WO2020258177A1 - 一种差分谐振器及mems传感器 - Google Patents

一种差分谐振器及mems传感器 Download PDF

Info

Publication number
WO2020258177A1
WO2020258177A1 PCT/CN2019/093342 CN2019093342W WO2020258177A1 WO 2020258177 A1 WO2020258177 A1 WO 2020258177A1 CN 2019093342 W CN2019093342 W CN 2019093342W WO 2020258177 A1 WO2020258177 A1 WO 2020258177A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
arm
differential
coupling
force arm
Prior art date
Application number
PCT/CN2019/093342
Other languages
English (en)
French (fr)
Inventor
占瞻
李杨
刘雨薇
陈秋玉
张睿
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/093342 priority Critical patent/WO2020258177A1/zh
Priority to CN201910605895.4A priority patent/CN110311648B/zh
Priority to US16/986,305 priority patent/US11870417B2/en
Publication of WO2020258177A1 publication Critical patent/WO2020258177A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/09Elastic or damping supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02283Vibrating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • H03H2009/0248Strain

Definitions

  • the invention relates to the technical field of MEMS (Micro Electromechanical Systems), in particular to a differential resonator and a MEMS sensor.
  • MEMS Micro Electromechanical Systems
  • Differential resonators have a higher quality factor, which can suppress common mode interference such as external acceleration, vibration, and temperature, and can effectively reduce the noise level of the circuit. Therefore, the use of differential motion modes is an optimized mainstream solution to improve the performance of MEMS sensors.
  • the conventional differential resonator 4 includes a first resonator 41, a second resonator 42, a coupling mechanism 44 connecting the first resonator 41 and the second resonator 42, and a substrate 40.
  • the first resonator 41, the second resonator 42, and the coupling mechanism 44 connecting the first resonator 41 and the second resonator 42 are all fixed to the substrate 40, and the first resonator 41 and the second resonator 42 have the same
  • the amplitude-frequency response characteristics that is, it is necessary to ensure that the geometric dimensions of the first resonator 41 and the second resonator 42 are almost identical.
  • the coupling mechanism 14 includes a serpentine fulcrum lever 441 connected to the substrate 40, and the first resonator 41 and the second resonator 42 are reversely associated with the principle of equal-arm lever steering, and the first resonator 41 and the second resonator 41 and the second resonator 42 are driven by the same external force.
  • the resonator 42 performs a differential motion mode of mutually reverse displacement by ⁇ Y in the vibration direction.
  • the first resonator 41 and the second resonator 42 will produce different amplitude outputs, that is, the first resonator 41 and the second resonator 42 in the same vibration direction
  • the displacement Y A ⁇ Y B will force the fulcrum of the serpentine fulcrum lever 441 to move ⁇ X in the X direction where the constraint is weaker, and eventually cause the lever arm length of the serpentine fulcrum lever 441 to change from the original 1.
  • :1 changes to Y A /Y B. Therefore, the traditional differential resonator has the disadvantages of low process robustness, small quality factor, and poor common mode interference suppression capability.
  • the present invention provides a differential resonator and a MEMS sensor, which aims to improve the quality factor of the differential resonator to enhance the common mode interference suppression capability of the differential resonator.
  • the present invention provides a differential resonator, the differential resonator includes a substrate, a first resonator, a second resonator, and a coupling mechanism.
  • the first resonator communicates with the coupling mechanism through the coupling mechanism.
  • the second resonator is connected, and the first resonator and the second resonator are connected to the substrate and can be displaced relative to the substrate under an external force;
  • the coupling mechanism includes a coupling arm, a supporting shaft, a first connecting piece and a second connecting piece;
  • the coupling arm includes a first force arm, a second force arm and a coupling part
  • One end of the support shaft is connected with the base, and the other end is connected with the coupling part;
