WO2020258651A1 - 一种空穴传输材料、制备方法及电致发光器件 - Google Patents

一种空穴传输材料、制备方法及电致发光器件 Download PDF

Info

Publication number
WO2020258651A1
WO2020258651A1 PCT/CN2019/117379 CN2019117379W WO2020258651A1 WO 2020258651 A1 WO2020258651 A1 WO 2020258651A1 CN 2019117379 W CN2019117379 W CN 2019117379W WO 2020258651 A1 WO2020258651 A1 WO 2020258651A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
layer
transport material
light
electron
Prior art date
Application number
PCT/CN2019/117379
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/629,970 priority Critical patent/US11355713B2/en
Publication of WO2020258651A1 publication Critical patent/WO2020258651A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass

Definitions

  • the present invention relates to the field of optoelectronic technology, in particular to a hole transport material, a preparation method and an electroluminescent device.
  • Organic light-emitting diodes because of its active light emission, no backlight source, high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and driving voltage
  • OLEDs organic light-emitting diodes
  • the light-emitting guest material that plays a leading role is very important.
  • the light-emitting guest materials used in early OLEDs were fluorescent materials. Since the ratio of singlet and triplet excitons in OLEDs is 1:3, the theoretical internal quantum efficiency (IQE) of OLEDs based on fluorescent materials can only reach 25%. , which greatly limits the application of fluorescent electroluminescent devices. Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can simultaneously use singlet and triplet excitons to achieve 100% IQE. However, the commonly used heavy metals are all precious metals such as Ir and Pt, and the phosphorescent materials of heavy metal complexes still need a breakthrough in blue light materials.
  • the hole transport material is the thickest layer, and its energy level and hole mobility have always been contradictory. It is urgent to develop hole transport materials with matching energy levels and high mobility.
  • the present invention synthesizes a series of hole transport materials with suitable HOMO/LUMO energy levels through clever molecular design and on the basis of the structure of tetramethyldihydrophenazine. And confirm their structure through mass spectrometry analysis, and get their performance in TOP device through theoretical calculation.
  • the present invention provides a hole transport material, which uses tetramethyldihydrophenazine as the core, and the general structural formula of the hole transport material is:
  • the R 1 and R 2 groups can be selected from one of the following structures:
  • the structure of the hole transport material can be selected from any one of the following three compounds:
  • the hole transport material is composed of tetramethyldihydrophenazine with an electron donor and peripheral electron donors, wherein the structural formula of the central core is:
  • the electron donor is (Carbazole), (Diphenylamine), Any one of (9,9'-dimethylacridine).
  • the electroluminescent device of the present invention includes a substrate layer, a hole injection layer, a transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, a translucent electrode, and an optical coupling output layer in order Floor;
  • the substrate layer 1 is glass and a total reflection (ITO/Ag/ITO) substrate layer, where Ag is a reflective surface, so that the light from the device is emitted from the top;
  • the hole injection layer 2 is used to inject holes from ITO into the OLED device and is made of MoO 3 ;
  • the hole transport layer 3 is used to transport the injected holes, and at the same time, by adjusting its thickness, it can adjust the resonance wavelength of the microcavity.
  • the electron blocking layer 4 blocks the electrons injected into the light-emitting layer from the light-emitting layer, prevents them from being transported to the hole transport layer, and limits the recombination area of excitons in the light-emitting layer, which is caused by (4-[1-[4-[ Bis(4-methylphenyl)amino]phenyl]cyclohexyl]-N-(3-methylphenyl)-N-(4-methylphenyl)aniline (TAPC).
  • TAPC (4-[1-[4-[ Bis(4-methylphenyl)amino]phenyl]cyclohexyl]-N-(3-methylphenyl)-N-(4-methylphenyl)aniline
  • the light-emitting layer 5 is used to recombine the holes and electrons to generate excitons.
  • the fluorescent material emits light under the action of the excitons, and is composed of 4,4'-bis(9-carbazolyl)biphenyl: tris(2 -Phenylpyridine) compounded with iridium (III).
  • the hole blocking layer 6 blocks the holes injected into the light-emitting layer in the light-emitting layer, prevents them from being transported to the electron transport layer, and limits the recombination area of excitons in the light-emitting layer, which is composed of 1,3,5-tri(3) -(3-pyridyl)phenyl)benzene Tm 3 PyPB.
