WO2020258490A1 - 一种钙钛矿膜及其制备方法 - Google Patents

一种钙钛矿膜及其制备方法 Download PDF

Info

Publication number
WO2020258490A1
WO2020258490A1 PCT/CN2019/102939 CN2019102939W WO2020258490A1 WO 2020258490 A1 WO2020258490 A1 WO 2020258490A1 CN 2019102939 W CN2019102939 W CN 2019102939W WO 2020258490 A1 WO2020258490 A1 WO 2020258490A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
substrate
solution
perovskite film
preparing
Prior art date
Application number
PCT/CN2019/102939
Other languages
English (en)
French (fr)
Inventor
段淼
李佳育
徐君哲
陈书志
何波
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/616,985 priority Critical patent/US20210336139A1/en
Publication of WO2020258490A1 publication Critical patent/WO2020258490A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • B05D1/42Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2320/00Organic additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the invention relates to the field of display, in particular to a perovskite film and a preparation method thereof.
  • the most used device structures include substrates, transparent conductive electrodes, hole transport layers, perovskite film layers, electron transport layers and metal electrodes.
  • the perovskite film layer is a perovskite luminescent layer.
  • organic-inorganic hybrid perovskite is used as a new type of excellent semiconductor material in the field of optoelectronic devices.
  • the advantage of perovskite materials is that they can be formulated in a solution without high temperature heating process, and the optical band gap can be adjusted by changing the element composition of the perovskite to achieve different color changes.
  • perovskite materials also have strong fluorescence emission characteristics, which can become potential materials for light-emitting devices and play an important role in the display field.
  • perovskite LEDs are one step closer to industrialization.
  • the perovskite luminescent layer is prepared by a spin coating process. Specifically, the perovskite solution is dropped on the substrate, and the excess solution is thrown out by the high-speed rotation of the spin coater to form a perovskite film.
  • the spin coating process is generally only suitable for preparing light-emitting devices with a small area (generally 2cm*2cm). When the area of the light-emitting device is small, the substrate in the device is also small. When the area of the optical device is larger, the substrate in the device is also larger. However, large substrates easily fly out of the suction cup during high-speed rotation and are difficult to form films, which cannot meet the requirements of industrialization. In addition, the thickness of the perovskite film obtained by the spin coating process is different, and the flatness is poor.
  • the purpose of the present invention is to provide a perovskite film and a preparation method thereof, so as to solve the technical problems that the perovskite film in the prior art has different thickness, poor flatness, and cannot be industrialized.
  • the present invention provides a method for preparing a perovskite film, which includes the following steps: preparing a perovskite solution, placing the precursor solution and surfactant in a reaction vessel to obtain the perovskite solution; In the coating step, the perovskite solution is scraped on the substrate; in the heating and drying step, the substrate is heated and dried to obtain a perovskite film.
  • a heating step is further included to preheat the perovskite solution and the substrate.
  • the perovskite solution and the substrate are heated to 30°C to 60°C.
  • the molar ratio of the precursor solution to the surfactant is 1:2000 to 1:4000.
  • the precursor solution includes one or more of a green light perovskite component, a red light perovskite component, and a blue perovskite component; the surfactant includes lecithin.
  • a scraper is used to scrape the perovskite solution on the substrate, and the moving speed of the scraper is 55 mm/s to 65 mm/s.