  • the first force arm and the second force arm are symmetrically disposed on opposite sides of the coupling part with the support axis as a symmetrical axis, and the first force arm is far away from the coupling part through the first A connecting piece is connected to the first resonator, and one end of the second force arm away from the coupling portion is connected to the second resonator through the second connecting piece.
  • the coupling portion includes a body and spokes, and the body is connected with the first force arm and the second force arm;
  • each spoke is connected to the body, and the other end is connected to the supporting shaft.
  • the spokes are scattered and connected to the body with the axis of the support shaft as the center.
  • the spokes have the same length and are evenly arranged.
  • the body forms an arc-shaped part on a side close to the spokes, and one end of each of the spokes is connected to the arc-shaped part.
  • the first force arm is connected to one side of the body
  • the second force arm is connected to the opposite side of the body
  • the body is along the first or second resonator.
  • the vibration direction of the resonator protrudes from the first force arm and the second force arm.
  • the spokes are elastic spokes made of elastic materials.
  • the coupling arm and the support shaft are integrally formed.
  • the first connecting member and the second connecting member are both elastic connecting members.
  • the present invention also provides a MEMS sensor, which includes the aforementioned differential resonator.
  • the differential resonator and MEMS sensor provided by the present invention have the following advantages:
  • the support shaft is fixedly connected with the base and connected with the coupling arm.
  • the first force arm of the coupling arm is connected to the first resonator through a first connecting piece
  • the second force arm of the coupling arm is connected to the second resonator through a second connecting piece.
  • the second resonator in the direction of vibration, so that the first resonator and the second resonator of the differential resonator have a more consistent amplitude, which in turn makes the process robustness of the differential resonator better.
  • the quality factor and common mode interference suppression capability are stronger.
  • FIG. 1 is a schematic diagram of a plane structure of a differential resonator in the prior art
  • FIG. 2 is a schematic diagram of a plane structure of a differential resonator in the prior art in an ideal state
  • FIG. 3 is a schematic diagram of the plane structure of the differential resonator vibration in the prior art in the actual state
  • FIG. 4 is a schematic diagram of a planar structure of a differential resonator provided by the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of the planar structure of the vibration of the differential resonator of the present invention.
  • Fig. 6 is a schematic plan view of a modified structure of the differential resonator provided by the present invention.
  • the present invention provides a differential resonator 1.
  • the differential resonator 1 includes a substrate 10, a first resonator 11, a second resonator 12, and a coupling mechanism 14.
  • the first resonator 11 is connected to the first resonator through the coupling mechanism 14
  • the two resonators 12 are connected, and the first resonator 11 and the second resonator 12 are connected to the base 10 and can be displaced relative to the base 10 under the action of external force.
  • the first resonator 11 includes a first vibrator 112 and a plurality of first connecting arms 111, and the plurality of first connecting arms 111 are arranged on opposite sides of the first vibrator 112 perpendicular to the vibration direction of the first vibrator 112 for
  • the first vibrator 112 is connected to the substrate 10, and the plurality of first connecting arms 111 are flexible connecting arms.
  • the second resonator 12 includes a second vibrator 122 and a plurality of second connecting arms 121 arranged on opposite sides of the second vibrator 122 perpendicular to the vibration direction of the second vibrator 122, and the second vibrator 122
  • the vibration direction of is opposite to the vibration direction of the first vibrator 112 and is used to connect the second vibrator 122 with the substrate 10, and the plurality of second connecting arms 121 are flexible connecting arms.
