental protection.
  • the present invention has been made to solve the above problems, and a main object thereof is to provide an ophthalmic medical device containing a photochromic polymer having higher transparency in an inactive state by using a photochromic monomer. There is, and it is a further purpose to suppress or avoid the use of the organic solvent at that time.
  • an intraocular medical device comprising a photochromic polymer obtained by polymerizing a monomer component containing a photochromic monomer and a lactam ring-containing monomer, wherein the lactam ring is contained in the monomer component.
  • Medical devices for the eye which have a monomer content of 10% to 50% by weight and are contact lenses or intraocular lenses, are provided.
  • the lactam ring-containing monomer comprises at least one selected from N-vinyllactam and methylenelactam.
  • the monomer component further comprises at least one selected from N, N-dialkyl (meth) acrylamide and N, N-dialkylaminoalkyl (meth) acrylamide.
  • the monomer component further comprises a silicone-containing monomer.
  • the content ratio of the photochromic monomer in the monomer component is 0.001% by weight to 5% by weight.
  • the photochromic monomer is a T-type photochromic compound.
  • the photochromic monomer is a naphthopyrane compound.
  • the photochromic compound is represented by the following structural formula (1).
  • the monomer component further comprises at least one selected from alkyl (meth) acrylates, alkoxyalkyl (meth) acrylates and aromatic ring-containing (meth) acrylates.
  • the content ratio of the hydroxyl group-containing monomer in the monomer component is 20% by weight or less. According to another aspect of the present invention, it contains a monomer component containing a photochromic monomer and a lactam ring-containing monomer and does not contain an organic solvent, or a content ratio of 10 parts by weight or less with respect to 100 parts by weight of the monomer component.
  • the above-mentioned ophthalmic medicine which comprises polymerizing a reactive mixture containing an organic solvent to obtain a photochromic polymer, wherein the content ratio of the lactam ring-containing monomer in the monomer component is 10% by weight to 50% by weight.
  • a method of manufacturing the device is provided.
  • the content ratio of the hydroxyl group-containing monomer in the monomer component is 20% by weight or less.
  • the polymerization comprises thermal polymerization and photopolymerization.
  • a photochromic polymer having a repeating unit derived from a photochromic monomer and capable of changing from an inactive state to an activated state having a lower visible light transmittance than the inactive state by absorbing light energy.
  • a medical device for the eye which is a contact lens or an intraocular lens having a spectral transmittance of more than 90% at least a part of wavelengths in the wavelength range of less than 700 nm in the inactive state.
  • the ophthalmic medical device has a spectral transmittance of less than 70% at least a part of the wavelengths in the visible light region in the activated state.
  • the ophthalmic medical device has a spectral transmittance of less than 70% at least a part of the wavelength range of 500 nm to 700 nm in the activated state.
  • the ophthalmic medical device has a spectral transmittance of less than 70% over the entire wavelength range of 530 nm to 670 nm in the activated state. In one embodiment, the ophthalmic medical device has a spectral transmittance of 15% or more and less than 70% at least a part of the wavelength range of 500 nm to 700 nm in the activated state. In one embodiment, the ophthalmic medical device has a spectral transmittance of 15% or more and less than 70% over the entire wavelength range of 530 nm to 670 nm in the activated state. In one embodiment, the ophthalmic medical device has a spectral transmittance of 80% or less in the blue region in the activated state.
  • the ophthalmic medical device has a spectral transmittance of 70% or less in the blue region in the activated state. In one embodiment, the ophthalmic medical device has a visual transmittance of 75% or more in the wavelength range of 380 nm to 780 nm in an inactive state. In one embodiment, the ophthalmic medical device has a Dk value of 25 barr to 160 barr, a water content of 25% to 80% by weight, and a Young's modulus of 0.2 MPa to 2.0 MPa. It is a sex lens. In one embodiment, the ophthalmic medical device is an oxygen permeable hard contact lens having a Dk value of 130 barr to 250 barr and a water absorption of 1.0% by weight or less.
  • the ophthalmic medical device is an oxygen permeable soft contact lens having a Dk value of 50 barr to 200 barr and a shape recovery rate of 25% or less.
  • the ophthalmic medical device is an intraocular lens having an elongation of 170% to 600% and a water absorption of 1.5% to 4.5% by weight.
  • the ophthalmic medical device changes from an inactive state to an activated state within 1 minute from the start of irradiation with a xenon lamp at 50,000 lux.
  • a lactam ring-containing monomer is used as a copolymerization monomer with a photochromic monomer in a specific blending ratio.
  • the compatibility of the photochromic monomer in the monomer component can be ensured, and the photochromic polymer has excellent transparency in the inactive state without depending on the use of an organic solvent (as a result, excellent transparency in the inactive state). (Eye medical device) can be obtained.
  • the "activated state” means that the photochromic monomer in the photochromic polymer (specifically, a constituent unit derived from the photochromic monomer) absorbs energy from light irradiation to change from the first state to the second state. It means that it is in the switched state, and the “inactive state” means that the photochromic monomer in the polymer material is in the state of being switched from the second state to the first state.
  • the change when the photochromic compound is activated from the inactive state or when it is deactivated from the activated state is generally continuous, even if light irradiation of a predetermined wavelength is continued any longer, the transmittance is further increased.
  • a state in which no change occurs can be defined as an "activated state", and a state in which no further change in transmittance occurs even if the state in which no light irradiation of a predetermined wavelength is continued is continued can be defined as an "inactive state”.
  • the ophthalmic medical device of the present invention is typically in a decolorized state showing a higher visible light transmittance than an activated state in an inactive state, and is in an activated state having a low visible light transmittance due to absorption of light energy. (Colored (colored) state).
  • the "degree of color development (colored)” in the “activated state” with respect to the "degree of color development (colored)” in the “inactive state” may be simply referred to as “color development density” below ("color development density”). “High” means that the color is dark).
  • the "visual transmittance”, “spectral transmittance” and “visible light transmittance” are values obtained in accordance with the provisions of JIS T 7333: 2018 (ISO 8980-3: 2013).
  • the "visible light region” means a wavelength region of 380 nm to 780 nm.
  • the “blue region” means a wavelength region of 380 nm to 500 nm.
  • “(Meta) acrylic” means methacrylic and / or acrylic.
  • the medical device for the eye according to the embodiment of the present invention is typically a contact lens or an intraocular lens.
  • the ophthalmic medical device includes a photochromic polymer obtained by polymerizing a monomer component containing a photochromic monomer and a lactam ring-containing monomer.
  • the blending ratio of the lactam ring-containing monomer in the monomer component is 10% by weight to 50% by weight.
  • the above-mentioned monomer component can further contain any suitable monomer depending on the physical characteristics, applications, etc. desired for the ophthalmic medical device.
  • the monomer component may include, for example, a silicone-containing monomer, a hydrophilic monomer, a crosslinkable monomer, and the like, in addition to the photochromic monomer and the lactam ring-containing monomer.
  • the photochromic monomer used in the present invention is, of course, a compound having both a site exhibiting photochromic properties and a polymerizable group.
  • the photochromic monomer is a T type that switches from an inactive state to an activated state by irradiation with light of a predetermined wavelength ⁇ and then returns to an inactive state in response to the blocking of the light or thermal energy, and other wavelengths ⁇ '. It may be any of the P type that returns to the inactive state in response to the light irradiation of, and the T type is preferably used.
  • an ophthalmic medical device using a T-type photochromic monomer is in an activated state (colored state) outdoors with a large amount of ultraviolet irradiation, and returns to an inactive state (decolorized state) in a room with a small amount of ultraviolet irradiation. Can be done.
  • the wavelength ⁇ that activates the photochromic monomer can be, for example, in the range of 200 nm to 500 nm, preferably 200 nm to 480 nm, and more preferably 200 nm to 450 nm.
  • Examples of the P-type photochromic monomer include a flugide compound, a diarylethene compound, and a phenoxynaphthanequinone compound.
  • Examples of the T-type photochromic monomer include an azobenzene compound, a hexaarylbiimidazole compound, a spiropyran / spirooxazine compound, a naphthopyran compound, an anthracene dimer, and a salicylidene aniline compound. Of these, naphthopyrane compounds are preferable. Only one type of photochromic monomer may be used alone, or two or more types may be used in combination.
  • the T-type photochromic monomer preferably has a fast heat return reaction. According to an ophthalmic medical device using such a photochromic monomer, it is preferably within 60 seconds, more preferably 30 seconds after the end of light irradiation of a predetermined wavelength at a corneal temperature (for example, 35 ° C ⁇ 2 ° C). It can return to the inactive state within.
  • the naphthopyrane-based photochromic monomer preferably used in the present invention has the following structural formula (1): It has a 3,3-diphenylindenonaphthopyrane structure represented by (1) as a basic skeleton (hereinafter, may be simply referred to as "indenonaphthopyrane skeleton").
  • indenonaphthopyrane skeleton a basic skeleton
  • a photochromic monomer having an indenonaphthopyrane structure is known to exhibit excellent photochromic properties.
  • specific substituents will be described step by step.
  • R 1 and R 2 are substituents substituted with a phenyl group bonded to the carbon atom at the 3-position of the indenonaphthopyrane skeleton.
  • R 1 and R 2 are independently a group having a radically polymerizable group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, and a cycloalkyl group having 3 to 8 carbon atoms.
  • An alkoxy group having 1 to 6 carbon atoms, an amino group, a heterocyclic group, a cyano group, a halogen atom, or an alkylthio group having 1 to 6 carbon atoms or an arylthio group having 6 to 10 carbon atoms which may have a substituent. is there.
  • a is an integer of 0 to 5
  • b is an integer of 0 to 5
  • a + b 1 to 10
  • at least one of R 1 and R 2 is a group having a radically polymerizable group.
  • R 1 and R 2 may be the same or different from each other. Good.
  • R 2 Similarly, when R 2 there are a plurality may be different groups be the same as each other.
  • alkyl groups having 1 to 6 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group and hexyl group. And so on.
  • haloalkyl group having 1 to 6 carbon atoms an alkyl group substituted with a fluorine atom, a chlorine atom or a bromine atom is preferable.
  • suitable haloalkyl groups include trifluoromethyl group, tetrafluoroethyl group, chloromethyl group, 2-chloroethyl group, bromomethyl group and the like.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the suitable alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group and the like. it can.
  • the amino group is not limited to the primary amino group (-NH 2 ), and may be a secondary or tertiary amino group in which one or two hydrogen atoms are substituted.
  • substituent having such an amino group include an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, and a carbon number of carbon atoms.
  • Examples thereof include an aryl group having 6 to 14 and a heteroaryl group having 4 to 14 carbon atoms.
  • suitable amino groups include an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, a phenylamino group, a diphenylamino group and the like.
  • heterocyclic group for example, an aliphatic heterocyclic group such as a morpholino group, a piperidino group, a pyrrolidinyl group, a piperazino group, an N-methylpiperazino group and an aromatic heterocyclic group such as an indolinyl group can be mentioned as preferable ones.
  • the heterocyclic group may have a substituent. Preferred substituents include alkyl groups. Suitable heterocyclic groups having a substituent include, for example, a 2,6-dimethylmorpholino group, a 2,6-dimethylpiperidino group and a 2,2,6,6-tetramethylpiperidino group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkylthio group having 1 to 6 carbon atoms examples include a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, an n-butylthio group, a sec-butylthio group, a t-butylthio group and the like.
  • arylthio group having 6 to 10 carbon atoms examples include a phenylthio group, a 1-naphthylthio group, a 2-naphthylthio group and the like.
  • 1 to 5 hydrogen atoms in the aromatic ring are an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and 3 carbon atoms. It may be substituted with a cycloalkyl group of -8 or a halogen atom.
  • the carbon number of 6 to 10 of the arylthio group does not include the carbon number of the substituent.
  • the groups other than the group having a radically polymerizable group include the alkyl group, the alkoxy group, the amino group, and the above. It is preferably a group selected from a substituted amino group, the heterocyclic group, and the halogen atom.
  • examples of particularly suitable ones include a methyl group, a methoxy group, a dimethylamino group, a morpholino group, a piperidino group, a fluoro group and the like.
  • the number of R 1 and R 2 other than the group having a radically polymerizable group is preferably 1 or 0. That is, it is preferable that the group other than the group having a radically polymerizable group is partially substituted with a phenyl group or not substituted at all. When it is mono-substituted with a phenyl group, it is preferably substituted with a para-position.
  • the group having a radically polymerizable group is a group represented by the following formula (2).
  • R 10 is a linear or branched alkylene group having 1 to 10 carbon atoms. It is preferably an alkylene group having 1 to 5 carbon atoms. Examples of a suitable alkylene group having 1 to 5 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, a sec-butylene group, a tert-butylene group, a pentylene group and the like. be able to.
  • l is an integer from 0 to 50. Considering the productivity of the photochromic monomer itself and the effect exerted, l is preferably an integer of 1 to 20, more preferably an integer of 1 to 10, and preferably an integer of 1 to 5. More preferably, it is most preferably 1. l refers to the repeating unit of ( ⁇ R 10 O ⁇ ). When l is 2 or more, the groups of the units enclosed by l ((-R 10 O-) groups) may be the same or different groups from each other.
  • PG is a radically polymerizable group, and is a vinyl group, a 1-chlorovinyl group, an allyl group, a styryl group, a (meth) acrylic group, a 2- (methacryloxy) ethylcarbamyl group, and a 2- (methacryloxy) ethoxycarbonyl group.
  • Examples include groups, crotyl groups, and the like.
  • the (meth) acrylic group is most preferable in consideration of the productivity of the photochromic monomer itself and the performance of the ophthalmic medical device.
  • a refers to the number of R 1 (number of substitutions)
  • b refers to the number of R 2 (number of substitutions).
  • a is an integer of 0 to 5
  • b is an integer of 0 to 5
  • a + b 1 to 10
  • at least one of R 1 and R 2 is a group having the radically polymerizable group.
  • It may be a hydrogen atom.
  • the most preferable embodiment is the case where the number of groups having the radically polymerizable group is one.
  • the number of groups having a radically polymerizable group is two or more, the photochromic monomer is crosslinked, and the photochromic property tends to be deteriorated.
  • the position where the group having a radically polymerizable group is substituted is preferably the para position of the phenyl group of 3,3-diphenylindenonaphthopyrane. Therefore, a preferred embodiment is a case where the group having a radically polymerizable group is substituted at the para position of one of the phenyl groups.
  • the other phenyl group is not limited, but it is also preferable that one substituent is present at the para position or no substituent is present (the para position is also a hydrogen atom). Among them, it is preferable that the other phenyl group has no substituent or is substituted with the alkyl group, the alkoxy group, or the heterocyclic group at the para position.
  • Ring Z (ring group spiro-bonded to the carbon atom at position 13) is represented by An aliphatic ring group which may have a substituent and has 3 to 20 carbon atoms constituting the ring together with the carbon atom at the 13-position.
  • a fused polycyclic group obtained by condensing an aromatic ring or an aromatic heterocycle which may have a substituent on the aliphatic ring.
  • the number of carbon atoms or the number of atoms shown in the ring group indicates the number of carbons or atoms constituting the ring, and includes the number of carbon atoms or the number of atoms of the substituent. It's not a thing.
  • Examples of the aliphatic ring include a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, a cycloheptane ring, a norbornane ring, a bicyclononane ring, and an adamantane ring.
  • fused polycycle in which an aromatic ring or an aromatic heterocycle is fused to the aliphatic ring include a phenanthrene ring.
  • heterocycle examples include a thiophene ring, a furan ring, and a pyridine ring.
  • examples of the fused polycycle obtained by condensing an aromatic ring or an aromatic heterocycle on the heterocycle include a phenylfuran ring and a biphenylthiophene ring.
  • the aliphatic ring, a fused polycycle in which an aromatic ring or an aromatic heterocycle is fused to the aliphatic ring, the heterocycle, or a condensed polycycle in which an aromatic ring or an aromatic heterocycle is fused to the heterocycle. May have a substituent.
  • substituents to be substituted for the ring (condensed polycycle) an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an alkoxy having 1 to 6 carbon atoms.
  • Examples thereof include at least one type of substituent selected from the group consisting of a group, an amino group, a substituted amino group and a halogen atom.
  • the alkyl group, the haloalkyl group, the cycloalkyl group, the alkoxy group, the amino group, the substituted amino group, and the halogen atom are the same as the groups already described in ⁇ R 1 and R 2 >.
  • the group is mentioned.
  • substituents of the ring Z those in which the photochromic monomer exerts a particularly excellent effect are an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group, a haloalkyl group having 1 to 6 carbon atoms, and 1 carbon group. Alkoxy groups of ⁇ 6 are particularly preferred.
  • the aliphatic hydrocarbon ring group having 5 to 16 carbon atoms constituting the ring in order to obtain a high color-developing concentration while having a high fading rate, these aliphatic hydrocarbon rings A ring group substituted with an alkyl group having 1 to 6 carbon atoms (preferably an alkyl group having 1 to 3 carbon atoms), or a cycloalkyl group having 3 to 8 carbon atoms bonded or condensed to the aliphatic hydrocarbon ring. Ring group is preferable.
  • a particularly suitable ring Z include an unsubstituted cyclohexane ring group, a cycloheptane ring group, a cyclooctane ring group, a cyclononane ring group, a cyclodecane ring group, a cycloundecane ring group, or a cyclo. It is a dodecane group.
  • the ring Z may be a cyclohexane ring group, but when it is a cyclohexane ring group, it is preferably a cyclohexane ring group substituted with an alkyl group having 1 to 3 carbon atoms, and more preferably an alkyl group having 1 to 2 carbon atoms. Is preferable. Further, in the case of a cyclohexane group in which the alkyl group is substituted, the number of substituents of the alkyl group is preferably 1 to 10, and more preferably 2 to 6.
  • the ring Z is represented by.
  • the carbon atom having the dotted line bond is the carbon atom at the 13-position.
  • the number of carbon atoms constituting the ring together with the carbon atom at the 13-position is 6 to 15. It is more preferable that the number of carbon atoms is 7 to 12.
  • ring groups when a photochromic monomer having a higher color development density or a photochromic monomer having a faster fading rate is used, it is preferable to use separate ring groups.
  • the photochromic monomer has a particularly high color development concentration.
  • R 3 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cyano group, and the like.
  • Halogen atom alkylthio group having 1 to 6 carbon atoms, arylthio group having 6 to 10 carbon atoms which may have a substituent, nitro group, formyl group, hydroxycarbonyl group, alkylcarbonyl group having 2 to 7 carbon atoms, carbon It may have an alkoxycarbonyl group of 2 to 7, an aralkyl group having 7 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 11 carbon atoms which may have a substituent, and a substituent.
  • a good aryloxy group having 6 to 12 carbon atoms an aryl group having 6 to 12 carbon atoms which may have a substituent, a heteroaryl group having 3 to 12 carbon atoms which may have a substituent, a thiol group, a carbon It is an alkoxyalkylthio group having 2 to 9, a haloalkylthio group having 1 to 6 carbon atoms, or a cycloalkylthio group having 3 to 8 carbon atoms.
  • an alkyl group having 1 to 6 carbon atoms an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom, and 1 carbon group.
  • Examples of the alkylthio group having up to 6 or the arylthio group having 6 to 10 carbon atoms which may have a substituent include the same group as the group described in ⁇ R 1 and R 2 >, and the preferred group is also the same. is there.
  • alkylcarbonyl group having 2 to 7 carbon atoms examples include an acetyl group and an ethylcarbonyl group.
  • alkoxycarbonyl group having 2 to 7 carbon atoms examples include a methoxycarbonyl group and an ethoxycarbonyl group.
  • Examples of the aralkyl group having 7 to 11 carbon atoms include a benzyl group, a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a naphthylmethyl group and the like.
  • Examples of the aralkyl group having 7 to 11 carbon atoms include a benzyloxy group and a naphthylmethoxy group.
  • Examples of the aryloxy group having 6 to 12 carbon atoms include a phenyloxy group and a naphthyloxy group.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • heteroaryl group having 3 to 12 carbon atoms examples include a thienyl group, a frill group, a pyrrolinyl group, a pyridyl group, a benzothienyl group, a benzofuranyl group, a benzopyrrolinyl group and the like.
  • alkoxyalkylthio group having 2 to 9 carbon atoms examples include a methoxymethylthio group, a methoxyethylthio group, a methoxyn-propylthio group, a methoxyn-butylthio group, an ethoxyethylthio group, an n-propoxypropylthio group and the like. it can.
  • haloalkylthio group having 1 to 6 carbon atoms examples include a trifluoromethylthio group, a tetrafluoroethylthio group, a chloromethylthio group, a 2-chloroethylthio group, a bromomethylthio group and the like.
  • Examples of the cycloalkylthio group having 3 to 8 carbon atoms include a cyclopropylthio group, a cyclobutylthio group, a cyclopentylthio group, a cyclohexylthio group and the like.
  • the aralkyl group, the aralkyl group, the aryloxy group, the aryl group, and the heteroaryl group may be unsubstituted.
  • 1 to 6 hydrogen atoms, particularly preferably 1 to 4 hydrogen atoms are a hydroxyl group, an alkyl group, a haloalkyl group, a cycloalkyl group, an alkoxy group, an amino group, a heterocyclic group, a cyano group and a nitro group.
  • the carbon number limited by the aralkyl group, the aralkyl group, the aryloxy group, the aryl group, and the heteroaryl group does not include the carbon number of the substituent.
  • R 3 is preferably a hydrogen atom, the alkyl group, the alkoxy group, the aryl group, or the arylthio group, in consideration of the color tone, color density, etc. of the obtained photochromic monomer.
  • R 4 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an amino group, Heterocyclic group, cyano group, halogen atom, alkylthio group having 1 to 6 carbon atoms, arylthio group having 6 to 10 carbon atoms which may have a substituent, nitro group, formyl group, hydroxycarbonyl group, 2 to 2 carbon atoms.
  • An aralkyl group having 7 to 11 carbon atoms which may have a substituent an aralkyl group having 7 to 11 carbon atoms which may have a substituent, an aryloxy group having 6 to 12 carbon atoms which may have a substituent, and a substituent.
  • haloalkylthio group or the cycloalkylthio group having 3 to 8 carbon atoms include the specific groups exemplified in the above ⁇ R 1 and R 2 > or the above ⁇ R 3 >.
  • the preferred groups are the same.
  • R 3 and R 4 are put together in the following equation (3).
  • * refers to the carbon atom at the 6th or 7th position. It can also be a group.
  • X and Y are sulfur atom, methylene group, oxygen atom, or the following formula. It is a group indicated by.
  • R 9 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and the like. It is an aryl group having 6 to 12 carbon atoms which may have a substituent and a heteroaryl group having 3 to 12 carbon atoms which may have a substituent. Examples of these specific groups include the specific groups exemplified in the above ⁇ R 1 and R 2 > or the above ⁇ R 3 >, and the preferred groups are also the same.
  • R 7 and R 8 each independently have a hydroxy group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, and 3 to 8 carbon atoms.