  • the heating and drying step includes the following steps: a heating step, placing the substrate on a heating platform, and heating the substrate; a drying step, placing the substrate in a vacuum drying oven, The substrate is vacuum dried.
  • the substrate is heated to 58°C to 62°C and is heat-treated for 5 to 10 minutes; in the drying step, the substrate is placed in a 100°C vacuum drying oven, The substrate is vacuum dried for 15-30 minutes.
  • the present invention also provides a perovskite film prepared by the method for preparing the perovskite film described above.
  • the technical effect of the present invention is to provide a perovskite film and a preparation method thereof.
  • Surfactant is added to the prepared titanium ore solution, and the perovskite solution is scraped on the substrate to form a film by a knife coating method, which can effectively
  • the flatness of the perovskite film is improved, the perovskite film is smoother, the thickness is uniform, and the compacting effect is better.
  • the invention also has the characteristics of simple preparation process, low cost, and suitable for large-scale industrial production.
  • Figure 1 is a flow chart of the preparation method of the perovskite film of the present invention.
  • FIG. 2 is a flowchart of the heating and drying steps of the present invention
  • Fig. 3 is a schematic diagram of the structure of an electroluminescent device.
  • this embodiment provides a perovskite film and a preparation method thereof.
  • the preparation method of the perovskite film includes steps S1 to S4.
  • the precursor solution and the surfactant are placed in the reaction vessel to obtain the perovskite solution.
  • the molar ratio of the precursor solution to the surfactant is 1:2000 to 1:4000.
  • the components of the precursor solution include green perovskite components (such as CH3NH3PbBr3, CsPbBr3) and red perovskite components (such as CH3NH3Pb(Br/I)3, CsPb(Br/I)3) , Blue perovskite components (such as: CH3NH3Pb(Br/Cl)3, CsPb(Br/Cl)3) one or more of them; the surfactant includes lecithin, which helps all The perovskite solution is uniformly formed into a film in the subsequent process to improve the flatness of the perovskite film.
  • S2 preheating step preheating the perovskite solution and the substrate.
  • the perovskite solution and the substrate are distributed and placed on a heating platform for pre-heating treatment, and heated to 30°C-60°C.
  • the heating temperature is preferably 48°C, 50°C, and 52°C.
  • the purpose of heating the perovskite solution is to fully dissolve the precursor components and accelerate the reaction rate of the precursor solution and the surfactant.
  • the purpose of heating the substrate is to keep the temperature of the substrate consistent with the temperature of the perovskite solution, so as to prevent the perovskite solution from causing solute precipitation due to temperature changes.
  • the perovskite solution is knife coated on the substrate.
  • the moving speed of the scraper is 55 mm/s ⁇ 65 mm/s.
  • the moving speed of the squeegee in this embodiment is preferably 60 mm/s.
  • the force of the squeegee is uniform, so that the perovskite solution is uniformly scraped on the substrate, thereby making the thickness of the film uniform;
  • the crystallization effect of the perovskite solution on the substrate is better. This avoids the defects that the scraper moves too fast, which causes the perovskite solution to be unevenly coated on the substrate and the thickness of the film layer is uneven.
  • the substrate is heated and dried to obtain a perovskite film.
  • the S4 heating and drying step includes the following steps S41 to S42.
  • the substrate is placed on a heating platform, and the substrate is heated.
  • the substrate is heated to 58°C to 62°C, and is heat-treated for 5 to 10 minutes.
