CN109851616A - 一种基于氮杂咔唑的有机光电材料及其应用 - Google Patents

一种基于氮杂咔唑的有机光电材料及其应用 Download PDF

Info

Publication number
CN109851616A
CN109851616A CN201811650149.9A CN201811650149A CN109851616A CN 109851616 A CN109851616 A CN 109851616A CN 201811650149 A CN201811650149 A CN 201811650149A CN 109851616 A CN109851616 A CN 109851616A
Authority
CN
China
Prior art keywords
unsubstituted
substituted
organic
azepine carbazole
photoelectrical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811650149.9A
Other languages
English (en)
Inventor
谢再锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACC Acoustic Technologies Shenzhen Co Ltd
AAC Technologies Holdings Nanjing Co Ltd
Original Assignee
ACC Acoustic Technologies Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACC Acoustic Technologies Shenzhen Co Ltd filed Critical ACC Acoustic Technologies Shenzhen Co Ltd
Priority to CN201811650149.9A priority Critical patent/CN109851616A/zh
Publication of CN109851616A publication Critical patent/CN109851616A/zh
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

本发明属于有机电致发光材料领域,公开了一种基于氮杂咔唑的有机光电材料及其应用。本发明所提供的基于氮杂咔唑的有机光电材料,作为电致发光材料的单线态与三线态能级差小于300meV,有利于提高三线态激子向单线态激子的反向间隙窜越概率。此外,在保持较低的ΔEST的同时,本发明的实施方式所提供的基于氮杂咔唑的有机光电材料还具有非常匹配的空穴‑电子传输率,该种性质有利于提高材料的发光效率和器件稳定性。

