WO2020255788A1 - 熱式センサ装置 - Google Patents

熱式センサ装置 Download PDF

Info

Publication number
WO2020255788A1
WO2020255788A1 PCT/JP2020/022619 JP2020022619W WO2020255788A1 WO 2020255788 A1 WO2020255788 A1 WO 2020255788A1 JP 2020022619 W JP2020022619 W JP 2020022619W WO 2020255788 A1 WO2020255788 A1 WO 2020255788A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
lower layer
laminated film
layer laminated
silicon nitride
Prior art date
Application number
PCT/JP2020/022619
Other languages
English (en)
French (fr)
Inventor
中野 洋
松本 昌大
保夫 小野瀬
太田 和宏
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US17/607,441 priority Critical patent/US11982555B2/en
Priority to DE112020001589.0T priority patent/DE112020001589T5/de
Priority to CN202080034643.1A priority patent/CN113811744B/zh
Publication of WO2020255788A1 publication Critical patent/WO2020255788A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/699Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters by control of a separate heating or cooling element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Definitions

  • the present invention relates to a thermal sensor device in which a heat generating resistor is formed on a diaphragm.
  • Patent Document 1 is a background technology in this technical field.
  • Patent Document 1 describes an airflow sensor capable of increasing the mechanical strength by increasing the film thicknesses of the lower thin film and the upper thin film holding the heat generating resistor and reducing the overall warpage.
  • This airflow sensor has a thin film heat generating portion (hereinafter referred to as a diaphragm) having a structure in which a lower thin film, a heater layer, and an upper thin film are laminated so as to bridge a cavity formed in a silicon substrate.
  • the lower thin film and the upper thin film are each composed of a compressive stress film and a tensile stress film, and the lower thin film and the upper thin film are laminated so as to have a symmetrical structure with the heater layer interposed therebetween.
  • the compressive stress film is made of a silicon oxide film having good adhesion
  • the tensile stress film is made of a silicon nitride film having good moisture resistance.
  • Patent Document 2 As a background technology in this technical field.
  • a film having a compressive stress and a film having a tensile stress are alternately arranged, and two or more films having a tensile stress film are arranged. This reduces the deflection of the diaphragm.
  • the heat generating resistor In order to detect minute changes in gas flow and concentration, it is necessary to raise the temperature of the heating resistor to increase the detection sensitivity. For example, in the air flow sensor, the heat generating resistor is heated to a high temperature of about 200 ° C. Further, in order to measure the gas concentration such as humidity, the heat generating resistor is heated to about 500 ° C.
  • the heating resistor When the heating resistor is heated, the temperature of the diaphragm rises and thermal expansion occurs. Strain occurs due to thermal expansion, and if it continues for a long period of time in this state, the heat generating resistor undergoes plastic deformation and the resistance value changes. Due to this change in resistance value, the heating temperature changes and an error occurs in the measured value.
  • Patent Document 1 and Patent Document 2 it is possible to reduce the warp of the diaphragm at room temperature, but expansion of the diaphragm occurs by heating the heat generating resistor. The effect of this expansion on the heating resistor was not considered and was not sufficiently considered.
  • the heat generating resistor In order to reduce the resistance change of the heating resistor due to the continuous high temperature state for a long period of time, it is effective to suppress the expansion of the heating resistor and reduce the strain. In order to reduce the strain due to temperature change, it is desirable to cover the heat generating resistor with a silicon oxide film having a small coefficient of thermal expansion and to avoid using a silicon nitride film having a large coefficient of thermal expansion as much as possible.
  • the difference in the coefficient of thermal expansion from the silicon substrate holding the diaphragm becomes large, and the diaphragm is wrinkled and deformed. When the diaphragm is deformed, the diaphragm is liable to crack and the mechanical reliability is impaired.
  • the present invention has been made in view of the above problems, and an object of the present invention is to maintain measurement accuracy for a long period of time by suppressing plastic deformation due to thermal expansion of the heating resistor and reducing the resistance change of the heating resistor.