  • the temperature of the substrate is preferably 60° C., so that the perovskite solution can slowly condense on the upper surface of the substrate. If the temperature is too high, the perovskite solution will crystallize too quickly, resulting in different sizes of crystals, which will affect the flatness and compactness of the perovskite film. If the temperature is too low, the crystallization rate of the perovskite solution will be uneven, and the size of the crystals will also vary, which will affect the flatness and compactness of the perovskite film. Therefore, the temperature of the substrate in this embodiment is preferably 60° C., so that a dense, smooth, and uniform crystal grain size perovskite film can be obtained.
  • the substrate is placed in a vacuum drying oven at 100°C, and the substrate is vacuum-dried for 15 to 30 minutes to completely evaporate the moisture remaining in the perovskite film to obtain a dense, Smooth perovskite film with uniform grain size.
  • the perovskite film In the preparation method of the perovskite film provided in this implementation, a surfactant is added during the preparation of the perovskite solution, and combined with the scraping process, the perovskite film can be formed with uniform thickness, good flatness, and good compactness. It can be applied to large-scale industrial production.
  • the perovskite film can be applied to electroluminescence devices and photoluminescence devices. The description will be started with electroluminescent devices below.
  • the electroluminescent device includes a substrate 1, a first electrode 2, a hole transport layer 3, a perovskite film 4, an electron transport layer 5, and a second electrode 6 in sequence.
  • the material of the substrate 1 includes but is not limited to at least one of a glass substrate and a polyethylene terephthalate (PET) substrate.
  • PET polyethylene terephthalate
  • a first electrode 2 is provided on the upper surface of the substrate 1.
  • the first electrode 2 is a transparent conductive electrode, that is, an anode.
  • the material of the first electrode 2 includes but is not limited to at least one of indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), and graphene.
  • ITO indium-doped tin oxide
  • FTO fluorine-doped tin oxide
  • graphene graphene.
  • the first electrode 2 was ultrasonically washed with detergent, deionized water, and absolute ethanol for 15 minutes in sequence, dried with nitrogen, and immediately put into an ozone surface treatment equipment (UVO), and treated with ultraviolet ozone for 10 minutes.
  • UVO ozone surface treatment equipment
  • a hole transport layer 3 is provided on the upper surface of the first electrode 2.
  • the PEDOT:PSS solution is spin-coated at a rotation speed of about 2000 rpm and thermally annealed at a temperature of 150° C. for about 15 minutes to obtain a hole transport layer 3 with a thickness It is about 30nm.
  • the perovskite film 4 is provided on the upper surface of the hole transport layer 3.
  • the precursor component of the perovskite film 4 includes a green light perovskite component (eg: CH3NH3PbBr3, CsPbBr3), red perovskite components (such as: CH3NH3Pb(Br/I)3, CsPb(Br/I)3), blue perovskite components (such as: CH3NH3Pb(Br/Cl)3, CsPb(Br) /Cl)3).
  • the perovskite film 4 has uniform thickness, good flatness, and good compactness, and can also be suitable for large-scale industrial production.
  • An electron transport layer 5 is provided on the upper surface of the perovskite film 4, and the material of the electron transport layer 5 is preferably TPBi.
  • a second electrode 6 is provided on the upper surface of the electron transport layer 5, and the second electrode 6 is a cathode.
  • the material of the second electrode 6 is preferably molybdenum oxide and silver.
  • a surfactant is added to the titanium ore solution, and the perovskite solution is scraped on the substrate to form a film by a knife coating method, which can effectively improve the perovskite film
  • the flatness is smoother, the thickness is uniform, and the compacting effect is better.
  • the invention also has the characteristics of simple preparation process, low cost, and suitable for large-scale industrial production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种钙钛矿膜及其制备方法,所述钙钛矿膜由所述钙钛矿膜的制备方法制备而成,所述钙钛矿膜的制备方法包括钙钛矿溶液配制步骤(S1)、刮涂步骤(S3)以及加热烘干步骤(S4);通过在钙配制钛矿溶液中加入表面活性剂,采用刮涂方法将钙钛矿溶液刮涂在基板上成膜,可以有效地提高钙钛矿膜的平整度,更加平滑,厚度均匀,致密效果更佳,制备工艺简单,成本低廉,适合大规模工业化生产等特点。