  • the electron transport layer 7 transports injected electrons and is made of 1,3,5-tris(3-(3-pyridyl)phenyl)benzene Tm 3 PyPB and LiQ (octahydroxyquinoline aluminum) , Used to transmit the electrons to the light-emitting layer.
  • the electron injection layer 8 is used to inject electrons into the OLED device, and is generally made of Yb or lithium fluoride (LiF).
  • the translucent cathode layer 9 is used for translucent emission and transmission, can adjust the strength of the microcavity, and is made of magnesium/silver translucent electrodes;
  • the coupling-out layer 10 is used to couple and extract light to increase the light extraction rate, and is made of 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA).
  • the present invention also provides a method for preparing a hole transport material, which includes the following steps:
  • Step 1) Add raw materials in proportion: the central core raw material, electron donor and solvent are mixed with each other;
  • Step 2 Add catalyst palladium acetate (Pd(OAc) 2 ) and tri-tert-butyl phosphine tetrafluoroborate, and add toluene with dewatering and deoxygenation under argon atmosphere, heating for reaction for 20-24 hours, and cooling to room temperature ;
  • Step 3 Pour the reaction solution into ice water, extract with dichloromethane three times, combine the organic phases, and spin into silica gel;
  • Step 4) Separation and purification by column chromatography to obtain white powder and obtain the finished hole transport material.
  • the hole transport material is composed of tetramethyldihydrophenazine with an electron donor and peripheral electron donors, wherein the structural formula of the central core is:
  • the electron donor is (Carbazole), (Diphenylamine), Any one of (9,9'-dimethylacridine).
  • the input ratio of the core raw materials of the electric center is: 2.73 g, and the molar amount is 5 mmol.
  • the mixing ratio of the salt is 0.68 g, and the molar amount is 2.4 mmol.
  • the present invention provides an improved hole transport material, through the combination of different functional groups, on the basis of tetramethyldihydrophenazine as the nucleus, the structure of the donor unit is adjusted , Change its electron donating ability, and design a hole transport material with high mobility compared with the mobility of existing HTL materials. Due to the high mobility, the holes transported to the light-emitting layer increase, and the holes and electrons The recombination rate of the device is increased, thereby improving the luminous efficiency of the device, which is specifically manifested as the improvement of the current efficiency of the device, and the synthesis of its organic light-emitting material and its application in the light-emitting device are realized.
  • Figure 1 is a schematic diagram of the structure of the electroluminescent device of the present invention.
  • hole transport materials are used to transport holes and at the same time play a role in regulating the microcavity. Its consumption is the largest in the entire OLED device, and its film thickness is also the largest. Hole mobility is a key factor for the efficiency and lifetime of an OLED device.
  • the present invention designs and synthesizes a series of hole transport materials based on tetramethyldihydrophenazine as the core. Finally, electroluminescent devices based on target hole transport materials have achieved very high efficiency.
  • the purpose of the present invention is to realize the synthesis of hole transport materials with matched HOMO/LUMO energy levels and high mobility and its application in light-emitting devices.
  • the present invention provides a hole transport material with tetramethyldihydrophenazine as the core, and the general structural formula of the hole transport material is:
  • the R 1 and R 2 groups can be selected from one of the following structures:
  • the structural formula of the hole transport material obtained by the mutual reaction of the central core raw material and the electron acceptor can be selected from any one of the following three compounds:
  • the present invention also provides a method for preparing a hole transport material, which includes the following steps:
  • Step 1) Add raw materials in proportion: the central core raw material, electron donor and solvent are mixed with each other;
  • Step 2 Add catalyst palladium acetate (Pd(OAc) 2 ) and tri-tert-butyl phosphine tetrafluoroborate, and add toluene with dewatering and deoxygenation under argon atmosphere, heating for reaction for 20-24 hours, and cooling to room temperature ;