  • the purpose is to provide a thermal sensor device capable of providing a capable.
  • the present invention comprises a substrate on which an opening is formed and a diaphragm having a structure in which a lower layer laminated film, a heat generating resistor, and an upper layer laminated film are laminated so as to bridge the opening.
  • the film thickness of the lower layer laminated film is larger than the film thickness of the upper layer laminated film
  • the average thermal expansion coefficient of the lower layer laminated film is larger than the average thermal expansion coefficient of the upper layer laminated film. It is assumed that the lower layer laminated film is composed of a plurality of films having different thermal expansion coefficients, and the film having the largest thermal expansion coefficient among the plurality of films is formed below the thickness center of the lower layer laminated film. ..
  • the heat generating resistor is arranged on the upper layer side of the thickness center of the diaphragm. Further, since the average coefficient of thermal expansion of the lower layer laminated film is larger than the average coefficient of thermal expansion of the upper layer laminated film, the diaphragm is bent and deformed when the heat generating resistor is heated. Therefore, in addition to the elongation strain due to the thermal expansion of the diaphragm, the compression strain due to the bending deformation of the diaphragm occurs on the upper layer side of the thickness center of the diaphragm.
  • the elongation strain of the heat generating resistor arranged above the center of the thickness of the diaphragm is reduced by the compression strain due to the bending deformation of the diaphragm.
  • plastic deformation due to thermal expansion of the heat generating resistor is suppressed, and the resistance change of the heat generating resistor is reduced, so that the measurement accuracy of the thermal sensor device can be maintained for a long period of time.
  • the thermal sensor device According to the thermal sensor device according to the present invention, it is possible to maintain the measurement accuracy for a long period of time by suppressing plastic deformation due to thermal expansion of the heat generating resistor and reducing the resistance change of the heat generating resistor.
  • the first embodiment according to the present invention will be described below.
  • the configuration of the sensor element 1 of the thermal flowmeter according to this embodiment will be described with reference to FIG.
  • the substrate 2 of the sensor element 1 is made of a material having good thermal conductivity such as silicon.
  • the lower layer laminated film 3a and the upper layer laminated film 3b are formed on the substrate 2.
  • a heat generating resistor 5 is sandwiched between the lower layer laminated film 3a and the upper layer laminated film 3b, a heating temperature sensor 7 that detects the heating temperature of the heat generating resistor 5 around the heat generating resistor 5, and both sides of the heating temperature sensor 7.
  • the upstream temperature sensors 8a and 8b and the downstream temperature sensors 9a and 9b are formed.
  • the upstream temperature sensors 8a and 8b are arranged on the upstream side of the air flow 6 with respect to the heat generating resistor 5, and the downstream temperature sensors 9a and 9b are arranged on the downstream side of the air flow 6 with respect to the heat generating resistor 5. .. Further, on the lower layer laminated film 3a, temperature-sensitive resistors 10, 11 and 12 whose resistance value changes according to the temperature of the air flow 6 are arranged. The outermost surface of the sensor element 1 is covered with the upper laminated film 3b. The upper laminated film 3b not only provides electrical insulation, but also acts as a protective film. Further, by removing a part of the substrate 2 from the back surface by etching or the like, the diaphragm 4 as a thin film heat generating portion is formed.
  • the temperature of the heat generating resistor 5 is detected by the heating temperature sensor 7, the heating is controlled so as to be a constant temperature higher than the temperature of the air flow 6, and the upstream temperature sensors 8a and 8b generated by the air flow 6 are generated.
  • the air flow rate is detected from the temperature difference between the temperature sensor 9a and 9b on the downstream side.
  • These heat generating resistors 5, heating temperature sensors 7, upstream temperature sensors 8a and 8b, downstream temperature sensors 9a and 9b, and resistance temperature detectors 10, 11 and 12 are made of a material whose resistance value changes depending on the temperature.
  • it may be formed of a metal material having a large temperature coefficient of resistance, such as platinum, molybdenum, tungsten, or a nickel alloy.