Description

一种基于氮杂咔唑的有机光电材料及其应用
技术领域
本发明属于有机电致发光材料领域,特别涉及一种基于氮杂咔唑的有机光电材料及其应用。
背景技术
有机电致发光材料分为荧光电致发光材料和磷光电致发光材料。其中,磷光电致发光材料可以通过重金属效应利用到全部激子的能量,因而具有更大的优越性。2009年,热激活延迟荧光化合物,即TADF(Thermally activated delayed fluorescence)材料,被提出并应用于有机电致发光器件技术领域。该类荧光化合物在热激发下能利用三线态激子的反向间隙窜越,获得100%单线态激子,既避免了使用昂贵的重金属配合物,且器件效率可与磷光器件相媲美。自此,荧光材料又重新引起研究者的关注。
但是,现有的热激活延迟荧光化合物及以其制备的器件还存在很多不足,如材料种类比较有限、器件的稳定性有待提高等。现有技术中,为了设计热激活延迟荧光化合物、并实现较低的ΔEST(单线态与三线态能级差),就需要通过将分子中的HOMO和LUMO轨道进行严格的完全分离,实现这种分离的技术就是在分子中的推电子单元和吸电子单元中间采用阻隔单元设计。这样的传统分子设计虽然获得了理想的ΔEST值,但完全的HOMO与LUMO轨道分离和阻隔单元的嵌入,造成了分子中的HOMO与LUMO中电子交换积分趋近于0,即分子中的辐射跃迁速率常数Kr@S1->S变小,不利于分子的发光效率提升。此外中间阻隔单元造成分子结构比较柔性,从而降低了分子的光辐射跃迁常数和跃迁时的阵子强度(Kr正比于阵子强度f)。
因此有必要提供一种不但具有较低的ΔEST,并且保持较佳的发光效率、以及较高的分子光辐射跃迁阵子强度的热激活延迟荧光化合物。
发明内容
本发明的目的在于为克服上述不足提供一种基于氮杂咔唑的有机光电材料及其应用,其不但具有较低的ΔEST,并且具有较佳的发光效率、和较高的分子光辐射跃迁阵子强度。
本发明的目的通过以下技术方案实现:
本发明的实施方式提供了一种基于氮杂咔唑的有机光电材料,具有式(I)所示的结构:
其中,
M1具有式(II)所示的结构:
X1、X2、X3、X4各自独立地选自C或N,且X1、X2、X3、X4中至少有一个为N;
R1、R2各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
M2具有式(III)所示的结构:
R3选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
R4、R5各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
MX选自M1或M2
可选地,所述取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基中的取代是指:所述C1-C30烷基、C6-C30芳基或C5-C30杂芳基各自独立地被选自C1-C8的直链或支链烷基取代。
可选地,M1具有选自如下之一的结构:
可选地,R1、R2同为氢原子、甲基、乙基、丙基、丁基、戊基、己基、苯基、甲苯基、乙苯基、丙苯基或丁苯基。
可选地,R3为氢原子、苯基或萘基。
可选地,R4、R5同为氢原子、甲基、乙基、丙基、丁基、戊基、己基、苯基、甲苯基、乙苯基、丙苯基或丁苯基。
可选地,本发明的实施方式所提供的基于氮杂咔唑的有机光电材料,具有选自如下之一的结构:
本发明的实施方式也提供上述基于氮杂咔唑的有机光电材料在有机发光二极管、有机晶体场、有机太阳能电池、量子点发光二极管中的应用。
本发明的实施方式还提供一种有机发光二极管,所述有机发光二极管的发光层材料包含上述基于氮杂咔唑的有机光电材料。
相对于现有技术而言,本发明的实施方式所提供的基于氮杂咔唑的有机光电材料,其作为电致发光材料的ΔEST(单线态与三线态能级差)<300meV,有利于提高三线态激子向单线态激子的反向间隙串越概率。此外,在保持较低的ΔEST的同时,本发明的实施方式所提供的基于氮杂咔唑的有机光电材料还具有非常匹配的空穴-电子传输率(即-0.2eV<μh-μe<0.2eV),该种性质有利于提高材料的发光效率和器件稳定性。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例对本发明的各具体实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明各权利要求所要求保护的技术方案。
化合物
在本发明的一些具体实施方式中,所提供的基于氮杂咔唑的有机光电材料,具有式(I)所示的结构:
其中,
M1具有式(II)所示的结构:
X1、X2、X3、X4各自独立地选自C或N,且X1、X2、X3、X4中至少有一个为N;
R1、R2各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
M2具有式(III)所示的结构:
R3选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