  • Step 3 Pour the reaction solution into ice water, extract with dichloromethane three times, combine the organic phases, and spin into silica gel;
  • Step 4) Separation and purification by column chromatography to obtain white powder and obtain the finished hole transport material.
  • the solvent is palladium acetate (Pd(OAc) 2 ) and tri-tert-butylphosphine tetrafluoroborate ((t-Bu) 3 HPBF 4 ).
  • step 2) toluene with dewatering and oxygen removal is added under an argon atmosphere, reacted at 120°C for 24 hours, and cooled to room temperature;
  • the input ratio of the electron donor is: 2.73 g, and the molar amount is 5 mmol.
  • the input ratio of the electron acceptor 2.0-2.5g, the molar amount is 12mmol, the input ratio of the palladium acetate is: 0.18g, the molar amount is 0.8mmol, the tri-tert-butylphosphine tetrafluoroborate
  • the mixing ratio of the salt is 0.68 g, and the molar amount is 2.4 mmol.
  • step 4 dichloromethane and n-hexane are added for column chromatography separation and purification, the ratio (volume ratio) of dichloromethane and n-hexane is 1:5, and the column chromatography is separated and purified to obtain a white powder , which is the hole transport material.
  • the electrochemical energy levels of the target molecules are shown in Table 1.
  • the performance data of the device is shown in the following table:
  • the present invention also provides an electroluminescent device, which includes a layer of glass and a total reflection (ITO/Ag/ITO) substrate layer 1, a hole injection layer 2: P-dopant and a transport layer. 3 (hole transport layer), electron blocking layer 4, light-emitting layer 5, hole blocking layer 6, electron transport layer 7, electron injection layer 8, semi-transparent electrode 9, light outcoupling layer 10.
  • an electroluminescent device which includes a layer of glass and a total reflection (ITO/Ag/ITO) substrate layer 1, a hole injection layer 2: P-dopant and a transport layer. 3 (hole transport layer), electron blocking layer 4, light-emitting layer 5, hole blocking layer 6, electron transport layer 7, electron injection layer 8, semi-transparent electrode 9, light outcoupling layer 10.
  • the substrate layer 1 is glass and a total reflection (ITO/Ag/ITO) substrate layer, where Ag is a reflective surface, so that the light from the device is emitted from the top;
  • the hole injection layer 2 is used to inject holes from ITO into the OLED device and is made of MoO 3 ;
  • the hole transport layer 3 is used to transport the injected holes, and at the same time, by adjusting its thickness, can play a role in adjusting the resonance wavelength of the microcavity, and is made of the hole transport material of the present invention.
  • the electron blocking layer 4 blocks the electrons injected into the light-emitting layer from the light-emitting layer, prevents them from being transported to the hole transport layer, and limits the recombination area of excitons in the light-emitting layer, which is caused by (4-[1-[4-[ Bis(4-methylphenyl)amino]phenyl]cyclohexyl]-N-(3-methylphenyl)-N-(4-methylphenyl)aniline (TAPC).
  • TAPC (4-[1-[4-[ Bis(4-methylphenyl)amino]phenyl]cyclohexyl]-N-(3-methylphenyl)-N-(4-methylphenyl)aniline
  • the light-emitting layer 5 is used to recombine the holes and electrons to generate excitons.
  • the fluorescent material emits light under the action of the excitons, and is composed of 4,4'-bis(9-carbazolyl)biphenyl: tris(2 -Phenylpyridine) compounded with iridium (III).
  • the hole blocking layer 6 blocks the holes injected into the light-emitting layer in the light-emitting layer, prevents them from being transported to the electron transport layer, and limits the recombination area of excitons in the light-emitting layer, which is composed of 1,3,5-tri(3) -(3-pyridyl)phenyl)benzene Tm 3 PyPB.
  • the electron transport layer 7 transports injected electrons and is made of 1,3,5-tris(3-(3-pyridyl)phenyl)benzene Tm3PyPB and LiQ (octahydroxyquinoline aluminum). To transfer the electrons to the light-emitting layer.
  • the electron injection layer 8 is used to inject electrons into the OLED device, and is generally made of Yb or lithium fluoride (LiF).
  • the translucent cathode layer 9 is used for translucent emission and transmission, can adjust the strength of the microcavity, and is made of magnesium/silver translucent electrodes;
  • the coupling-out layer 10 is used to couple and extract light to increase the light extraction rate, and is made of 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA).
  • the hole transport material is arranged in the third layer, and the efficiency of the device is improved by improving the mobility.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种空穴传输材料、制备方法及电致发光器件,以四甲基二氢吩嗪作为核,所述空穴传输材料的结构通式为:aa。通过对给体单元的结构进行调控,改变其给电子能力,设计高迁移率的空穴传输材料。

