WO2021217667A1 - 陀螺仪 - Google Patents

陀螺仪 Download PDF

Info

Publication number
WO2021217667A1
WO2021217667A1 PCT/CN2020/088518 CN2020088518W WO2021217667A1 WO 2021217667 A1 WO2021217667 A1 WO 2021217667A1 CN 2020088518 W CN2020088518 W CN 2020088518W WO 2021217667 A1 WO2021217667 A1 WO 2021217667A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring structure
anchor point
ring
gyroscope
electrode
Prior art date
Application number
PCT/CN2020/088518
Other languages
English (en)
French (fr)
Inventor
占瞻
马昭
谭秋喻
洪燕
李杨
黎家健
张睿
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2020/088518 priority Critical patent/WO2021217667A1/zh
Publication of WO2021217667A1 publication Critical patent/WO2021217667A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the invention relates to a gyroscope, in particular to a MEMS gyroscope.
  • MEMS gyroscope is a kind of miniature angular velocity sensor made by the application of micro-machining technology and micro-electronic technology.
  • MEMS circular gyroscope and MEMS star gyroscope are typical representatives of vibratory MEMS gyroscopes.
  • MEMS circular gyroscope has a high natural frequency and strong anti-vibration ability, but its quality factor is low, and the driving/detecting mode frequency difference is large, while the MEMS star gyroscope has a high quality factor and small driving/detecting modal frequency difference. But the natural frequency is low, and the anti-vibration ability is worse than that of the round nest. Therefore, it is necessary to provide a gyroscope that realizes high frequency, high quality factor, and small difference in driving/detecting modal frequencies.
  • the purpose of the present invention is to provide a high frequency, high quality factor, drive / Detect gyroscopes with small difference in modal frequency.
  • a gyroscope comprising an anchor point, a ring structure with the anchor point as the axis and fixed to the anchor point in the circumferential direction via a first connecting portion, and Drive electrodes arranged at intervals in a ring structure, the ring structure including a plurality of first ring structures formed with first corners and a plurality of second ring structures in a circular ring shape, the first ring structure Coaxially arranged with the second ring structure, the first ring structure and the second ring structure are spaced apart on the outer periphery of the anchor point, and the first ring structure and the second ring structure
  • the structures are connected via the second connecting portion, and the outer contour of the first ring structure is a positive 8N angular star, where N is an integer and N ⁇ 1.
  • the first ring structure is fixedly connected to the anchor point via the first connecting portion.
  • the second ring structure is fixedly connected to the anchor point via the first connecting portion.
  • a plurality of the first ring structures are arranged at intervals, and the adjacent first ring structures are connected by a third connecting portion.
  • a plurality of the second ring structures are arranged at intervals and the adjacent second ring structures are connected by a fourth connecting portion.
  • the driving electrode includes one of a first electrode disposed on the outer periphery of the first ring structure or a second electrode disposed on the outer periphery of the second ring structure.
  • the driving electrode includes a first electrode disposed on the outer periphery of the first ring structure and a second electrode disposed corresponding to the first electrode and located on the outer periphery of the second ring structure .
  • the first electrode is disposed between the first ring structure and the second ring structure, and the second electrode is disposed at an end of the ring structure away from the anchor point.
  • the anchor point is a star-shaped structure with a plurality of symmetrically arranged second corners.
  • the anchor point, the first ring structure, the second ring structure, the first connection portion, and the second connection portion are integrally etched and formed by a semiconductor material.
  • the beneficial effect of the present invention is that by providing a first ring structure with a first corner portion that is easy to deform and a second ring structure with a high degree of symmetry on the outer periphery of the anchor point, the gyroscope of the present invention
  • the instrument has two vibration modes with the same mode shape.
  • the first mode is the driving mode along 0°/90°; the second mode is the detection mode along 45°/135°.
  • the outer contour of the first ring structure is limited to a positive 8N angular star, so that the gyroscope of the present invention has the advantages of high frequency, high quality factor, and small difference in driving/detecting modal frequencies.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of the gyroscope of the present invention.
  • Fig. 2 is an exploded schematic diagram of the three-dimensional structure of the gyroscope of the present invention.
  • Figure 3 is a plan view of the gyroscope structure of the present invention.
  • Fig. 4 is a plan view of the ring structure of the gyroscope of the present invention.
  • Fig. 5 is a plan view of the first ring structure of the present invention.