R4、R5各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
MX选自M1或M2
在本发明的一些具体实施方式中,所述取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基中的取代是指:所述C1-C30烷基、C6-C30芳基、C5-C30杂芳基各自独立地被选自C1-C8的直链或支链烷基取代。
在本发明的一些具体实施方式中,M1具有选自如下之一的结构:
在本发明的一些具体实施方式中,R1、R2同为氢原子、甲基、乙基、丙基、丁基、戊基、己基、苯基、甲苯基、乙苯基、丙苯基或丁苯基。
在本发明的一些具体实施方式中,R3为氢原子、苯基或萘基。
在本发明的一些具体实施方式中,R4、R5同为氢原子、甲基、乙基、丙基、丁基、戊基、己基、苯基、甲苯基、乙苯基、丙苯基或丁苯基。
在本发明的一些具体实施方式中,所提供的基于氮杂咔唑的有机光电材料,具有选自如下之一的结构:
通用合成路线:
本发明的具体实施例也提供上述的制备方法,其经如下通用合成路线合成:
其中,
X1、X2、X3、X4各自独立地选自C或N,且X1、X2、X3、X4中至少有一个为N;
R1、R2各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
R3选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
R4、R5各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基。
合成示例:
以下提供在本发明公开化合物的制备方法。但是本公开内容不意图限于本文中所叙述的方法的任一种。所属领域的技术人员可容易地修改所叙述的方法或者利用不同的方法来制备所公开的化合物的一种或多种。下列方面仅是示例性的,且不意图限制本公开内容的范围。温度、催化剂、浓度、反应物组成、以及其它工艺条件可改变,并且对于期望的配合物,本公开内容所属领域的技术人员可以容易的选择合适的反应物和条件。
在Varian Liquid State NMR仪器上于CDCl3或DMSO-d6溶液中以400MHZ纪录1H图谱,以100MHZ纪录13C NMR图谱,化学位移参照残留的氘代(protiated)溶剂。如果CDCL3用作溶剂,则采用四甲基硅烷(δ=0.00ppm)作为内标纪录1H NMR图谱;采用DMSO-d6(δ=77.00ppm)作为内标纪录13C NMR图谱。如果将H2O(δ=3.33ppm)用作溶剂,则采用残留的H2O(δ=3.33PPM)作为内标纪录1H NMR图谱;采用DMSO-d6(δ=39.52ppm)作为内标纪录13CNMR图谱。使用下列缩写(或其组合)来解释1H NMR的多重性:S=单重,D=双重,T=三重,Q=四重,P=五重,M=多重,BR=宽。
实施例1:L1的制备
在配置磁力搅拌器的三口瓶中,在氩气惰性气体的保护下加入一定量的A1,氢氧化钠和500ml的干燥丙酮溶液。然后,缓慢滴加一定量的B1,并进行8小时的搅拌反应。反应后抽滤,甲苯洗,乙醇洗。二甲苯重结晶后得到纯度99%以上的L1粉末。为进一步提高L1的纯度,采用真空升华仪进行一次或多次升华,可以得到纯度大于99.5%的L1产品。
采用CDCL3用作溶剂,四甲基硅烷(δ=0.00ppm)作为内标纪录1H NMR图谱。
1H NMR(400MHZ,DMSO-d6):
5.7ppm(1H,S),5.8ppm(2H,S),6.21ppm(8H,p),6.37ppm(8H,p),6.46ppm(4H,d),6.62ppm(2H,t),7.00-7.08ppm(6H,m),7.38-7.40ppm(2H,t),7.55ppm(1H,d),7.75ppm(1H,d),8.59ppm(1H,d)
实施例2:L2的制备
在配置磁力搅拌器的三口瓶中,在氩气惰性气体的保护下加入一定量的B2,氢氧化钠和500ml的干燥丙酮溶液。然后,缓慢滴加一定量的A2,并进行8小时的搅拌反应。反应后抽滤,甲苯洗,乙醇洗。二甲苯重结晶后得到纯度99%以上的L2粉末。为进一步提高L2的纯度,采用真空升华仪进行一次或多次升华,可以得到纯度大于99.5%的L2产品。
采用CDCL3用作溶剂,四甲基硅烷(δ=0.00ppm)作为内标纪录1H NMR图谱。
1H NMR(400MHZ,DMSO-d6):
6.21ppm(4H,p),6.37ppm(4H,p),6.46-6.5ppm(4H,d),6.6-6.62ppm(2H,t),7.00-7.08ppm(6H,m),7.38-7.40ppm(4H,t),7.55ppm(2H,d),7.75ppm(2H,d),8.59ppm(2H,d)
实施例3:L15的制备