  • the lower layer laminated film 3a and the upper layer laminated film 3b are formed into a thin film having a thickness of about 2 microns by silicon oxide (SiO2) or silicon nitride (Si3N4), and have a structure capable of obtaining a thermal insulation effect.
  • each of the resistors constituting the heat generating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, and the resistance temperature detectors 10, 11 and 12 An electrode pad 13 on which a plurality of electrodes are formed is provided to connect the sensor to the drive / detection circuit.
  • the electrode pad 13 is made of aluminum or the like.
  • wiring for connecting the heat generating resistor 5 and each temperature sensor to the electrode pad 13 is formed.
  • FIG. 2 shows the cross-sectional structure of the sensor element 1.
  • a lower layer laminated film 3a is formed on the substrate 2.
  • the lower layer laminated film 3a has a structure in which a silicon oxide film and a silicon nitride film are alternately laminated.
  • a silicon oxide film 14a, a silicon nitride film 15a, and a silicon oxide film 14c are formed by thermally oxidizing the Si substrate in this order from the lower layer.
  • These silicon oxide films 14a and 14c and the silicon nitride film 15a can be formed by a CVD method.
  • a heating resistor 5, a heating temperature sensor 7, upstream temperature sensors 8a and 8b, and downstream temperature sensors 9a and 9b are formed on the lower laminated film 3a.
  • An upper layer laminated film 3b is formed on these upper layers.
  • a silicon oxide film 14d, a silicon nitride film 15c, and a silicon oxide film 14e are formed in this order from the bottom of the upper laminated film.
  • These silicon oxide films 14d to 14e and the silicon nitride film 15c can be formed by a plasma CVD method.
  • the material of the lower layer laminated film 3a is a silicon oxide film having a different coefficient of thermal expansion and a silicon nitride film, but the material is not limited to these materials.
  • the coefficient of thermal expansion of the silicon oxide film is about 0.5 ⁇ 10-6 (/ ° C)
  • the coefficient of thermal expansion of the silicon nitride film is about 3.6 ⁇ 10-6 (/ ° C).
  • materials having different coefficients of thermal expansion can be used, and for example, aluminum nitride can be used instead of the silicon nitride film.
  • the coefficient of thermal expansion of aluminum nitride is about 5.7 ⁇ 10-6 (/ ° C).
  • a silicon oxide film and a silicon nitride film are used as the materials of the upper laminated film 3b, but the film is not limited to these films.
  • the average coefficient of thermal expansion of the upper laminated film 3b may be smaller than the average coefficient of thermal expansion of the lower layer laminated film 3a. Therefore, it is not necessary to use two types of films such as a silicon oxide film and a silicon nitride film, and the silicon oxide film alone may be used.
  • the average coefficient of thermal expansion is defined by the weighted average of the film thickness of the coefficient of thermal expansion of each film.
  • the series circuit including the heating temperature sensor 7 and the temperature sensitive resistor 10 whose resistance value changes depending on the temperature of the heat generating resistor 5 and the temperature sensitive resistor 11 and the temperature sensitive resistor 12
  • a bridge circuit is configured by connecting the series circuits in parallel, and a reference voltage Vref is applied to each series circuit. The intermediate voltage of these series circuits is taken out and connected to the amplifier 16. The output of the amplifier 16 is connected to the base of the transistor 17. The collector of the transistor 17 is connected to the power supply VB, and the emitter is connected to the heat generating resistor 5 to form a feedback circuit.
  • a bridge circuit including a series circuit including the upstream side temperature sensor 8a and the downstream side temperature sensor 9a and a series circuit including the downstream side temperature sensor 9b and the upstream side temperature sensor 8b are connected in parallel to form a bridge circuit.
  • a reference voltage Vref is applied.
  • the resistance change of the heat generating resistor 5 in the thermal sensor device as described above will be described.
  • the resistance change occurs not only in the heat generating resistor 5, but also in the resistors formed on the diaphragm 4 such as the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, and the downstream temperature sensors 9a and 9b.