Description

一种空穴传输材料、制备方法及电致发光器件 技术领域
本发明涉及光电技术领域,特别是涉及一种空穴传输材料、制备方法及电致发光器件。
背景技术
有机电致发光二极管(organic light-emitting diodes,OLEDs),以其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低,能耗小,更轻更薄,柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。
技术问题
在OLED中,起主导作用的发光客体材料至关重要。早期的OLED使用的发光客体材料为荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是Ir、Pt等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。
对于目前使用的顶发射OLED器件中,空穴传输材料作为最厚的一层,其能级以及空穴迁移率一直存在矛盾的关系,开发匹配能级以及高迁移率的空穴传输材料迫在眉睫。
技术解决方案
本发明针对上述问题,通过巧妙的分子设计,在四甲基二氢吩嗪的结构基础上,合成了一系列具有合适HOMO/LUMO能级的空穴传输材料。并通过质谱分析对它们的结构进行确认,通过理论计算得出它们在TOP器件中的性能。
本发明提供了一种空穴传输材料,以四甲基二氢吩嗪作为核,所述空穴传输材料的结构通式为:
Figure PCTCN2019117379-appb-000001
其中,所述R 1和R 2基团可选自以下结构的一种:
Figure PCTCN2019117379-appb-000002
所述空穴传输材料的结构可选自以下三种化合物中任选一种:
Figure PCTCN2019117379-appb-000003
所述空穴传输材料由具有电子给体的四甲基二氢吩嗪和外围的电子给体组成,其中,中心核的结构式为:
Figure PCTCN2019117379-appb-000004
所述电子给体为
Figure PCTCN2019117379-appb-000005
(咔唑)、
Figure PCTCN2019117379-appb-000006
(二苯胺)、
Figure PCTCN2019117379-appb-000007
(9,9’-二甲基吖啶)中任选一种。
本发明电致发光器件,其包括依次层叠设置:基板层、空穴注入层、传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层,半透明电极和光耦合输出层;
所述基板层1为玻璃和全反射(ITO/Ag/ITO)衬底层,其中Ag是反射面,使得器件的出光从顶部发射;
所述空穴注入层2,用于将空穴从ITO注入到OLED器件由MoO 3制成;
所述空穴传输层3,用于将注入的空穴进行传输,同时通过调节它的厚度,可以起到调节微腔的谐振波长的作用,所述空穴传输层所述的空穴传输材料制成;
所述电子阻挡层4,是将注入到发光层的电子阻挡在发光层,防止其向空穴传输层传输,限制激子的复合区域在发光层,由(4-[1-[4-[二(4-甲基苯基)氨基]苯基]环己基]-N-(3-甲基苯基)-N-(4-甲基苯基)苯胺(TAPC)制成。
所述发光层5,用于将所述空穴和电子复合产生激子,荧光材料在激子的作用下发光,由4,4’-二(9-咔唑基)联苯:三(2-苯基吡啶)合铱(III)制成。
所述空穴阻挡层6,是将注入到发光层的空穴阻挡在发光层,防止其向电子传输层传输,限制激子的复合区域在发光层,由1,3,5-三(3-(3-吡啶基)苯基)苯Tm 3PyPB制成。
所述电子传输层7,是将注入的电子进行传输,由1,3,5-三(3-(3-吡啶基)苯基)苯Tm 3PyPB和LiQ(八羟基喹啉铝)制成,用于将所述电子传输给所述发光层。
所述电子注入层8,是对OLED器件进行注入电子,一般为Yb或者氟化锂(LiF)制成。
所述半透明阴极层9,用于半透明发射和透射作用,可调节微腔的强弱,由镁/银半透明电极制成;
所述耦合输出层10,是用来对光进行耦合粹取,提高光的出光率的,由4,4',4”-三(咔唑-9-基)三苯胺(TCTA)制成。
本发明还提供了一种制备空穴传输材料的方法,其包括以下步骤:
步骤1)按比例加入原料:中心核原料、电子给体和溶剂相互混合;
步骤2)加入催化剂醋酸钯(Pd(OAc) 2)和三叔丁基膦四氟硼酸盐,并在氩气氛围下加入除水除氧的甲苯,加热反应20-24小时,冷却至室温;
步骤3)将反应液倒入冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶;