在配置磁力搅拌器的三口瓶中,在氩气惰性气体的保护下加入一定量的A15,氢氧化钠和500ml的干燥丙酮溶液。然后,缓慢滴加一定量的B15,并进行8小时的搅拌反应。反应后抽滤,甲苯洗,乙醇洗。二甲苯重结晶后得到纯度99%以上的L15粉末。为进一步提高L15的纯度,采用真空升华仪进行一次或多次升华,可以得到纯度大于99.5%的L15产品。
采用CDCL3用作溶剂,四甲基硅烷(δ=0.00ppm)作为内标纪录1H NMR图谱。
1H NMR(400MHZ,DMSO-d6):
5.7ppm(1H,S),5.8ppm(2H,S),6.21ppm(8H,p),6.37ppm(8H,p),6.55ppm(2H,m),7.15-7.16ppm(4H,q),7.30-7.38ppm(6H,m),7.61-7.66ppm(4H,m),8.59ppm(4H,t)
实施例4:L5的制备
在配置磁力搅拌器的三口瓶中,在氩气惰性气体的保护下加入一定量的A5,氢氧化钠和500ml的干燥丙酮溶液。然后,缓慢滴加一定量的M5,并进行8小时的搅拌反应。反应后抽滤,甲苯洗,乙醇洗。二甲苯重结晶后得到纯度99%以上的粉末。为进一步提高L5的纯度,采用真空升华仪进行一次或多次升华,可以得到纯度大于99.5%的L5产品。
采用CDCL3用作溶剂,四甲基硅烷(δ=0.00ppm)作为内标纪录1H NMR图谱。
1H NMR(400MHZ,DMSO-d6):
5.7ppm(1H,s),5.8ppm(2H,s),6.21ppm(8H,m),6.37ppm(8H,m),6.46ppm(4H,d),6.62ppm(2H,t),7.01ppm(4H,t),7.38ppm(2H,t),7.75ppm(2H,d),8.59ppm(2H,d)
实施例:L12
在配置磁力搅拌器的三口瓶中,在氩气惰性气体的保护下加入一定量的A12,氢氧化钠和500ml的干燥丙酮溶液。然后,缓慢滴加一定量的M12,并进行10小时的搅拌反应。反应后抽滤,甲苯洗,乙醇洗。二甲苯重结晶后得到纯度99%以上的粉末。为进一步提高L12的纯度,采用真空升华仪进行一次或多次升华,可以得到纯度大于99.5%的L12产品。
采用CDCL3用作溶剂,四甲基硅烷(δ=0.00ppm)作为内标纪录1H NMR图谱。
1H NMR(400MHZ,DMSO-d6):
6.21ppm(4H,m),6.37ppm(4H,m),6.5ppm(2H,s),6.6ppm(1H,s),6.76-7.79ppm(2H,t),7.00ppm(2H,t),7.08-7.09ppm(3H,t),7.23ppm(1H,t),7.38-7.44ppm(5H,m),7.51-7.55ppm(4H,q),8.59ppm(4H,t)
需要说明的是,除上述L1、L2、L5、L12、L15化合物外,本发明所提供的其他化合物也可参考通用合成路线,按照与上述L1、L2、L5、L12、L7化合物的合成示例遵循同样的方法和步骤制备得到。
发光性能
在研究荧光小分子化合物的电子结构时,电子间的相互影响非常重要,密度泛函理论(DFT)已被广泛用于研究π共轭体系,且采用DFT方法研究本发明所提供化合物的光电性能的结果要比其他的方法更为准确。对化合物分子的基态、阳离子态和阴粒子态下的几何结构的优化,采用DFT//B3LYP/6-31G(d)的方法,对化合物的激发态的几何结构采用DFT//B3LYP/6-31G(d)的方法获得。在基态和激发态几何结构的基础上,采用含时密度泛函理论(TDDFT)方法计算了这些化合物的吸收和发射光谱。通过上述的计算方法,可以获得所研究化合物的各种性质,包括电离能IP、电子亲和势EA、重组能λ、最高占据轨道HOMO、最低占据轨道LUMO和能隙Eg。
对有机发光器件来说,空穴和电子能有效平衡地注入和传输是非常重要的。分子的电离能和电子亲和势分别是用来评估空穴和电子的注入能力的。下表2列出了计算得到的部分化合物的垂直电离能IP(v)和绝热电离能IP(A)、垂直电子亲和势EA(v)和绝热电子亲和势EA(A)、空穴抽取能HEP及电子抽取能EEP。垂直电离能IP(v)是指在中性分子几何构型下阳离子和分子的能量差;绝热电离能IP(A)是指在中性和阳离子几何构型下的能量差;垂直电子亲和势EA(v)是指在中性和阴离子几何构型下的能量差;绝热电子亲和势EA(A)是指在中性和阴离子几何构型下的能量差;空穴抽取能HEP是指阳离子几何构型下分子和阳离子的能量差;电子抽取能EEP是指在阴离子几何构型下分子和阴离子的能量差。一般来说,对于小分子有机材料,电离能越小,空穴的注入就越容易;而电子亲和势越大,电子的注入就越容易。
从微观角度看,有机薄膜中电荷的传输机理可以描述为自传输的过程。其中,一个电子或空穴从一个带电子分子转移到相邻的中性分子上。根据Marcus理论,电荷的迁移率可以表示为:
其中,T代表温度;V代表指前因子,是两种粒子之间的耦合矩阵元;λ是重组能;Kb是波尔兹曼常数。显然,λ和V是决定Ket值的重要因素。一般地,在非晶态下电荷的转移范围是有限的,V值的变化很小。所以,迁移率的大小主要由指数上的λ来决定。λ越小,迁移率越大。为了研究方便,忽略外部环境的影响,主要讨论的是内重组能。