  • Fig. 6 is a plan view of the second ring structure of the present invention.
  • Fig. 7 is a schematic diagram of the driving mode principle of the gyroscope of the present invention.
  • Fig. 8 is a schematic diagram of the detection mode principle of the gyroscope of the present invention.
  • Fig. 9 is a schematic diagram of a MEMS star-shaped gyroscope composed of ten first ring structures.
  • FIG. 10 is a schematic diagram of the structure of a MEMS toroidal gyroscope composed of ten second ring structures.
  • FIG. 11 is a comparison diagram of the thermoelastic quality factor QTED between the gyroscope of the present invention and the gyroscopes of FIG. 9 and FIG. 10.
  • FIG. 12 is a comparison diagram of the frequency difference between the gyroscope of the present invention and the gyroscopes of FIGS. 9 and 10.
  • Fig. 13 is a modal frequency comparison diagram between the gyroscope of the present invention and the gyroscopes of Figs. 9 and 10.
  • a gyroscope 100 of the present invention referring to FIGS. 1 to 4, the gyroscope 100 includes an anchor point 10, a ring structure 20 and a driving electrode 30.
  • the anchor point 10 may be formed by photoetching of a semiconductor material.
  • the anchor point 10 and the ring structure 20 are integrally formed by etching a semiconductor material, and the anchor point 10 has a plurality of symmetry.
  • the star-shaped structure of the second corner portion 11 is provided.
  • the number of the second corner portions 11 is eight, and the tip portions of the eight second corner portions 11 are respectively provided with first connecting portions 41
  • the first connecting portion 41 is connected to the ring structure 20, and the first connecting portion 41 is integrally formed with the anchor point 10 and the ring structure 20.
  • the ring structure 20 is fixed on the outer periphery of the anchor point 10 with the center of the anchor point 10 as the axis, and the ring structure 20 passes through the first connecting portion 41
  • the ring structure 20 includes a first ring structure 21 and a second ring structure 22, and the first ring structure 21 and the second ring structure 22 are spaced apart from each other.
  • the anchor point is peripheral, and the first ring structure 21 and the second ring structure 22 are connected via a second connecting portion 42.
  • each of the first ring structures 21 is arranged at intervals, and adjacent first ring structures 21 are connected by a third connecting portion 43; each of the second ring structures 22 is arranged at intervals, And the adjacent second ring structures 22 are connected via the fourth connecting portion 43.
  • the anchor point 10, the first ring structure 21, the second ring structure 22, the first connection portion 41, the second connection portion 42, and the third connection portion 43 are integrally etched and formed from semiconductor materials.
  • the number of the first ring structure 21 is multiple, and the first ring structure 21 includes at least a pair of first corners 211 centered on the anchor point 10.
  • the outer contour of the first ring structure is a positive 8N-pointed star, where N is an integer, and N ⁇ 1, when it is satisfied that the outer contour is a positive 8N-pointed star, and N is an integer, N ⁇ At 1 o'clock, the first ring structure has the characteristics of being easy to deform and also has good symmetry.
  • the number of the first ring structures 21 is six, and the six first ring structures 21 are connected in sequence from the inside to the outside, and between two adjacent first ring structures 21 Connected by a plurality of third connecting portions 43, each of the first ring structures 21 is respectively provided with 16 first corners 211 of the same shape and size, and the 16 first corners 211 are opposite to the anchor point 10
  • the center position of the center is symmetrical.
  • the second ring structure 22 has a circular ring shape.
  • the second ring structure 22 is a ring structure coaxial with the first ring structure 21.
  • the number of the second ring structures 22 is multiple.
  • the number of the second ring structures 22 is four, and the four second ring structures 22 are connected in sequence from the inside to the outside. And two adjacent second ring structures 22 are connected via a plurality of fourth connecting portions 44.
  • the first connecting portion 41 is connected to the ring structure 20, and the relative position of the first ring structure 21 and the second ring structure 22 with respect to the anchor point 10 is not limited, and it may be the first ring structure.
  • the ring structure 21 is fixedly connected to the anchor point 10 via the first connecting portion 41, and the second ring structure 21 is fixed to the first ring structure 21 away from the first ring structure 21 via the second connecting portion 42.
  • the first connecting portion 41 further realizes that the anchor point 10 is connected to the entire ring structure 20, that is, the first ring structure 21 closest to the anchor point 10 and the anchor point 10 are connected to each other.