  • Cycloalkyl group alkoxy group with 1 to 6 carbon atoms, amino group, substituted amino group, heterocyclic group, cyano group, nitro group, formyl group, hydroxycarbonyl group, alkylcarbonyl group with 2 to 7 carbon atoms, 2 carbon atoms It has an alkoxycarbonyl group of ⁇ 7, a halogen atom, an aralkyl group having 7 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 11 carbon atoms which may have a substituent, and a substituent.
  • aryl group with 6 to 12 carbon atoms thiol group, alkylthio group with 1 to 6 carbon atoms, alkoxyalkylthio group with 2 to 9 carbon atoms, haloalkylthio group with 1 to 6 carbon atoms, cyclo with 3 to 8 carbon atoms It is an alkylthio group or an arylthio group having 6 to 10 carbon atoms which may have a substituent.
  • these specific groups include the specific groups exemplified in the above ⁇ R 1 and R 2 > or the above ⁇ R 3 >, and the preferred groups are also the same.
  • R 7 and R 8 may form an aliphatic ring together with the carbon atom to which they are bonded.
  • Specific examples of the aliphatic ring include a cyclopentyl ring and a cyclohexyl ring.
  • e is an integer from 1 to 3.
  • R 4 is a hydrogen atom, the alkyl group, the alkoxy group, the heterocyclic group, the aryl group, the arylthio group Is preferable.
  • R 5 is a hydroxy group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an amino group, and a substituted amino group. , Heterocyclic group, cyano group, nitro group, formyl group, hydroxycarbonyl group, alkylcarbonyl group having 2 to 7 carbon atoms, alkoxycarbonyl group having 2 to 7 carbon atoms, halogen atom, carbon which may have a substituent.
  • a group, a haloalkylthio group having 1 to 6 carbon atoms, a cycloalkylthio group having 3 to 8 carbon atoms, or an arylthio group having 6 to 10 carbon atoms which may have a substituent is a specific group.
  • Specific groups exemplified by R 1 and R 2 >, or the above ⁇ R 3 > and the above ⁇ R 4 > are mentioned, and the same is true for the preferred groups.
  • R 6 is a hydroxy group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an amino group, and a substituted amino group.
  • Alkylthio group alkoxyalkylthio group having 2 to 9 carbon atoms, haloalkylthio group having 1 to 6 carbon atoms, cycloalkylthio group having 3 to 8 carbon atoms, or arylthio having 6 to 10 carbon atoms which may have a substituent. It is a group. d is an integer of 0 to 4, and when d is 2 or more, R 6 may be the same or different groups from each other.
  • a group, an alkoxyalkylthio group having 2 to 9 carbon atoms, a haloalkylthio group having 1 to 6 carbon atoms, a cycloalkylthio group having 3 to 8 carbon atoms, or an arylthio group having 6 to 10 carbon atoms which may have a substituent is ,
  • These specific groups include the specific groups exemplified in the above ⁇ R 1 and R 2 >, the above ⁇ R 3 >, the above ⁇ R 4 >, and the above ⁇ R 5 >, and are preferable.
  • the group is the same.
  • photochromic monomers in the present invention include photochromic monomers represented by the following formulas.
  • the photochromic monomer generally exists as a colorless, pale yellow, pale green solid or viscous liquid at normal temperature and pressure, and can be confirmed by the following means (a) to (c).
  • composition of the corresponding product can be determined by elemental analysis.
  • the suitable photochromic monomer used in the present invention may be produced by any synthetic method. An example of a method for producing a suitable photochromic monomer will be described. In the following description, the reference numerals in the respective formulas have the same meanings as described in the above-mentioned formulas unless otherwise specified.
  • a photochromic monomer can be preferably produced by a method of reacting a propargyl alcohol compound represented by (1) in the presence of an acid catalyst.
  • the reaction ratio of the naphthol compound and the propargyl alcohol compound is preferably selected from the range of 1:10 to 10: 1 (molar ratio).
  • the acid catalyst for example, sulfuric acid, benzenesulfonic acid, p-toluenesulfonic acid, acidic alumina and the like are used.
  • the acid catalyst is used in the range of 0.1 to 10 parts by weight per 100 parts by weight of the total of the naphthol compound and the propargyl alcohol compound.
  • the reaction temperature is preferably 0 to 200 ° C.
  • an aprotic organic solvent for example, N-methylpyrrolidone, dimethylformamide, tetrahydrofuran, benzene, toluene and the like is preferably used.
  • the method for purifying the product obtained by such a reaction is not particularly limited.
  • the product can be purified by performing silica gel column purification and further recrystallization.
  • a preferable compound has a structure capable of producing a suitable photochromic monomer represented by the formula (1).
  • a compound represented by the following formula can be mentioned as particularly preferable.
  • the naphthol compound represented by the above formula (10) can be synthesized, for example, as follows.
  • the naphthol compound can be synthesized based on the reaction method described in articles such as International Publication No. WO2001 / 60881 Pamphlet and International Publication No. WO2005 / 028465 Pamphlet.
  • the naphthol compound can be produced by the following method.
  • the carboxylic acid is benzylated by using a base such as potassium carbonate and benzyl chloride, and then hydrolyzed by using an alkali or an acid, and the following formula (15)
  • a benzyl-protected carboxylic acid represented by (15) is obtained (Bn is a benzyl group in the formula (15)).
  • the benzyl-protected carboxylic acid is converted to an amine by a method such as Curtius rearrangement, Hofmann rearrangement, Lossen rearrangement, etc., from which a diazonium salt is prepared by a method known per se.
  • This diazonium salt is converted into bromide by a Sandmeyer reaction or the like, and the obtained bromide is reacted with magnesium, lithium or the like to prepare an organometallic compound.
  • This organometallic compound is expressed by the following formula (16).
  • the ketone represented by (1) in an organic solvent at -80 to 70 ° C. for 10 minutes to 4 hours, and then debenzylation reaction with hydrogen and palladium carbon or the like, the following formula (17) Obtain the alcohol indicated by.
  • the Friedel-Crafts reaction of this alcohol at 10 to 120 ° C. for 10 minutes to 2 hours under neutral to acidic conditions can be used to synthesize the desired naphthol compound of the formula (10).
  • the reaction ratio of the organometallic compound to the ketone represented by the formula (12) is preferably selected from the range of 1:10 to 10: 1 (molar ratio).
  • the reaction temperature is preferably ⁇ 80 to 70 ° C.
  • an aprotic organic solvent such as diethyl ether, tetrahydrofuran, benzene, toluene and the like are preferably used.
  • the Friedel-Crafts reaction of the alcohol of the formula (17) under neutral to acidic conditions uses, for example, an acid catalyst such as acetic acid, hydrochloric acid, sulfuric acid, benzenesulfonic acid, p-toluenesulfonic acid, or acidic alumina.
  • Such an acid catalyst is preferably used in the range of 0.1 to 10 parts by weight per 100 parts by weight of the alcohol of the above formula (17).
  • an aprotic organic solvent such as tetrahydrofuran, benzene, or toluene is used.
  • the propargyl alcohol compound represented by the formula (11) can be easily synthesized, for example, by reacting the ketone compound corresponding to the formula (12) with a metal acetylene compound such as lithium acetylide. If the polymerizable group is introduced into the propargyl alcohol compound represented by the formula (11) by a known method, the propargyl alcohol and the naphthol compound represented by the formula (10) are subjected to the above reaction. Photochromic monomers can be produced.
  • the photochromic monomer can be produced by the above method, it is preferable to introduce the radically polymerizable group as follows in order to simplify the reaction and suppress by-products. Specifically, a reactive substituent such as a hydroxyl group, a primary or secondary amino group, a thiol group, and a hydrosilyl group is substituted in advance at a position where a radically polymerizable group of the propargyl alcohol compound is to be introduced. Next, the propargyl alcohol compound having the reactive substituent is reacted with the naphthol compound represented by the above formula (10) according to the above method to produce a precursor of a photochromic monomer. Then, a photochromic monomer is produced by introducing a radically polymerizable group into the reactive substituent of the obtained precursor.
  • a reactive substituent such as a hydroxyl group, a primary or secondary amino group, a thiol group, and a hydrosilyl group is substituted in advance at a position where a
  • a known method can be adopted as the method for introducing a radically polymerizable group into the reactive substituent.
  • a precursor having a hydroxyl group as a reactive substituent may be reacted with chloride (meth) acryloyl under a basic catalyst.
  • a radical polymerizable group can be introduced by reacting a precursor having an amino group or a hydroxyl group with 2-isocyanatoethyl (meth) acrylate.
  • a radical polymerizable group can be introduced by hydrosilylating a precursor having a hydrosilyl group as a reactive substituent and allyl methacrylate using a platinum chloride acid as a catalyst.
  • the radically polymerizable group can be introduced by reacting a precursor having a hydroxyl group as a reactive substituent with vinyl chloride or allyl bromide.
  • a radically polymerizable group can be introduced by droclylating a precursor having a hydrosilyl group as a reactive substituent and divinylbenzene under a platinum chloride catalyst.
  • the following is an example of a specific manufacturing method. For example, a method for synthesizing a precursor having a hydroxyl group as a reactive substituent and a conversion scheme for introducing an acrylic group as a radically polymerizable group into the precursor are shown below.
  • a precursor having a hydroxyl group can be obtained by reacting the naphthol compound of the above formula (10) with a propargyl alcohol compound having a hydroxyl group as a reactive substituent under acidic conditions.
  • a photochromic monomer can be obtained by reacting the precursor with acryloyl chloride in the presence of a basic catalyst such as a tertiary amine.
  • the photochromic monomer may have a plurality of types of photochromic monomers in order to obtain a desired color tone.
  • a plurality of types of photochromic monomers are used, as a matter of course, the following content ratio is based on the total amount of photochromic monomers.
  • the content ratio of the photochromic monomer in the monomer component may vary depending on the absorption wavelength and the magnitude of absorption, but is usually 0.001% by weight to 5% by weight, preferably 0.01% by weight to 3% by weight. obtain.
  • the content ratio is preferably 0.3% by weight to 3% by weight, more preferably 0.5% by weight to 2% by weight, and further preferably 0. It is 6.6% by weight to 1.5% by weight.
  • the medical device for the eye is an oxygen-permeable hard contact lens, a non-water-containing soft contact lens, an intraocular lens, or other lens that does not contain substantially water (hereinafter, may be referred to as a non-water-containing lens).
  • the content ratio is preferably 0.01% by weight to 3% by weight, more preferably 0.1% by weight to 2% by weight. When the content ratio is within the above range, an ophthalmic medical device having a desired photochromic property can be preferably obtained.
  • Lactam ring-containing monomer The lactam ring-containing monomer can improve the compatibility of the photochromic monomer in the monomer component, and a photochromic polymer having excellent transparency can be obtained.
  • the lactam ring-containing monomer include N-vinyllactam and methylenelactam, and among them, N-vinyllactam can be preferably used.
  • N-vinyllactam is preferable in that it can impart hydrophilicity to the photochromic polymer, is excellent in biosafety, and can be obtained at low cost.
  • As the lactam ring-containing monomer only one type may be used alone, or two or more types may be used in combination.
  • N-vinyllactam examples include N-vinyl-2-pyrrolidone, N-vinyl-3-methyl-2-pyrrolidone, N-vinyl-4-methyl-2-pyrrolidone, and N-vinyl-5-methyl-2.
  • N-Pyrrolidone N-vinyl-6-methyl-2-pyrrolidone, N-vinyl-3-ethyl-2-pyrrolidone, N-vinyl-4,5-dimethyl-2-pyrrolidone, N-vinyl-5,5-dimethyl -2-Pyrrolidone, N-vinyl-3,3,5-trimethyl-2-pyrrolidone, N-vinyl-2-piperidone, N-vinyl-3-methyl-2-piperidone, N-vinyl-4-methyl-2 -Piperidone, N-vinyl-5-methyl-2-piperidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-3,5-dimethyl-2 -Piperidone, N-vinyl-4,4-dimethyl-2-piperidone, N-vinyl-2-caprolactam, N-vinyl-3-methyl-2-
  • methylenelactam 1-methyl-3-methylene-2-pyrrolidone, 1-ethyl-3-methylene-2-pyrrolidone, 1-methyl-5-methylene-2-pyrrolidone, 1-ethyl-5-methylene-2 -Pyrrolidone, 5-methyl-3-methylene-2-pyrrolidone, 5-ethyl-3-methylene-2-pyrrolidone, 1-n-propyl-3-methylene-2-pyrrolidone, 1-n-propyl-5-methylene -2-Pyrrolidone, 1-i-propyl-3-methylene-2-pyrrolidone, 1-i-propyl-5-methylene-2-pyrrolidone, 1-n-butyl-3-methylene-2-pyrrolidone, 1-t Examples thereof include methylenepyrrolidones such as -butyl-3-methylene-2-pyrrolidone.
  • the content ratio of the lactam ring-containing monomer in the monomer component is typically 10% by weight to 50% by weight, preferably 11% by weight to 48% by weight, and more preferably 12% by weight to 45% by weight. Is. When the content ratio is within the above range, a photochromic polymer having excellent transparency can be obtained even when no organic solvent is used or a small amount of organic solvent is used.
  • the silicone-containing monomer can contribute to the improvement of oxygen permeability, mechanical strength, shape stability, etc. of the photochromic polymer.
  • the silicone-containing monomer is not particularly limited as long as it contains a siloxane bond (Si—O—Si), and examples thereof include silicone-containing alkyl (meth) acrylate, silicone-containing styrene derivative, and silicone-containing fumaric acid diester. Further, the silicone-containing monomer may be a silicone-containing macromonomer having a polysiloxane structure.
  • silicone-containing alkyl (meth) acrylate examples include trimethylsiloxydimethylsilylmethyl (meth) acrylate, trimethylsiloxydimethylsilylpropyl (meth) acrylate, methylbis (trimethylsiloxy) silylpropyl (meth) acrylate, and tris (trimethylsiloxy).
  • Cyrilpropyl (meth) acrylate mono [methylbis (trimethylsiloxy) siloxy] bis (trimethylsiloxy) silylpropyl (meth) acrylate, tris [methylbis (trimethylsiloxy) siloxy] silylpropyl (meth) acrylate, tris (trimethylsiloxy) silyl Examples thereof include (propylglycerol) (meth) acrylate and polydimethylsiloxane di (meth) acrylate.
  • silicone-containing styrene derivative examples include tris (trimethylsiloxy) silylstyrene, bis (trimethylsiloxy) methylsilylstyrene, (trimethylsiloxy) dimethylsilylstyrene, and tris (trimethylsiloxy) siloxydimethylsilylstyrene.
  • silicone-containing fumaric acid diester examples include bis (3- (trimethylsilyl) propyl fumarate, bis (3- (pentamethyldisyloxanyl) propyl) fumarate, and bis (3- (1,3,3,3)).
  • -Tetramethyl-1- (trimethylsilyl) oxy) disyloxanyl) propyl) fumarate, bis (tris (trimethylsilyl) silylpropyl) fumarate and the like can be mentioned.
  • silicone-containing macromonomer those having a polysiloxane structure in which the number of repetitions of (Si—O) is, for example, 4 or more, preferably 4 to 200, and more preferably 10 to 200 can be preferably used.
  • high oxygen permeability can be realized. Details of the silicone-containing macromonomer are described in Japanese Patent Application Laid-Open No. 2011-219513, Japanese Patent Application Laid-Open No. 2015-503631 and the like (these are incorporated herein by reference).
  • the content ratio of the silicone-containing monomer in the above-mentioned monomer components is appropriately set according to the physical properties, applications, etc. desired for the ophthalmic medical device.
  • the content can be, for example, 10% by weight to 89.9% by weight.
  • the content ratio is preferably 25% by weight to 60% by weight, more preferably 28% by weight to 60% by weight.
  • the content ratio is preferably 12% by weight to 89.9% by weight, more preferably 15% by weight to 80% by weight.
  • hydrophilic monomer can improve the hydrophilicity of the photochromic polymer and enhance the water wettability and lubricity of the surface thereof.
  • hydrophilic monomer for example, a monomer having a solubility in water at 20 ° C. of 20 g / 100 mL or more (however, excluding the monomers described in B-1 to B-3 and B-5) is preferably used.
  • hydrophilic monomer examples include a (meth) acrylamide-based compound, an amide group-containing monomer such as N-vinylamide, and a hydroxyl group-containing such as hydroxyalkyl (meth) acrylate or dihydroxyalkyl (meth) acrylate having 1 to 5 carbon atoms.
  • Monomers can be preferably exemplified.
  • As the hydrophilic monomer only one kind may be used alone, or two or more kinds may be used in combination.
  • the hydrophilic monomer it is preferable to use a (meth) acrylamide compound.
  • N-vinyllactam is used as the lactam ring-containing monomer
  • the obtained photochromic polymer may turn yellow or poor polymerization may occur.
  • N-vinyllactam has a relatively slow polymerization rate and high polarity, it interacts with the photochromic monomer activated by exposure during polymerization, and as a result, the photochromic monomer is decomposed. It is presumed that problems such as yellowing of the entire system or suppression of polymerization may occur.
  • Examples of the (meth) acrylamide compound include N-alkyl (meth) acrylamide such as (meth) acrylamide, N-methyl (meth) acrylamide, and N-ethyl (meth) acrylamide, and N, N-dimethyl (meth) acrylamide. , N, N-dialkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethylaminopropyl, N, N-dipropyl (meth) acrylamide, etc. Examples thereof include N, N-dialkylaminoalkyl (meth) acrylamide such as (meth) acrylamide and acryloylmorpholin.
  • N-vinylamide examples include N-vinylformamide, N-vinyl-N-methylformamide, N-vinyl-N-ethylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, and N-vinyl-N-ethyl.
  • examples thereof include acetamide and N-vinylphthalimide.
  • hydroxyalkyl (meth) acrylate having 1 to 5 carbon atoms examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and hydroxypentyl (meth) acrylate.
  • dihydroxyalkyl (meth) acrylate having 1 to 5 carbon atoms examples include dihydroxypropyl (meth) acrylate, dihydroxybutyl (meth) acrylate, and dihydroxypentyl (meth) acrylate.
  • hydrophilic monomers other than the above include alkoxypolyalkylene glycol mono (meth) acrylate, (meth) acrylic acid, 1-methyl-3-methylene-2-pyrrolidinone, maleic anhydride, maleic acid, maleic acid derivatives, and fumaric acid. , Fumaric acid derivative, aminostyrene and the like can be exemplified.
  • the content ratio of the hydrophilic monomer in the above-mentioned monomer component is appropriately set according to the content ratio of the lactam ring-containing monomer, the physical characteristics desired for the ophthalmic medical device, the application, and the like.
  • the hydrophilic monomer can be blended so that the total content ratio with the lactam ring-containing monomer in the monomer component is more than 10% by weight and 65% by weight or less.
  • the total content of the hydrophilic monomer with the lactam ring-containing monomer in the monomer component is preferably 25% by weight to 65% by weight, more preferably.
  • the total content ratio of the hydrophilic monomer with the lactam ring-containing monomer in the monomer component is, for example, more than 10% by weight and less than 25% by weight, preferably 10% by weight. It is blended so as to be more than% and 20% by weight or less, more preferably more than 10% by weight and 15% by weight or less. With the above content ratio, compatibility with the photochromic monomer can be ensured, and a highly transparent photochromic polymer can be obtained.
  • the amount of the (meth) acrylamide compound is preferably 5% by weight or more, more preferably 5 with respect to the amount of the lactam ring-containing monomer. It is from% to 50% by weight, more preferably 10% to 40% by weight.
  • the total content ratio of the lactam ring-containing monomer and the (meth) acrylamide-based compound in the monomer component is preferably 25% by weight to 65% by weight, more preferably. Is 30% by weight to 60% by weight, more preferably 35% by weight to 55% by weight.
  • the total content ratio of the lactam ring-containing monomer and the (meth) acrylamide-based compound in the monomer component is, for example, more than 10% by weight and less than 25% by weight, preferably. It is 11% by weight to 20% by weight, more preferably 12% by weight to 15% by weight.
  • the content ratio of the hydroxyl group-containing monomer in the total content of the hydrophilic monomer and the lactam ring-containing monomer is preferably 35% by weight or less, more preferably 30% by weight or less. It is even more preferably 20% by weight or less, and even more preferably 10% by weight or less. With this content ratio, compatibility with the photochromic monomer can be ensured, and a highly transparent photochromic polymer can be preferably obtained.
  • the content ratio of the hydroxyl group-containing monomer in the monomer component is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 10% by weight or less.
  • Crosslinkable monomers can improve the mechanical strength of photochromic polymers.
  • As the crosslinkable monomer a monomer having two or more polymerizable functional groups is used.
  • crosslinkable monomer examples include butanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and di.
  • the content ratio of the crosslinkable monomer in the monomer component is appropriately set according to the physical properties, applications, etc. desired for the ophthalmic medical device.
  • the content can be, for example, 0.01% to 18% by weight.
  • the content ratio may be, for example, 0.1% by weight to 3% by weight, preferably 0.2% by weight to 2% by weight. it can.
  • the content ratio is preferably 3 to 18% by weight, more preferably 5 to 15% by weight, and when it is used for non-water-containing soft contact lenses, the content ratio is preferably 3 to 18% by weight.
  • the monomer component may further contain a copolymerization monomer other than those described in the above items B-1 to B-5.
  • a copolymerization monomer any suitable monomer can be selected depending on the intended purpose. Specific examples include hydrophobic monomers, polymerizable dyes, and polymerizable ultraviolet absorbers.
  • a monomer having a water solubility (20 ° C.) of less than 20 g / 100 mL can be used as a hydrophobic monomer.
  • prepolymers prepared using the various monomers and crosslinkable monomers described in Items B-1 to B-6 even those having a water solubility (20 ° C.) of less than 20 g / 100 mL.
  • it can be used as a hydrophobic monomer.
  • hydrophobic monomer examples include alkyl (meth) acrylate, alkoxyalkyl (meth) acrylate, and aromatic ring-containing (meth) acrylate.
  • alkyl (meth) acrylate examples include alkyl (meth) acrylate, alkoxyalkyl (meth) acrylate, and aromatic ring-containing (meth) acrylate.
  • the hydrophobic monomer only one kind may be used alone, or two or more kinds may be used in combination.
  • alkyl (meth) acrylate a linear or branched alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms or a fluorine-substituted monomer thereof is preferable, and the alkyl group has 1 to 5 carbon atoms. Linear or branched alkyl (meth) acrylates or their fluorine-substituted monomers are more preferred.
  • methyl (meth) acrylate ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, ethylhexyl meta) acrylate, and lauryl (meth) acrylate.
  • methyl (meth) acrylate ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, ethylhexyl meta) acrylate, and lauryl (meth) acrylate.
  • alkoxyalkyl (meth) acrylate an alkoxyalkyl (meth) acrylate having an alkoxy group having 1 to 4 carbon atoms and an alkylene group bonded to the alkoxy group having 1 to 8 carbon atoms is preferable.
  • Alkoxyalkyl (meth) acrylates having 1 to 2 carbon atoms and 1 to 4 carbon atoms of the alkylene group bonded to the alkoxy group are more preferable.
  • methoxymethyl (meth) acrylate 2-methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxypropyl (meth) acrylate, and 3-ethoxypropyl.
  • examples thereof include (meth) acrylate, 4-methoxybutyl (meth) acrylate, and 4-ethoxybutyl (meth) acrylate.
  • aromatic ring-containing (meth) acrylates examples include phenoxyethyl (meth) acrylate, phenyl (meth) acrylate, and phenylethyl (meth) acrylate.
  • a prepolymer prepared by using the above-mentioned monomer and the crosslinkable monomer a prepolymer obtained by coexisting a monomer and a crosslinkable monomer as disclosed in the present specification and polymerizing these monomers with a polymerization initiator. Examples include polymers.
  • the content ratio of the hydrophobic monomer in the above-mentioned monomer component is appropriately set according to the physical characteristics, applications, etc. desired for the ophthalmic medical device.
  • the content ratio is preferably 5% by weight to 35% by weight, more preferably 10% by weight to 30% by weight.
  • the content ratio is preferably 5% by weight to 40% by weight, more preferably 5% by weight to 35% by weight.
  • the polymerizable dye examples include a phthalocyanine-based polymerizable dye such as a phthalocyanine-containing polymethacrylic acid ester, an azo-based polymerizable dye such as 1-phenylazo-4- (meth) acryloyloxynaphthalene, and 1,5-bis ((meth).
  • a phthalocyanine-based polymerizable dye such as a phthalocyanine-containing polymethacrylic acid ester
  • an azo-based polymerizable dye such as 1-phenylazo-4- (meth) acryloyloxynaphthalene
  • 1,5-bis ((meth) examples include a phthalocyanine-based polymerizable dye such as a phthalocyanine-containing polymethacrylic acid ester, an azo-based polymerizable dye such as 1-phenylazo-4- (meth) acryloyloxynaphthalene, and 1,5-bis ((meth).
  • phthalocyanine-based polymerizable dye examples include (meth) acryloylated tetraaminocopper phthalocyanine and (meth) acryloylated (dodecanoylated tetraaminocopper phthalocyanine).