步骤4)柱层析分离纯化,得白色粉末,获得空穴传输材料成品。
所述空穴传输材料由具有电子给体的四甲基二氢吩嗪和外围的电子给体组成,其中,中心核的结构式为:
Figure PCTCN2019117379-appb-000008
所述电子给体为
Figure PCTCN2019117379-appb-000009
(咔唑)、
Figure PCTCN2019117379-appb-000010
(二苯胺)、
Figure PCTCN2019117379-appb-000011
(9,9’-二甲基吖啶)中任选一种。
所述电中心核原料的投入配比为:2.73g,摩尔量为5mmol。所述电子给体的投入配比:2.0-2.5g,摩尔量为12mmol,所述醋酸钯的投入配比为:0.18g,摩尔量为0.8mmol,所述三叔丁基膦四氟硼酸盐的投入配比为0.68g,摩尔量为2.4mmol。
有益效果
与现有技术相比,本发明提供了一种改进的空穴传输材料,通过不同功能团的搭配,在四甲基二氢吩嗪作为核的基础上,对给体单元的的结构进行调控,改变其给电子能力,设计与现有的HTL材料的迁移率相比,具有高迁移率的空穴传输材料,由于高的迁移率,使得传输到发光层的空穴增多,空穴和电子的复合率提高,从而提升器件的发光效率,具体表现为器件的电流效率提高,实现其有机发光材料的合成以及其在发光器件中的应用。
附图说明
图1为本发明电致发光器件的结构示意图。
本发明的实施方式
在OLED显示屏领域,空穴传输材料是用来对空穴进行传输,同时起到调节微腔的作用, 其消耗量在整个OLED器件中是最多的,其膜层厚度也是最大的,其空穴迁移率是OLED器件效率和寿命的关键因素,本发明通过在四甲基二氢吩嗪作为核的基础上,设计合成了一系列空穴传输材料,并进行了合成。最后基于目标空穴传输材料的电致发光器件都取得了非常高的效率。本发明的目的是实现匹配的HOMO/LUMO能级以及高迁移率的空穴传输材料的合成以及其在发光器件中的应用。
为了实现上述发明目的,本发明提供了一种空穴传输材料,以四甲基二氢吩嗪作为核,所述空穴传输材料的结构通式为:
Figure PCTCN2019117379-appb-000012
其中,所述R 1和R 2基团可选自以下结构的一种:
Figure PCTCN2019117379-appb-000013
通过中心核原料和电子受给体相互反应获得的空穴传输材料的结构式,所述空穴传输材料的结构可选自以下三种化合物中任选一种:
Figure PCTCN2019117379-appb-000014
本发明还提供了一种制备空穴传输材料的方法,其包括以下步骤:
步骤1)按比例加入原料:中心核原料、电子给体和溶剂相互混合;
步骤2)加入催化剂醋酸钯(Pd(OAc) 2)和三叔丁基膦四氟硼酸盐,并在氩气氛围下加入除水除氧的甲苯,加热反应20-24小时,冷却至室温;
步骤3)将反应液倒入冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶;
步骤4)柱层析分离纯化,得白色粉末,获得空穴传输材料成品。
溶剂为醋酸钯(Pd(OAc) 2)和三叔丁基膦四氟硼酸盐((t-Bu) 3HPBF 4)。
优选地,步骤2)中,在氩气氛围下加入除水除氧的甲苯,在120℃反应24小时,冷却至室温;
优选地,所述电子给体的投入配比为:2.73g,摩尔量为5mmol。所述电子受体的投入配比:2.0-2.5g,摩尔量为12mmol,所述醋酸钯的投入配比为:0.18g,摩尔量为0.8mmol,所述三叔丁基膦四氟硼酸盐的投入配比为0.68g,摩尔量为2.4mmol。
优选地,步骤4)中,加入二氯甲烷和正己烷进行柱层析分离纯化,二氯甲烷和正己烷的配比(体积比)为1:5,经过柱层析分离纯化,获得白色粉末,即为空穴传输材料。
以下分别举例说明三种结构式的空穴传输材料的合成方法和合成反应。
实施例一
合成空穴传输材料1,合成路线为如下所示:
Figure PCTCN2019117379-appb-000015
合成步骤:
向250mL二口瓶中加入原料1
Figure PCTCN2019117379-appb-000016
(2.73g,5mmol),咔唑
Figure PCTCN2019117379-appb-000017
(2.00g,12mmol),醋酸钯(0.18g,0.8mmol)和三叔丁基膦四氟硼酸盐(0.68g,2.4mmol),然后在手套箱中加入NaOt-Bu(1.16g,12mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:5)分离纯化,得白色粉末3.3g,产率92%。经质谱分析,MS(EI)m/z:[M]+:720.31.