  • the coupling mechanism 14 includes a coupling arm 146, a supporting shaft 140, a first connecting member 144 and a second connecting member 145.
  • the coupling arm 146 includes a first force arm 141, a second force arm 142 and a coupling portion 143.
  • One end of the support shaft 140 is connected to the base 10, and the other end is connected to the coupling part 143.
  • the first force arm 141 and the second force arm 142 are symmetrically arranged on opposite sides of the coupling part 143 with the support shaft 140 as a symmetry axis, and the first force
  • the end of the arm 141 away from the coupling portion 143 is connected to the first resonator 11 through a first connector 144
  • the end of the second arm 142 away from the coupling portion 143 is connected to the second resonator 12 through a second connector 145.
  • first connecting member 144 and the second connecting member 145 are both elastic connecting members.
  • the coupling arm 146 or the supporting shaft 140 is made of elastic material, or the coupling arm 146 and the supporting shaft 140 are integrally formed of elastic material.
  • the first resonator 11 is connected to the second resonator 12 through the coupling arm 146, and is connected to the substrate 10 through the support shaft 140.
  • the coupling arm 146 deforms and rotates with the support shaft 140 as a fulcrum, Under the limiting action of the support shaft 140, it will not be displaced in the direction of vibration perpendicular to the first resonator 11 and the second resonator 12, that is, only a displacement of ⁇ Y will occur in the vibration direction, thereby making the differential resonance
  • the first resonator and the second resonator of the device have a more consistent amplitude.
  • the supporting shaft 140 is connected to the coupling portion 143.
  • the coupling portion 143 may include a body 147 and spokes 148, wherein the spokes 148 are at least two, the body 147 and the first force arm 141 and The second arm 142 is connected; one end of the spoke 148 is connected to the body 147, and the other end is connected to the support shaft 140.
  • the spokes 148 are elastic spokes made of elastic materials.
  • the spokes 148 are scattered and connected to the body 147 with the axis of the support shaft 140 as the center.
  • the spokes 148 are elastic. deformation.
  • spokes 148 have the same length and are evenly arranged, so as to ensure that the amplitudes of the first resonator 11 and the second resonator 12 are the same.
  • the body 147 forms an arc-shaped portion on the side close to the spokes 148, and one end of each spoke 148 is connected to the arc-shaped portion.
  • the first force arm 141 is connected to one side of the body 147
  • the second force arm 142 is connected to the opposite side of the body 147
  • the body 147 protrudes along the vibration direction of the first resonator 11 or the second resonator 12
  • the first force arm 141 and the second force arm 142 that is, the side of the body 147 away from the first force arm 141 or the second force arm 142 and the first force arm 141 or the second force arm 142 form a height difference.
  • the present invention also provides a MEMS sensor.
  • the aforementioned differential resonator 1 of the MEMS sensor can be a differential accelerometer, a differential gyroscope, or a differential resonant pressure sensor.
  • the differential resonator and MEMS sensor provided by the present invention have the following advantages:
  • the support shaft is fixedly connected with the base and connected with the coupling arm.
  • the first force arm of the coupling arm is connected to the first resonator through a first connecting piece
  • the second force arm of the coupling arm is connected to the second resonator through a second connecting piece.
  • the second resonator in the direction of vibration, so that the first resonator and the second resonator of the differential resonator have a more consistent amplitude, which in turn makes the process robustness of the differential resonator better.
  • the quality factor and common mode interference suppression capability are stronger.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Gyroscopes (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Micromachines (AREA)