  • benzophenone-based polymerizable UV-absorbing dyes such as 2,4-dihydroxy-3 (p-styrenoazo) benzophenone and benzoic acid-based polymerizable UV-absorbing dyes such as 2-hydroxy-4- (p-styrenoazo) phenyl benzoate Etc. may be used. These can be used alone or in combination of two or more.
  • the polymerizable ultraviolet absorber examples include a compound having a benzotriazole structure and a polymerizable group (benzotriazole-based compound), a compound having a benzophenone structure and a polymerizable group (benzophenone-based compound), and a salicylic acid derivative compound.
  • benzotriazole-based compound a compound having a benzotriazole structure and a polymerizable group
  • benzophenone-based compound a compound having a benzophenone structure and a polymerizable group
  • salicylic acid derivative compound examples include a compound having a benzotriazole structure and a polymerizable group (benzotriazole-based compound), a compound having a benzophenone structure and a polymerizable group (benzophenone-based compound), and a salicylic acid derivative compound.
  • benzotriazole-based compounds are preferable from the viewpoint of the characteristics of the compound such as ultraviolet absorption ability.
  • benzotriazole-based compound examples include 2- (2'-hydroxy-5'-(meth) acryloyloxyethylphenyl) -2H-benzotriazole and 2- (2'-hydroxy-5'-(meth) acryloyloxy).
  • 2- (2'-hydroxy-5'-(meth) acryloyloxyethylphenyl) -2H-benzotriazole is preferable.
  • This benzotriazole-based compound The polymerization group of is not particularly limited, but a methacryloyl group is preferable.
  • examples of the benzophenone-based compound include 2-hydroxy-4- (meth) acryloyloxybenzophenone and 2-hydroxy-4- (meth) acryloyloxy-5.
  • t-butylbenzophenone 2-hydroxy-4- (meth) acryloyloxy-2', 4'-dichlorobenzophenone, 2-hydroxy-4- (2'-hydroxy-3'-(meth) acryloyloxypropoxy) benzophenone, etc.
  • the salicylic acid derivative compound include 2-hydroxy-4-methacryloyloxymethylbenzoate phenyl and the like.
  • 2-cyano-3-phenyl-3- (3'-(meth) acryloyl) Oxyphenyl) propenylate methyl ester and the like can be mentioned. These can be used alone or in combination of two or more.
  • the blending ratio of the polymerizable dye in the monomer component can be, for example, 0.001% by weight to 0.1% by weight, preferably 0.002% by weight to 0.05% by weight. If this content is 0.001% by weight or less, there is a possibility that the coloring is not effective and the visibility is low, and if it is 0.1% by weight or more, the coloring is too dark and the visibility at the time of wearing may be obstructed. ..
  • the blending ratio of the polymerizable ultraviolet absorber in the monomer component is, for example, 3% by weight or less, preferably 0.01% by weight to 2% by weight.
  • this content is 3% by weight, deterioration of mechanical properties (loss of flexibility) can be further suppressed, and when it is 0.01% by weight or more, a sufficient ultraviolet absorption effect can be obtained.
  • the photochromic polymer is obtained by polymerizing a reactive mixture containing the monomer component.
  • the polymerization can be carried out, for example, by mixing the monomer components and the initiator to prepare a reactive mixture and heating and / or irradiating the reactive mixture with light (ultraviolet and / or visible light). Electron beam irradiation may be performed instead of light irradiation.
  • organic solvents and / or additives can be added as needed.
  • the content ratio of the organic solvent in the reactive mixture is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the monomer component. It is more preferably 3 parts by weight or less, still more preferably 1 part by weight or less, and particularly preferably 0.5 part by weight or less. It is one of the effects of the present invention that the monomer component can be compatible with each other without using an organic solvent or with a small amount of use, and as a result, a photochromic polymer having excellent transparency can be obtained. ..
  • the step of removing the organic solvent from the obtained photochromic polymer can be eliminated or simplified, and further, at the time of polymerization. As a result of suppressing the chain transfer, a photochromic polymer having a high degree of polymerization and high strength can be obtained.
  • organic solvent alcohol having 1 to 3 carbon atoms, acetone, methyl ethyl ketone, dimethylformamide, dimethyl sulfoxide, acetonitrile, N-methyl-2-pyrrolidone, dimethoxyethane and the like can be used.
  • the type of initiator is appropriately selected according to the polymerization method and the like.
  • examples of photopolymerization initiators used for polymerization by light irradiation include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • Phosphine oxide-based photopolymerization initiators such as; benzoin-based photopolymerization initiators such as methyl orthobenzoyl benzoate, methyl benzoyl formate, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin-n-butyl ether; 2-Hydroxy-2-methyl-1-phenylpropan-1-one, p-isopropyl- ⁇ -hydroxyisobutylphenone, pt-butyltrichloroacetonone, 2,2-dimethoxy-2-phenylacetophenone, ⁇ , ⁇ - Phenone-based photopolymerization initiators such as dichloro-4-phenoxyacetophenone, N, N-tetraethyl-4,4-diaminobenzophenone; 1-hydroxycyclohexylphenyl ketone; 1-phenyl-1,2-
  • the blending ratio of the photopolymerization initiator and the photosensitizer is preferably 0.001 part by weight to 3 parts by weight, more preferably 0.01 part by weight or more, based on 100 parts by weight of the monomer component in the reactive mixture. 2 parts by weight.
  • thermal polymerization initiator used for polymerization by heating examples include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and benzoylper.
  • examples thereof include oxide, t-butyl hydroperoxide, cumene hydroperoxide, lauroyl peroxide, t-butyl peroxyhexanoate, and 3,5,5-trimethylhexanoyl peroxide. Only one of these thermal polymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the blending ratio of the thermal polymerization initiator is preferably 0.001 part by weight to 2 parts by weight, and more preferably 0.01 part by weight to 1 part by weight with respect to 100 parts by weight of the monomer component in the reactive mixture.
  • any suitable non-polymerizable compound can be added depending on the purpose.
  • specific examples include non-polymerizable dyes, non-polymerizable ultraviolet absorbers, surfactants, cooling agents, thickening agents and the like. It should be noted that these additives do not necessarily have to be added to the reactive mixture, and may be added by infiltrating the photochromic polymer obtained by polymerization.
  • non-polymerizable dye examples include 1,4-bis [(4-methylphenyl) amino] -9,10-anthraquinone (D & C Green No. 6), 1-[[4- (phenylazo) phenyl] azo]. -2-Naphthalenol (D & C Red No. 17), 1-Hydroxy-4-[(4-methylphenyl) amino] -9,10-anthraquinone (D & C Violet No. 2), 2- (2-quinolyl) -1 , 3-Indandione (D & C Yellow No.
  • I Solvent Yellow 18 2- (1,3-dioxo-2-indanyl) -3-hydroxyquinoline (MACROLEX TM Yellow-G) and the like.
  • the blending amount of the non-polymerizable dye is preferably in the range of 0.001 part by weight to 0.1 part by weight with respect to 100 parts by weight of the monomer component.
  • non-polymerizable ultraviolet absorber examples include benzophenones such as 2-hydroxy-4-methoxybenzophenone and 2-hydroxy-4-octoxybenzophenone, and 2- (2'-hydroxy-5'-methylphenyl) benzo.
  • Triazole 5-chloro-2- (3'-t-butyl-2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2-( Examples thereof include benzotriazoles such as 5-chloro-2H-benzotriazole-2-yl) -6- (1,1-dimethyl) -4-methylphenol, salicylic acid derivatives, hydroxyacetophenone derivatives and the like.
  • the blending amount of the non-polymerizable ultraviolet absorber is preferably in the range of 0.01 parts by weight to 3 parts by weight with respect to 100 parts by weight of the monomer component.
  • the polymerization of the above-mentioned monomer components is carried out, for example, in a state where the reactive mixture is filled in a mold corresponding to a desired shape of an ophthalmic medical device.
  • a photochromic polymer having a desired shape (as a result, an ophthalmic medical device) can be directly obtained.
  • the polymerization may be carried out so as to form a rod-shaped (rod-shaped) photochromic polymer.
  • An ophthalmic medical device having a desired shape can be obtained by cutting a rod-shaped photochromic polymer.
  • the heating temperature during the polymerization reaction by heating is preferably 50 ° C. to 110 ° C., more preferably 80 ° C. to 100 ° C.
  • the heating time at that time is preferably 2 minutes to 60 minutes, more preferably 10 minutes to 45 minutes.
  • the light irradiation conditions at the time of the polymerization reaction by light irradiation are appropriately selected according to the characteristics of the photochromic monomer, the function of the target contact lens, and the like.
  • the wavelength range of the light to be irradiated is preferably 385 to 550 nm, more preferably 400 to 500 nm.
  • Illuminance is preferably 0.1mW / cm 2 ⁇ 170mW / cm 2, 0.2mW / cm 2 ⁇ 150mW / cm 2 is more preferable. All of them are measured values by an illuminometer having a sensor of 405 nm, and light of different illuminance may be irradiated stepwise.
  • the irradiation time is preferably 1 minute or more.
  • the reactive mixture can be sufficiently cured even when a part of the light is absorbed by the photochromic monomer.
  • various light sources such as fluorescent lamps and LEDs that emit light having a predetermined wavelength can be applied.
  • a plurality of light sources may be selected and irradiated individually in stages, or they may be irradiated at the same time.
  • the rod-shaped photochromic polymer can be obtained, for example, by placing the reactive mixture in a test tube made of glass or the like, sealing it tightly, and heating it to a predetermined temperature in a constant temperature water tank or an oven to cure the contents.
  • the heating temperature is preferably 30 ° C. to 60 ° C., more preferably 35 ° C. to 50 ° C.
  • the heating time is preferably 3 hours to 60 hours, more preferably 5 hours to 48 hours. Heating may be carried out in stages. Further, as post-curing, heating may be performed in a temperature range of 50 ° C. to 120 ° C. for 2 hours to 10 hours.
  • thermal polymerization and photopolymerization are combined. It is preferable to carry out photopolymerization after thermal polymerization, or to carry out light irradiation while heating to allow thermal polymerization and photopolymerization to proceed at the same time. By performing thermal polymerization and photopolymerization in parallel, or by preceding thermal polymerization with photopolymerization, a high-quality photochromic polymer in which yellowing is suppressed can be obtained.
  • the method for producing an ophthalmic medical device includes polymerizing a reactive mixture containing the above-mentioned monomer component to obtain a photochromic polymer.
  • the polymerization may include both thermal polymerization and photopolymerization. Specifically, the polymerization can be carried out in parallel with thermal polymerization and photopolymerization, or prior to photopolymerization.
  • the monomer component, the reactive mixture and the polymerization method thereof are as described in Item B.
  • the reactive mixture does not contain an organic solvent or contains an organic solvent in a content ratio of 10 parts by weight or less with respect to 100 parts by weight of the monomer component.
  • the monomer component contains a photochromic monomer and a lactam ring-containing monomer, and the content ratio of the lactam ring-containing monomer in the monomer component is 10% by weight to 50% by weight. Further, the content ratio of the hydroxyl group-containing monomer in the monomer component can be 20% by weight or less.
  • the photochromic polymer obtained by polymerization is taken out from a mold or taken out as a rod-shaped photochromic polymer, and then mechanically processed such as cutting and polishing as necessary. This mechanical processing may be performed over the entire surface of one or both surfaces of the photochromic polymer, or may be performed on a portion of one or both surfaces of the photochromic polymer.
  • elution treatments can be performed as necessary.
  • a treatment for eluting the residue can be performed by immersing the obtained photochromic polymer in water or an organic solvent or a mixed solution thereof, and preferably repeating this.
  • surface modification treatments such as low temperature plasma treatment, atmospheric pressure plasma treatment, and corona discharge treatment can be performed.
  • an intraocular lens a three-piece type in which two support parts made of elastic wire are post-fixed to a soft or hard optical part material, or a dress in which the optical part and the support part are integrally formed of the same material. It can be a mold and foldable lens.
  • the polymerization may be carried out in a mold, or the material obtained after the polymerization may be processed into a desired shape by cutting. That is, the lens taken out from the mold may be subjected to partial processing such as drilling for fixing the support portion as it is, or further subjected to elution treatment or surface treatment as necessary.
  • Ophthalmic Medical Devices may have appropriate physical characteristics according to desired embodiments and the like. Hereinafter, suitable physical characteristics of typical embodiments of ophthalmic medical devices will be described.
  • the water content of the water-containing soft contact lens is preferably 25% to 80%, more preferably 30% to 75%. By setting the water content to 25% or more, the water wettability of the surface can be improved. If the water content exceeds 80%, the lens is too flexible to retain its shape, and if the water content is less than 25%, the surface of the lens becomes more hydrophobic and the lens may stick to the cornea. Occurs.
  • Water-containing soft contact lenses preferably have a Dk value of 25 barr to 160 barr, and more preferably have a Dk value of 40 barr to 160 barr.
  • a contact lens having a Dk value in this range is excellent in oxygen permeability, and as a result, can provide an excellent wearing feeling.
  • the Young's modulus (20 ° C.) of the water-containing soft contact lens is preferably 0.2 MPa to 2.0 MPa, more preferably 0.3 MPa to 1.5 MPa.
  • Young's modulus is within the range, the wearing feeling is excellent, the shape retention on the finger is excellent, and the handling is easy.
  • Young's modulus exceeds 2.0 MPa, the lens itself is tough, and there is a possibility that the wearing feeling of the lens is poor and a foreign body sensation is strongly produced.
  • Young's modulus is less than 0.2 MPa, the shape retention of the lens is poor, and there is a high possibility that the lens will bend or wrinkle when worn.
  • Oxygen permeable hard contact lens preferably has a Dk value of 130 barrer to 250 barrer.
  • An ophthalmic medical device having a Dk value in the range is excellent in oxygen permeability, and as a result, an excellent wearing feeling can be provided.
  • the water absorption rate of the oxygen permeable hard contact lens is preferably 1.0% by weight or less. If the water absorption rate exceeds 1.0% by weight, the shape stability tends to decrease.
  • the evaluation of the water absorption rate can be carried out according to Japanese Patent Application Laid-Open No. 2005-181730.
  • Non-hydrous soft contact lenses preferably have a Dk value of 50 barr to 200 barr.
  • a contact lens having a Dk value in this range is excellent in oxygen permeability, and as a result, can provide an excellent wearing feeling.
  • the shape recovery rate of non-water-containing soft contact lenses is preferably 25% or less. If the shape recovery rate exceeds 25%, it may lead to discomfort when wearing the eye medical device or destabilization of eyesight.
  • the shape recovery property can be evaluated according to WO00 / 70388.
  • the water content of non-water-containing soft contact lenses is, for example, less than 10% by weight, preferably 9.9% by weight or less.
  • the elongation rate of the intraocular lens is preferably 170% to 600%. If the elongation rate is less than 170%, the flexibility is poor, it is difficult to fold and insert from a small incision, and if it exceeds 600%, it is not preferable from the viewpoint of shape recovery.
  • the water absorption rate of the intraocular lens is preferably 1.5% by weight to 4.5% by weight. If the water absorption rate is less than 1.5%, glissing is likely to occur and the possibility of impairing transparency increases, and if it exceeds 4.5% by weight, the flexibility is too high and causes problems during insertion. Possibility arises.
  • the elongation rate and the water absorption rate can be evaluated according to WO2018 / 021455.
  • the ophthalmic medical devices in one embodiment of the present invention have a repeating unit derived from a photochromic monomer, and have a visible light transmittance from an inactive state to a higher visible light transmittance than the inactive state due to absorption of light energy. Includes a photochromic polymer that can be transformed into a low activation state.
  • the ophthalmic medical device in the inactive state has a spectral transmittance of more than 90%, preferably 92% or more, more preferably 95% or more at least a part of wavelengths in the wavelength range of less than 700 nm.
  • the spectral transmittance is a value at the corneal temperature, and the same applies to the other optical characteristics in this section.
  • the visual transmittance of the ophthalmic medical device in the inactive state in the wavelength range of 380 nm to 780 nm is preferably 75% or more, more preferably 80% or more, still more preferably 90% or more, still more preferably 90%. It can be a value that exceeds.
  • the ophthalmic medical device in the activated state can have a spectral transmittance of less than 70% at least a part of the wavelengths in the visible light region, for example, 15% or more and less than 70%, preferably 20% to 65. %, More preferably 25% to 60% spectral transmittance.
  • the ophthalmic medical device in the activated state can have a spectral transmittance of less than 70% at least a part of the wavelength range of 500 nm to 700 nm, for example, 15% or more and less than 70%. It preferably has a spectral transmittance of 20% to 65%, more preferably 25% to 65%.
  • the ophthalmic medical device in the activated state can have a spectral transmittance of less than 70% at at least a part of the wavelength range of 530 nm to 670 nm, for example, 15% or more and 70%. It has a spectral transmittance of less than, preferably 20% to 65%, more preferably 25% to 65%.
  • the above-mentioned ophthalmic medical device has low light transmittance in a region with high luminosity factor (wavelength range of 500 nm to 700 nm) in the activated state, while has high visible light transmittance over the entire visible light region in the inactive state.
  • glare can be satisfactorily reduced in an environment with strong sunlight and lighting, and good visibility can be ensured in an environment with moderate brightness.
  • the eye medical device in the activated state can have a spectral transmittance of 80% or less, preferably 70% or less, in the blue region. This can reduce eye stress caused by blue light.
  • “having a spectral transmittance of 80% or less in the blue region” means that the maximum value of the spectral transmittance in the blue region is 80% or less.
  • the value of the visual transmittance ⁇ 0.2 of the ophthalmic medical device in the inactive state or the activated state is smaller than the minimum spectral transmittance in the wavelength range of 500 nm to 650 nm in each state.
  • the ophthalmic medical device in the activated state has a relative luminosity factor attenuation (Q value) of at least 0.8 for a red signal and a Q value of at least 0.6 for a yellow signal.
  • the Q value for the green signal is at least 0.6 and the Q value for the blue signal is at least 0.4.
  • the relative luminosity factor attenuation factor (Q value) is a value defined in JIS T 7333.
  • the ophthalmic medical device can change from an inactive state to an activated state within 1 minute from the start of irradiation with a xenon lamp at 50,000 lux.
  • the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
  • the measurement method or evaluation method of each characteristic is as follows. In each of the ophthalmic medical devices produced in Examples and Comparative Examples, the light transmittance did not change any more even if the irradiation was continued for 1 minute or more under the irradiation conditions of 405 nm LED and illuminance of 10 mW / cm 2 or more. Therefore, a state in which the ophthalmic medical device is irradiated with light of a predetermined wavelength (405 nm LED, illuminance of 10 mW / cm 2 or more) for 1 minute or more is determined as an “activated state”.
  • the state in which the irradiation of light of a predetermined wavelength (405 nm LED, illuminance 10 mW / cm 2 or more) is allowed to stand for 1 hour or more after the irradiation is stopped is determined to be the "inactive state". did.
  • ⁇ Oxygen permeability coefficient (Dk) ⁇ The oxygen permeability coefficient of the lens was measured in physiological saline at 35 ° C. using a Seigakuken type film oxygen transmissometer (manufactured by Rika Seiki Kogyo Co., Ltd.). As a test sample, a lens having a central thickness of about 0.1 mm was used alone or by stacking 2 to 4 lenses to obtain lenses having different thicknesses, and measurements were performed. The value was calculated in accordance with ISO18369-4 (2006) and in consideration of the edge effect. Menicon 2 Week Premio (manufactured by Menicon) was used as a reference standard, and this Dk value was standardized as 129. The unit of the oxygen permeability coefficient is ( ⁇ 10-11 (cm 2 / sec) (mLO 2 / mL ⁇ mmHg)).
  • ⁇ Tensile test ⁇ A dumbbell-shaped sample having a width of about 1.8 mm and a thickness of about 0.1 mm was punched out from the produced contact lens to perform a tensile test. The measurement was performed using a Shimadzu precision universal testing machine "Autograph AG-IS MS type" (manufactured by Shimadzu Corporation), and the tensile elastic modulus (MPa) was calculated as Young's modulus from the stress-elongation curve. In addition, the tensile fracture strength (MPa) and the tensile fracture elongation rate (%) were also read from the strength and elongation at break. All measurements were performed in physiological saline adjusted to 20 ° C. and the tensile speed was set to 10 mm / min.
  • the transmittance (T%) was immediately measured with a spectrophotometer (UV2550, manufactured by Shimadzu Corporation). (Measurement conditions: high speed, sampling pitch: 2 nm).
  • the LED illuminance (wavelength 405 nm, measured by UVD-150 and UVD-S405 manufactured by Ushio, Inc.) applied to the cell was 10 mW / cm 2 or more.
  • the transmittance measurements in the wavelength ranges of 280 nm to 380 nm and 380 nm to 780 nm were performed separately in order to reduce the effect of fading.
  • Inactive state The temperature was adjusted in the same manner as above for 1 hour or more in a light-shielded state, and the measurement was carried out in the same manner as above except that the measurement was performed immediately after the lens was placed in the cell.
  • Example 1 Each component was mixed so as to have the blending ratio (part by weight) shown in Table 1 to prepare a reactive mixture.
  • the obtained reactive mixture was injected into a mold having a contact lens shape (made of polypropylene, corresponding to a contact lens having a diameter of about 14 mm and a thickness of about 0.1 mm).
  • this mold was placed in a heat circulation type soaking dryer (manufactured by TIETECH Co., Ltd.) set at 90 ° C. and allowed to stand for 30 minutes to cure the reactive mixture.
  • After removing the obtained polymer material (dry lens) from the mold it was subjected to vacuum plasma treatment at 25 W for 3 minutes in a carbon dioxide atmosphere. Then, it was hydrated by immersing it in physiological saline to absorb water. As a result, a contact lens was obtained.
  • Reactive mixtures were prepared by mixing each component so as to have the blending ratios shown in Table 1.
  • the obtained reactive mixture was injected into a mold having a contact lens shape (made of polypropylene, corresponding to a contact lens having a diameter of about 14 mm and a thickness of about 0.1 mm).
  • the mold was then irradiated with an LED lamp to cure the reactive mixture.
  • the irradiation was carried out in two steps, the first step was irradiation at about 1 mW / cm 2 for 15 minutes, and the second step was irradiation at about 20 mW / cm 2 for 5 minutes (both measured at 405 nm).
  • the obtained polymer material dry lens
  • Reactive mixtures were prepared by mixing each component so as to have the blending ratios shown in Table 1.
  • the obtained reactive mixture was injected into a mold having a contact lens shape (made of polypropylene, corresponding to a contact lens having a diameter of about 14 mm and a thickness of about 0.1 mm).
  • This mold was placed in a heat circulation type scorching dryer (manufactured by TIETECH Co., Ltd.) set at 90 ° C., allowed to stand for 30 minutes, and then irradiated with an LED lamp to cure the reactive mixture.
  • the irradiation was carried out in two steps, the first step was irradiation at about 1 mW / cm 2 for 15 minutes, and the second step was irradiation at about 20 mW / cm 2 for 5 minutes (both measured at 405 nm).
  • the obtained polymer material dry lens
  • the contact lenses of Experimental Examples 1 to 13 had high light transmittance in the inactive state.
  • the compatibility of the monomer components was insufficient, and cloudiness occurred.
  • the contact lens of Experimental Example 2 using the polymerizable photochromic compound maintained the photochromic property even after the extraction treatment, but the non-polymerizable photochromic compound was used.
  • the contact lens of Experimental Example C1 lost its photochromic property after the extraction treatment. From this, it can be seen that the non-polymerizable photochromic compound is easily eluted from the polymer material and is inferior in safety or stability.
  • FIG. 4 shows photographs of the lenses (after hydration) obtained in Experimental Examples 2, 8 and 10.
  • the present invention is suitably used in the field of contact lenses or intraocular lenses.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