实施例二
合成空穴传输材料2,合成路线为如下所示:
Figure PCTCN2019117379-appb-000018
合成步骤:
向250mL二口瓶中加入原料1
Figure PCTCN2019117379-appb-000019
(2.73g,5mmol),二苯胺
Figure PCTCN2019117379-appb-000020
(2.03g,12mmol),醋酸钯(0.18g,0.8mmol)和三叔丁基膦四氟硼酸盐(0.68g,2.4mmol),然后,在手套箱中加入NaOt-Bu(1.16g,12mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:5)分离纯化,得白色粉末2.9g,产率80%。经质谱分析,MS(EI)m/z:[M]+:724.29。
实施例三
合成空穴传输材料3,合成路线为如下所示:
Figure PCTCN2019117379-appb-000021
向250mL二口瓶中加入原料1
Figure PCTCN2019117379-appb-000022
(2.73g,5mmol),N,N-二甲基吖啶(2.50g,12mmol),醋酸钯(0.18g,0.8mmol)和三叔丁基膦四氟硼酸盐(0.68g,2.4mmol),然后在手套箱中加入NaOt-Bu(1.16g,12mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:5)分离纯化,得白色粉末3.8g,产率95%。MS(EI)m/z:[M]+:804.31。
目标分子的电化学能级如下表1所示,
  HOMO(eV) LUMO(eV)
化合物1 -5.53 -2.53
化合物2 -5.61 -2.53
化合物3 -5.58 -2.54
器件的性能数据见下表:
器件 空穴传输层 最高电流效率(cd/A) (CIEx,CIEy) 最大外量子效率(%)
器件1 化合物1 40.3 (0.685,0.291) 38.3%
器件2 化合物2 41.7 (0.685,0.292) 39.6%
器件3 化合物3 40.8 (0.685,0.291) 38.7%
通过测定合成的不同化合物的各项理化指标,呈现高效率的空穴传输材料,获得长寿命的OLED电致发光器件,基于电致发光器件的显示。
参照图1所示,本发明还提供了一种电致发光器件,包括依次层叠设置:玻璃和全反射(ITO/Ag/ITO)衬底层1,空穴注入层2:P-dopant和传输层3(空穴传输层),电子阻挡层4,发光层5,空穴阻挡层6,电子传输层7,电子注入层8,半透明电极9,光耦合输出层10。
所述基板层1为玻璃和全反射(ITO/Ag/ITO)衬底层,其中Ag是反射面,使得器件的出光从顶部发射;
所述空穴注入层2,用于将空穴从ITO注入到OLED器件由MoO 3制成;
所述空穴传输层3,用于将注入的空穴进行传输,同时通过调节它的厚度,可以起到调节微腔的谐振波长的作用,由本发明空穴传输材料制成。
所述电子阻挡层4,是将注入到发光层的电子阻挡在发光层,防止其向空穴传输层传输,限制激子的复合区域在发光层,由(4-[1-[4-[二(4-甲基苯基)氨基]苯基]环己基]-N-(3-甲基苯基)-N-(4-甲基苯基)苯胺(TAPC)制成。
所述发光层5,用于将所述空穴和电子复合产生激子,荧光材料在激子的作用下发光,由4,4’-二(9-咔唑基)联苯:三(2-苯基吡啶)合铱(III)制成。
所述空穴阻挡层6,是将注入到发光层的空穴阻挡在发光层,防止其向电子传输层传输,限制激子的复合区域在发光层,由1,3,5-三(3-(3-吡啶基)苯基)苯Tm 3PyPB制成。
所述电子传输层7,是将注入的电子进行传输,由1,3,5-三(3-(3-吡啶基)苯基)苯Tm3PyPB和LiQ(八羟基喹啉铝)制成,用于将所述电子传输给所述发光层。
所述电子注入层8,是对OLED器件进行注入电子,一般为Yb或者氟化锂(LiF)制成。
所述半透明阴极层9,用于半透明发射和透射作用,可调节微腔的强弱,由镁/银半透明电极制成;
所述耦合输出层10,是用来对光进行耦合粹取,提高光的出光率,由4,4',4”-三(咔唑-9-基)三苯胺(TCTA)制成。
上述电致发光器件的结构设置,为了通过微腔作用,提升器件光的色域达到应用的需求,空穴传输材料设置在第三层,通过迁移率的提升,起到提升器件的效率作用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (9)