  • the point 10 is connected by a first connecting portion 41, and the second ring structure 22 closest to the anchor point 10 and the first ring structure 21 farthest from the anchor point 10 are connected by the second The connecting portion 42 is connected; it may also be that the second ring structure 22 is fixedly connected to the anchor point 10 via the first connecting portion 41, and the first ring structure 21 is connected to the anchor point 10 via the second connecting portion 42.
  • the first connecting portion 41 Fixed to the end of the second ring structure 42 away from the anchor point 10, the first connecting portion 41 further realizes that the anchor point 10 is connected to the entire ring structure 20, that is, it is closest to the anchor point 10
  • the second ring structure 22 is connected to the anchor point 10 via the first connecting portion 41, and the first ring structure 21 closest to the anchor point 10 and the anchor point 10 furthest away
  • the second ring structure 22 is connected via the second connecting portion 42.
  • the first ring structure 21 closest to the anchor point 10 is connected to the anchor point 10 via a first connecting portion 41, and six successively adjacent first ring structures 21 pass through the first ring structure 21.
  • the three connecting portions 43 are connected, and the second ring structure 22 closest to the anchor point 10 is connected to the first ring structure 21 furthest from the anchor point 10 through the second connecting portion 42 Connected, four successively adjacent second ring structures 22 are connected via a fourth connecting portion 44.
  • the number of the first ring structure 21 is 6, and the number of the second ring structure 22 is 4. In other embodiments, the number of the first ring structure 21 and the second ring structure The specific number of 22 is not limited.
  • the driving electrodes 30 and the ring structure 20 are spaced apart, and the number of the driving electrodes 30 is several, and the driving electrodes 30 are spaced apart from the ring structure 20 to form
  • the capacitor generates the external driving force required to force the gyroscope 100 to vibrate.
  • the driving electrode 30 includes the first electrode 31 or/and the second electrode 32, and the driving electrode 30 may only include the first electrode 31 disposed on the outer periphery of the first ring structure 21; or The driving electrode 30 only includes the second electrode 32 disposed on the outer periphery of the second ring structure 22; it may also be that the driving electrode 30 includes the first electrode 31 disposed on the outer periphery of the first ring structure 21 And a second electrode 32 arranged on the outer periphery of the second ring structure 22.
  • the driving electrode 30 includes a first electrode 31 arranged on the outer periphery of the first ring structure 21 and a first electrode 31 arranged on the outer periphery of the The second electrode 32 on the outer periphery of the second ring structure 22, and the first electrode 31 and the second electrode 32 are arranged correspondingly.
  • the first electrode 31 is disposed between the first ring structure 21 and the second ring structure 22, and the second electrode 32 is disposed on the ring structure 20 away from the anchor point.
  • the first electrode 31 and the second electrode 32 are disposed oppositely, and a capacitance is formed between the first electrode 31 and the first ring structure 21 and the second ring structure 22, so A capacitor is formed between the second electrode 32 and the second ring structure 22, and the capacitor generates the external driving force required to force the gyroscope to drive the vibration of the modal vibration mode.
  • the external driving force drives the gyroscope of the present invention. 100 to drive modal vibration.
  • the star-circle hybrid gyroscope composed of the ring structure 20 composed of 6 first ring structures 21 and 4 second ring structures 22 of this embodiment is listed.
  • the thermal elastic quality factor QTED, frequency difference, and modal frequency of the three are calculated.
  • the star-circle hybrid nested gyroscope of the present invention inherits the advantages of the star-shaped nested gyroscope and the circular nested gyroscope. Aspects have relatively balanced performance.
  • the present invention provides a first ring structure with a first corner portion that is easy to deform and a second ring structure with a high degree of symmetry on the outer periphery of the anchor point, so that the gyroscope of the present invention has Two vibration modes with the same mode shape, the first mode is the driving mode along 0°/90°; the second mode is the detection mode along 45°/135°.
  • the outer contour of the ring structure is limited to a positive 8N angular star, so that the gyroscope of the present invention has the advantages of high frequency, high quality factor, and small difference in driving/detecting modal frequencies.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一种陀螺仪(100),包括锚点(10)、以锚点(10)为轴心且经第一连接部(41)固定于锚点(10)周向的环状结构(20)及与环状结构(20)间隔设置的驱动电极(30),环状结构(20)包括多个形成有第一角部(11)的第一环状结构(21)及多个呈圆环形的第二环状结构(22),第一环状结构(21)与第二环状结构(22)同轴设置,第一环状结构(21)与第二环状结构(22)间隔设置于锚点(10)外周且第一环状结构(21)与第二环状结构(22)经第二连接部(42)相连接,第一环状结构(21)的外轮廓为正8N角星。使得陀螺仪(100)拥有两个振型相同的振动模态,通过将第一环状结构(21)的外轮廓限定为正8N角星,具备高频率、高品质因数、驱动/检测模态频率相差较小的优点。