根据计算推导,内重组能最终可以表示为:
λhole=IP(v)-HEP
λelectron=EEP-EA(v)
一般有机材料中,由于自旋度不同而造成S1激发态和T1激发态能量不同,且ES1能量要比ET1能量大0.5~1.0ev,造成纯有机荧光材料发光效率低下。热延迟荧光TADF材料,由于独特分子设计,将HOMO-LUMO轨道进行分离,降低二者电子交换能,理论上可以实现ΔEST∽0。为了有效评估本发明中材料的热延迟荧光效果,进行ΔEST评估,利用TDDFT方法,得到了本发明所提供化合物的最低单重态激发能Es和最低三重态激发能ET的差值ΔEST
f@S1-S0,定义为激子在S1->S0的跃迁阵子强度,其意义为:f@S1-S0越大,意味着激子在S1->S0的跃迁辐射速率Kr越大;反之,f@S1-S0越小,意味着激子在S1->S0的跃迁辐射速率Kr越小。如果激子在S1->S0的跃迁辐射速率Kr越大,则降低了激子在S1->S0的跃迁非辐射速率Knr,有利提高材料的发光效率,激子要么用于光辐射,要么被非辐射湮灭(例如,热失活)。
以如上方法计算本发明所提供的化合物的HOMO能级、LUMO能级,HOMO和LUMO的电子云分布、f@S1-S0常数以及ΔEST和T1能级,下表1以化合物L2,L5,L12为例给出了具体的光物理信息数据:
表1.光物理信息数据
根据上述计算结果,本发明的实施方式所提供的基于氮杂咔唑的有机光电材料的第一个优点在于,氮杂咔唑和吩嗪衍生物官能团之间的C-N键形成特定的空间角度,从而使得该类化合物具有较低的ΔEST和合适的T1能级,以及保证HOMO-LUMO之间适当的轨道重叠以获得较高的辐射跃迁速率常数,这些光电性质有利于该类化合物具备较高的光电性能。
本发明的实施方式所提供的基于氮杂咔唑的有机光电材料的另一个优点在于,以非常简单的分子设计使所提供的化合物达到匹配的空穴传输性能或电子传输性能的特性。
下表2以化合物L2,L5,L12为例给出了详细的IPV,IPA,EAV,EAA,HEP,EEP,λh,λe计算表。
表2.IPV,IPA,EAV,EAA,HEP,EEP,λh,λe计算表
从计算的空穴重组能和电子重组能来判断,对于L2分子:[电子重组能λe-空穴重组能λh]<0.2eV,因此,L2分子是一个非常理想的偏电子传输性能的双极性热激活延迟荧光有机材料。这样的材料有利于平衡OLED器件的空穴/电子载流子的传输平衡,从而提高OLED发光效率和寿命。
对于L5分子:[电子重组能λe-空穴重组能λh]<0.2eV,因此,L2分子是一个非常理想的偏空穴传输性能的双极性热激活延迟荧光有机材料。这样的材料有利于平衡OLED器件的空穴/电子载流子的传输平衡,从而提高OLED发光效率和寿命。
对于L12分子:[电子重组能λe-空穴重组能λh]<0.2eV,因此,L2分子是一个非常理想的偏电子传输性能的双极性热激活延迟荧光有机材料。这样的材料有利于平衡OLED器件的空穴/电子载流子的传输平衡,从而提高OLED发光效率和寿命。
荧光辐射跃迁速率:
本发明所提供的化合物具有非常高的S1->S0的跃迁辐射速率常数Kr。下表3中为示例化合物L2/L5/L12的S1->S0的跃迁辐射速率常数:
表3荧光辐射跃迁速率
材料编号 荧光辐射速率常数Kr(10<sup>7</sup>/s)
L2 7.144110186
L5 14.36436473
L12 7.98156558
由上表3的数据可知,本发明所提供的杂环化合物具有非常高的荧光辐射跃迁速率常数,该种性质有利于提高激子在杂环化合物上的光辐射过程,从而增强荧光发光效率和寿命。
器件应用
在本发明的一些具体实施方式中,还提供了上述基于氮杂咔唑的有机光电材料在有机发光二极管、有机晶体场、有机太阳能电池、量子点发光二极管中的应用。
在本发明的一些具体实施方式中,还提供了一种有机发光二极管器件,该有机发光二极管器件的发光层包含上述基于氮杂咔唑的有机光电材料。
作为有机发光二极管发光层中的客体材料
构筑ITO/HIL/HTL/发光层/ETL/EIL/阴极的多层器件结构。为了方便技术人员,理解本发明的技术优势和器件原理,本发明仅是以最简单的器件结构来说明。
ITO/HIL(10nm)/HTL(30nm)/EBL(10nm)/HOST:X,6wt%,30nm/DPEPO(30nm)/LiF(1nm)/Al。其中,X为发明层的客体材料,本实施例中分别以化合物L2、L5、L12为所述客体材料。
表4.器件的部分性能对比
*效率滚降,这里定义为0.1mA/cm2时的效率到20mA/cm2时的性能变化率。
由表4数据可知,本发明所提供化合物的EQE>5%(理论为荧光发光材料的上限)。以本发明所提供化合物为发光层客体材料制备的器件,具有在高电流密度下显著低的效率滚降性能,该突出的技术效果得益于所发明所公开化合物具有较小的ΔEST和较为平衡的载流子传输特性。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (9)