Abstract

一种差分谐振器(1),包括基底(10)、第一谐振器(11)、第二谐振器(12)以及耦合机构(14),第一谐振器(11)通过耦合机构(14)与第二谐振器(12)连接,且第一谐振器(11)和第二谐振器(12)与基底(10)连接并且在外力作用下可相对基底(10)位移,耦合机构(14)包括耦合臂(146)、支撑轴(140)、第一连接件(144)以及第二连接件(145);其中,耦合臂(146)包括第一力臂(141)、第二力臂(142)以及耦合部(143);支撑轴(140)一端与基底(10)连接,另一端与耦合部(143)连接;第一力臂(141)与第二力臂(142)以支撑轴(140)为对称轴对称设置于耦合部(143)的相对两侧,且第一力臂(141)远离耦合部(143)一端通过第一连接件(144)与第一谐振器(11)连接,第二力臂(142)远离耦合部(143)一端通过第二连接件(145)与第二谐振器(12)连接。还公开一种包括该差分谐振器(1)的MEMS传感器。该差分谐振器(1)及MEMS传感器具有较优的工艺鲁棒性。

Description

一种差分谐振器及MEMS传感器 技术领域
本发明涉及MEMS(Micro Electromechanical Systems,微型机械电子系统)技术领域,特别涉及一种差分谐振器及MEMS传感器。
背景技术
差分谐振器拥有更高品质因数,能够实现抑制外界加速度、振动、温度等共模干扰,并且可以有效降低电路噪声等级。因此,采用差分运动模态是提升MEMS传感器性能的优化主流方案。
如图1-2所示,传统的差分谐振器4包括第一谐振器41,第二谐振器42、连接该第一谐振器41和第二谐振器42的耦合机构44以及基底40,其中,第一谐振器41,第二谐振器42、连接该第一谐振器41和第二谐振器42的耦合机构44均固定于基底40,且第一谐振器41和第二谐振器42拥有相同的幅频响应特性,也即需要确保第一谐振器41与第二谐振器42几何尺寸几乎完全相同。耦合机构14的包括蛇形支点杠杆441与基底40连接,通过等臂杠杆转向原理,反向关联第一谐振器41和第二谐振器42,同一外力驱动下实现第一谐振器41和第二谐振器42在振动方向进行相互反向位移△Y的差分运动模态。
然而,在差分谐振器的制造过程中,尚无法做到第一谐振器41和第二谐振器42的几何尺寸几乎完全相同。
如图3所示,在同一外力驱动作用下,第一谐振器41和第二谐振器42会产生不相同的振幅输出,即第一谐振器41和第二谐振器42在同一振动方向上的位移量Y A≠Y B,将迫使蛇形支点杠杆441的支点在约束较弱的X方向产生移动△X,最终导致杠杆转动过程中,蛇形支点杠杆441的杠杆臂长比由原始的1:1变化为Y A/Y B。故传统的差分谐振器具有工艺鲁棒性低,品质因数小,共模干扰抑制能力差等缺点。
因此,如何提升差分谐振器的工艺鲁棒性,以增强差分谐振器的品质因数以及共模干扰抑制能力,是本领域技术人员亟待解决的技术问题。
技术问题
本发明提供了一种差分谐振器及MEMS传感器,旨在提升差分谐振器的品质因数,以增强差分谐振器的共模干扰抑制能力。
技术解决方案
为实现上述目的,本发明提供了一种差分谐振器,所述差分谐振器包括基底、第一谐振器、第二谐振器以及耦合机构,所述第一谐振器通过所述耦合机构与所述第二谐振器连接,且所述第一谐振器和所述第二谐振器与所述基底连接并且在外力作用下可相对所述基底位移;
所述耦合机构包括耦合臂、支撑轴、第一连接件以及第二连接件;
其中,所述耦合臂包括第一力臂、第二力臂以及耦合部;
所述支撑轴一端与所述基底连接,另一端与所述耦合部连接;
所述第一力臂与所述第二力臂以所述支撑轴为对称轴对称设置于所述耦合部的相对两侧,且所述第一力臂远离所述耦合部一端通过所述第一连接件与所述第一谐振器连接,所述第二力臂远离所述耦合部一端通过所述第二连接件与所述第二谐振器连接。
优选地,所述耦合部包括本体和辐条,所述本体与所述第一力臂和所述第二力臂连接;
所述辐条至少为两根,且各所述辐条的一端与所述本体连接,另一端与所述支撑轴连接。
优选地,所述辐条以所述支撑轴的轴心为中心散射连接于所述本体。
优选地,所述辐条的长度相同且均匀布设。
优选地,所述本体靠近所述辐条一侧形成一弧形部,各所述辐条的一端与所述弧形部连接。
优选地,所述第一力臂与所述本体一侧连接,所述第二力臂与所述本体的相对的另一侧连接,且所述本体沿着所述第一谐振器或第二谐振器的振动方向凸出于所述第一力臂和所述第二力臂。
优选地,所述辐条为弹性材料制成的弹性辐条。
优选地,所述耦合臂以及所述支撑轴一体成型。
优选地,所述第一连接件以及所述第二连接件均为弹性连接件。
为实现上述目的,本发明还提供一种MEMS传感器,所述MEMS传感器包括前述的差分谐振器。
有益效果
与现有技术相比,本发明提供的一种差分谐振器及MEMS传感器具有以下优点:
1、通过设置支撑轴,利用支撑轴与基底固定连接并与耦合臂连接。耦合臂的第一力臂通过第一连接件与第一谐振器连接,耦合臂的第二力臂通过第二连接件与第二谐振器连接。在外力驱动下,即使第一谐振器和第二谐振器之间存在一定的质量误差,耦合臂以支撑轴为支点转动时,在支撑轴的限位作用下不会在垂直于第一谐振器和第二谐振器的振动方向上位移,从而使得差分谐振器的第一谐振器和第二谐振器具有更为一致的振幅,进而使得差分谐振器的工艺鲁棒性更优,差分谐振器的品质因数以及共模干扰抑制能力更强。
附图说明
图1是现有技术的差分谐振器的平面结构示意图;
图2是理想状态下现有技术的差分谐振器振动的平面结构示意图;
图3是实际状态下现有技术的差分谐振器振动的平面结构示意图;
图4是本发明第一实施例提供的一种差分谐振器的平面结构示意图;
图5是本发明的差分谐振器振动的平面结构示意图;
图6是本发明提供的差分谐振器一种变形结构的平面结构示意图。
本发明的实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图4,本发明提供一种差分谐振器1,差分谐振器1包括基底10、第一谐振器11、第二谐振器12以及耦合机构14,第一谐振器11通过耦合机构14与第二谐振器12连接,且第一谐振器11和第二谐振器12与基底10连接并且在外力作用下可相对基底10位移。
具体地,第一谐振器11包括第一振子112以及若干第一连接臂111,该若干第一连接臂111布设于第一振子112垂直于第一振子112的振动方向的相对两侧,用于将第一振子112连接与基底10,该若干第一连接臂111为柔性连接臂。
第二谐振器12包括第二振子122以及若干第二连接臂121,该若干第二连接臂121布设于第二振子122垂直于第二振子122的振动方向的相对两侧,且第二振子122的振动方向与第一振子112的振动方向互为相反,用于将第二振子122连接与基底10,该若干第二连接臂121为柔性连接臂。
耦合机构14包括耦合臂146、支撑轴140、第一连接件144以及第二连接件145。其中,耦合臂146包括第一力臂141、第二力臂142以及耦合部143。支撑轴140一端与基底10连接,另一端与耦合部143连接,第一力臂141与第二力臂142以支撑轴140为对称轴对称设置于耦合部143的相对两侧,且第一力臂141远离耦合部143一端通过第一连接件144与第一谐振器11连接,第二力臂142远离耦合部143一端通过第二连接件145与第二谐振器12连接。
其中,第一连接件144和第二连接件145均为弹性连接件。
耦合臂146或支撑轴140为弹性材料制成,也可以是耦合臂146和支撑轴140为弹性材料一体成型。
请参阅图5,第一谐振器11通过耦合臂146连接第二谐振器12,并通过支撑轴140与基底10连接,在外力驱动下,耦合臂146以支撑轴140为支点发生形变转动时,在支撑轴140的限位作用下不会在垂直于第一谐振器11和第二谐振器12的振动方向上位移,也即,仅会在振动方向上产生△Y的位移,从而使得差分谐振器的第一谐振器和第二谐振器具有更为一致的振幅。
请参阅图6,在部分实施例中,支撑轴140与耦合部143连接,可以是耦合部143包括本体147和辐条148,其中,辐条148至少为两根,本体147与第一力臂141和第二力臂142连接;辐条148的一端与本体147连接,另一端与支撑轴140连接。
具体地,辐条148为弹性材料制成的弹性辐条,辐条148以支撑轴140的轴心为中心散射连接于本体147,在第一谐振器11或第二谐振器12振动时,辐条148发生弹性形变。
进一步,辐条148的长度相同且均匀布设,从而确保第一谐振器11和第二谐振器12的振幅相同。
在部分实施例中,本体147靠近辐条148一侧形成一弧形部,各辐条148的一端与弧形部连接。 第一力臂141与本体147一侧连接,第二力臂142与本体147的相对的另一侧连接,且本体147沿着第一谐振器11或第二谐振器12的振动方向凸出于第一力臂141和第二力臂142,也即本体147远离第一力臂141或第二力臂142的一侧与第一力臂141或第二力臂142形成高度差。
在部分实施例中,本发明还提供一种MEMS传感器,该MEMS传感器前述的差分谐振器1,该MEMS传感器可以是差分式加速度计、差分式陀螺仪、差分式谐振式压力传感器。
与现有技术相比,本发明提供的一种差分谐振器及MEMS传感器具有以下优点:
1、通过设置支撑轴,利用支撑轴与基底固定连接并与耦合臂连接。耦合臂的第一力臂通过第一连接件与第一谐振器连接,耦合臂的第二力臂通过第二连接件与第二谐振器连接。在外力驱动下,即使第一谐振器和第二谐振器之间存在一定的质量误差,耦合臂以支撑轴为支点转动时,在支撑轴的限位作用下不会在垂直于第一谐振器和第二谐振器的振动方向上位移,从而使得差分谐振器的第一谐振器和第二谐振器具有更为一致的振幅,进而使得差分谐振器的工艺鲁棒性更优,差分谐振器的品质因数以及共模干扰抑制能力更强。
以上所述的仅是发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离发明创造构思的前提下,还可以做出改进,但这些均属于发明的保护范围。