フォトクロミックモノマーを用いて、非活性状態においてより高い透明性を有するフォトクロミックポリマーを含む眼用医療機器を提供する。本発明の実施形態による眼用医療機器は、フォトクロミックモノマーとラクタム環含有モノマーとを含むモノマー成分を重合させて得られるフォトクロミックポリマーを含み、該モノマー成分中における該ラクタム環含有モノマーの含有割合が、10重量%~50重量%である。当該眼用医療機器は、代表的には、コンタクトレンズまたは眼内レンズである。

Description

フォトクロミックポリマーを含む眼用医療機器およびその製造方法
 本発明は、フォトクロミックポリマーを含む眼用医療機器およびその製造方法に関する。
 フォトクロミック化合物は、分子量が同じで吸収スペクトルが異なる少なくとも2つの状態を有し、例えば、光照射によって第1の状態から第2の状態に切り換わり、光の遮断または熱エネルギーに応答して、あるいは、他の波長の光照射に応答して第1の状態に復帰することができる。このように、吸収スペクトルの異なる少なくとも2つの状態間を可逆的に異性化可能なフォトクロミック化合物の性質を利用して、例えば、眼鏡レンズにフォトクロミック化合物を配合することにより、紫外線照射量の少ない室内では通常のメガネとして使用でき、紫外線照射量の多い屋外ではサングラスとして使用できるフォトクロミック眼鏡が市販されている。
 一方、コンタクトレンズに関しては、非重合性のフォトクロミック化合物がポリマーレンズ中に混合されているフォトクロミックコンタクトレンズ(例えば、特許文献1)、および、重合性のフォトクロミック化合物を含むモノマー成分を重合して得られるポリマーから形成されるフォトクロミックコンタクトレンズ(例えば、特許文献2)が提案されている。
WO2004/068215 特開2017-49615号公報
 コンタクトレンズまたは眼内レンズにフォトクロミック性を付与する場合、角膜上、眼内等の湿潤環境における安定性および安全性の観点から、重合性のフォトクロミック化合物(以下、フォトクロミックモノマーと称する)を用いることが好ましく、また、非活性状態において高い透明性を有することが望ましい。その一方で、フォトクロミックモノマーは、他のモノマーとの相溶性が不十分であり、得られるレンズの透明性が損なわれる場合がある。特許文献2では、フォトクロミックモノマーを含むモノマー成分の混合時に有機溶媒を添加することによって均一な反応性混合物を得ているが、得られるポリマーの透明性には向上の余地がある。また、有機溶媒の使用によって重合中の連鎖移動が多発して得られるフォトクロミックポリマーが脆くなるおそれがある。さらに、フォトクロミックポリマーから有機溶媒を除去する工程に多くの水溶性有機溶媒や水が必要となるため、環境保全の観点からも好ましくない。
 本発明は上記課題を解決するためになされたものであり、その主たる目的は、フォトクロミックモノマーを用いて、非活性状態においてより高い透明性を有するフォトクロミックポリマーを含む眼用医療機器を提供することであり、その際の有機溶媒の使用を抑制または回避することを更なる目的とする。
 本発明の1つの局面によれば、フォトクロミックモノマーとラクタム環含有モノマーとを含むモノマー成分を重合させて得られるフォトクロミックポリマーを含む、眼用医療機器であって、該モノマー成分中における該ラクタム環含有モノマーの含有割合が、10重量%~50重量%であり、コンタクトレンズまたは眼内レンズである、眼用医療機器が提供される。
 1つの実施形態において、上記ラクタム環含有モノマーが、N-ビニルラクタムおよびメチレンラクタムから選択される少なくとも1種を含む。
 1つの実施形態において、上記モノマー成分が、N,N-ジアルキル(メタ)アクリルアミドおよびN,N-ジアルキルアミノアルキル(メタ)アクリルアミドから選択される少なくとも1種をさらに含む。
 1つの実施形態において、上記モノマー成分中における前記ラクタム環含有モノマーとN,N-ジアルキル(メタ)アクリルアミドおよびN,N-ジアルキルアミノアルキル(メタ)アクリルアミドから選択される少なくとも1種との合計含有割合が、25重量%~65重量%である。
 1つの実施形態において、上記モノマー成分が、シリコーン含有モノマーをさらに含む。
 1つの実施形態において、上記モノマー成分中における前記フォトクロミックモノマーの含有割合が、0.001重量%~5重量%である。
 1つの実施形態において、上記フォトクロミックモノマーが、Tタイプのフォトクロミック化合物である。
 1つの実施形態において、上記フォトクロミックモノマーが、ナフトピラン化合物である。
 1つの実施形態において、上記フォトクロミック化合物が、下記構造式(1)で表される。
Figure JPOXMLDOC01-appb-C000006
(式(1)中のR~R、a~dおよび環Zについては、後述する。)
 1つの実施形態において、上記モノマー成分が、アルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレートおよび芳香環含有(メタ)アクリレートから選択される少なくとも1種をさらに含む。
 1つの実施形態において、上記モノマー成分中におけるヒドロキシル基含有モノマーの含有割合が、20重量%以下である。
 本発明の別の局面によれば、フォトクロミックモノマーとラクタム環含有モノマーとを含むモノマー成分を含み、有機溶媒を含まないか、または、該モノマー成分100重量部に対して10重量部以下の含有割合で有機溶媒を含む、反応性混合物を重合させてフォトクロミックポリマーを得ることを含み、該モノマー成分中における該ラクタム環含有モノマーの含有割合が、10重量%~50重量%である、上記眼用医療機器の製造方法が提供される。
 1つの実施形態において、上記モノマー成分中におけるヒドロキシル基含有モノマーの含有割合が、20重量%以下である。
 1つの実施形態において、上記重合が、熱重合と光重合とを含む。
 本発明のさらに別の局面によれば、フォトクロミックモノマー由来の繰り返し単位を有し、光エネルギーの吸収によって非活性状態から該非活性状態よりも可視光透過率が低い活性化状態に変化可能なフォトクロミックポリマーを含む、眼用医療機器であって、該非活性状態において、700nm未満の波長域の少なくとも一部の波長における分光透過率が90%を超え、コンタクトレンズまたは眼内レンズである、眼用医療機器が提供される。
 1つの実施形態において、上記眼用医療機器は、活性化状態において、可視光域の少なくとも一部の波長における分光透過率が70%未満である。
 1つの実施形態において、上記眼用医療機器は、活性化状態において、500nm~700nmの波長域の少なくとも一部の波長における分光透過率が70%未満である。
 1つの実施形態において、上記眼用医療機器は、活性化状態において、530nm~670nmの波長域の全体にわたる分光透過率が70%未満である。
 1つの実施形態において、上記眼用医療機器は、活性化状態において、500nm~700nmの波長域の少なくとも一部の波長における分光透過率が15%以上70%未満である。
 1つの実施形態において、上記眼用医療機器は、活性化状態において、530nm~670nmの波長域の全体にわたる分光透過率が15%以上70%未満である。
 1つの実施形態において、上記眼用医療機器は、活性化状態において、青色域の分光透過率が80%以下である。
 1つの実施形態において、上記眼用医療機器は、活性化状態において、青色域の分光透過率が70%以下である。
 1つの実施形態において、上記眼用医療機器は、非活性状態において、380nm~780nmの波長域における視感透過率が75%以上である。
 1つの実施形態において、上記眼用医療機器は、25barrer~160barrerのDk値を有し、25重量%~80重量%の含水率を有し、0.2MPa~2.0MPaのヤング率を有する含水性レンズである。
 1つの実施形態において、上記眼用医療機器は、130barrer~250barrerのDk値を有し、1.0重量%以下の吸水率を有する酸素透過性ハードコンタクトレンズである。
 1つの実施形態において、上記眼用医療機器は、50barrer~200barrerのDk値を有し、25%以下の形状回復率を有する酸素透過性ソフトコンタクトレンズである。
 1つの実施形態において、上記眼用医療機器は、170%~600%の伸び率を有し、1.5重量%~4.5重量%の吸水率を有する眼内レンズである。
 1つの実施形態において、上記眼用医療機器は、キセノンランプによる50,000ルクスの照射開始から1分以内に非活性状態から活性化状態に変化する。
 本発明においては、フォトクロミックモノマーとの共重合モノマーとして、ラクタム環含有モノマーを特定の配合割合で用いる。これにより、モノマー成分中におけるフォトクロミックモノマーの相溶性を確保でき、有機溶媒の使用に依存することなく、非活性状態において優れた透明性を有するフォトクロミックポリマー(結果として、非活性状態において優れた透明性を有する眼用医療機器)を得ることができる。
実験例で得られたコンタクトレンズの光線透過率スペクトルである。 実験例で得られたコンタクトレンズの抽出処理前後における光線透過率スペクトルである。 実験例で得られたコンタクトレンズの抽出処理前後における光線透過率スペクトルである。 実験例で得られたコンタクトレンズの写真である。
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.用語の定義
 本明細書における用語の定義は下記の通りである。
(1)「活性化状態」とは、フォトクロミックポリマー中のフォトクロミックモノマー(具体的には、フォトクロミックモノマー由来の構成単位)が光照射によるエネルギーを吸収することによって第1の状態から第2の状態に切り替わった状態にあることを意味し、「非活性状態」とは、ポリマー材料中のフォトクロミックモノマーが第2の状態から第1の状態に切り替わった状態にあることを意味する。ただし、フォトクロミック化合物が非活性状態から活性化する際または活性化状態から非活性化する際の変化は一般に連続的であることから、所定の波長の光照射をこれ以上続けてもさらなる透過率の変化が生じない状態を「活性化状態」とし、所定の波長の光照射がない状態をこれ以上続けてもさらなる透過率の変化が生じない状態を「非活性状態」とすることができる。本発明の眼用医療機器は、代表的には、非活性状態において活性化状態よりも高い可視光透過率を示す消色状態にあり、光エネルギーの吸収によって可視光透過率が低い活性化状態(発色(有色)状態)になる。なお、「非活性状態」の「発色(有色)の度合い」に対する、「活性化状態」における「発色(有色)の度合い」を、以下、単に「発色濃度」とする場合もある(「発色濃度」が高いとは、色が濃いことを指す)。
(2)「視感透過率」、「分光透過率」および「可視光透過率」は、JIS T 7333:2018(ISO 8980-3:2013)の規定に準拠して求められる値である。
(3)「可視光域」とは、380nm~780nmの波長域を意味する。
(4)「青色域」とは、380nm~500nmの波長域を意味する。
(5)「(メタ)アクリル」とは、メタクリルおよび/またはアクリルを意味する。
B.眼用医療機器
 本発明の実施形態による眼用医療機器は、代表的には、コンタクトレンズまたは眼内レンズである。当該眼用医療機器は、フォトクロミックモノマーとラクタム環含有モノマーとを含むモノマー成分を重合させて得られるフォトクロミックポリマーを含む。該モノマー成分中におけるラクタム環含有モノマーの配合割合は、10重量%~50重量%である。このような含有割合でラクタム環含有モノマーをフォトクロミックモノマーと組み合わせて用いることにより、非活性状態において優れた透明性を有するフォトクロミックポリマー(結果として、非活性状態において優れた透明性を有する眼用医療機器)が得られ得る。
 上記モノマー成分は、眼用医療機器に所望される物性、用途等に応じて任意の適切なモノマーをさらに含むことができる。モノマー成分は、例えば、フォトクロミックモノマーおよびラクタム環含有モノマーに加えて、シリコーン含有モノマー、親水性モノマー、架橋性モノマー等を含み得る。
B-1.フォトクロミックモノマー
 本発明で使用するフォトクロミックモノマーとは、当然のことながら、フォトクロミック特性を発揮する部位と、重合性基との両方を有する化合物である。フォトクロミックモノマーは、所定の波長λの光照射によって非活性状態から活性化状態に切り換わった後、当該光の遮断または熱エネルギーに応答して非活性状態に戻るTタイプと、他の波長λ’の光照射に応答して非活性状態に戻るPタイプとのいずれであってもよく、Tタイプが好ましく用いられる。Tタイプのフォトクロミックモノマーを用いた眼用医療機器は、例えば、紫外線照射量の多い屋外では活性化状態(有色状態)となり、紫外線照射量の少ない室内では非活性状態(消色状態)に戻ることができる。
 フォトクロミックモノマーを活性化する波長λは、例えば200nm~500nm、好ましくは200nm~480nm、より好ましくは200nm~450nmの範囲であり得る。
 Pタイプのフォトクロミックモノマーとしては、フルギド化合物、ジアリールエテン化合物、フェノキシナフタセンキノン化合物等が挙げられる。また、Tタイプのフォトクロミックモノマーとしては、アゾベンゼン化合物、ヘキサアリールビイミダゾール化合物、スピロピラン・スピロオキサジン化合物、ナフトピラン化合物、アントラセンダイマー、サリチリデンアニリン化合物等が挙げられる。なかでもナフトピラン化合物が好ましい。フォトクロミックモノマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記Tタイプのフォトクロミックモノマーは、熱戻り反応が早いことが好ましい。このようなフォトクロミックモノマーを用いた眼用医療機器によれば、角膜温度(例えば、35℃±2℃)下、所定の波長の光照射の終了後、好ましくは60秒以内、より好ましくは30秒以内に非活性状態に戻ることができる。
 本発明で好ましく用いられるナフトピラン系フォトクロミックモノマーは下記構造式(1):
Figure JPOXMLDOC01-appb-C000007
で示される、3,3-ジフェニルインデノナフトピラン構造を基本骨格(以下、単に「インデノナフトピラン骨格」とする場合もある)として有する。一般的に、インデノナフトピラン構造を有するフォトクロミックモノマーは、優れたフォトクロミック特性を示すことが知られている。以下、特定の置換基について順を追って説明する。
 <R、及びR
 R、およびRは、共に該インデノナフトピラン骨格の3位の炭素原子に結合するフェニル基に置換した置換基である。
 R、およびRは、それぞれ独立に、ラジカル重合性基を有する基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、複素環基、シアノ基、ハロゲン原子、又は炭素数1~6のアルキルチオ基、置換基を有してもよい炭素数6~10のアリールチオ基である。
 aは0~5の整数であり、bは0~5の整数であり、ただし、a+b=1~10となり、R、およびRの少なくとも1つはラジカル重合性基を有する基である。なお、当然のことであるが、R、およびRの少なくとも1つはラジカル重合性基であれば、Rが複数存在する場合には、互いに同一であっても異なる基であってもよい。また、Rも同様に、Rが複数存在する場合には、互いに同一であっても異なる基であってもよい。
 前記炭素数1~6の好適なアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等を挙げることができる。
 前記炭素数1~6のハロアルキル基としては、フッ素原子、塩素原子もしくは臭素原子で置換されたアルキル基が好ましい。好適なハロアルキル基の例としては、トリフルオロメチル基、テトラフルオロエチル基、クロロメチル基、2-クロロエチル基、ブロモメチル基等を挙げることができる。
 前記炭素数3~8のシクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。
 前記炭素数1~6の好適なアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基等を挙げることができる。
 前記アミノ基は、一級アミノ基(-NH)に限定されるものではなく、1つまたは2つの水素原子が置換された2級または3級アミノ基であってもよい。かかるアミノ基が有する置換基としては、例えば炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数3~7のシクロアルキル基、炭素数6~14のアリール基、炭素数4~14のヘテロアリール基等が挙げられる。好適なアミノ基の例としては、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、フェニルアミノ基、ジフェニルアミノ基等を挙げることできる。
 前記複素環基は、例えばモルホリノ基、ピペリジノ基、ピロリジニル基、ピペラジノ基、N-メチルピペラジノ基の如き脂肪族複素環基およびインドリニル基の如き芳香族複素環基等を好ましいものとして挙げることができる。さらに、該複素環基は、置換基を有していてもよい。好ましい置換基としては、アルキル基が挙げられる。置換基を有する好適な複素環基としては、例えば2,6-ジメチルモルホリノ基、2,6-ジメチルピペリジノ基および2,2,6,6-テトラメチルピペリジノ基等が挙げられる。
 前記ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。
 前記炭素数1~6のアルキルチオ基としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、sec-ブチルチオ基、t-ブチルチオ基等を挙げることができる。
 前記炭素数6~10のアリールチオ基としては、フェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基等を挙げることができる。
 前記アリールチオ基は、芳香族環の1~5個の水素原子、特に好ましくは1~4個の水素原子が、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数3~8のシクロアルキル基またはハロゲン原子で置換されていてもよい。なお、前記アリールチオ基の炭素数6~10には、置換基の炭素数は含まれないものとする。
 前記の中でも、R、およびRとしては、優れたフォトクロミック特性を発揮するという観点から、ラジカル重合性基を有する基以外の基としては、前記アルキル基、前記アルコキシ基、前記アミノ基、前記置換アミノ基、前記複素環基、前記ハロゲン原子から選ばれる基であることが好ましい。特に好適なものを例示すると、メチル基、メトキシ基、ジメチルアミノ基、モルホリノ基、ピペリジノ基、フルオロ基等が挙げられる。
 特に好ましい基として、ラジカル重合性基を有する基以外のR、およびRの数は、好ましくは1つであるか、0となることが好ましい。つまり、ラジカル重合性基を有する基以外の基が、フェニル基に1置換しているか、全く置換していない状態であることが好ましい。フェニル基に1置換している場合には、パラ位に置換していることが好ましい。
 <R1、及びR;ラジカル重合性基を有する基>
 前記ラジカル重合性基を有する基としては、下記式(2)で示される基である。
Figure JPOXMLDOC01-appb-C000008
 前記式(2)中、R10は、炭素数が1~10の直鎖状又は分岐鎖状アルキレン基である。炭素数1~5のアルキレン基であることが好ましい。炭素数1~5の好適なアルキレン基の例としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、sec-ブチレン基、tert-ブチレン基、ペンチレン基等を挙げることができる。
 lは、0~50の整数である。フォトクロミックモノマー自体の生産性、発揮される効果を考慮すると、lは、1~20の整数であることが好ましく、1~10の整数であることがより好ましく、1~5の整数であることがさらに好ましく、1であることが最も好ましい。lは(-R10O-)の繰り返し単位を指すものである。lが2以上の場合、lで括られた単位の基((-R10O-)基)は、互いに同一であっても異なる基であってもよい。
 PGは、ラジカル重合性基であり、ビニル基、1-クロロビニル基、アリル基、スチリル基、(メタ)アクリル基、2-(メタクリルオキシ)エチルカルバミル基、2-(メタクリルオキシ)エトキシカルボニル基、クロチル基、などが挙げられる。中でも、フォトクロミックモノマー自体の生産性、および眼用医療機器の性能を考慮すると、(メタ)アクリル基であることが最も好ましい。
 <R、およびRの数、および置換位置>
 前記式(1)において、aはRの数(置換数)を指し、bはRの数(置換数)を指す。そして、aは0~5の整数であり、bは0~5の整数であり、ただし、a+b=1~10となり、R、およびRの少なくとも1つは前記ラジカル重合性基を有する基である。つまりR、およびRの少なくとも1つは前記ラジカル重合性基を有する基であれば、その他は、前記<R1、及びR>で説明したラジカル重合性基を有する基以外の基であっても、水素原子であってもよい。
 その中でも、最も好ましい態様は、前記ラジカル重合性基を有する基が1つとなる場合である。ラジカル重合性基を有する基が2つ以上になると、フォトクロミックモノマーが架橋してしまい、フォトクロミック特性が低下する傾向にある。
 また、ラジカル重合性基を有する基が置換する位置は、3,3-ジフェニルインデノナフトピランのフェニル基のパラ位であることが好ましい。そのため、好ましい態様は、一方のフェニル基のパラ位に前記ラジカル重合性基を有する基が置換している場合である。この時、他方のフェニル基は、制限されるものではないが、やはり、パラ位に置換基が1つ存在するか、または置換基が存在しない(パラ位も水素原子となる)場合が好ましい。中でも、他方のフェニル基は、置換基が存在しないか、パラ位に、前記アルキル基、前記アルコキシ基、又は前記複素環基が置換することが好ましい。
 <環Z(基)>
 該インデノナフトピラン骨格の13位の炭素原子とスピロ結合する下記式(Z)
Figure JPOXMLDOC01-appb-C000009
で示される環Z(13位の炭素原子とスピロ結合する環基)は、
 該13位の炭素原子と共に該環を構成する炭素数が3~20である、置換基を有してもよい脂肪族環基、
 該脂肪族環に置換基を有してもよい芳香族環若しくは芳香族複素環が縮環した縮合多環基、
 該13位の炭素原子と共に該環を構成する原子数が3~20である、置換基を有してよい複素環基、又は
 該複素環基に置換基を有してもよい芳香族環若しくは芳香族複素環が縮環した縮合多環基である。なお、当然のことであるが、前記環基において示した炭素数、又は原子数は、環を構成する炭素、又は原子の数を示すものであり、置換基の炭素数、又は原子数を含むものではない。
 前記脂肪族環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロヘプタン環、ノルボルナン環、ビシクロノナン環、アダマンタン環が挙げられる。
 また、前記脂肪族環に芳香族環もしくは芳香族複素環が縮環した縮合多環としては、例えばフェナントレン環が挙げられる。
 前記複素環としては、例えばチオフェン環、フラン環、ピリジン環が挙げられる。
 また、前記複素環に、芳香族環もしくは芳香族複素環が縮環した縮合多環としては、例えば、フェニルフラン環、ビフェニルチオフェン環が挙げられる。
 前記脂肪族環、前記脂肪族環に芳香族環もしくは芳香族複素環が縮環した縮合多環、前記複素環、又は前記複素環に芳香族環もしくは芳香族複素環が縮環した縮合多環は、置換基を有してもよい。該環(縮合多環)に置換する置換基としては、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基及びハロゲン原子からなる群より選ばれる少なくとも1種類の置換基が挙げられる。なお、前記アルキル基、前記ハロアルキル基、前記シクロアルキル基、前記アルコキシ基、前記アミノ基、前記置換アミノ基、及び前記ハロゲン原子は、<R1、およびR>で既に説明した基と同様の基が挙げられる。この環Zが有する置換基の中でも、前記フォトクロミックモノマーが特に優れた効果を発揮するものとしては、炭素数1~6のアルキル基、シクロアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基が特に好ましい。
 前記の環Zの中でも、早い退色速度を有しつつ、高い発色濃度を得るためには、環を構成する炭素数が5~16よりなる前記脂肪族炭化水素環基、これら脂肪族炭化水素環に炭素数1~6のアルキル基(好ましくは炭素数1~3のアルキル基)が置換した環基、又は該脂肪族炭化水素環に炭素数3~8のシクロアルキル基が結合、または縮環した環基が好ましい。