Description

陀螺仪 技术领域
本发明涉及陀螺仪,尤其涉及一种MEMS陀螺仪。
背景技术
随着电子技术的发展,陀螺仪被普遍运用到各种便携式电子设备比如手机、IPAD等,用于检测物理量偏转,倾斜时的转动角速度,用以实现3D动作,得到消费者的青睐。MEMS陀螺仪是应用微机械加工技术与微电子工艺制作的一种微型角速度传感器。MEMS圆型陀螺仪和MEMS星型陀螺仪是振动式MEMS陀螺仪中的典型代表。MEMS圆型陀螺仪的固有频率高,抗振动能力强,但是品质因数偏低、驱动/检测模态频率差大,而MEMS星型陀螺仪的品质因数高、驱动/检测模态频率差小,但固有频率低,抗振动能力相较圆型嵌套差。因此,有必要提供一种实现高频率、高品质因数、驱动/检测模态频率相差较小的陀螺仪。
技术问题
本发明的目的在于提供一种实现高频率、高品质因数、驱动 / 检测模态频率相差较小的陀螺仪。
技术解决方案
本发明的技术方案如下:一种陀螺仪,所述陀螺仪包括锚点、以所述锚点为轴心且经第一连接部固定于所述锚点周向的环状结构及与所述环状结构间隔设置的驱动电极,所述环状结构包括多个形成有第一角部的第一环状结构及多个呈圆环形的第二环状结构,所述第一环状结构与所述第二环状结构同轴设置,所述第一环状结构与所述第二环状结构间隔设置于所述锚点外周且所述第一环状结构与所述第二环状结构经第二连接部相连接,所述第一环状结构的外轮廓为正8N角星,其中,N为整数,且N≥1。
所述第一环状结构经所述第一连接部与所述锚点固定连接。
更优地,所述第二环状结构经所述第一连接部与所述锚点固定连接。
更优地,多个所述第一环状结构间隔设置且相邻的所述第一环状结构经第三连接部相连接。
更优地,多个所述第二环状结构间隔设置且相邻的所述第二环状结构经第四连接部相连接。
更优地,所述驱动电极包括设置于所述第一环状结构外周的第一电极或设置于所述第二环状结构外周的第二电极中的一个。
更优地,所述驱动电极包括设置于所述第一环状结构外周的第一电极和与更优地,所述第一电极对应设置且位于所述第二环状结构外周的第二电极。
更优地,所述第一电极设置于所述第一环状结构与所述第二环状结构之间,所述第二电极设置于所述环状结构远离所述锚点一端。
更优地,所述锚点为具有多个对称设置的第二角部的星型结构。
更优地,所述锚点、第一环状结构、第二环状结构、第一连接部及第二连接部由半导体材料一体刻蚀成型。
有益效果
本发明的有益效果在于:通过在锚点外周设置具有易于形变特点的第一角部的第一环状结构及具有高度对称性的呈圆环形的第二环状结构,使得本发明的陀螺仪拥有两个振型相同的振动模态,第一个模态为沿0°/90°的驱动模态;第二个模态为沿45°/135°的检测模态,通过将所述第一环状结构的外轮廓限定为正8N角星,使得本发明的陀螺仪同时具备高频率、高品质因数、驱动/检测模态频率相差较小的优点。
附图说明
图1为本发明的陀螺仪立体结构示意图。
图2为本发明的陀螺仪立体结构分解示意图。
图3为本发明的陀螺仪结构平面图。
图4为本发明的陀螺仪环状结构平面图。
图5为本发明的第一环状结构平面图。
图6为本发明的第二环状结构平面图。
图7为本发明的陀螺仪驱动模态原理示意图。
图8为本发明的陀螺仪检测模态原理示意图。
图9为一种由10个第一环状结构组成的MEMS星型陀螺仪结构示意图。
图10为一种由10个第二环状结构组成的MEMS圆环型陀螺仪结构示意图。
图11为本发明的陀螺仪与图9和图10的陀螺仪之间的热弹品质因数QTED对比图。
图12为本发明的陀螺仪与图9和图10的陀螺仪之间的频率差对比图。