1.一种基于氮杂咔唑的有机光电材料,具有式(I)所示的结构:
其中,
M1具有式(II)所示的结构:
X1、X2、X3、X4各自独立地选自C或N,且X1、X2、X3、X4中至少有一个为N;
R1、R2各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
M2具有式(III)所示的结构:
R3选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
R4、R5各自独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基;
MX选自M1或M2
2.根据权利要求1所述的基于氮杂咔唑的有机光电材料,其特征在于,所述取代或未取代的C1-C30烷基、取代或未取代的C6-C30芳基、取代或未取代的C5-C30杂芳基中的取代是指:所述C1-C30烷基、C6-C30芳基、C5-C30杂芳基各自独立地被选自C1-C8的直链或支链烷基取代。
3.根据权利要求1所述的基于氮杂咔唑的有机光电材料,其特征在于,M1具有选自如下之一的结构:
4.根据权利要求1所述的基于氮杂咔唑的有机光电材料,其特征在于,R1、R2同为氢原子、甲基、乙基、丙基、丁基、戊基、己基、苯基、甲苯基、乙苯基、丙苯基或丁苯基。
5.根据权利要求1所述的基于氮杂咔唑的有机光电材料,其特征在于,R3为氢原子、苯基或萘基。
6.根据权利要求5所述的基于氮杂咔唑的有机光电材料,其特征在于,R4、R5同为氢原子、甲基、乙基、丙基、丁基、戊基、己基、苯基、甲苯基、乙苯基、丙苯基或丁苯基。
7.根据权利要求7所述的基于氮杂咔唑的有机光电材料,其特征在于,具有选自如下之一的结构:
8.权利要求1-7中任一项所述的基于氮杂咔唑的有机光电材料在有机发光二极管、有机晶体场、有机太阳能电池、量子点发光二极管中的应用。
9.一种有机发光二极管,其特征在于,所述有机发光二极管的发光层包含权利要求1-7中任一项所述的基于氮杂咔唑的有机光电材料。
CN201811650149.9A 2018-12-31 2018-12-31 一种基于氮杂咔唑的有机光电材料及其应用 Withdrawn CN109851616A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811650149.9A CN109851616A (zh) 2018-12-31 2018-12-31 一种基于氮杂咔唑的有机光电材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811650149.9A CN109851616A (zh) 2018-12-31 2018-12-31 一种基于氮杂咔唑的有机光电材料及其应用