 特に好適な環Zを具体的に例示すると、置換基を有さない非置換のシクロヘキサン環基、シクロヘプタン環基、シクロオクタン環基、シクロノナン環基、シクロデカン環基、シクロウンデカン環基、又はシクロドデカン基である。
 また、環Zは、シクロヘキサン環基であってもよいが、シクロヘキサン環基である場合は、好ましくは炭素数1~3のアルキル基、より好ましくは1~2のアルキル基が置換したシクロヘキサン環基であることが好ましい。さらに、該アルキル基が置換したシクロヘキサン基の場合、アルキル基の置換基数は、1~10が好ましく、より好ましくは2~6である。
 さらに早い退色速度を有しつつ、高い発色濃度の効果が顕著になるためには、下記式
Figure JPOXMLDOC01-appb-C000010
で示される環Zとなることが好ましい。なお、前記式中、点線の結合手を有する炭素原子が13位の炭素原子である。
 そして、前記環基の中でも、特に、高い発色濃度の効果がより顕著に発揮されるためには、前記13位の炭素原子と共に該環を構成する炭素数が6~15であることが好ましく、炭素数が7~12であることがさらに好ましい。
 好ましい環基の中でも、より高い発色濃度を有するフォトクロミックモノマーとする場合、又はより早い退色速度のフォトクロミックモノマーとする場合では、別々の該環基を採用することが好ましい。
 すなわち、より高い発色濃度とするためには、下記式で示される環基を採用することが好ましい。
Figure JPOXMLDOC01-appb-C000011
 以上のような置換基を有さない、炭素数6~12のシクロアルカン環(13位の炭素原子を含む)を採用した場合には、特に高い発色濃度を有するフォトクロミックモノマーとなる。
 一方、より高速応答(早い退色速度)のフォトクロミックモノマーとするためには、下記式で示される環基を採用することが好ましい。
Figure JPOXMLDOC01-appb-C000012
 以上のような基を採用することにより、より高速応答可能なフォトクロミックモノマーとすることができる。
 <R
 Rは、水素原子、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、シアノ基、ハロゲン原子、炭素数1~6のアルキルチオ基、置換基を有してもよい炭素数6~10のアリールチオ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリールオキシ基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数3~12のヘテロアリール基、チオール基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、又は炭素数3~8のシクロアルキルチオ基である。
 前記基の中で炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数炭素数1~6のアルコキシ基、ハロゲン原子、炭素数1~6のアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基は、<R、およびR>で説明した基と同様の基が挙げられ、好ましい基も同じである。
 前記炭素数2~7のアルキルカルボニル基としては、アセチル基、エチルカルボニル基が挙げられる。
 前記炭素数2~7のアルコキシカルボニル基としてはメトキシカルボニル基、エトキシカルボニル基が挙げられる。
 前記炭素数7~11のアラルキル基としてはベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ナフチルメチル基等を挙げることができる。
 前記炭素数7~11のアラルコキシ基としては、ベンジロキシ基、ナフチルメトキシ基等を挙げることができる。
 前記炭素数6~12のアリールオキシ基としては、フェニルオキシ基、ナフチルオキシ基等を挙げることができる。
 前記炭素数6~12のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等を挙げることができる。
 前記炭素数3~12のヘテロアリール基は、チエニル基、フリル基、ピロリニル基、ピリジル基、ベンゾチエニル基、ベンゾフラニル基、ベンゾピロリニル基等を挙げることができる。
 前記炭素数2~9のアルコキシアルキルチオ基としては、メトキシメチルチオ基、メトキシエチルチオ基、メトキシn-プロピルチオ基、メトキシn-ブチルチオ基、エトキシエチルチオ基、n-プロポキシプロピルチオ基等を挙げることができる。
 前記炭素数1~6のハロアルキルチオ基としては、トリフルオロメチルチオ基、テトラフルオロエチルチオ基、クロロメチルチオ基、2-クロロエチルチオ基、ブロモメチルチオ基等を挙げることができる。
 前記炭素数3~8のシクロアルキルチオ基としては、シクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基等を挙げることができる。
 なお、前記アラルキル基、前記アラルコキシ基、前記アリールオキシ基、前記アリール基、および前記ヘテロアリール基は、非置換であってもよい。また、1~6個の水素原子、特に好ましくは1~4個の水素原子が、ヒドロキシル基、アルキル基、ハロアルキル基、シクロアルキル基、アルコキシ基、アミノ基、複素環基、シアノ基、ニトロ基、ハロゲン原子から選ばれる置換基で置換されていてもよい。なお、該置換基は<R、およびR>で説明した基と同様の基が挙げられる。前記アラルキル基、前記アラルコキシ基、前記アリールオキシ基、前記アリール基、および前記ヘテロアリール基で限定した炭素数は、置換基の炭素数を含むものではない。
 <特に好適なR
 以上のような基の中でも、得られたフォトクロミックモノマーの発色色調、発色濃度等を考慮すると、Rは、水素原子、前記アルキル基、前記アルコキシ基、前記アリール基、前記アリールチオ基が好ましい。
 <R
 Rは、水素原子、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、複素環基、シアノ基、ハロゲン原子、炭素数1~6のアルキルチオ基、置換基を有してもよい炭素数6~10のアリールチオ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリールオキシ基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数3~12のヘテロアリール基、チオール基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、又は炭素数3~8のシクロアルキルチオ基である。
 前記炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、複素環基、シアノ基、ハロゲン原子、炭素数1~6のアルキルチオ基、置換基を有してもよい炭素数6~10のアリールチオ基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリールオキシ基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数3~12のヘテロアリール基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、又は炭素数3~8のシクロアルキルチオ基は、これら具体的な基は、前記<R、およびR>、又は前記<R>で例示した具体的な基が挙げられ、好ましい基も同じである。
 また、R、およびRは、一緒になって、下記式(3)
Figure JPOXMLDOC01-appb-C000013
(式中、*は6位又は7位の炭素原子を指す。)基となることもできる。
 式中、X、およびYは、一方または両方が硫黄原子、メチレン基、酸素原子、または下記式
Figure JPOXMLDOC01-appb-C000014
で示される基である。
 前記式において、Rは、水素原子、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6アルコキシ基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数3~12のヘテロアリール基である。これら具体的な基は、前記<R、およびR>、又は前記<R>で例示した具体的な基が挙げられ、好ましい基も同じである。
 また、前記式(3)において、式中、RおよびRは、それぞれ独立に、ヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基、複素環基、シアノ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、ハロゲン原子、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリール基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基である。これら具体的な基は、前記<R、およびR>、又は前記<R>で例示した具体的な基が挙げられ、好ましい基も同じである。
 また、RおよびRは、それらが結合する炭素原子と共に、脂肪族環を形成してもよい。脂肪族環を具体的に例示すると、シクロペンチル環、シクロヘキシル環などが挙げられる。
 式中、eは1~3の整数である。
 <特に好適なR
 以上のような基の中でも、得られたフォトクロミックモノマーの発色色調、発色濃度等を考慮するとRは、水素原子、前記アルキル基、前記アルコキシ基、前記複素環基、前記アリール基、前記アリールチオ基が好ましい。
 <R
 Rは、ヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基、複素環基、シアノ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、ハロゲン原子、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリール基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基である。
 cは0~2の整数であり、cが2であるの場合には、Rは、互いに同一でも異なる基であってもよい。
 前記炭素数1~6のアルキル基、前記炭素数1~6のハロアルキル基、前記炭素数3~8のシクロアルキル基、前記炭素数1~6のアルコキシ基、前記アミノ基、前記複素環基、前記炭素数2~7のアルキルカルボニル基、前記炭素数2~7のアルコキシカルボニル基、前記ハロゲン原子、前記置換基を有してもよい炭素数7~11のアラルキル基、前記置換基を有してもよい炭素数7~11のアラルコキシ基、前記置換基を有してもよい炭素数6~12のアリール基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基は、これら具体的な基は、前記<R、およびR>、又は前記<R>、および前記<R>で例示した具体的な基が挙げられ、好ましい基も同じである。
 <特に好適なR
 以上のような基の中でも、得られたフォトクロミックモノマーの発色色調、発色濃度等を考慮すると、Rは、水素原子(c=0となる場合)となるか、前記アルコキシ基である。
 <R
 Rは、ヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基、複素環基、ハロゲン原子、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基である。
 dは0~4の整数であり、dが2以上である場合には、Rは、互いに同一でも異なる基であってもよい。
 前記炭素数1~6のアルキル基、前記炭素数1~6のハロアルキル基、前記炭素数3~8のシクロアルキル基、前記炭素数1~6のアルコキシ基、前記アミノ基、前記複素環基、前記ハロゲン原子、前記置換基を有してもよい炭素数7~11のアラルキル基、前記置換基を有してもよい炭素数7~11のアラルコキシ基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基は、これら具体的な基は、前記<R、およびR>、又は前記<R>、または前記<R>、及び前記<R>で例示した具体的な基が挙げられ、好ましい基も同じである。
 <特に好適なR
 以上のような基の中でも、得られたフォトクロミックモノマーの発色色調、発色濃度等を考慮すると、Rは、水素原子(d=0となる場合)となるか、前記アルコキシ基である。
 <特に好適なフォトクロミックモノマー>
 本発明において、特に好適なフォトクロミックモノマーを具体的に例示すれば、下記式で示されるフォトクロミックモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000015
 <好適なフォトクロミックモノマーの同定>
 前記フォトクロミックモノマーは、一般に常温常圧で無色、あるいは淡黄色、淡緑色の固体又は粘稠な液体として存在し、次の(イ)~(ハ)のような手段で確認できる。
 (イ) プロトン核磁気共鳴スペクトル(H-NMR)を測定することにより、δ:5.0~9.0ppm付近にアロマティックなプロトン及びアルケンのプロトンに基づくピーク、δ:1.0~4.0ppm付近にアルキル基及びアルキレン基のプロトンに基づくピークが現れる。また、それぞれのスペクトル強度を相対的に比較することにより、それぞれの結合基のプロトンの個数を知ることができる。
 (ロ) 元素分析によって相当する生成物の組成を決定することができる。
 (ハ) 13C-核磁気共鳴スペクトル(13C-NMR)を測定することにより、δ:110~160ppm付近に芳香族炭化水素基の炭素に基づくピーク、δ:80~140ppm付近にアルケン及びアルキンの炭素に基づくピーク、δ:20~80ppm付近にアルキル基及びアルキレン基の炭素に基づくピークが現われる。
 <好適なフォトクロミックモノマーの製造>
 本発明で使用する好適なフォトクロミックモノマーは、如何なる合成法によって製造してもよい。好適なフォトクロミックモノマーの製造方法の1例について説明する。尚、以下の説明において、各式中の符号は、特記しないかぎり、前述した式について説明したとおりの意味を示す。
 下記式(10)
Figure JPOXMLDOC01-appb-C000016
で示されるナフトール化合物と、
 下記式(11)
Figure JPOXMLDOC01-appb-C000017
で示されるプロパルギルアルコール化合物とを、酸触媒存在下で反応させる方法により、フォトクロミックモノマーが好適に製造することができる。ナフトール化合物とプロパルギルアルコール化合物との反応比率は、好ましくは1:10~10:1(モル比)の範囲から選択される。また、酸触媒としては例えば硫酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酸性アルミナ等が用いられる。酸触媒はナフトール化合物とプロパルギルアルコール化合物との総和100重量部当り、好ましくは0.1~10重量部の範囲で用いられる。反応温度は、0乃至200℃が好ましい。溶媒としては、好ましくは非プロトン性有機溶媒、例えば、N-メチルピロリドン、ジメチルホルムアミド、テトラヒドロフラン、ベンゼン、トルエン等が使用される。かかる反応により得られた生成物の精製方法は特に限定されない。例えば、シリカゲルカラム精製を行い、さらに再結晶により、生成物の精製を行なうことができる。
 前記式(10)で示されるナフトール化合物の中でも、好ましい化合物は、前記式(1)で示される好適なフォトクロミックモノマーが製造できる構造を有するものである。例えば、下記式で示される化合物を特に好ましいものとして挙げることができる。
Figure JPOXMLDOC01-appb-C000018
 前記式(10)で示されるナフトール化合物は、例えば、以下のようにして合成することができる。ナフトール化合物は、国際公開第WO2001/60881パンフレット、国際公開第WO2005/028465号パンフレット等の論文に記載の反応方法に基づいて合成することができる。具体的には、該ナフトール化合物は以下の方法で製造できる。
 先ず、下記式(12)
Figure JPOXMLDOC01-appb-C000019
で示されるベンゾフェノン化合物をStobbe反応、環化反応を行うことで、下記式(13)
Figure JPOXMLDOC01-appb-C000020
の化合物を得る。なお、前記式(13)の化合物において、RはStobbe反応で使用したジエステル化合物由来の基であり、Acはアセチル基である。次いで該化合物(13)を、アルカリ又は、酸を用いて加水分解することで、下記式(14)
Figure JPOXMLDOC01-appb-C000021
のカルボン酸を得る。該カルボン酸を炭酸カリウム等の塩基と塩化ベンジルを用いることでベンジル化を行い、次いで、アルカリ又は、酸を用いることで加水分解を行い、下記式(15)
Figure JPOXMLDOC01-appb-C000022
で示されるベンジル保護されたカルボン酸を得る(式(15)中Bnはベンジル基である)。該ベンジル保護されたカルボン酸を、Curtius転位、Hofmann転位、Lossen転位等の方法によりアミンに変換し、これからそれ自体公知の方法によりジアゾニウム塩を調製する。このジアゾニウム塩を、Sandmeyer反応等によりブロマイドに変換し、得られたブロマイドをマグネシウムやリチウム等と反応させて有機金属化合物を調製する。この有機金属化合物を、下記式(16)
Figure JPOXMLDOC01-appb-C000023
で示されるケトンと、-80~70℃、10分~4時間、有機溶媒中で反応させ、次いで水素とパラジウム炭素等で、脱ベンジル化反応を行うことで、下記式(17)
Figure JPOXMLDOC01-appb-C000024
で示されるアルコールを得る。このアルコールを中性~酸性条件下で、10~120℃で10分~2時間、Friedel-Crafts反応を行うことにより、目的とする前記式(10)のナフトール化合物を合成することができる。かかる反応において、前記有機金属化合物と前記式(12)で示されるケトンとの反応比率は、好ましくは、1:10~10:1(モル比)の範囲から選択される。反応温度は、-80~70℃が好ましい。溶媒としては、非プロトン性有機溶媒、例えば、ジエチルエーテル、テトラヒドロフラン、ベンゼン、トルエン等が好ましく使用される。また、前記式(17)のアルコールの中性~酸性条件下でのFriedel-Crafts反応は、例えば酢酸、塩酸、硫酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酸性アルミナ等の酸触媒を用いて行うことが好ましい。このような酸触媒は、前記式(17)のアルコール100重量部当り0.1~10重量部の範囲で用いられるのが好適である。この反応に際しては、例えばテトラヒドロフラン、ベンゼン、トルエン等の非プロトン性有機溶媒が使用される。
 一方、前記式(11)で示されるプロパルギルアルコール化合物は、例えば、前記式(12)に対応するケトン化合物とリチウムアセチリド等の金属アセチレン化合物とを反応させることにより、容易に合成できる。この式(11)で示されるプロパルギルアルコール化合物に公知の方法で前記重合性基を導入しておけば、該プロパルギルアルコールと前記式(10)で示されるナフトール化合物とを前記反応を行うことにより、フォトクロミックモノマーを製造することができる。
 以上のような方法でフォトクロミックモノマーを製造することもできるが、より反応を簡潔にし、副生物を抑制するためには、前記ラジカル重合性基は、以下のようにして導入することが好ましい。具体的には、プロパルギルアルコール化合物のラジカル重合性基を導入したい位置に、予め、ヒドロキシル基、1級または2級アミノ基、チオール基、およびヒドロシリル基などの反応性置換基を置換しておく。次いで、該反応性置換基を有するプロパルギルアルコール化合物と前記式(10)で示されるナフトール化合物とを前記方法に従い反応させて、フォトクロミックモノマーの前駆体を製造する。そして、得られた前駆体の反応性置換基に、ラジカル重合性基を導入することにより、フォトクロミックモノマーを製造する。
 前記反応性置換基にラジカル重合性基を導入する方法は、公知の方法が採用できる。
 例えば、ラジカル重合性基として(メタ)アクリル基を導入するには、塩基性触媒下、反応性置換基としてヒドロキシル基を有する前駆体と塩化(メタ)アクリロイルとを反応させればよい。この他にもアミノ基や、ヒドロキシル基を有する前駆体と2-イソシアナトエチル(メタ)アクリレートを反応させることにより、ラジカル重合性基を導入できる。また、反応性置換基としてヒドロシリル基を有する前駆体とメタクリル酸アリルとを、塩化白金酸を触媒としてヒドロシリル化させることにより、ラジカル重合性基を導入することができる。
 また、ラジカル重合性基としてビニル基を導入する場合、反応性置換基としてヒドロキシル基を有する前駆体と塩化ビニル、又はアリルブロミドとを反応させることにより、ラジカル重合性基を導入することができる。
 ラジカル重合性基としてスチリル基の場合、反応性置換基としてヒドロシリル基を有する前駆体とジビニルベンゼンとを塩化白金酸触媒下でドロシリル化することより、ラジカル重合性基を導入することができる。
 以下により具体的な製造方法の例を示す。例えば、反応性置換基としてヒドロキシル基を有する前駆体の合成方法、及び該前駆体にラジカル重合性基としてアクリル基を導入する場合の変換スキームを下記に示す。
Figure JPOXMLDOC01-appb-C000025
 前記式(10)のナフトール化合物と、反応性置換基としてヒドロキシル基を有するプロパルギルアルコール化合物とを酸性条件下反応させることで、ヒドロキシル基を有する前駆体を得ることができる。該前駆体を3級アミンなどの塩基性触媒存在下、塩化アクリロイルと反応させることにより、フォトクロミックモノマーが得られる。
 なお、前記フォトクロミックモノマーは、所望とする色調とするため、複数種類のフォトクロミックモノマーを使用してもよい。複数種類のフォトクロミックモノマーを使用する場合には、当然のことながら、下記の含有割合は、フォトクロミックモノマーの合計量が基準となる。
 上記モノマー成分中のフォトクロミックモノマーの含有割合は、吸収波長や吸収の大きさによって変化し得るが、通常、0.001重量%~5重量%、好ましくは0.01重量%~3重量%であり得る。眼用医療機器が含水性ソフトコンタクトレンズ用途の場合、当該含有割合は、好ましくは0.3重量%~3重量%であり、より好ましくは0.5重量%~2重量%、さらに好ましくは0.6重量%~1.5重量%である。また、眼用医療機器が酸素透過性ハードコンタクトレンズ、非含水ソフトコンタクトレンズ、眼内レンズ等の実質的に水を含まないレンズ(以下、非含水性レンズと称する場合がある)用途の場合、当該含有割合は、好ましくは0.01重量%~3重量%、より好ましくは0.1重量%~2重量%である。含有割合が当該範囲内であれば、所望のフォトクロミック性を有する眼用医療機器が好適に得られ得る。
B-2.ラクタム環含有モノマー
 ラクタム環含有モノマーは、モノマー成分中におけるフォトクロミックモノマーの相溶性を向上することができ、透明性に優れたフォトクロミックポリマーが得られ得る。ラクタム環含有モノマーとしては、N-ビニルラクタム、メチレンラクタム等が挙げられ、なかでも、N-ビニルラクタムが好ましく用いられ得る。N-ビニルラクタムは、フォトクロミックポリマーに親水性を付与し得る点、生体安全性に優れる点および安価に入手可能である点において好ましい。ラクタム環含有モノマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 N-ビニルラクタムとしては、例えば、N-ビニル-2-ピロリドン、N-ビニル-3-メチル-2-ピロリドン、N-ビニル-4-メチル-2-ピロリドン、N-ビニル-5-メチル-2-ピロリドン、N-ビニル-6-メチル-2-ピロリドン、N-ビニル-3-エチル-2-ピロリドン、N-ビニル-4,5-ジメチル-2-ピロリドン、N-ビニル-5,5-ジメチル-2-ピロリドン、N-ビニル-3,3,5-トリメチル-2-ピロリドン、N-ビニル-2-ピペリドン、N-ビニル-3-メチル-2-ピペリドン、N-ビニル-4-メチル-2-ピペリドン、N-ビニル-5-メチル-2-ピペリドン、N-ビニル-6-メチル-2-ピペリドン、N-ビニル-6-エチル-2-ピペリドン、N-ビニル-3,5-ジメチル-2-ピペリドン、N-ビニル-4,4-ジメチル-2-ピペリドン、N-ビニル-2-カプロラクタム、N-ビニル-3-メチル-2-カプロラクタム、N-ビニル-4-メチル-2-カプロラクタム、N-ビニル-7-メチル-2-カプロラクタム、N-ビニル-7-エチル-2-カプロラクタム、N-ビニル-3,5-ジメチル-2-カプロラクタム、N-ビニル-4,6-ジメチル-2-カプロラクタム、N-ビニル-3,5,7-トリメチル-2-カプロラクタム等が挙げられる。なかでも、N-ビニル-2-ピロリドン、N-ビニル-2-カプロラクタムが好ましく、N-ビニル-2-ピロリドンがより好ましい。