图13为本发明的陀螺仪与图9和图10的陀螺仪之间的模态频率对比图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
本发明一种陀螺仪100,参见图1~图4,所述陀螺仪100包括锚点10、环状结构20及驱动电极30。
所述锚点10可以由半导体材料经光刻蚀而成,本实施例中,所述锚点10和环状结构20由半导体材料经刻蚀一体成型,所述锚点10为具有多个对称设置的第二角部11的星型结构,本实施例中,所述第二角部11的数量为8个,8个所述第二角部11的尖部分别设置有第一连接部41,所述第一连接部41与所述环状结构20相连接,所述第一连接部41与所述锚点10和所述环状结构20一体成型。
参见图1~4,本实施例中,所述环状结构20以所述锚点10的中心为轴心固定于所述锚点10外周,且所述环状结构20经第一连接部41与所述锚点10相固定,所述环状结构20包括第一环状结构21和第二环状结构22,所述第一环状结构21与所述第二环状结构22间隔设置于所述锚点外周,且所述第一环状结构21与所述第二环状结构22经第二连接部42相连接。本实施例中,各所述第一环状结构21间隔设置,且相邻的所述第一环状结构21经第三连接部43相连接;各所述第二环状结构22间隔设置,且相邻的所述第二环状结构22经第四连接部43相连接。本实施例中,所述锚点10、第一环状结构21、第二环状结构22、第一连接部41、第二连接部42及第三连接部43由半导体材料一体刻蚀成型。
具体地,参见图5,所述第一环状结构21的数量为多个,所述第一环状结构21包括至少一对以所述锚点10作中心对称的第一角部211。
更优地,所述第一环状结构的外轮廓为正8N角星,其中,N为整数,且N≥1,当满足所述外轮廓为正8N角星,且N为整数,N≥1时,所述第一环状结构具有易变形特点的同时还具有良好的对称性。本实施例中,所述第一环状结构21的数量为6个,6个所述第一环状结构21由内至外依次连接,且相邻的两个第一环状结构21之间经多个第三连接部43相连接,每个所述第一环状结构21分别对应设置有16个形状大小相同的第一角部211,16个所述第一角部211相对锚点10的中心位置形成中心对称。
参见图6,所述第二环状结构22呈圆环形,本实施例中,所述第二环状结构22为与所述第一环状结构21同轴的圆环结构。所述第二环状结构22的数量为多个,本实施例中,所述第二环状结构22的数量为4个,4个所述第二环状结构22由内至外依次连接,且相邻的两个所述第二环状结构22经多个所述第四连接部44相连接。
优选地,所述第一连接部41与所述环状结构20相连接,第一环状结构21与第二环状结构22关于锚点10的相对位置不作限制,既可以是所述第一环状结构21经所述第一连接部41与所述锚点10固定连接,所述第二环状结构21经所述第二连接部42固定于所述第一环状结构21背离所述锚点10的一端,第一连接部41进而实现所述锚点10与整个所述环状结构20相连接,即最靠近所述锚点10的所述第一环状结构21与所述锚点10经第一连接部41相连接,且最靠近所述锚点10的所述第二环状结构22与最远离所述锚点10的所述第一环状结构21经所述第二连接部42相连接;也可以是所述第二环状结构22经所述第一连接部41与所述锚点10固定连接,所述第一环状结构21经所述第二连接部42固定于所述第二环状结构42背离所述锚点10的一端,第一连接部41进而实现所述锚点10与整个所述环状结构20相连接,即最靠近所述锚点10的所述第二环状结构22与所述锚点10经第一连接部41相连接,且最靠近所述锚点10的所述第一环状结构21与最远离所述锚点10的所述第二环状结构22经所述第二连接部42相连接。本实施例中,最靠近所述锚点10的所述第一环状结构21与所述锚点10经第一连接部41相连接,6个依次相邻的第一环状结构21通过第三连接部43相连接,且最靠近所述锚点10的所述第二环状结构22与最远离所述锚点10的所述第一环状结构21经所述第二连接部42相连接,4个依次相邻的第二环状结构22经第四连接部44相连接。