  • the heating resistor 5 and the heating temperature sensor 7, which have a high temperature have a large change in resistance and are highly effective as obtained by the present invention.
  • the lower layer laminated film 3a and the upper layer laminated film 3b on which the heat generation resistor 5 is formed are films having a small coefficient of thermal expansion. found. That is, it is necessary to increase the film thickness of the silicon oxide and decrease the film thickness of the silicon nitride film.
  • FIG. 4 shows the warped shape when the diaphragm 4 is tensile and compressible.
  • FIG. 4A is a cross-sectional view conceptually showing the deformation of the sensor element used in the thermal sensor device, and the film thickness is set so that the synthetic stress of the laminated film forming the diaphragm 4 becomes tensile. It is a figure which shows the cross-sectional shape of the diaphragm 4 in the case.
  • a silicon oxide film and a silicon nitride film are laminated to form a diaphragm 4.
  • Each film thickness is set so that the combined stress of the silicon oxide film and the silicon nitride film is tensile.
  • the diaphragm 4 has a flat shape and can be manufactured satisfactorily.
  • FIG. 4B is a diagram showing a cross-sectional shape of the diaphragm 4 when the film thickness is set so that the combined stress of the laminated film forming the diaphragm 4 becomes compressible.
  • each film thickness is set so that the combined stress of the silicon oxide film and the silicon nitride film is compressible.
  • the ratio of the silicon oxide film of the diaphragm 4 is increased to make it compressible, the diaphragm 4 is wrinkled and the diaphragm 4 is deformed as shown in the figure.
  • the expansion of the heat generating resistor 5 can be suppressed without changing the film thickness ratio of the silicon nitride film and the silicon oxide film of the entire diaphragm 4. Specific examples will be described below.
  • FIG. 5 is a cross-sectional view showing deformation of the sensor element 1 in FIG. 2 when the heat generating resistor 5 is heated.
  • a silicon oxide film 14a, a silicon nitride film 15a, and a silicon oxide film 14c are formed in this order from the lower layer.
  • the film thickness T1 of the silicon oxide film 14a on the lower layer side and the film thickness T3 of the silicon oxide film on the upper layer side are formed so that T1 ⁇ T3.
  • the silicon nitride film 15a having a large coefficient of thermal expansion is arranged on the lower layer side.
  • the lower layer laminated film 3a is composed of silicon oxide films 14a and 14c and silicon nitride films 15a having different coefficients of thermal expansion, and the silicon nitride film 15a having the largest coefficient of thermal expansion among these films is the thickness center of the lower layer laminated film 3a. It is formed on the lower layer side.
  • FIG. 6 shows the strain inside the membrane of the diaphragm 4 generated when the heat generating resistor 5 is heated in the configuration of the present invention.
  • elongation strain ⁇ s is generated according to the average coefficient of thermal expansion of the entire film constituting the diaphragm 4.
  • the asymmetry of the film configuration causes a difference in thermal expansion coefficient between the upper layer side and the lower layer side, which causes bending strain ⁇ b.
  • Compressive strain is generated on the inner peripheral side and elongation strain is generated on the outer peripheral side in bending deformation.
  • the strain due to the bending strain ⁇ b acts as a compressive strain ⁇ bm.
  • the strain ⁇ sm of the heating element is a value obtained by offsetting the elongation strain ⁇ s from the compression strain ⁇ bm.
  • the substrate 2 on which the opening 2a is formed and the diaphragm 4 having a structure in which the lower laminated film 3a, the heat generating resistor 5, and the upper laminated film 3b are laminated so as to bridge the opening 2a are provided.
  • the thickness of the lower laminated film 3a is larger than the thickness of the upper laminated film 3b
  • the average thermal expansion coefficient of the lower laminated film 3a is larger than the average thermal expansion coefficient of the upper laminated film 3b.
  • the lower layer laminated film 3a is composed of a plurality of films 14a, 15a, 14c having different thermal expansion coefficients, and the film 15a having the largest thermal expansion coefficient among the plurality of films 14a, 15a, 14c is larger than the thickness center of the lower layer laminated film 3a. It is formed on the lower side.