 メチレンラクタムとしては、1-メチル-3-メチレン-2-ピロリドン、1-エチル-3-メチレン-2-ピロリドン、1-メチル-5-メチレン-2-ピロリドン、1-エチル-5-メチレン-2-ピロリドン、5-メチル-3-メチレン-2-ピロリドン、5-エチル-3-メチレン-2-ピロリドン、1-n-プロピル-3-メチレン-2-ピロリドン、1-n-プロピル-5-メチレン-2-ピロリドン、1-i-プロピル-3-メチレン-2-ピロリドン、1-i-プロピル-5-メチレン-2-ピロリドン、1-n-ブチル-3-メチレン-2-ピロリドン、1-t-ブチル-3-メチレン-2-ピロリドン等のメチレンピロリドン類が挙げられる。
 上記モノマー成分中のラクタム環含有モノマーの含有割合は、代表的には10重量%~50重量%であり、好ましくは11重量%~48重量%であり、より好ましくは12重量%~45重量%である。含有割合が当該範囲内であれば、有機溶媒を使用しない、もしくは有機溶媒を少量使用した場合においても透明性に優れたフォトクロミックポリマーが得られ得る。
B-3.シリコーン含有モノマー
 シリコーン含有モノマーは、フォトクロミックポリマーの酸素透過性、機械的強度、形状安定性等の向上に寄与し得る。シリコーン含有モノマーとしては、シロキサン結合(Si-O-Si)を含有する限りにおいて特に制限はなく、例えば、シリコーン含有アルキル(メタ)アクリレート、シリコーン含有スチレン誘導体およびシリコーン含有フマル酸ジエステルが挙げられる。また、シリコーン含有モノマーは、ポリシロキサン構造を有するシリコーン含有マクロモノマーであってもよい。
 シリコーン含有アルキル(メタ)アクリレートの具体例としては、トリメチルシロキシジメチルシリルメチル(メタ)アクリレート、トリメチルシロキシジメチルシリルプロピル(メタ)アクリレート、メチルビス(トリメチルシロキシ)シリルプロピル(メタ)アクリレート、トリス(トリメチルシロキシ)シリルプロピル(メタ)アクリレート、モノ[メチルビス(トリメチルシロキシ)シロキシ]ビス(トリメチルシロキシ)シリルプロピル(メタ)アクリレート、トリス[メチルビス(トリメチルシロキシ)シロキシ]シリルプロピル(メタ)アクリレート、トリス(トリメチルシロキシ)シリル(プロピルグリセロール)(メタ)アクリレート、ポリジメチルシロキサンジ(メタ)アクリレート等が挙げられる。
 シリコーン含有スチレン誘導体の具体例としては、トリス(トリメチルシロキシ)シリルスチレン、ビス(トリメチルシロキシ)メチルシリルスチレン、(トリメチルシロキシ)ジメチルシリルスチレン、トリス(トリメチルシロキシ)シロキシジメチルシリルスチレン等が挙げられる。
 シリコーン含有フマル酸ジエステルの具体例としては、ビス(3-(トリメチルシリル)プロピルフマレート、ビス(3-(ペンタメチルジシロキサニル)プロピル)フマレート、ビス(3-(1,3,3,3-テトラメチル-1-(トリメチルシリル)オキシ)ジシロキサニル)プロピル)フマレート、ビス(トリス(トリメチルシロキシ)シリルプロピル)フマレート等が挙げられる。
 シリコーン含有マクロモノマーとしては、(Si-O)の繰り返し数が、例えば4以上、好ましくは4~200、より好ましくは10~200であるポリシロキサン構造を有するものが好ましく用いられ得る。このようなシリコーン含有マクロモノマーを用いることにより、高い酸素透過率を実現することができる。シリコーン含有マクロモノマーの詳細は、特開2011-219513号公報、特表2015-503631号公報等(これらは、本明細書に参考として援用される)に記載されている。
 上記モノマー成分中におけるシリコーン含有モノマーの含有割合は、眼用医療機器に所望される物性、用途等に応じて適切に設定される。当該含有量は、例えば10重量%~89.9重量%であり得る。具体的には、眼用医療機器が含水性ソフトコンタクトレンズ用途の場合、当該含有割合は、好ましくは25重量%~60重量%、より好ましくは28重量%~60重量%である。一方、眼用医療機器が非含水性レンズ用途の場合、当該含有割合は、好ましくは12重量%~89.9重量%、より好ましくは15重量%~80重量%である。シリコーン含有モノマーの含有割合が当該範囲内であれば、所望の酸素透過性および透明性を有するフォトクロミックポリマー(結果として、眼用医療機器)が好適に得られ得る。
B-4.親水性モノマー
 親水性モノマーは、フォトクロミックポリマーの親水性を向上させ、その表面の水濡れ性および潤滑性を高めることができる。親水性モノマーとしては、例えば、20℃の水への溶解度が20g/100mL以上であるモノマー(ただし、B-1項~B-3項およびB-5項に記載のモノマーを除く)が好ましく用いられ得る。親水性モノマーの具体例としては、(メタ)アクリルアミド系化合物、N-ビニルアミド等のアミド基含有モノマー、炭素数1~5のヒドロキシアルキル(メタ)アクリレートまたはジヒドロキシアルキル(メタ)アクリレート等のヒドロキシル基含有モノマーが好ましく例示できる。親水性モノマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 親水性モノマーとしては、(メタ)アクリルアミド系化合物を用いることが好ましい。ラクタム環含有モノマーとしてN-ビニルラクタムを用いた場合、得られるフォトクロミックポリマーが黄変する場合や、重合不良が生じる場合がある。その理由は定かではないが、以下のように推測される。すなわち、N-ビニルラクタムは、重合速度が比較的遅く、また、高い極性を有することから、重合時の露光によって活性化されたフォトクロミックモノマーと相互作用し、その結果として、フォトクロミックモノマーが分解して系全体が黄変する、または、重合が抑制される等の問題が生じ得ると推測される。これに対し、(メタ)アクリルアミド系化合物をN-ビニルラクタムと組み合わせて用いることにより、フォトクロミックポリマーの黄変および重合不良を抑制し得る。N-ビニルラクタムと(メタ)アクリルアミド系化合物とを併用することによって重合系(反応性混合物)の粘度が上昇し、これにより、重合後期に残留したN-ビニルラクタムの拡散が抑制される結果、フォトクロミックモノマーとの相互作用(結果として、フォトクロミックモノマーの劣化)も抑制されると考えられる。
 (メタ)アクリルアミド系化合物としては、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド等のN,N-ジアルキルアミノアルキル(メタ)アクリルアミド、アクリロイルモルホリンが挙げられる。
 N-ビニルアミドとしては、N-ビニルホルムアミド、N-ビニル-N-メチルホルムアミド、N-ビニル-N-エチルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルアセトアミド、N-ビニル-N-エチルアセトアミド、N-ビニルフタルイミド等が挙げられる。
 炭素数1~5のヒドロキシアルキル(メタ)アクリレートとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート等が挙げられる。
 炭素数1~5のジヒドロキシアルキル(メタ)アクリレートとしては、ジヒドロキシプロピル(メタ)アクリレート、ジヒドロキシブチル(メタ)アクリレート、ジヒドロキシペンチル(メタ)アクリレート等が挙げられる。
 上記以外の親水性モノマーとしては、アルコキシポリアルキレングリコールモノ(メタ)アクリレート、(メタ)アクリル酸、1-メチル-3-メチレン-2-ピロリジノン、無水マレイン酸、マレイン酸、マレイン酸誘導体、フマル酸、フマル酸誘導体、アミノスチレン等が例示できる。
 上記モノマー成分中の親水性モノマーの含有割合は、ラクタム環含有モノマーの含有割合、眼用医療機器に所望される物性、用途等に応じて適切に設定される。例えば、親水性モノマーは、モノマー成分中のラクタム環含有モノマーとの合計含有割合が10重量%を超え65重量%以下となるように配合され得る。具体的には、眼用医療機器が含水性ソフトコンタクトレンズ用途の場合、親水性モノマーは、モノマー成分中のラクタム環含有モノマーとの合計含有割合が好ましくは25重量%~65重量%、より好ましくは30重量%~60重量%、さらに好ましくは35重量%~60重量%となるように配合される。また、眼用医療機器が非含水性レンズ用途の場合、親水性モノマーは、モノマー成分中のラクタム環含有モノマーとの合計含有割合が、例えば10重量%を超え25重量%未満、好ましくは10重量%を超え20重量%以下、より好ましくは10重量%を超え15重量%以下となるように配合される。上記含有割合であれば、フォトクロミックモノマーとの相溶性を確保して、透明性の高いフォトクロミックポリマーを得ることができる。
 親水性モノマーが(メタ)アクリルアミド系化合物を含む場合、(メタ)アクリルアミド系化合物の配合量は、ラクタム環含有モノマーの配合量に対して、5重量%以上であることが好ましく、より好ましくは5重量%~50重量%、さらに好ましくは10重量%~40重量%である。また、眼用医療機器が含水性ソフトコンタクトレンズ用途の場合、モノマー成分中のラクタム環含有モノマーと(メタ)アクリルアミド系化合物との合計含有割合は、好ましくは25重量%~65重量%、より好ましくは30重量%~60重量%、さらに好ましくは35重量%~55重量%である。また、眼用医療機器が非含水性レンズ用途の場合、モノマー成分中のラクタム環含有モノマーと(メタ)アクリルアミド系化合物との合計含有割合は、例えば10重量%を超え25重量%未満、好ましくは11重量%~20重量%であり、より好ましくは12重量%~15重量%である。
 親水性モノマーがヒドロキシル基含有モノマーを含む場合、親水性モノマーとラクタム環含有モノマーとの合計含有量におけるヒドロキシル基含有モノマーの含有割合は、好ましくは35重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下、さらにより好ましくは10重量%以下である。当該含有割合であれば、フォトクロミックモノマーとの相溶性を確保して、透明性の高いフォトクロミックポリマーを好適に得ることができる。1つの実施形態において、モノマー成分中のヒドロキシル基含有モノマーの含有割合は、好ましくは20重量%以下であり、より好ましくは15重量%以下であり、さらに好ましくは10重量%以下である。
B-5.架橋性モノマー
 架橋性モノマーは、フォトクロミックポリマーの機械的強度を向上し得る。架橋性モノマーとしては、重合性官能基を2つ以上有するモノマーが用いられる。
 架橋性モノマーの具体例としては、ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ジアリルフマレート、アリル(メタ)アクリレート、ビニル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メタクリロイルオキシエチル(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート、アジピン酸ジアリル、トリアリルジイソシアネート、α-メチレン-N-ビニルピロリドン、4-ビニルベンジル(メタ)アクリレート、3-ビニルベンジル(メタ)アクリレート、2,2-ビス((メタ)アクリロイルオキシフェニル)ヘキサフルオロプロパン、2,2-ビス((メタ)アクリロイルオキシフェニル)プロパン、1,4-ビス(2-(メタ)アクリロイルオキシヘキサフルオロイソプロピル)ベンゼン、1,3-ビス(2-(メタ)アクリロイルオキシヘキサフルオロイソプロピル)ベンゼン、1,2-ビス(2-(メタ)アクリロイルオキシヘキサフルオロイソプロピル)ベンゼン、1,4-ビス(2-(メタ)アクリロイルオキシイソプロピル)ベンゼン、1,3-ビス(2-(メタ)アクリロイルオキシイソプロピル)ベンゼン、1,2-ビス(2-(メタ)アクリロイルオキシイソプロピル)ベンゼン等が挙げられる。架橋性モノマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 モノマー成分中における架橋性モノマーの含有割合は、眼用医療機器に所望される物性、用途等に応じて適切に設定される。当該含有量は、例えば0.01重量%~18重量%であり得る。具体的には、眼用医療機器が含水性ソフトコンタクトレンズ用途の場合、当該含有割合は、例えば0.1重量%~3重量%、好ましくは0.2重量%~2重量%とすることができる。眼用医療機器が酸素透過性ハードコンタクトレンズ用途の場合、当該含有割合は、好ましくは3~18重量%、より好ましくは5~15重量%であり、非含水性ソフトコンタクトレンズ用途の場合は、好ましくは0.01重量%~15重量%、より好ましくは0.1重量%~10重量%であり、眼内レンズ用途の場合は、好ましくは1重量%~5重量%、より好ましくは2重量%~4重量%である。架橋性モノマーの含有割合が当該範囲内であれば、良好な機械的強度を有するフォトクロミックポリマーが得られ得る。
B-6.他の共重合モノマー
 上記モノマー成分は、上記B-1項~B-5項に記載の以外の共重合モノマーをさらに含み得る。当該共重合モノマーとしては、目的に応じて任意の適切なモノマーが選択され得る。具体例としては、疎水性モノマー、重合性色素、重合性紫外線吸収剤等が挙げられる。なお、本明細書においては、20g/100mL未満の水溶解度(20℃)を有するモノマー(ただし、B-1項~B-5項に記載したモノマーを除く)を疎水性モノマーとすることができ、また、B-1項~B-6項に記載された様々なモノマーおよび架橋性モノマーを用いて調製されたプレポリマーについても、20g/100mL未満の水溶解度(20℃)を有するものであれば、疎水性モノマーとして用いることができる。
 疎水性モノマーとしては、アルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、芳香環含有(メタ)アクリレート等が挙げられる。疎水性モノマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記アルキル(メタ)アクリレートとしては、アルキル基の炭素数が1~20の直鎖状または分岐鎖状アルキル(メタ)アクリレートまたはそれらのフッ素置換モノマーが好ましく、アルキル基の炭素数が1~5の直鎖状または分岐鎖状アルキル(メタ)アクリレートまたはそれらのフッ素置換モノマーがより好ましい。具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、エチルへキシルメタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられる。
 上記アルコキシアルキル(メタ)アクリレートとしては、アルコキシ基の炭素数が1~4であり、アルコキシ基に結合するアルキレン基の炭素数が1~8であるアルコキシアルキル(メタ)アクリレートが好ましく、アルコキシ基の炭素数が1~2であり、アルコキシ基に結合するアルキレン基の炭素数が1~4であるアルコキシアルキル(メタ)アクリレートがさらに好ましい。具体例としては、メトキシメチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、エトキシメチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-エトキシプロピル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート、4-エトキシブチル(メタ)アクリレート等が挙げられる。
 上記芳香環含有(メタ)アクリレート類としてはフェノキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルエチル(メタ)アクリレートが挙げられる。
 上記モノマーと架橋性モノマーとを用いて調製されたプレポリマーとしては、本明細書中にて開示したようなモノマーおよび架橋性モノマーを共存させ、重合開始剤によってこれらモノマーを重合させて得られるプレポリマーが挙げられる。
 上記モノマー成分中における疎水性モノマーの含有割合は、眼用医療機器に所望される物性、用途等に応じて適切に設定される。眼用医療機器が含水性ソフトコンタクトレンズ用途の場合、当該含有割合は、好ましくは5重量%~35重量%、より好ましくは10重量%~30重量%である。一方、眼用医療機器が非含水性レンズ用途の場合、当該含有割合は、好ましくは5重量%~40重量%、より好ましくは5重量%~35重量%である。含有割合が当該範囲内であれば、所望の機械的強度を有する眼用医療機器が好適に得られ得る。
 重合性色素としては、例えば、フタロシアニン含有ポリメタクリル酸エステル等のフタロシアニン系重合性色素、1-フェニルアゾ-4-(メタ)アクリロイルオキシナフタレン等のアゾ系重合性色素、1,5-ビス((メタ)アクリロイルアミノ)-9,10-アントラキノン、1,4-ビス(4-(2-メタクリロキシエチル)フェニルアミノ)アントラキノン(C.I.Reactive Blue 246)、1,4-ビス[(2-ヒドロキシエチル)アミノ]-9,10-アントラセンジオン ビス(2-メチル-2-プロペノイック)エステル(C.I.Reactive Blue 247)等のアントラキノン系重合性色素、o-ニトロアニリノメチル(メタ)アクリレート等のニトロ系重合性色素等が挙げられる。このうち、フタロシアニン系重合性色素が好ましい。フタロシアニン系重合性色素としては、例えば、(メタ)アクリロイル化テトラアミノ銅フタロシアニン、(メタ)アクリロイル化(ドデカノイル化テトラアミノ銅フタロシアニン)等が挙げられる。さらに、2,4-ジヒドロキシ-3(p-スチレノアゾ)ベンゾフェノン等のベンゾフェノン系重合性紫外線吸収色素や、2-ヒドロキシ-4-(p-スチレノアゾ)安息香酸フェニル等の安息香酸系重合性紫外線吸収色素等を用いるものとしてもよい。これらは単独でまたは2種以上を混合して用いることができる。
 重合性紫外線吸収剤としては、例えば、ベンゾトリアゾール構造と重合基とを有する化合物(ベンゾトリアゾール系化合物)やベンゾフェノン構造と重合基とを有する化合物(ベンゾフェノン系化合物)、サリチル酸誘導体化合物等が挙げられる。紫外線吸収化合物が含まれると、紫外線をカットできるため、眼用医療機器材料として好ましい。紫外線吸収能等の化合物の特性の観点から、これら成分のうちベンゾトリアゾール系化合物が好ましい。ベンゾトリアゾール系化合物としては、例えば、2-(2’-ヒドロキシ-5’-(メタ)アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-(メタ)アクリロイルオキシエチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-(メタ)アクリロイルオキシプロピルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-(メタ)アクリロイルオキシプロピル-3’-t-ブチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-(2”-メタクリロイルオキシエトキシ)-3’-t-ブチルフェニル)-5-メチル-2H-ベンゾトリアゾール等が挙げられる。このうち2-(2’-ヒドロキシ-5’-(メタ)アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾールが好ましい。このベンゾトリアゾール系化合物の重合基は、特に限定されないが、メタクリロイル基が好ましい。ベンゾフェノン系化合物としては、例えば、2-ヒドロキシ-4-(メタ)アクリロイルオキシベンゾフェノン、2-ヒドロキシ-4-(メタ)アクリロイルオキシ-5-t-ブチルベンゾフェノン、2-ヒドロキシ-4-(メタ)アクリロイルオキシ-2’,4’-ジクロロベンゾフェノン、2-ヒドロキシ-4-(2’-ヒドロキシ-3’-(メタ)アクリロイルオキシプロポキシ)ベンゾフェノン等が挙げられる。サリチル酸誘導体化合物としては、例えば、2-ヒドロキシ-4-メタクリロイルオキシメチル安息香酸フェニル等が挙げられる。このほか、2-シアノ-3-フェニル-3-(3’-(メタ)アクリロイルオキシフェニル)プロペニル酸メチルエステル等が挙げられる。これらは単独でまたは2種以上を混合して用いることができる。
 モノマー成分中における重合性色素の配合割合は、例えば0.001重量%~0.1重量%、好ましくは0.002重量%~0.05重量%とすることができる。この含有量が0.001重量%以下では、着色の効果がなく視認性が低い可能性があり、0.1重量%以上では、着色が濃すぎて装用時の視界が妨げられる可能性がある。
 モノマー成分中における重合性紫外線吸収剤の配合割合は、例えば3重量%以下であり、好ましくは0.01重量%~2重量%である。この含有量が3重量%では、機械的特性の悪化(柔軟性の喪失)をより抑制することができ、0.01重量%以上では、紫外線吸収効果を十分得ることができる。
B-7.重合方法
 上記フォトクロミックポリマーは、上記モノマー成分を含む反応性混合物を重合させることによって得られる。重合は、例えば、モノマー成分と開始剤とを混合して反応性混合物を調製し、当該反応性混合物を加熱および/または光(紫外線および/または可視光)照射することによって行われ得る。光照射に替えて電子線照射を行ってもよい。
 反応性混合物の調製においては、必要に応じて、有機溶媒および/または添加剤を添加することができる。反応性混合物に有機溶媒を添加する場合、反応性混合物中における有機溶媒の含有割合は、モノマー成分100重量部に対して好ましくは10重量部以下であり、より好ましくは5重量部以下であり、さらに好ましくは3重量部以下であり、さらにより好ましくは1重量部以下であり、特に好ましくは0.5重量部以下である。このように有機溶媒を使用しないか、または、少量の使用でモノマー成分を相溶化でき、結果として、透明性に優れたフォトクロミックポリマーが得られることは、本発明の効果の一つとすることができる。また、有機溶媒を使用しないか、または、少量の使用で重合反応を行う場合、得られたフォトクロミックポリマーから有機溶媒を除去する工程が不要とされるか簡略化され得、さらには、重合時の連鎖移動が抑制される結果、重合度が大きく、強度の高いフォトクロミックポリマーが得られ得る。
 有機溶媒としては、炭素数1~3のアルコール、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、N-メチル-2-ピロリドン、ジメトキシエタン等が用いられ得る。
 開始剤の種類は、重合方法等に応じて適切に選択される。例えば、光照射による重合(光重合)に用いられる光重合開始剤の例としては、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド系光重合開始剤;メチルオルソベンゾイルベンゾエート、メチルベンゾイルフォルメート、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン-n-ブチルエーテル等のベンゾイン系光重合開始剤;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、p-イソプロピル-α-ヒドロキシイソブチルフェノン、p-t-ブチルトリクロロアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、α,α-ジクロロ-4-フェノキシアセトフェノン、N,N-テトラエチル-4,4-ジアミノベンゾフェノン等のフェノン系光重合開始剤;1-ヒドロキシシクロヘキシルフェニルケトン;1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム;2-クロロチオキサンソン、2-メチルチオキサンソン等のチオキサンソン系光重合開始剤;ジベンゾスバロン;2-エチルアンスラキノン;ベンゾフェノンアクリレート;ベンゾフェノン;ベンジル等が挙げられる。これらの光重合開始剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。また、光重合開始剤と共に光増感剤を用いてもよい。これら光重合開始剤および光増感剤の配合割合は、反応性混合物中のモノマー成分100重量部に対して、好ましくは0.001重量部~3重量部、より好ましくは0.01重量部~2重量部である。
 一方、加熱による重合(熱重合)に用いられる熱重合開始剤としては、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシヘキサノエート、3,5,5-トリメチルヘキサノイルパーオキサイド等が挙げられる。これらの熱重合開始剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。熱重合開始剤の配合割合は、反応性混合物中のモノマー成分100重量部に対して、好ましくは0.001重量部~2重量部、より好ましくは0.01重量部~1重量部である。