本实施例中,第一环状结构21的数量为6个,所述第二环状结构22的数量为4个,在其他实施例中,对第一环状结构21、第二环状结构22的具体数量不作限制。
具体地,参见图7和图8,所述驱动电极30与所述环状结构20间隔设置,且所述驱动电极30的数量为若干个,驱动电极30与所述环状结构20间隔设置形成电容,电容产生迫使陀螺仪100振动所需的外部驱动力。
更优地,所述驱动电极30包括第一电极31或/和第二电极32,可以是所述驱动电极30只包括设置于所述第一环状结构21外周的第一电极31;也可以是所述驱动电极30只包括设置于所述第二环状结构22外周的第二电极32;还可以是所述驱动电极30包括设置于所述第一环状结构21外周的第一电极31和设置于所述第二环状结构22外周的第二电极32,本实施例中,所述驱动电极30包括设置于所述第一环状结构21外周的第一电极31和设置于所述第二环状结构22外周的第二电极32,且所述第一电极31和与所述第二电极32对应设置。
具体地,所述第一电极31设置于所述第一环状结构21与所述第二环状结构22之间,所述第二电极32设置于所述环状结构20远离所述锚点10一端,所述第一电极31与所述第二电极32相对设置,且所述第一电极31与所述第一环状结构21和所述第二环状结构22之间形成电容,所述第二电极32与所述第二环状结构22之间形成电容,电容产生迫使陀螺仪以驱动模态振型的振动所需的外部驱动力,通过外部驱动力,驱动本发明的陀螺仪100以驱动模态振型振动。此时,参见图7,当陀螺仪100受到外界角速度,根据哥氏原理,角速度将产生沿45°/135°方向的哥氏力合力,而哥氏力合力会迫使陀螺仪100产生以检测模态振型的振动。最终,参见图8,通过检测陀螺仪100沿45°/135°方向的振动位移,可获取角速度大小,进而检测陀螺仪100沿45°/135°方向的振动位移,以匹配驱动模态与检测两模态间的频率,从而抑制陀螺仪100的正交误差。
参见图4,图9和图10,采用控制变量法,列举了本实施例的由6个第一环状结构21和4个第二环状结构22构成环状结构20的星圆混合型陀螺仪100;由10个第一环状结构21a构成环状结构20a的星形嵌套型陀螺仪;以及由10个第二环状结构22b构成环状结构20b的圆形嵌套型陀螺仪,在仅改变三者嵌套结构厚度的情况下统计三者的热弹品质因数QTED、频率差、模态频率。参见附图11~图13可知,本发明的星圆混合嵌套型陀螺继承了星型嵌套陀螺、圆型嵌套陀螺的优势,在热弹品质因数QTED、频率差、模态频率三个方面具有相对均衡的性能。
借此,本发明通过在锚点外周设置具有易于形变特点的第一角部的第一环状结构及具有高度对称性的呈圆环形的第二环状结构,使得本发明的陀螺仪拥有两个振型相同的振动模态,第一个模态为沿0°/90°的驱动模态;第二个模态为沿45°/135°的检测模态,通过将所述第一环状结构的外轮廓限定为正8N角星,使得本发明的陀螺仪同时具备高频率、高品质因数、驱动/检测模态频率相差较小的优点。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (1)