  1. 一种制备空穴传输材料的方法,其特征在于:包括以下步骤:
    步骤1)按比例加入原料:中心核原料、电子给体和溶剂相互混合;
    步骤2)加入催化剂醋酸钯(Pd(OAc) 2)和三叔丁基膦四氟硼酸盐,并在氩气氛围下加入除水除氧的甲苯,加热反应20-24小时,冷却至室温;
    步骤3)将反应液倒入冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶;
    步骤4)柱层析分离纯化,得白色粉末,获得所述空穴传输材料成品;
    其中,所述空穴传输材料以四甲基二氢吩嗪作为核,所述空穴传输材料的结构通式为:
    Figure PCTCN2019117379-appb-100001
    其中,所述R 1和R 2基团可选自以下结构的一种:
    Figure PCTCN2019117379-appb-100002
    并且,所述空穴传输材料的结构可选自以下三种化合物中任选一种:
    Figure PCTCN2019117379-appb-100003
  2. 根据权利要求1所述制备空穴传输材料的方法,其特征在于:所述空穴传输材料由具有电子给体的四甲基二氢吩嗪和外围的电子给体组成,其中,中心核的结构式为:
    Figure PCTCN2019117379-appb-100004
    所述电子给体为
    Figure PCTCN2019117379-appb-100005
    (咔唑)、
    Figure PCTCN2019117379-appb-100006
    (二苯胺)、
    Figure PCTCN2019117379-appb-100007
    (9,9’-二甲基吖啶)中任选一种。
  3. 根据权利要求1所述制备空穴传输材料的方法,其特征在于:步骤2)中,在氩气氛围下加入除水除氧的甲苯,在120℃反应24小时,冷却至室温。
  4. 根据权利要求1所述制备空穴传输材料的方法,其特征在于:所述的中心核为
    Figure PCTCN2019117379-appb-100008
    的投入配比为:2.73g,摩尔量为5mmol。
  5. 根据权利要求1所述制备空穴传输材料的方法,其特征在于:所述电子给体的投入配比:2.0-2.5g,摩尔量为12mmol,所述醋酸钯的投入配比为:0.18g,摩尔量为0.8mmol,所述三叔丁基膦四氟硼酸盐的投入配比为0.68g,摩尔量为2.4mmol。
  6. 一种空穴传输材料,其特征在于:以四甲基二氢吩嗪作为核,所述空穴传输材料的结构通式为:
    Figure PCTCN2019117379-appb-100009
    其中,所述R 1和R 2基团可选自以下结构的一种:
    Figure PCTCN2019117379-appb-100010
  7. 根据权利要求6所述的空穴传输材料,其特征在于:所述空穴传输材料的结构可选自以下三种化合物中任选一种:
    Figure PCTCN2019117379-appb-100011
  8. 根据权利要求6所述的空穴传输材料,其特征在于:所述空穴传输材料由具有电子给体的四甲基二氢吩嗪和外围的电子给体组成,其中,中心核的结构式为:
    Figure PCTCN2019117379-appb-100012
    所述电子给体为
    Figure PCTCN2019117379-appb-100013
    (咔唑)、
    Figure PCTCN2019117379-appb-100014
    (二苯胺)、
    Figure PCTCN2019117379-appb-100015
    (9,9’-二甲基吖啶)中任选一种。
  9. 一种电致发光器件,其特征在于:包括依次层叠设置:基板层、空穴注入层、传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层,半透明电极和光耦合输出层;
    所述基板层,为玻璃和全反射(ITO/Ag/ITO)衬底层,其中Ag是反射面,使得器件的出光从顶部发射;
    所述空穴注入层,用于将空穴从ITO注入到OLED器件由MoO3制成;
    所述空穴传输层,用于将注入的空穴进行传输,同时通过调节它的厚度,可以起到调节 微腔的谐振波长的作用,所述空穴传输层由权利要求6所述的空穴传输材料制成;
    所述电子阻挡层,是将注入到发光层的电子阻挡在发光层,防止其向空穴传输层传输,限制激子的复合区域在发光层,由(4-[1-[4-[二(4-甲基苯基)氨基]苯基]环己基]-N-(3-甲基苯基)-N-(4-甲基苯基)苯胺(TAPC)制成;
    所述发光层,用于将所述空穴和电子复合产生激子,荧光材料在激子的作用下发光,由4,4’-二(9-咔唑基)联苯:三(2-苯基吡啶)合铱(III)制成;
    所述空穴阻挡层,是将注入到发光层的空穴阻挡在发光层,防止其向电子传输层传输,限制激子的复合区域在发光层,由1,3,5-三(3-(3-吡啶基)苯基)苯Tm3PyPB制成;
    所述电子传输层,是将注入的电子进行传输,由1,3,5-三(3-(3-吡啶基)苯基)苯Tm3PyPB和LiQ(八羟基喹啉铝)制成,用于将所述电子传输给所述发光层;
    所述电子注入层,是对OLED器件进行注入电子;
    所述半透明阴极层,用于半透明发射和透射作用,可调节微腔的强弱,由镁/银半透明电极制成;
    所述耦合输出层,是用来对光进行耦合粹取,提高光的出光率,由4,4',4”-三(咔唑-9-基)三苯胺(TCTA)制成。
PCT/CN2019/117379 2019-06-24 2019-11-12 一种空穴传输材料、制备方法及电致发光器件 WO2020258651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/629,970 US11355713B2 (en) 2019-06-24 2019-11-12 Hole transport material, manufacturing method thereof, and electroluminescent device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910546841.5 2019-06-24
CN201910546841.5A CN110299460B (zh) 2019-06-24 2019-06-24 一种空穴传输材料、制备方法及电致发光器件