 添加剤としては、目的に応じて任意の適切な非重合性化合物を添加することができる。具体例としては、非重合性色素、非重合性紫外線吸収剤、界面活性剤、清涼化剤、粘稠化剤等が挙げられる。なお、これらの添加剤は、必ずしも反応性混合物中に添加される必要はなく、重合により得られたフォトクロミックポリマーに浸透させることによって添加してもよい。
 非重合性色素としては、例えば、1,4-ビス[(4-メチルフェニル)アミノ]-9,10-アントラキノン(D&C Green No.6)、1-[[4-(フェニルアゾ)フェニル]アゾ]-2-ナフタレノール(D&C Red No.17)、1-ヒドロキシ-4-[(4-メチルフェニル)アミノ]-9,10-アントラキノン(D&C Violet No.2)、2-(2-キノリル)-1,3-インダンジオン(D&C Yellow No.11)、4-[(2,4-ジメチルフェニル)アゾ]-2,4-ジヒドロ-5-メチル-2-フェニル-3H-ピラゾール-3-オン(C.I Solvent Yellow 18)、2-(1,3-ジオキソ-2-インダニル)-3-ヒドロキシキノリン(MACROLEX(商標)Yellow-G)等があげられる。また、特開2006-291006号公報に記載の染料や、カラーインデックス(CI)に記載されたCIソルベントイエロー、CIソルベントオレンジ等の油溶性染料、CIディスパースイエロー、CIディスパースオレンジ等の分散染料、バット系染料等が挙げられる。非重合性色素の配合量は、モノマー成分100重量部に対して0.001重量部~0.1重量部の範囲とすることが好ましい。
 非重合性の紫外線吸収剤としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン等のベンゾフェノン類、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、5-クロロ-2-(3′-t-ブチル-2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-(1,1-ジメチル)-4-メチルフェノール等のベンゾトリアゾール類、サリチル酸誘導体類、ヒドロキシアセトフェノン誘導体類等が挙げられる。非重合性紫外線吸収剤の配合量は、モノマー成分100重量部に対して0.01重量部~3重量部の範囲とすることが好ましい。
 上記モノマー成分の重合は、例えば、反応性混合物を所望の眼用医療機器の形状に対応した鋳型内に充填した状態で行われる。これにより、所望の形状を有するフォトクロミックポリマー(結果として、眼用医療機器)が直接得られ得る。あるいは、棒状(ロッド形状)のフォトクロミックポリマーとなるように重合を行ってもよい。棒状のフォトクロミックポリマーに切削加工を施して所望の形状となる眼用医療機器を得ることができる。
 加熱による重合反応時の加熱温度は、好ましくは50℃~110℃であり、より好ましくは80℃~100℃である。また、その際の加熱時間は、好ましくは2分~60分、より好ましくは10分~45分である。このような条件で加熱することにより、各モノマーの揮発および鋳型の変形を抑制しつつ、重合時間を短縮することができ、また、残留モノマーを低減することができる。
 光照射による重合反応時の光照射条件は、フォトクロミックモノマーの特性、目的のコンタクトレンズの機能等に応じて適切に選択される。例えば、照射する光の波長域は、385~550nmが好ましく、400~500nmがさらに好ましい。光照度は、好ましくは0.1mW/cm~170mW/cmであり、0.2mW/cm~150mW/cmがより好ましい。なお、いずれも405nmのセンサーを有する照度計における測定値であり、異なる照度の光を段階的に照射してもよい。照射時間は1分以上が好ましい。このような光照度および照射時間とすることによってフォトクロミックモノマーによって一部の光が吸収された場合であっても、反応性混合物を十分に硬化させることができる。光源としては、蛍光灯、LED等の所定の波長の光を出射するものであれば様々なものが適用できる。複数の光源を選択してこれらを段階的に個別に照射してもよいし、同時に照射してもよい。
 棒状のフォトクロミックポリマーは、例えば、反応性混合物をガラス等で製造された試験管に入れ、密栓し、恒温水槽やオーブン中で所定の温度に加熱して内容物を硬化させることによって得られ得る。加熱温度は、好ましくは30℃~60℃であり、より好ましくは35℃~50℃である。また、加熱時間は、好ましくは3時間~60時間、より好ましくは5時間~48時間である。加熱は段階的に実施されても良い。さらに後硬化として50℃~120℃の温度範囲で2時間~10時間の加熱を行っても良い。
 1つの実施形態においては、熱重合と光重合とを組み合わせて行う。好ましくは、熱重合後に光重合を行うこと、あるいは、加熱しながら光照射を行って熱重合と光重合とを同時に進行させることが好ましい。熱重合と光重合とを並行して行う、あるいは、熱重合を光重合に先行させることにより、黄変が抑制された高品質のフォトクロミックポリマーが得られ得る。
C.眼用医療機器の製造方法
 上記眼用医療機器の製造方法は、上記モノマー成分を含む反応性混合物を重合させてフォトクロミックポリマーを得ることを含む。当該重合は、熱重合と光重合との両方を含み得る。具体的には、当該重合は、熱重合と光重合とを並行して、あるいは、熱重合を光重合に先行させて行われ得る。モノマー成分、反応性混合物およびその重合方法は、B項に記載の通りである。1つの実施形態において、反応性混合物は、有機溶媒を含まないか、または、モノマー成分100重量部に対して10重量部以下の含有割合で有機溶媒を含む。1つの実施形態において、モノマー成分はフォトクロミックモノマーとラクタム環含有モノマーとを含み、モノマー成分中におけるラクタム環含有モノマーの含有割合が10重量%~50重量%である。また、モノマー成分中におけるヒドロキシル基含有モノマーの含有割合は、20重量%以下であり得る。
 重合により得られたフォトクロミックポリマーは、鋳型から取り出された後、または棒状のフォトクロミックポリマーとして取り出された後、必要に応じて切削加工、研磨加工等の機械的加工が施される。この機械的加工はフォトクロミックポリマーの一方または両方の面の全面にわたって行われてもよく、フォトクロミックポリマーの一方の面または両方の面の一部に対して行われてもよい。
 なお、未反応モノマー等の所望でない残留物を極力減量させる観点から、必要に応じて、これらの溶出処理が行われ得る。具体的には、水または有機溶媒またはこれらの混合溶液に、得られたフォトクロミックポリマーを浸漬し、好ましくはこれを繰り返すことによって、残留物を溶出させる処理が施され得る。
 さらに、フォトクロミックポリマーの表面特性を改良するために低温プラズマ処理、大気圧プラズマ処理、コロナ放電処理等の表面改質処理を施すこともできる。
 またさらに、眼内レンズの場合、軟質または硬質の光学部材料に対し、弾性線材からなる2本の支持部を後固着したスリーピース型、あるいは光学部と支持部が同一の材料で一体形成したワンピース型でフォールダブルなレンズとすることができる。重合は鋳型内で行われても良く、重合後に得られた材料を切削加工によって所望の形状に加工しても良い。すなわち鋳型から取り出されたレンズをそのまま、あるいは前記支持部の固着用の穴あけ加工のような部分的な加工を施し、さらに必要に応じて溶出処理や表面処理が施され得る。
D.眼用医療機器の物性
 上記眼用医療機器は、所望の実施形態等に応じて適切な物性を有し得る。以下、眼用医療機器の代表的な実施形態について、好適な物性を説明する。
D-1.含水性ソフトコンタクトレンズ
 含水性ソフトコンタクトレンズの含水率は、好ましくは25%~80%であり、より好ましくは30%~75%である。含水率を25%以上とすることによって、表面の水濡れ性を向上させることができる。含水率が80%を超えるの場合は、レンズが柔軟すぎて形状を保持することができず、含水率が25%未満の場合は、レンズ表面の疎水性が強くなりレンズが角膜に吸着する懸念が生じる。
 含水性ソフトコンタクトレンズは、好ましくは25barrer~160barrerのDk値を有し、より好ましくは40barrer~160barrerのDk値を有する。Dk値は、酸素透過係数[単位:(cm/sec)・(mLO/(mL・mmHg))]の値に10-11を乗じた数値であり、1Barrer=1×10-11(cm/sec)・(mLO/(mL・mmHg))の関係にある。当該範囲のDk値を有するコンタクトレンズは、酸素透過性に優れ、結果として、優れた装用感を提供することができる。
 含水性ソフトコンタクトレンズのヤング率(20℃)は、好ましくは0.2MPa~2.0MPaであり、より好ましくは0.3MPa~1.5MPaである。ヤング率が当該範囲内であれば、装用感に優れるとともに、指上での形状保持性に優れ、取り扱いが容易である。ヤング率が2.0MPaを超える場合はレンズ自体が強直であり、レンズの装用感が悪く異物感が強く出る可能性がある。一方、ヤング率が0.2MPa未満である場合は、レンズの形状保持性が悪く、また、装用時にレンズがたわんだり、しわになったりする可能性が高くなる。
D-2.酸素透過性ハードコンタクトレンズ
 酸素透過性ハードコンタクトレンズは、好ましくは130barrer~250barrerのDk値を有する。当該範囲のDk値を有する眼用医療機器は、酸素透過性に優れ、結果として、優れた装用感を提供することができる。
 酸素透過性ハードコンタクトレンズの吸水率は、好ましくは1.0重量%以下である。吸水率が1.0重量%を超えると、形状安定性の低下につながる傾向がある。なお、吸水率の評価は、特開2005-181730に従って実施することができる。
D-3.非含水ソフトコンタクトレンズ
 非含水ソフトコンタクトレンズは、好ましくは50barrer~200barrerのDk値を有する。当該範囲のDk値を有するコンタクトレンズは、酸素透過性に優れ、結果として、優れた装用感を提供することができる。
 非含水ソフトコンタクトレンズの形状回復率は、好ましくは25%以下である。形状回復率が25%を超える場合、当該眼用医療機器を装用した時の違和感、または視力の不安定化につながる可能性がある。なお、形状回復性の評価は、WO00/70388に従って実施することができる。
 非含水ソフトコンタクトレンズの含水率は、例えば10重量%未満、好ましくは9.9重量%以下である。
D-4.眼内レンズ
 眼内レンズの伸び率は、好ましくは170%~600%である。伸び率が170%未満の場合は柔軟性に乏しく、折りたたんで小さな切開創から挿入することが困難となり、600%を超える場合は形状回復性の観点で好ましくない。
 眼内レンズの吸水率は、好ましくは1.5重量%~4.5重量%である。吸水率が1.5%未満の場合はグリスニングが発生しやすくなり、透明性を損なる可能性が上昇し、4.5重量%を超える場合は柔軟性が高すぎて挿入時に不具合をきたす可能性が生じる。なお、伸び率および吸水率の評価は、WO2018/021455に従って実施することができる。
E.眼用医療機器の光学特性
 本発明の1つの実施形態における眼用医療機器は、フォトクロミックモノマー由来の繰り返し単位を有し、光エネルギーの吸収によって非活性状態から該非活性状態よりも可視光透過率が低い活性化状態に変化可能なフォトクロミックポリマーを含む。非活性状態における当該眼用医療機器は、700nm未満の波長域の少なくとも一部の波長における分光透過率が90%を超え、好ましくは92%以上であり、より好ましくは95%以上である。なお、当該分光透過率は、角膜温度での値であり、本項の他の光学特性についても同様である。
 非活性状態における眼用医療機器の380nm~780nmの波長域における視感透過率は、好ましくは75%以上であり、より好ましくは80%以上、さらに好ましくは90%以上、さらにより好ましくは90%を超える値であり得る。
 一方、活性化状態における眼用医療機器は、可視光域の少なくとも一部の波長において、70%未満の分光透過率を有することができ、例えば15%以上70%未満、好ましくは20%~65%、より好ましくは25%~60%の分光透過率を有する。
 具体的には、活性化状態における眼用医療機器は、500nm~700nmの波長域の少なくとも一部の波長において、70%未満の分光透過率を有することができ、例えば15%以上70%未満、好ましくは20%~65%、より好ましくは25%~65%の分光透過率を有する。
 より具体的には、活性化状態における上記眼用医療機器は、530nm~670nmの波長域の少なくとも一部の波長において、70%未満の分光透過率を有することができ、例えば15%以上70%未満、好ましくは20%~65%、より好ましくは25%~65%の分光透過率を有する。
 上記眼用医療機器は、活性化状態において視感度が高い領域(500nm~700nmの波長域)における光線透過率が低い一方で、非活性状態において可視光域の全域にわたる視感透過率が高い。これにより、日差しや照明が強い環境下においては眩しさを良好に軽減できるとともに、適度な明るさの環境下では、良好な視界を確保することができる。
 1つの実施形態において、活性化状態における眼用医療機器は、青色域において、80%以下の分光透過率を有することができ、好ましくは70%以下の分光透過率を有する。これにより、青色光に起因する眼のストレスが軽減され得る。なお、「青色域において、80%以下の分光透過率を有する」とは、青色域における分光透過率の最大値が80%以下であることを意味する。
 1つの実施形態において、非活性状態または活性化状態における上記眼用医療機器の視感透過率×0.2の値は、それぞれの状態の500nm~650nmの波長域における最小分光透過率より小さい。このような関係を満たす場合、上記眼用医療機器を装着したままで、特段の支障なく自動車等の乗り物を運転することができる。
 1つの実施形態において、活性化状態における上記眼用医療機器は、赤シグナルに対する相対視感度減衰率(Q値)が、少なくとも0.8であり、黄シグナルに対するQ値が、少なくとも0.6であり、緑シグナルに対するQ値が、少なくとも0.6であり、青シグナルに対するQ値が、少なくとも0.4である。このようなQ値を有する場合、上記眼用医療機器を装着したままで、特段の支障なく自動車等の乗り物を運転することができる。なお、相対視感度減衰率(Q値)は、JIS T 7333に定義される値である。
 1つの実施形態において、上記眼用医療機器は、キセノンランプによる50,000ルクスの照射開始から1分以内に非活性状態から活性化状態に変化することができる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法または評価方法は以下の通りである。なお、実施例および比較例で作製した眼用医療機器はいずれも、405nmLED、照度10mW/cm以上の照射条件で1分以上照射を続けても光線透過率はそれ以上変化しなかった。そのため、眼用医療機器に所定の波長の光(405nmLED、照度10mW/cm以上)を1分以上照射した状態を「活性化状態」と判断した。また、照射停止後の光線透過率の変化を観察し、所定の波長の光(405nmLED、照度10mW/cm以上)の照射を停止後1時間以上静置した状態を「非活性状態」と判断した。
≪透明性≫
 コンタクトレンズの外観を目視にて観察し、以下の評価基準に基づいて評価した。
(評価基準)
   A:曇りがなく、透明性にきわめて優れており、コンタクトレンズとして最適である。
   B:わずかに曇りが認められるが、コンタクトレンズとして問題のない透明性を有する。
   C:白濁が認められ、透明性に劣るため、コンタクトレンズとしての使用が困難である。
   D:白濁が著しく、透明性にきわめて劣るため、コンタクトレンズとしての使用が不可能である。
≪含水率≫
 20℃における生理食塩液中で平衡含水状態としたレンズの重量(W(g))を測定し、またかかる水和処理後のレンズを105℃乾燥器にて乾燥させた状態での重量(W(g))を測定した。これらの測定値WおよびWを用い、以下の式に従って含水率(重量%)を算出した。
   含水率(重量%)={(W-W)/W}×100
≪酸素透過係数(Dk)≫
 製科研式フィルム酸素透過率計(理化精機工業社製)を用い、35℃の生理食塩水中にてレンズの酸素透過係数を測定した。試験試料として中心厚さ約0.1mmのレンズを単独で、または2~4枚重ねることで厚み違いのレンズとし、測定を行った。値の算出にあたってはISO18369-4(2006)に準拠し、エッジ効果を考慮した算出を行った。リファレンススタンダードとしてメニコン2ウィークプレミオ(メニコン社製)を用い、このDk値を129として規格化した。なお、酸素透過係数の単位は(×10-11(cm/sec)(mLO/mL×mmHg))である。
≪引張試験≫
 作製したコンタクトレンズから、伸張部分の幅約1.8mm、厚み約0.1mmのダンベル形状のサンプルを打ち抜いて引張試験を実施した。測定は島津精密万能試験機「オートグラフAG-IS MS型」(島津製作所社製)を用いて行い、応力―伸び曲線からヤング率として引張弾性率(MPa)を算出した。また、破断時の強度と伸びから引張破壊強度(MPa)、引張破壊伸び率(%)もあわせて読み取った。すべての測定は20℃に調節した生理食塩液中にて行い、引張速度は10mm/minと設定した。
≪光線透過率測定≫
(活性化状態)
 予め40℃に温調した恒温水槽にて約1時間状態調節したレンズを40℃に温調した蒸留水と共にレンズ測定用冶具(メニコン社製)に設置した状態でセルに入れ、セルの外側からレンズに光が照射されるように385nm~405nmの波長のLEDライト(LED1801、発売元:ビューティーワールド社)を約1分間照射した。同時にセル中の蒸留水の温度が35±2℃であることを温度計を用いて確認した後、速やかに分光光度計(UV2550、島津製作所社製)にて透過率(T%)を測定した(測定条件:高速、サンプリングピッチ:2nm)。セルに照射されるLED照度(波長405nm、ウシオ電機(株)製 UVD-150およびUVD-S405にて測定)は10mW/cm以上であった。なお、280nm~380nmと380nm~780nmの波長域の透過率測定は、退色の影響を少なくする為別々に行った。
(非活性状態)
 遮光した状態で1時間以上上記と同様に温調し、セルにレンズを入れた後に速やかに測定を行ったこと以外は、上記と同様に測定した。
[使用成分]
 実施例および比較例で用いた成分を略称と共に以下に示す。
・マクロモノマー(A):メチルメタクリレート、2-ヒドロキシブチルメタクリレート、アリルメタクリレート、エチレングリコールジメタクリレートを重合して得られたプレポリマー
・マクロモノマー(B):ジメチルシロキサンユニットの繰り返し数が約40であるカルビノール変性ポリジメチルシロキサン、イソホロンジイソシアネート、2-ヒドロキシエチルアクリレートを反応させて得られた、以下の式(X)に示すシロキサン含有マクロモノマー(式中のnの平均:約40)
Figure JPOXMLDOC01-appb-C000026
・TRIS:トリス(トリメチルシロキシ)シリルプロピルメタクリレート
・MMA:メチルメタクリレート
・2-MTA:2-メトキシエチルアクリレート
・N-VP:N-ビニル-2-ピロリドン
・DMAA:N,N-ジメチルアクリルアミド
・N-MMP:1-メチル-3-メチレン-2-ピロリジノン
・HEMA:2-ヒドロキシエチルメタクリレート
・GMA:グリセロールメタクリレート
・EDMA :エチレングリコールジメタクリレート
・AMA:アリルメタクリレート
・RB246:1,4-ビス(4-(2-メタクリロキシエチル)フェニルアミノ)アントラキノン
・V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)
・Irg819:フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド
・PC01:前述した合成方法に従って調製した以下の式で示されるインデノナフトピラン系重合性フォトクロミック化合物
Figure JPOXMLDOC01-appb-C000027
・PC02:前述した合成方法に従って調製した以下の式で示されるインデノナフトピラン系重合性フォトクロミック化合物
Figure JPOXMLDOC01-appb-C000028
・ABCH:以下に示すフルギド系非重合性フォトクロミック化合物
Figure JPOXMLDOC01-appb-C000029
[実験例1]
 表1に示す配合割合(重量部)になるように各成分を混合して反応性混合物を調製した。得られた反応性混合物を、コンタクトレンズ形状を有する鋳型(ポリプロピレン製、直径約14mmで厚さ約0.1mmのコンタクトレンズに対応)内に注入した。次いで、この鋳型を、90℃に設定した熱循環式均熱乾燥機(タイテック社製)中に入れ、30分間静置して反応性混合物を硬化させた。得られたポリマー材料(ドライレンズ)を鋳型から脱離させた後、二酸化炭素雰囲気中、25Wにて3分間減圧プラズマ処理した。次いで、生理食塩水中に浸漬させて吸水させることによって水和処理を施した。これにより、コンタクトレンズを得た。
[実験例2~9、11~13、C1~C3]
 表1に示す配合割合になるように各成分を混合して反応性混合物を調製した。得られた反応性混合物を、コンタクトレンズ形状を有する鋳型(ポリプロピレン製、直径約14mmで厚さ約0.1mmのコンタクトレンズに対応)内に注入した。次いで、この鋳型に、LEDランプを照射して反応性混合物を硬化させた。なお、照射は2段階にわたって行い、1段階目は約1mW/cmにて15分、2段階目は約20mW/cmにて5分間照射した(いずれも405nmにて測定)。得られたポリマー材料(ドライレンズ)に実験例1と同様のプラズマ処理および水和処理を施した。これにより、コンタクトレンズを得た。
[実験例10]
 表1に示す配合割合になるように各成分を混合して反応性混合物を調製した。得られた反応性混合物を、コンタクトレンズ形状を有する鋳型(ポリプロピレン製、直径約14mmで厚さ約0.1mmのコンタクトレンズに対応)内に注入した。この鋳型を、90℃に設定した熱循環式灼熱乾燥機(タイテック社製)中に入れ、30分間静置した後、LEDランプを照射して反応性混合物を硬化させた。なお、照射は2段階にわたって行い、1段階目は約1mW/cmにて15分、2段階目は約20mW/cmにて5分間照射した(いずれも405nmにて測定)。得られたポリマー材料(ドライレンズ)に実験例1と同様のプラズマ処理および水和処理を施した。これにより、コンタクトレンズを得た。
Figure JPOXMLDOC01-appb-T000030
 上記実験例で得られたコンタクトレンズの各種特性を評価するとともに、活性化状態および非活性状態における380nm~780nmの波長における光線透過率を測定した。結果を表2および表3に示す(表3で示す最大値および最小値はそれぞれ、各波長域における分光透過率の最大値および最小値を表す)。また、実験例1~3およびC1で得られたコンタクトレンズの光線透過率スペクトルを図1に示す。なお、実験例C2およびC3で得られたコンタクトレンズは、白濁していたことから、他の特性評価を行わなかった。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 また、実験例2およびC1のコンタクトレンズについて、アセトニトリルを5mL入れた褐色瓶に、重合直後のレンズを脱型して直ぐに1枚浸漬し、しっかりと蓋を閉めた後、50℃で5時間乾燥機で抽出処理を行った。処理前後のレンズについて、活性化状態での380nm~780nmの波長における光線透過率を測定した。結果を図2および図3に示す。なお、重合直後のレンズを脱型して直ぐに実験例1と同様の水和処理を施したレンズを処理前のレンズとした。
 表3および図1に示されるとおり、実験例1~13のコンタクトレンズは、非活性状態において高い光線透過率を有していた。一方、実験例C2およびC3のコンタクトレンズは、モノマー成分の相溶性が不十分であり、白濁が生じていた。
 また、図2および図3に示されるとおり、重合性のフォトクロミック化合物を用いた実験例2のコンタクトレンズは、抽出処理後にもフォトクロミック性を維持していたが、非重合性のフォトクロミック化合物を用いた実験例C1のコンタクトレンズは、抽出処理後にフォトクロミック性を消失した。このことから、非重合性のフォトクロミック化合物は、ポリマー材料から溶出しやすく、安全性または安定性に劣ることがわかる。
 また、実験例2、11~13およびC1のコンタクトレンズには、実用上は許容範囲内であるものの黄変が認められた。これに対し、光重合と熱重合とを組み合わせて重合を行った実験例10およびN-ビニルラクタム系モノマーと(メタ)アクリルアミド系化合物とを組み合わせて用いた他の実験例のレンズにおいては、黄変が効果的に抑制されていた。参考として、図4に実験例2、8、10で得られたレンズ(水和後)の写真を示す。
 本発明は、コンタクトレンズまたは眼内レンズの分野において好適に用いられる。