Claims (10)

  1. 一种差分谐振器,所述差分谐振器包括基底、第一谐振器、第二谐振器以及耦合机构,所述第一谐振器通过所述耦合机构与所述第二谐振器连接,且所述第一谐振器和所述第二谐振器与所述基底连接并且在外力作用下可相对所述基底位移,其特征在于:
    所述耦合机构包括耦合臂、支撑轴、第一连接件以及第二连接件;
    其中,所述耦合臂包括第一力臂、第二力臂以及耦合部;
    所述支撑轴一端与所述基底连接,另一端与所述耦合部连接;
    所述第一力臂与所述第二力臂以所述支撑轴为对称轴对称设置于所述耦合部的相对两侧,且所述第一力臂远离所述耦合部一端通过所述第一连接件与所述第一谐振器连接,所述第二力臂远离所述耦合部一端通过所述第二连接件与所述第二谐振器连接。
  2. 如权利要求1所述的差分谐振器,其特征在于:所述耦合部包括本体和辐条,所述本体与所述第一力臂和所述第二力臂连接;
    所述辐条至少为两根,且各所述辐条的一端与所述本体连接,另一端与所述支撑轴连接。
  3. 如权利要求2所述的差分谐振器,其特征在于:所述辐条以所述支撑轴的轴心为中心散射连接于所述本体。
  4. 如权利要求3所述的差分谐振器,其特征在于:所述辐条的长度相同且均匀布设。
  5. 如权利要求2所述的差分谐振器,其特征在于:所述本体靠近所述辐条一侧形成一弧形部,各所述辐条的一端与所述弧形部连接。
  6. 如权利要求2所述的差分谐振器,其特征在于:所述第一力臂与所述本体一侧连接,所述第二力臂与所述本体的相对的另一侧连接,且所述本体沿着所述第一谐振器或第二谐振器的振动方向凸出于所述第一力臂和所述第二力臂。
  7. 如权利要求2-5任意一项所述的差分谐振器,其特征在于:所述辐条为弹性材料制成的弹性辐条。
  8. 如权利要求1-5任意一项所述的差分谐振器,其特征在于:所述耦合臂以及所述支撑轴一体成型。
  9. 如权利要求1-6任意一项所述的差分谐振器,其特征在于:所述第一连接件以及所述第二连接件均为弹性连接件。
  10. 一种MEMS传感器,其特征在于:所述MEMS传感器包括如权利要求1-9任意一项所述的差分谐振器。
PCT/CN2019/093342 2019-06-27 2019-06-27 一种差分谐振器及mems传感器 WO2020258177A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/093342 WO2020258177A1 (zh) 2019-06-27 2019-06-27 一种差分谐振器及mems传感器
CN201910605895.4A CN110311648B (zh) 2019-06-27 2019-07-05 一种差分谐振器及mems传感器
US16/986,305 US11870417B2 (en) 2019-06-27 2020-08-06 Differential resonator and MEMS sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093342 WO2020258177A1 (zh) 2019-06-27 2019-06-27 一种差分谐振器及mems传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/986,305 Continuation US11870417B2 (en) 2019-06-27 2020-08-06 Differential resonator and MEMS sensor