Publications (1)

Publication Number Publication Date
WO2020258651A1 true WO2020258651A1 (zh) 2020-12-30

Family

ID=68028714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117379 WO2020258651A1 (zh) 2019-06-24 2019-11-12 一种空穴传输材料、制备方法及电致发光器件

Country Status (2)

Country Link
CN (1) CN110299460B (zh)
WO (1) WO2020258651A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894476A (zh) * 2022-10-11 2023-04-04 华东理工大学 有机发光二极管材料及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355713B2 (en) 2019-06-24 2022-06-07 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Hole transport material, manufacturing method thereof, and electroluminescent device thereof
CN110299460B (zh) * 2019-06-24 2020-11-24 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件
CN111039924A (zh) * 2019-11-26 2020-04-21 武汉华星光电半导体显示技术有限公司 以乙烯双吖啶为核的空穴传输材料及有机发光二极管
CN110950866B (zh) * 2019-11-26 2023-06-27 武汉华星光电半导体显示技术有限公司 以螺双吖啶为核的空穴传输材料及有机发光二极管
CN113087675A (zh) * 2021-03-29 2021-07-09 武汉华星光电半导体显示技术有限公司 有机化合物及其制作方法、显示面板
CN115745972B (zh) * 2022-11-11 2024-01-30 电子科技大学 一种含氮有机正极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014018A1 (en) * 2003-07-10 2005-01-20 Eastman Kodak Company Organic electroluminescent devices with high luminance
CN104136430A (zh) * 2012-05-17 2014-11-05 国立大学法人九州大学 化合物、发光材料和有机发光元件
TW201509920A (zh) * 2013-05-24 2015-03-16 Univ Kyushu Nat Univ Corp 化合物、發光材料及有機發光元件
CN109851616A (zh) * 2018-12-31 2019-06-07 瑞声科技(南京)有限公司 一种基于氮杂咔唑的有机光电材料及其应用
CN110299460A (zh) * 2019-06-24 2019-10-01 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153813B2 (en) * 2007-12-20 2012-04-10 Abbott Laboratories Benzothiazole and benzooxazole derivatives and methods of use
CN104638146B (zh) * 2015-02-14 2017-06-23 上海道亦化工科技有限公司 一种有机电致发光器件
CN108948041A (zh) * 2018-08-12 2018-12-07 瑞声科技(南京)有限公司 一种基于5,10-二氢吩嗪的化合物及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014018A1 (en) * 2003-07-10 2005-01-20 Eastman Kodak Company Organic electroluminescent devices with high luminance
CN104136430A (zh) * 2012-05-17 2014-11-05 国立大学法人九州大学 化合物、发光材料和有机发光元件
TW201509920A (zh) * 2013-05-24 2015-03-16 Univ Kyushu Nat Univ Corp 化合物、發光材料及有機發光元件
CN109851616A (zh) * 2018-12-31 2019-06-07 瑞声科技(南京)有限公司 一种基于氮杂咔唑的有机光电材料及其应用
CN110299460A (zh) * 2019-06-24 2019-10-01 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894476A (zh) * 2022-10-11 2023-04-04 华东理工大学 有机发光二极管材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110299460B (zh) 2020-11-24
CN110299460A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2020258651A1 (zh) 一种空穴传输材料、制备方法及电致发光器件
TWI458694B (zh) Organic light field components
TWI593698B (zh) Materials for organic electroluminescent devices and organic electroluminescent devices using the same
TWI599570B (zh) Compounds for organic electroluminescent devices and organic electroluminescent devices
TWI488942B (zh) Organic electroluminescent elements
TWI596104B (zh) Materials for organic electroluminescent devices and organic electroluminescent devices using the same
TWI586664B (zh) 有機電場發光元件用材料及使用其的有機電場發光元件
TW201326121A (zh) 有機電致發光元件
TW200935637A (en) Light-emitting device
TW201332970A (zh) 有機電致發光元件用材料及有機電致發光元件
TW201330344A (zh) 有機電致發光元件
KR20130007453A (ko) 트리아릴아민 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
TWI682935B (zh) 有機電致發光元件用材料及使用其之有機電致發光元件
Ye et al. Achieving highly efficient simple-emission layer fluorescence/phosphorescence hybrid white organic light-emitting devices via effective confinement of triplets
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
KR102555741B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
Alam et al. Acceptor interlocked molecular design for solution‐processed stable deep‐blue TADF and hyper fluorescence organic LED enabling high‐efficiency
WO2021000434A1 (zh) 红绿蓝热活化延迟荧光材料,其合成方法及应用
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
TWI684595B (zh) 有機電場發光元件用材料及使用其的有機電場發光元件
WO2020155525A1 (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
WO2020220414A1 (zh) 热活化延迟荧光材料及其制备方法、显示装置
KR102336190B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021098050A1 (zh) 以二氢吩嗪为核的空穴传输材料及有机发光二极管
Zhou et al. High-efficiency orange thermally activated delayed fluorescence by secondary acceptor modification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935495

Country of ref document: EP

Kind code of ref document: A1