Claims (28)

  1.  フォトクロミックモノマーとラクタム環含有モノマーとを含むモノマー成分を重合させて得られるフォトクロミックポリマーを含む、眼用医療機器であって、
     該モノマー成分中における該ラクタム環含有モノマーの含有割合が、10重量%~50重量%であり、
     コンタクトレンズまたは眼内レンズである、眼用医療機器。
  2.  前記ラクタム環含有モノマーが、N-ビニルラクタムおよびメチレンラクタムから選択される少なくとも1種を含む、請求項1に記載の眼用医療機器。
  3.  前記モノマー成分が、N,N-ジアルキル(メタ)アクリルアミドおよびN,N-ジアルキルアミノアルキル(メタ)アクリルアミドから選択される少なくとも1種をさらに含む、請求項1または2に記載の眼用医療機器。
  4.  前記モノマー成分中における前記ラクタム環含有モノマーとN,N-ジアルキル(メタ)アクリルアミドおよびN,N-ジアルキルアミノアルキル(メタ)アクリルアミドから選択される少なくとも1種との合計含有割合が、25重量%~65重量%である請求項3に記載の眼用医療機器。
  5.  前記モノマー成分が、シリコーン含有モノマーをさらに含む、請求項1から4のいずれかに記載の眼用医療機器。
  6.  前記モノマー成分中における前記フォトクロミックモノマーの含有割合が、0.001重量%~5重量%である、請求項1から5のいずれかに記載の眼用医療機器。
  7.  前記フォトクロミックモノマーが、Tタイプのフォトクロミック化合物である、請求項1から6のいずれかに記載の眼用医療機器。
  8.  前記フォトクロミックモノマーが、ナフトピラン化合物である、請求項1から7のいずれかに記載の眼用医療機器。
  9.  前記フォトクロミックモノマーが、下記構造式(1)で表される、請求項1から8のいずれかに記載の眼用医療機器。
    Figure JPOXMLDOC01-appb-C000001
     式中、 
     R、およびRは、それぞれ独立に、ラジカル重合性基を有する基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、複素環基、シアノ基、ハロゲン原子、炭素数1~6のアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基であり、
     aは0~5の整数であり、bは0~5の整数であり、ただし、a+b=1~10となり、
     R、およびRの少なくとも1つはラジカル重合性基を有する基であり、
     前記ラジカル重合性基を有する基が、下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     R10は、炭素数が1~10の直鎖状又は分岐鎖状アルキレン基であり、
     lは0~50の整数であり、lが2以上の場合、lで括られた単位の基は、互いに同一でも異なる基であってもよく、
     PGは、ラジカル重合性基である。)で示される基であり、
     前記式(1)の13位の炭素原子とスピロ結合する下記式(Z)
    Figure JPOXMLDOC01-appb-C000003
    で示される環Zは、
     該13位の炭素原子と共に該環を構成する炭素数が3~20である、置換基を有してもよい脂肪族環基、
     該脂肪族環に置換基を有してもよい芳香族環若しくは芳香族複素環が縮環した縮合多環基、
     該13位の炭素原子と共に該環を構成する原子数が3~20である、置換基を有してよい複素環基、又は
     該複素環基に置換基を有してもよい芳香族環若しくは芳香族複素環が縮環した縮合多環基であり、
     Rは、水素原子、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、シアノ基、ハロゲン原子、炭素数1~6のアルキルチオ基、置換基を有してもよい炭素数6~10のアリールチオ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリールオキシ基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数3~12のヘテロアリール基、チオール基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、又は炭素数3~8のシクロアルキルチオ基であり、
     Rは、水素原子、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、複素環基、シアノ基、ハロゲン原子、炭素数1~6のアルキルチオ基、置換基を有してもよい炭素数6~10のアリールチオ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリールオキシ基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数3~12のヘテロアリール基、チオール基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、又は炭素数3~8のシクロアルキルチオ基であり、
     また、R、およびRは、一緒になって、下記式(3)
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     *は6位、又は7位の炭素原子を指し、
     X、およびYは、一方または両方が硫黄原子、メチレン基、酸素原子、または下記式
    Figure JPOXMLDOC01-appb-C000005
    (式中、
     Rは、水素原子、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6アルコキシ基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数3~12のヘテロアリール基である。)で示される基であり、
     RおよびRは、それぞれ独立に、ヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基、複素環基、シアノ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、ハロゲン原子、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリール基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基であり、
     また、RおよびRは、それらが結合する炭素原子と共に、脂肪族環を形成してもよく、
     eは、1~3の整数である]で示されるような環を形成してもよく、
     Rは、ヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基、複素環基、シアノ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、炭素数2~7のアルキルカルボニル基、炭素数2~7のアルコキシカルボニル基、ハロゲン原子、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、置換基を有してもよい炭素数6~12のアリール基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基であり、
     cは0~2の整数であり、cが2である場合には、Rは、互いに同一でも異なる基であってもよく、
     Rは、ヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基、複素環基、ハロゲン原子、置換基を有してもよい炭素数7~11のアラルキル基、置換基を有してもよい炭素数7~11のアラルコキシ基、チオール基、炭素数1~6のアルキルチオ基、炭素数2~9のアルコキシアルキルチオ基、炭素数1~6のハロアルキルチオ基、炭素数3~8のシクロアルキルチオ基、又は置換基を有してもよい炭素数6~10のアリールチオ基であり、
     dは0~4の整数であり、dが2以上である場合には、Rは、互いに同一でも異なる基であってもよい。
  10.  前記モノマー成分が、アルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレートおよび芳香環含有(メタ)アクリレートから選択される少なくとも1種をさらに含む、請求項1から9のいずれかに記載の眼用医療機器。
  11.  前記モノマー成分中におけるヒドロキシル基含有モノマーの含有割合が、20重量%以下である、請求項1から10のいずれかに記載の眼用医療機器。
  12.  フォトクロミックモノマーとラクタム環含有モノマーとを含むモノマー成分を含み、有機溶媒を含まないか、または、該モノマー成分100重量部に対して10重量部以下の含有割合で有機溶媒を含む、反応性混合物を重合させてフォトクロミックポリマーを得ることを含み、
     該モノマー成分中における該ラクタム環含有モノマーの含有割合が、10重量%~50重量%である、請求項1から11のいずれかに記載の眼用医療機器の製造方法。
  13.  前記モノマー成分中におけるヒドロキシル基含有モノマーの含有割合が、20重量%以下である、請求項12に記載の製造方法。
  14.  前記重合が、熱重合と光重合とを含む、請求項12または13に記載の製造方法。
  15.  フォトクロミックモノマー由来の繰り返し単位を有し、光エネルギーの吸収によって非活性状態から該非活性状態よりも可視光透過率が低い活性化状態に変化可能なフォトクロミックポリマーを含む、眼用医療機器であって、
     該非活性状態において、700nm未満の波長域の少なくとも一部の波長における分光透過率が90%を超え、
     コンタクトレンズまたは眼内レンズである、眼用医療機器。
  16.  活性化状態において、可視光域の少なくとも一部の波長における分光透過率が70%未満である、請求項15に記載の眼用医療機器。
  17.  活性化状態において、500nm~700nmの波長域の少なくとも一部の波長における分光透過率が70%未満である、請求項15または16に記載の眼用医療機器。
  18.  活性化状態において、530nm~670nmの波長域の全体にわたる分光透過率が70%未満である、請求項15から17のいずれかに記載の眼用医療機器。
  19.  活性化状態において、500nm~700nmの波長域の少なくとも一部の波長における分光透過率が15%以上70%未満である、請求項15から18のいずれかに記載の眼用医療機器。
  20.  活性化状態において、530nm~670nmの波長域の全体にわたる分光透過率が15%以上70%未満である、請求項15から19のいずれかに記載の眼用医療機器。
  21.  活性化状態において、青色域の分光透過率が80%以下である、請求項15から20のいずれかに記載の眼用医療機器。
  22.  活性化状態において、青色域の分光透過率が70%以下である、請求項15から21のいずれかに記載の眼用医療機器。
  23.  非活性状態において、380nm~780nmの波長域における視感透過率が75%以上である、請求項15から22のいずれかに記載の眼用医療機器。
  24.  25barrer~160barrerのDk値を有し、25重量%~80重量%の含水率を有し、0.2MPa~2.0MPaのヤング率を有する含水性レンズである、請求項15から23のいずれかに記載の眼用医療機器。
  25.  130barrer~250barrerのDk値を有し、1.0重量%以下の吸水率を有する酸素透過性ハードコンタクトレンズである、請求項15から23のいずれかに記載の眼用医療機器。
  26.  50barrer~200barrerのDk値を有し、25%以下の形状回復率を有する酸素透過性ソフトコンタクトレンズである、請求項15から23のいずれかに記載の眼用医療機器。
  27.  170%~600%の伸び率を有し、1.5重量%~4.5重量%の吸水率を有する眼内レンズである、請求項15から23のいずれかに記載の眼用医療機器。
  28.  キセノンランプによる50,000ルクスの照射開始から1分以内に非活性状態から活性化状態に変化する、請求項15から27のいずれかに記載の眼用医療機器。
     
PCT/JP2019/025687 2019-06-27 2019-06-27 フォトクロミックポリマーを含む眼用医療機器およびその製造方法 WO2020261502A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980097891.8A CN114096911A (zh) 2019-06-27 2019-06-27 包含光致变色聚合物的眼用医疗器械和其制造方法
US17/617,615 US20220244428A1 (en) 2019-06-27 2019-06-27 Ophthalmic medical instrument including photochromic polymer and production method for ophthalmic medical instrument
JP2021528798A JP7274577B2 (ja) 2019-06-27 2019-06-27 フォトクロミックポリマーを含む眼用医療機器およびその製造方法
PCT/JP2019/025687 WO2020261502A1 (ja) 2019-06-27 2019-06-27 フォトクロミックポリマーを含む眼用医療機器およびその製造方法
EP19934953.1A EP3992695A4 (en) 2019-06-27 2019-06-27 OPHTHALMIC MEDICAL DEVICE COMPRISING A PHOTOCHROMIC POLYMER AND METHOD FOR PRODUCTION OF OPHTHALMIC MEDICAL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025687 WO2020261502A1 (ja) 2019-06-27 2019-06-27 フォトクロミックポリマーを含む眼用医療機器およびその製造方法

Publications (1)

Publication Number Publication Date
WO2020261502A1 true WO2020261502A1 (ja) 2020-12-30

Family

ID=74061124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025687 WO2020261502A1 (ja) 2019-06-27 2019-06-27 フォトクロミックポリマーを含む眼用医療機器およびその製造方法

Country Status (5)

Country Link
US (1) US20220244428A1 (ja)
EP (1) EP3992695A4 (ja)
JP (1) JP7274577B2 (ja)
CN (1) CN114096911A (ja)
WO (1) WO2020261502A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277639A2 (en) * 1987-02-02 1988-08-10 Toray Industries, Inc. Photochromic compound
JPH08501504A (ja) * 1992-08-03 1996-02-20 ボシュ アンド ロム インコーポレイテッド シリコーン含有ヒドロゲルレンズの製造方法
WO2000070388A1 (fr) 1999-05-12 2000-11-23 Menicon Co., Ltd. Materiau pour lentilles oculaires et leur procede de fabrication
WO2001060881A2 (en) 2000-02-17 2001-08-23 Lee Eung Chan Polyorganosilsesquioxane and process for preparing the same
WO2004068215A1 (ja) * 2003-01-27 2004-08-12 Menicon Co., Ltd. 消色性に優れたフォトクロミックコンタクトレンズ
WO2005028465A1 (ja) 2003-09-18 2005-03-31 Tokuyama Corporation クロメン化合物
JP2005181730A (ja) 2003-12-19 2005-07-07 Menicon Co Ltd コンタクトレンズ材料
JP2006291006A (ja) 2005-04-08 2006-10-26 Menicon Co Ltd 新規重合性染料およびそれを含む眼用レンズ
JP2007524857A (ja) * 2003-03-20 2007-08-30 トランジションズ オプティカル, インコーポレイテッド フォトクロミック眼用デバイス
JP2011219513A (ja) 2010-04-02 2011-11-04 Menicon Co Ltd ポリマー材料、眼用レンズ及びコンタクトレンズ
WO2012057096A1 (ja) * 2010-10-25 2012-05-03 株式会社メニコン アゾ色素、眼用レンズ材料、眼用レンズ材料の製造方法及び眼用レンズ
JP2015503631A (ja) 2011-12-23 2015-02-02 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 制御された反応動態によって形成される構造を有するシリコーンヒドロゲル
JP2017049615A (ja) * 2010-04-13 2017-03-09 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 室内グレアの低減を発揮するコンタクトレンズ
WO2018021455A1 (ja) 2016-07-28 2018-02-01 株式会社メニコン 眼内レンズ用材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723218A1 (fr) * 1994-07-29 1996-02-02 Essilor Internal Cie Gle Optique Composes photochromiques de structure spiro (indoline-(2,3')-benzoxazine) a groupement cyano en 6', et leur utilisation dans le domaine de l'optique ophtalmique
JPH11249084A (ja) * 1998-03-06 1999-09-17 Kuraray Co Ltd 眼用レンズ材料およびその製造方法
US6224945B1 (en) * 1999-08-02 2001-05-01 Essilor International Compagnie Generale D'optique Process for the manufacture of a crosslinked, transparent, hydrophilic and photochromic polymeric material, and optical and ophthalmic articles obtained
WO2001009645A1 (en) * 1999-08-02 2001-02-08 Essilor International Compagnie Generale D'optique Process for the manufacture of a crosslinked, transparent, hydrophilic and photochromic polymeric material, and optical and ophthalmic article obtained
CA2386247A1 (en) * 1999-10-22 2001-05-03 Wesley Jessen Corporation Sterile photochromic hydrophilic contact lenses
US6863843B2 (en) 2000-12-21 2005-03-08 Vision-Ease Lens, Inc. Naphthopyran compounds, photoresponsive compositions and lenses
US20070159594A9 (en) * 2004-05-13 2007-07-12 Jani Dharmendra M Photochromic blue light filtering materials and ophthalmic devices
FR2880696B1 (fr) * 2005-01-07 2007-08-24 Ioltechnologie Production Sarl Lentille intraoculaire photochromique
US9052438B2 (en) * 2005-04-08 2015-06-09 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
CN104059319A (zh) * 2014-06-20 2014-09-24 金陵科技学院 6’-氮杂环取代-9’-酰氧基酯化螺噁嗪类光致变色化合物在隐形眼镜中的应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277639A2 (en) * 1987-02-02 1988-08-10 Toray Industries, Inc. Photochromic compound
JPH08501504A (ja) * 1992-08-03 1996-02-20 ボシュ アンド ロム インコーポレイテッド シリコーン含有ヒドロゲルレンズの製造方法
WO2000070388A1 (fr) 1999-05-12 2000-11-23 Menicon Co., Ltd. Materiau pour lentilles oculaires et leur procede de fabrication
WO2001060881A2 (en) 2000-02-17 2001-08-23 Lee Eung Chan Polyorganosilsesquioxane and process for preparing the same
WO2004068215A1 (ja) * 2003-01-27 2004-08-12 Menicon Co., Ltd. 消色性に優れたフォトクロミックコンタクトレンズ
JP2007524857A (ja) * 2003-03-20 2007-08-30 トランジションズ オプティカル, インコーポレイテッド フォトクロミック眼用デバイス
WO2005028465A1 (ja) 2003-09-18 2005-03-31 Tokuyama Corporation クロメン化合物
JP2005181730A (ja) 2003-12-19 2005-07-07 Menicon Co Ltd コンタクトレンズ材料
JP2006291006A (ja) 2005-04-08 2006-10-26 Menicon Co Ltd 新規重合性染料およびそれを含む眼用レンズ
JP2011219513A (ja) 2010-04-02 2011-11-04 Menicon Co Ltd ポリマー材料、眼用レンズ及びコンタクトレンズ
JP2017049615A (ja) * 2010-04-13 2017-03-09 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 室内グレアの低減を発揮するコンタクトレンズ
WO2012057096A1 (ja) * 2010-10-25 2012-05-03 株式会社メニコン アゾ色素、眼用レンズ材料、眼用レンズ材料の製造方法及び眼用レンズ
JP2015503631A (ja) 2011-12-23 2015-02-02 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 制御された反応動態によって形成される構造を有するシリコーンヒドロゲル
WO2018021455A1 (ja) 2016-07-28 2018-02-01 株式会社メニコン 眼内レンズ用材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992695A4

Also Published As

Publication number Publication date
US20220244428A1 (en) 2022-08-04
EP3992695A1 (en) 2022-05-04
CN114096911A (zh) 2022-02-25
JP7274577B2 (ja) 2023-05-16
EP3992695A4 (en) 2023-05-10
JPWO2020261502A1 (ja) 2020-12-30

Similar Documents

Publication Publication Date Title
JP6152538B2 (ja) 光学ポリマーのための光吸収化合物
TWI449986B (zh) 包含自然產生之發色團及其衍生物之濾光器
AU2011240892B2 (en) Process for manufacture of a thermochromic contact lens material
US10119070B2 (en) Optical element for correcting color blindness
CA3116257C (en) Uv-absorbing vinylic monomers and uses thereof
JP2685980B2 (ja) 紫外線吸収性眼内レンズ
US20070159594A9 (en) Photochromic blue light filtering materials and ophthalmic devices
US20060227287A1 (en) Photochromic ophthalmic devices made with dual initiator system
CN111801389A (zh) Uv和高能可见光的可聚合吸收剂
EP2951620B1 (en) Optical element for correcting color blindness
KR20080036164A (ko) 반응성 치환체를 갖는 광변색 물질을 포함하는 안과 장치
WO2010078001A1 (en) Tri-functional uv-absorbing compounds and use thereof
EP3990431A1 (en) Polymerizable fused tricyclic compounds as absorbers of uv and visible light
EP3645532A1 (en) Hydroxyphenyl phenanthrolines as polymerizable blockers of high energy light for preparing ophthalmic devices, such as e.g. contact lenses
KR20150005650A (ko) 안정한 안내 렌즈용 중합성 자외선 흡수 색소
CN112334444A (zh) Uv和高能可见光的可聚合吸收剂
JP2515010B2 (ja) 眼用レンズ材料
JP6492368B2 (ja) 重合性紫外線吸収色素の製造方法
JP7274577B2 (ja) フォトクロミックポリマーを含む眼用医療機器およびその製造方法
WO2020261961A1 (ja) クロメン化合物、およびフォトクロミック光学物品
JP2007525462A (ja) フォトクロミック特性を有する、アリールアミン基で置換されたベンゾ−、ナフト−およびフェナントロクロメン
JPH05313106A (ja) 眼用レンズ材料
CN116836145A (zh) 一种可聚合的光致变色化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019934953

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019934953

Country of ref document: EP

Effective date: 20220127