Description

一种钙钛矿膜及其制备方法 技术领域
本发明涉及显示领域,尤其涉及一种钙钛矿膜及其制备方法。
背景技术
在在钙钛矿电致发光器件中,使用较多的器件结构包括基板、透明导电电极、空穴传输层、钙钛矿膜层、电子传输层以及金属电极。钙钛矿膜层为钙钛矿发光层。
现有技术中,有机-无机杂化钙钛矿作为一种新型的优异半导体材料,被应用于光电子器件领域。一方面,钙钛矿材料的优势在于可采用溶液配制,无需高温加热过程,并可通过改变钙钛矿的元素组分调节其光学带隙,实现不同颜色变化。另一方面,钙钛矿材料也具有很强的荧光发射的特点,可以成为发光器件的潜力材料,在显示领域发挥重要作用。
目前,钙钛矿LED的发光效率飞速提升。其中,绿光、红光和近红外的钙钛矿电致发光器件的最高外量子效率(EQE)均已经突破20%,这就意味着钙钛矿LED离产业化更近一步了。
现有技术中,钙钛矿发光层是采用旋涂工艺制备的。具体地,将钙钛矿溶液滴在基板上,利用旋涂机的高速转动,将多余的溶液甩出后退火处理形成钙钛矿薄膜。旋涂工艺一般只能适用于制备小面积(一般2cm*2cm)的发光器件,当发光器件的面积较小时,该器件内的基板也较小。当光器件的面积较大时,该器件内的基板也较大。然而,较大的基板在高速旋转中容易飞出吸盘而难以成膜,无法实现工业化的需求。另外,通过旋涂工艺得到的钙钛矿膜的厚度不一,平整度差。
技术问题
本发明的目的在于,提供一种钙钛矿膜及其制备方法,以解决现有技术中存在的钙钛矿膜的厚度不一,平整度差,无法实现工业化的技术问题。
技术解决方案
为实现上述目的,本发明提供一种钙钛矿膜的制备方法,包括如下步骤:钙钛矿溶液配制步骤,将前驱体溶液及表面活性剂置于反应容器中,获得钙钛矿溶液;刮涂步骤,将所述钙钛矿溶液刮涂在基板上;加热烘干步骤,对所述基板进行加热烘干处理,获得钙钛矿膜。
进一步地,在所述刮涂步骤之前,还包括加热步骤,将所述钙钛矿溶液、所述基板进行预加热处理。
进一步地,在所述预加热步骤中,所述钙钛矿溶液、所述基板被加热至30℃~60℃。
进一步地,所述前驱体溶液与所述表面活性剂的摩尔比1:2000~1:4000。
进一步地,所述前驱体溶液包括绿光钙钛矿组分、红光钙钛矿组分、蓝光钙钛矿组分中的一种或几种;所述表面活性剂包括卵磷脂。
进一步地,在所述刮涂步骤中,使用刮刀将所述钙钛矿溶液刮涂在基板上,所述刮刀的移动速度为55 mm/s ~65 mm/s。
进一步地,所述加热烘干步骤包括如下步骤:加热步骤,将所述基板置于加热平台,对所述基板进行加热处理;烘干步骤,将所述基板置于真空干燥箱内,对所述基板进行真空干燥处理。
进一步地,在所述加热步骤中,所述基板加热至58℃~62℃,被加热处理5~10分钟;在所述烘干步骤中,将所述基板置于100℃真空干燥箱内,对所述基板进行真空干燥处理15~30分钟。
为实现上述目的,本发明还提供一种钙钛矿膜,由前文所述的钙钛矿膜的制备方法制备得到的。
有益效果
本发明的技术效果在于,提供一种钙钛矿膜及其制备方法,在配制钛矿溶液中加入表面活性剂,采用刮涂方法将钙钛矿溶液刮涂在基板上成膜,可以有效地提高钙钛矿膜的平整度,更加平滑,厚度均匀,致密效果更佳,本发明还具有制备工艺简单,成本低廉,适合大规模工业化生产等特点。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明钙钛矿膜的制备方法流程图;
图2为本发明加热烘干步骤的流程图;
图3为电致发光器件的结构示意图。
附图中部分标识如下:
1基板;                        2第一电极;
3空穴传输层;                 4钙钛矿膜;
5电子传输层;                 6第二电极。
本发明的实施方式
以下参考说明书附图介绍本发明的优选实施例,用以举例证明本发明可以实施,这些实施例可以向本领域中的技术人员完整介绍本发明的技术内容,使得本发明的技术内容更加清楚和便于理解。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