Publications (1)

Publication Number Publication Date
CN109851616A true CN109851616A (zh) 2019-06-07

Family

ID=66893553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811650149.9A Withdrawn CN109851616A (zh) 2018-12-31 2018-12-31 一种基于氮杂咔唑的有机光电材料及其应用

Country Status (1)

Country Link
CN (1) CN109851616A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258651A1 (zh) * 2019-06-24 2020-12-30 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件
US11355713B2 (en) 2019-06-24 2022-06-07 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Hole transport material, manufacturing method thereof, and electroluminescent device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513013A (en) * 2013-04-09 2014-10-15 Power Oleds Ltd Heterocyclic compounds and their use in electro-optical or opto-electronic devices
CN108929322A (zh) * 2018-08-12 2018-12-04 瑞声科技(南京)有限公司 一种含有氮杂咔唑单元的化合物及其应用
CN108948010A (zh) * 2018-08-12 2018-12-07 瑞声科技(南京)有限公司 一种基于吖啶-氮杂咔唑单元的化合物及其应用
CN108948007A (zh) * 2018-08-02 2018-12-07 瑞声科技(南京)有限公司 一种烷基取代的化合物及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513013A (en) * 2013-04-09 2014-10-15 Power Oleds Ltd Heterocyclic compounds and their use in electro-optical or opto-electronic devices
CN108948007A (zh) * 2018-08-02 2018-12-07 瑞声科技(南京)有限公司 一种烷基取代的化合物及其应用
CN108929322A (zh) * 2018-08-12 2018-12-04 瑞声科技(南京)有限公司 一种含有氮杂咔唑单元的化合物及其应用
CN108948010A (zh) * 2018-08-12 2018-12-07 瑞声科技(南京)有限公司 一种基于吖啶-氮杂咔唑单元的化合物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, IH: "Phenothiazine dioxide based high triplet energy host materials for blue phosphorescent organic light-emitting diodes", 《RSC ADVANCES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258651A1 (zh) * 2019-06-24 2020-12-30 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件
US11355713B2 (en) 2019-06-24 2022-06-07 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Hole transport material, manufacturing method thereof, and electroluminescent device thereof

Similar Documents

Publication Publication Date Title
Lee et al. High‐efficiency deep‐blue light‐emitting diodes based on phenylquinoline/carbazole‐based compounds
CN113105507B (zh) 有机发光材料
CN111620853B (zh) 有机电致发光材料及其器件
CN109180560A (zh) 一种有机发光化合物及制法和含该化合物的有机电致发光器件
CN108948041A (zh) 一种基于5,10-二氢吩嗪的化合物及其应用
CN110467606A (zh) 一种以氧杂蒽酮为核心的杂环化合物、制备方法及其应用
CN107586299A (zh) 一种以氮杂苯为核心的有机化合物及其应用
US20200259088A1 (en) Electroluminescent compound, thermally activated delayed fluorescence material, and application thereof
CN109851623A (zh) 一种有机电致发光材料及其应用
CN109851616A (zh) 一种基于氮杂咔唑的有机光电材料及其应用
CN114249738B (zh) 一种电致发光材料及器件
CN112390780B (zh) 含氮杂螺二芴的电子传输材料
CN112759578B (zh) 一种有机化合物、包含其的电致发光器件及其用途
CN109705132A (zh) 一种热激活延迟荧光化合物及其应用
CN108822088A (zh) 一种基于咪唑结构的化合物及其应用
CN115850344A (zh) 有机发光二极管材料、器件及装置
CN116162083A (zh) 一种具有氰基取代的杂环化合物
CN108948010A (zh) 一种基于吖啶-氮杂咔唑单元的化合物及其应用
CN108912148A (zh) 一种含有氮杂咔唑-咪唑单元的化合物及其应用
CN108929322A (zh) 一种含有氮杂咔唑单元的化合物及其应用
US20200227648A1 (en) Compound and its application
CN116156912A (zh) 一种有机电致发光器件
CN112582555B (zh) 一种有机电致发光器件
CN111675707B (zh) 有机电致发光材料及其器件
CN117362298A (zh) 一种电致发光材料及器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190607

WW01 Invention patent application withdrawn after publication