Publications (1)

Publication Number Publication Date
WO2020258177A1 true WO2020258177A1 (zh) 2020-12-30

Family

ID=68079261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093342 WO2020258177A1 (zh) 2019-06-27 2019-06-27 一种差分谐振器及mems传感器

Country Status (3)

Country Link
US (1) US11870417B2 (zh)
CN (1) CN110311648B (zh)
WO (1) WO2020258177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258176A1 (zh) * 2019-06-27 2020-12-30 瑞声声学科技(深圳)有限公司 一种差分谐振器及mems传感器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017897A (en) * 1990-08-06 1991-05-21 Motorola, Inc. Split ring resonator bandpass filter with differential output
EP2693183A1 (en) * 2012-08-01 2014-02-05 Honeywell International Inc. On-chip resonant acceleration and pressure sensor
CN104409807A (zh) * 2014-11-06 2015-03-11 中国电子科技集团公司第二十八研究所 基于耦合型交叉形谐振器的新型差分带通滤波器
EP2933619A1 (en) * 2014-04-18 2015-10-21 Centre National De La Recherche Scientifique (Cnrs) A differential temperature measuring device comprising surface transverse wave resonators
US20170026029A1 (en) * 2015-07-23 2017-01-26 Texas Instruments Incorporated Multi-resonator clock reference
CN107634291A (zh) * 2017-08-24 2018-01-26 南通大学 一种基于小型化双模介质谐振器的双通带差分滤波器
CN108761134A (zh) * 2017-06-22 2018-11-06 西北工业大学 一种弱耦合谐振式传感器的线性化输出检测方法
CN108871627A (zh) * 2018-07-16 2018-11-23 重庆大学 一种差分双谐振器型声波压力传感器
CN108917668A (zh) * 2018-06-12 2018-11-30 重庆大学 一种差分式双谐振器声波拉伸应变传感器芯片
WO2019021047A1 (en) * 2017-07-26 2019-01-31 King Abdullah University Of Science And Technology MEMS BASED BANDPASS FILTER
CN208537066U (zh) * 2018-07-16 2019-02-22 重庆大学 差分双谐振器型声波压力传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090052832A (ko) * 2006-03-10 2009-05-26 콘티넨탈 테베스 아게 운트 코. 오하게 커플링 바를 구비한 회전 속도 센서
US7990232B1 (en) * 2007-06-06 2011-08-02 Rf Micro Devices, Inc. Anchor/support design for MEMS resonators
IT1391972B1 (it) * 2008-11-26 2012-02-02 St Microelectronics Rousset Giroscopio microelettromeccanico con movimento di azionamento rotatorio e migliorate caratteristiche elettriche
US9506756B2 (en) * 2013-03-15 2016-11-29 Freescale Semiconductor, Inc. Multiple axis rate sensor
US9404747B2 (en) * 2013-10-30 2016-08-02 Stmicroelectroncs S.R.L. Microelectromechanical gyroscope with compensation of quadrature error drift
US20160370180A1 (en) * 2015-06-17 2016-12-22 Freescale Semiconductor, Inc. Inertial sensor with couple spring for common mode rejection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017897A (en) * 1990-08-06 1991-05-21 Motorola, Inc. Split ring resonator bandpass filter with differential output
EP2693183A1 (en) * 2012-08-01 2014-02-05 Honeywell International Inc. On-chip resonant acceleration and pressure sensor
EP2933619A1 (en) * 2014-04-18 2015-10-21 Centre National De La Recherche Scientifique (Cnrs) A differential temperature measuring device comprising surface transverse wave resonators
CN104409807A (zh) * 2014-11-06 2015-03-11 中国电子科技集团公司第二十八研究所 基于耦合型交叉形谐振器的新型差分带通滤波器
US20170026029A1 (en) * 2015-07-23 2017-01-26 Texas Instruments Incorporated Multi-resonator clock reference
CN108761134A (zh) * 2017-06-22 2018-11-06 西北工业大学 一种弱耦合谐振式传感器的线性化输出检测方法
WO2019021047A1 (en) * 2017-07-26 2019-01-31 King Abdullah University Of Science And Technology MEMS BASED BANDPASS FILTER
CN107634291A (zh) * 2017-08-24 2018-01-26 南通大学 一种基于小型化双模介质谐振器的双通带差分滤波器
CN108917668A (zh) * 2018-06-12 2018-11-30 重庆大学 一种差分式双谐振器声波拉伸应变传感器芯片
CN108871627A (zh) * 2018-07-16 2018-11-23 重庆大学 一种差分双谐振器型声波压力传感器
CN208537066U (zh) * 2018-07-16 2019-02-22 重庆大学 差分双谐振器型声波压力传感器