如图1所示,本实施提供一种钙钛矿膜及其制备方法,所述钙钛矿膜的制备方法包括步骤S1~S4。
         S1钙钛矿溶液配制步骤,将前驱体溶液及表面活性剂置于反应容器中,获得钙钛矿溶液。
在配制所述钙钛矿溶液的过程中,所述前驱体溶液与所述表面活性剂的摩尔比1:2000~1:4000。所述前驱体溶液的组分包括绿光钙钛矿组分(如:CH3NH3PbBr3, CsPbBr3)、红光钙钛矿组分(如:CH3NH3Pb(Br/I)3, CsPb(Br/I)3)、蓝光钙钛矿组分(如:CH3NH3Pb(Br/Cl)3, CsPb(Br/Cl)3)中的一种或几种;所述表面活性剂包括卵磷脂,其中卵磷脂有助于所述钙钛矿溶液在后续工艺中均匀成膜,提高所述钙钛矿膜平整度。
S2预加热步骤,将所述钙钛矿溶液、所述基板进行预加热处理。
将所述钙钛矿溶液、所述基板分布放置于加热平台上进行预加热处理,并将热至30℃~60℃。本实施例中,加热温度优选为48℃、50℃以及52℃。所述钙钛矿溶液加热的目的是使得所述前驱体组分充分溶解,加快所述前驱体溶液与所述表面活性剂的反应速率。所述基板加热的目的是使得所述基板的温度与所述钙钛矿溶液的温度保持一致,避免所述钙钛矿溶液因温度变化而引起溶质析出。
S3刮涂步骤,将所述钙钛矿溶液刮涂在基板上。
使用表面平整的金属刮刀以一定速度沿某一固定方向移动,使得钙钛矿溶液均匀涂布所述基片上,所述刮刀的移动速度为55 mm/s ~65 mm/s。本实施例中所述刮刀的移动速度优选为60 mm/s,一方面所述刮刀的受力均匀,使得钙钛矿溶液均匀地刮涂在所述基板上,进而使得膜层的厚度均匀;另一方面,所述钙钛矿溶液在所述基板上的结晶效果更佳。从而避免了所述刮刀移动速度太快,导致所述钙钛矿溶液在所述基板上涂布不均匀、膜层的厚度不均匀的缺陷。
S4加热烘干步骤,对所述基板进行加热烘干处理,获得钙钛矿膜。
如图2所示,S4加热烘干步骤包括如下步骤S41~S42。
S41加热步骤,将所述基板置于加热平台,对所述基板进行加热处理。
具体地,所述基板加热至58℃~62℃,被加热处理5~10分钟。本实施例中,所述基板的温度优选为60℃,这样可以使所述钙钛矿溶液慢慢地凝结于所述基板上表面。如果温度过高的话,会使得所述钙钛矿溶液结晶太快,导致晶体的大小不一,进而影响钙钛矿膜的平整度、致密性。如果温度过低的话,会使得所述钙钛矿溶液的结晶速率不均,同样会造成晶体的大小不一,影响钙钛矿膜的平整度、致密性。因此,本实施例中所述基板的温度优选为60℃,可以得到致密、平滑、晶粒大小均一的钙钛矿膜。
S42烘干步骤,将所述基板置于100℃真空干燥箱内,对所述基板进行真空干燥处理15~30分钟,可以将存留在所述钙钛矿膜内的水分完全蒸发,得到致密、平滑、晶粒大小均一的钙钛矿膜。
本实施提供的钙钛矿膜的制备方法,在配制钙钛矿溶液时加入表面活性剂,并结合刮涂工艺,可以形成的钙钛矿膜的厚度均匀、平整度佳、致密性好,还可以适用于大规模工业化的生产。
所述钙钛矿膜可以应用于电致发光器件、以及光致发光器件中。以下将以电致发光器件展开说明。
如图3所示,电致发光器件依次包括基板1、第一电极2、空穴传输层3、钙钛矿膜4、电子传输层5以及第二电极6。
基板1的材质包括但不限于玻璃基板和聚对苯二甲酸乙二醇脂(PET)基板中的至少一种。
在基板1上表面设有第一电极2,第一电极2为透明导电极,即为阳极。第一电极2的材质包括但不限于掺铟氧化锡(ITO)、掺氟氧化锡(FTO)和石墨烯中的至少一种。将第一电极2依次使用洗涤剂、去离子水、无水乙醇分别超声洗涤各15分钟,氮气吹干,立即放入臭氧表面处理设备(UVO)中,采用紫外臭氧处理10分钟。
在第一电极2的上表面设有空穴传输层3,在2000rpm左右的转速下旋涂PEDOT:PSS溶液,在150℃的温度下热退火15分钟左右,得到空穴传输层3,其厚度为30nm左右。