  1. 一种陀螺仪,其特征在于,所述陀螺仪包括锚点、以所述锚点为轴心且经第一连接部固定于所述锚点周向的环状结构及与所述环状结构间隔设置的驱动电极,所述环状结构包括多个形成有第一角部的第一环状结构及多个呈圆环形的第二环状结构,所述第一环状结构与所述第二环状结构同轴设置,所述第一环状结构与所述第二环状结构间隔设置于所述锚点外周且所述第一环状结构与所述第二环状结构经第二连接部相连接,所述第一环状结构的外轮廓为正8N角星,其中,N为整数,且N≥1。
    2.根据权利要求1所述的陀螺仪,其特征在于:所述第一环状结构经所述第一连接部与所述锚点固定连接。
    3.根据权利要求1所述的陀螺仪,其特征在于:所述第二环状结构经所述第一连接部与所述锚点固定连接。
    4.根据权利要求1所述的陀螺仪,其特征在于:多个所述第一环状结构间隔设置且相邻的所述第一环状结构经第三连接部相连接。
    5.根据权利要求1所述的陀螺仪,其特征在于:多个所述第二环状结构间隔设置且相邻的所述第二环状结构经第四连接部相连接。
    6.根据权利要求1所述的陀螺仪,其特征在于:所述驱动电极包括设置于所述第一环状结构外周的第一电极或设置于所述第二环状结构外周的第二电极。
    7.根据权利要求1所述的陀螺仪,其特征在于:所述驱动电极包括设置于所述第一环状结构外周的第一电极和与所述第一电极对应设置且位于所述第二环状结构外周的第二电极。
    8.根据权利要求7所述的陀螺仪,其特征在于:所述第一电极设置于所述第一环状结构与所述第二环状结构之间,所述第二电极设置于所述环状结构远离所述锚点一端。
    9.根据权利要求1所述的陀螺仪,其特征在于:所述锚点为具有多个对称设置的第二角部的星型结构。
    10.根据权利要求1所述的陀螺仪,其特征在于:所述锚点、第一环状结构、第二环状结构、第一连接部及第二连接部由半导体材料一体刻蚀成型。
PCT/CN2020/088518 2020-04-30 2020-04-30 陀螺仪 WO2021217667A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088518 WO2021217667A1 (zh) 2020-04-30 2020-04-30 陀螺仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088518 WO2021217667A1 (zh) 2020-04-30 2020-04-30 陀螺仪