Also Published As

Publication number Publication date
US11870417B2 (en) 2024-01-09
CN110311648A (zh) 2019-10-08
US20200412324A1 (en) 2020-12-31
CN110311648B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US9052194B2 (en) Extension-mode angular velocity sensor
JP4368116B2 (ja) 回転型デカップルドmemsジャイロスコープ
WO2020258176A1 (zh) 一种差分谐振器及mems传感器
JP5495782B2 (ja) 回転レートセンサ
JP2014112085A (ja) 微小電気機械システム(mems)デバイスのためのばね
CN101815949B (zh) 振动微机械角速度传感器
WO2022110353A1 (zh) Mems陀螺仪
WO2020258177A1 (zh) 一种差分谐振器及mems传感器
CN112710293B (zh) Mems陀螺仪
JP5246470B2 (ja) 角速度センサ素子
JP2012149961A (ja) 振動ジャイロ
JP4420038B2 (ja) 応力感応素子
JP5599128B2 (ja) 振動梁の節点位置修正方法
JP2023008854A (ja) 2つのシーソーを有する加速度計
JP4734985B2 (ja) 圧電振動ジャイロ素子および圧電振動片
JP3959097B2 (ja) 振動ジャイロの音叉型振動子搭載構造
WO2024169018A1 (zh) 一种微机械陀螺仪及电子产品
JP5287760B2 (ja) 角速度センサユニット
US11725941B2 (en) Sensing device
JP2023107353A (ja) 振動デバイス
JP2006275636A (ja) 振動ジャイロ
WO2021134678A1 (zh) Mems陀螺仪
WO2022110424A1 (zh) 陀螺仪
WO2021217667A1 (zh) 陀螺仪
CN116086421A (zh) 一种微机械陀螺仪及电子产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934653

Country of ref document: EP

Kind code of ref document: A1