钙钛矿膜4设于空穴传输层3的上表面。该钙钛矿膜4的前驱体组分包括绿光钙钛矿组分(如:CH3NH3PbBr3, CsPbBr3)、红光钙钛矿组分(如:CH3NH3Pb(Br/I)3, CsPb(Br/I)3)、蓝光钙钛矿组分(如:CH3NH3Pb(Br/Cl)3, CsPb(Br/Cl)3)。钙钛矿膜4的厚度均匀、平整度佳、致密性好,还可以适用于大规模工业化的生产。
在钙钛矿膜4的上表面设有电子传输层5,电子传输层5的材质优选为TPBi。
在电子传输层5的上表面设有第二电极6,第二电极6为阴极,其材质优选为氧化钼和银。
本实施例提供的钙钛矿膜及其制备方法,在配制钛矿溶液中加入表面活性剂,采用刮涂方法将钙钛矿溶液刮涂在基板上成膜,可以有效地提高钙钛矿膜的平整度,更加平滑,厚度均匀,致密效果更佳,本发明还具有制备工艺简单,成本低廉,适合大规模工业化生产等特点。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种钙钛矿膜的制备方法,其特征在于,包括如下步骤:
    钙钛矿溶液配制步骤,将前驱体溶液及表面活性剂置于反应容器中,获得钙钛矿溶液;
    刮涂步骤,将所述钙钛矿溶液刮涂在基板上;
    加热烘干步骤,对所述基板进行加热烘干处理,获得钙钛矿膜。
  2. 如权利要求1所述的钙钛矿膜的制备方法,其特征在于,
    在所述刮涂步骤之前,还包括
    预加热步骤,将所述钙钛矿溶液、所述基板进行预加热处理。
  3. 如权利要求1所述的钙钛矿膜的制备方法,其特征在于,
    在所述预加热步骤中,所述钙钛矿溶液、所述基板被加热至30℃~60℃。
  4. 如权利要求1所述的钙钛矿膜的制备方法,其特征在于,
    所述前驱体溶液与所述表面活性剂的摩尔比1:2000~1:4000。
  5. 如权利要求1所述的钙钛矿膜的制备方法,其特征在于,
    所述前驱体溶液包括绿光钙钛矿组分、红光钙钛矿组分、蓝光钙钛矿组分中的一种或几种;
    所述表面活性剂包括卵磷脂。
  6. 如权利要求1所述的钙钛矿膜的制备方法,其特征在于,
    在所述刮涂步骤中,使用刮刀将所述钙钛矿溶液刮涂在基板上,所述刮刀的移动速度为55 mm/s ~65 mm/s。
  7. 如权利要求1所述的钙钛矿膜的制备方法,其特征在于,
    所述加热烘干步骤包括如下步骤,
    加热步骤,将所述基板置于加热平台,对所述基板进行加热处理;
    烘干步骤,将所述基板置于真空干燥箱内,对所述基板进行真空干燥处理。
  8. 如权利要求7所述的钙钛矿膜的制备方法,其特征在于,
    在所述加热步骤中,所述基板加热至58℃~62℃,被加热处理5~10分钟;
    在所述烘干步骤中,将所述基板置于100℃真空干燥箱内,对所述基板进行真空干燥处理15~30分钟。
  9. 一种钙钛矿膜,由权利要求1~7任一项所述的钙钛矿膜的制备方法制备得到的。
PCT/CN2019/102939 2019-06-28 2019-08-28 一种钙钛矿膜及其制备方法 WO2020258490A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/616,985 US20210336139A1 (en) 2019-06-28 2019-08-28 Perovskite film and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910571558.8A CN110299449A (zh) 2019-06-28 2019-06-28 一种钙钛矿膜及其制备方法
CN201910571558.8 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020258490A1 true WO2020258490A1 (zh) 2020-12-30