Publications (1)

Publication Number Publication Date
WO2021217667A1 true WO2021217667A1 (zh) 2021-11-04

Family

ID=78331699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088518 WO2021217667A1 (zh) 2020-04-30 2020-04-30 陀螺仪

Country Status (1)

Country Link
WO (1) WO2021217667A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214461A1 (en) * 2009-10-12 2013-08-22 The Regents Of The University Of California Three-Dimensional Wafer-Scale Batch-Micromachined Sensor and Method of Fabrication for the Same
CN103620343A (zh) * 2011-07-04 2014-03-05 株式会社村田制作所 振子及振动陀螺仪
CN104931032A (zh) * 2015-06-26 2015-09-23 清华大学 一种单锚定点四质量块mems谐振式陀螺仪
CN108613669A (zh) * 2018-06-27 2018-10-02 苏州文智芯微系统技术有限公司 正多边形盘状mems谐振陀螺
CN109781086A (zh) * 2017-11-15 2019-05-21 北京自动化控制设备研究所 一种环形微机电陀螺敏感结构
CN109839104A (zh) * 2019-01-17 2019-06-04 苏州大学 单芯片多敏感单元的中心轴对称mems陀螺仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214461A1 (en) * 2009-10-12 2013-08-22 The Regents Of The University Of California Three-Dimensional Wafer-Scale Batch-Micromachined Sensor and Method of Fabrication for the Same
CN103620343A (zh) * 2011-07-04 2014-03-05 株式会社村田制作所 振子及振动陀螺仪
CN104931032A (zh) * 2015-06-26 2015-09-23 清华大学 一种单锚定点四质量块mems谐振式陀螺仪
CN109781086A (zh) * 2017-11-15 2019-05-21 北京自动化控制设备研究所 一种环形微机电陀螺敏感结构
CN108613669A (zh) * 2018-06-27 2018-10-02 苏州文智芯微系统技术有限公司 正多边形盘状mems谐振陀螺
CN109839104A (zh) * 2019-01-17 2019-06-04 苏州大学 单芯片多敏感单元的中心轴对称mems陀螺仪

Similar Documents

Publication Publication Date Title
US10809061B2 (en) Vibratory gyroscope including a plurality of inertial bodies
US9568314B2 (en) Bell-shaped vibrator type angular rate gyro
CN104931030A (zh) 一种内外环固定式压电驱动多环陀螺及其制备方法
CN104931031A (zh) 一种外缘固定式静电驱动多环陀螺及其制备方法
CN111504291B (zh) 陀螺仪
CN111964656B (zh) 一种陀螺仪
CN104897145A (zh) 一种外缘固定式压电驱动多环陀螺及其制备方法
TWI699514B (zh) 一種mems三軸陀螺儀
JP2002350138A (ja) 加速度と角速度との双方を検出する装置
US20190346265A1 (en) Synchronization structure for gyroscope
CN105940283A (zh) 改进的环形陀螺仪结构和陀螺仪
CN105043369A (zh) 一种外缘固定式激光加工压电驱动多环陀螺及其制备方法
CN216593437U (zh) 一种mems陀螺仪及电子设备
WO2022110353A1 (zh) Mems陀螺仪
JP6787437B2 (ja) ピエゾリングジャイロスコープ
CN113029121A (zh) Mems陀螺仪
WO2021217667A1 (zh) 陀螺仪
CN112710293B (zh) Mems陀螺仪
JP2007304046A (ja) 角速度センサ
CN111693036A (zh) 三轴mems陀螺仪
WO2022007101A1 (zh) Mems 陀螺仪及电子产品
US11585659B2 (en) MEMS wave gyroscope
CN114459451B (zh) 一种波动陀螺仪结构
CN106403921B (zh) 金属结构多环振动盘微陀螺及其制备方法
US11662206B2 (en) Micromachined gyroscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933868

Country of ref document: EP

Kind code of ref document: A1