Family

ID=68029210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102939 WO2020258490A1 (zh) 2019-06-28 2019-08-28 一种钙钛矿膜及其制备方法

Country Status (3)

Country Link
US (1) US20210336139A1 (zh)
CN (1) CN110299449A (zh)
WO (1) WO2020258490A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111037914A (zh) * 2019-11-06 2020-04-21 深圳市华星光电半导体显示技术有限公司 一种钙钛矿色转换膜的制作方法和制作系统
CN111403613A (zh) * 2020-03-26 2020-07-10 武汉理工大学 一种利用刮刀涂布法制备大面积、半透明钙钛矿薄膜的方法及其应用
CN113299800B (zh) * 2021-03-24 2022-07-08 上海大学 双配体材料提高CsPbIBr2多晶膜质量以降低CsPbIBr2探测器暗电流的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1107332A2 (en) * 1999-12-10 2001-06-13 Fuji Photo Film Co., Ltd. Photoelectric conversion device
CN105609652A (zh) * 2016-02-06 2016-05-25 杭州纤纳光电科技有限公司 一种基于钙钛矿材料的发光二极管及其制备方法
CN107880875A (zh) * 2017-12-11 2018-04-06 东南大学 基于全无机钙钛矿量子点的细胞成像探针及其制备方法
CN108258117A (zh) * 2016-12-28 2018-07-06 中南大学 一种稳定的高性能钙钛矿光电探测器及其制备方法
CN208955021U (zh) * 2018-09-05 2019-06-07 杭州纤纳光电科技有限公司 钙钛矿与表面活性剂的混合溶液的涂布设备及钙钛矿电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1107332A2 (en) * 1999-12-10 2001-06-13 Fuji Photo Film Co., Ltd. Photoelectric conversion device
CN105609652A (zh) * 2016-02-06 2016-05-25 杭州纤纳光电科技有限公司 一种基于钙钛矿材料的发光二极管及其制备方法
CN108258117A (zh) * 2016-12-28 2018-07-06 中南大学 一种稳定的高性能钙钛矿光电探测器及其制备方法
CN107880875A (zh) * 2017-12-11 2018-04-06 东南大学 基于全无机钙钛矿量子点的细胞成像探针及其制备方法
CN208955021U (zh) * 2018-09-05 2019-06-07 杭州纤纳光电科技有限公司 钙钛矿与表面活性剂的混合溶液的涂布设备及钙钛矿电池

Also Published As

Publication number Publication date
CN110299449A (zh) 2019-10-01
US20210336139A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2020258490A1 (zh) 一种钙钛矿膜及其制备方法
CN108735906B (zh) 丙烯酸酯共聚物修饰的金属氧化物、qled及制备方法
CN106450009A (zh) 一种双层钙钛矿发光二极管及其制备方法
WO2010056240A1 (en) Cross-linked quantum dots and methods for producing and using the same
CN1525800A (zh) 有机电致发光装置的制造方法、及其电子装置
WO2015043265A1 (zh) 有机电致发光器件及其制备方法、显示装置
CN108511616A (zh) 一种钙钛矿膜层及钙钛矿发光二极管器件的制备方法
CN110739411B (zh) 一种可以提高性能的钙钛矿发光二极管的制备方法
Kim et al. All‐Solution‐Processed Organic–Inorganic Hybrid Perovskite Light‐Emitting Diodes under Ambient Air
CN113594396B (zh) 一种溶剂氛围控制的钙钛矿原位成膜方法及其产品和应用
CN113745438A (zh) 一种大面积钙钛矿发光薄膜及其发光二极管
WO2021232783A1 (zh) 钙钛矿发光二极管及其制备方法
WO2024174282A1 (zh) 一种可调颜色的无注入型多层量子点ac-qled及其制备方法
US11659731B2 (en) Integrated light-emitting device and fabricating method thereof
CN110660925A (zh) 一种卷对卷层压式钙钛矿led及其制备方法
CN111048680B (zh) 一种红外透明钙钛矿发光二极管及其制备方法
JP2005026003A (ja) 有機el素子の製造方法
CN111378431A (zh) 一种量子点膜及其制备方法与应用
TWI513079B (zh) 含混合主體之有機發光二極體及其製作方法
CN111039573B (zh) 一种wo3电致变色薄膜及其制备方法
CN107046107A (zh) 处理pedot:pss的方法、qled及制备方法
KR20120002353A (ko) 롤인쇄법을 이용한 유기반도체 소자의 제조방법
JP2005026000A (ja) 有機el素子の製造方法
TWI774143B (zh) 有機發光二極體及其製備方法
WO2023092537A1 (zh) 发光器件及其制作方法、显示基板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934838

Country of ref document: EP

Kind code of ref document: A1