  • the heat generating resistor 5 is arranged on the upper layer side of the thickness center of the diaphragm 4. Will be done. Further, since the average coefficient of thermal expansion of the lower layer laminated film 3a is larger than the average coefficient of thermal expansion of the upper layer laminated film 3b, the diaphragm 4 is bent and deformed when the heat generating resistor 5 is heated.
  • the compression strain ⁇ bm due to the bending deformation of the diaphragm 4 is generated on the upper layer side of the thickness center of the diaphragm 4.
  • the elongation strain of the heat generating resistor 5 arranged on the upper layer side of the thickness center of the diaphragm 4 is reduced by the compression strain ⁇ bm due to the bending deformation of the diaphragm 4.
  • the silicon oxide film and the silicon nitride film are alternately formed on the lower layer laminated film 3a, and the film thickness T1 of the lowermost layer silicon oxide film 14a of the lower layer laminated film 3a is the silicon oxide of the uppermost layer of the lower layer laminated film 3a. It is smaller than the film thickness T3 of the film 14c.
  • the silicon nitride film 15a having a large coefficient of thermal expansion is formed so as to be closer to the lower layer side than the thickness center of the lower layer laminated film 3a.
  • the upper layer laminated film 3b is composed of a silicon oxide film and a silicon nitride film, and the film thickness of the silicon nitride film 15c contained in the upper layer laminated film 3b is larger than the film thickness of the silicon nitride film 15a contained in the lower layer laminated film 3a. small.
  • the coefficient of thermal expansion of the upper laminated film 3b can be made smaller, and the coefficient of thermal expansion on the lower layer side of the diaphragm 4 can be made larger.
  • the heat generating resistor 5 is heated, the expansion of the lower layer side of the lower layer laminated film 3a becomes large, so that the bending moment increases, and the diaphragm 4 can generate a large bending strain.
  • the heat generating resistor 5 is arranged between the two silicon nitride films 15c and 15a, oxidation of the heat generating resistor 5 can be prevented.
  • FIG. 7 shows the cross-sectional structure of the sensor element 1.
  • a lower layer laminated film 3a is formed on the substrate 2.
  • the lower layer laminated film 3a has a structure in which a silicon oxide film and a silicon nitride film are alternately laminated. From the lower layer, a silicon oxide film 14a, a silicon nitride film 15a, a silicon oxide film 14b, a silicon nitride film 15b, and a silicon oxide film 14c are formed by thermally oxidizing the Si substrate.
  • silicon oxide films 14a to 14c and silicon nitride films 15a and 15b can be formed by a CVD method.
  • a heating resistor 5, a heating temperature sensor 7, upstream temperature sensors 8a and 8b, and downstream temperature sensors 9a and 9b are formed on the lower laminated film 3a.
  • An upper layer laminated film 3b is formed on these upper layers.
  • a silicon oxide film 14d, a silicon nitride film 15c, and a silicon oxide film 14e are formed on the upper laminated film 3b in this order from the bottom.
  • These silicon oxide films 14d and 14e and the silicon nitride film 15c can be formed by a plasma CVD method.
  • a silicon oxide film and a silicon nitride film are used as the materials of the upper laminated film 3b, but the film is not limited to these films. Also in this embodiment, the average thermal expansion coefficient of the upper laminated film 3b may not exceed the average thermal expansion coefficient of the lower laminated film 3a. Therefore, it is not necessary to use two types of films such as a silicon oxide film and a silicon nitride film, and the silicon oxide film alone may be used.
  • the silicon oxide film and the silicon nitride film are used for the lower layer laminated film 3a, but in addition to these films, materials having different coefficients of thermal expansion can also be used.
  • materials having different coefficients of thermal expansion can also be used.
  • aluminum nitride or the like can be used instead of the silicon nitride film.
  • FIG. 7 is a cross-sectional view showing deformation of the sensor element 1 in FIG. 5 when the heat generating resistor 5 is heated.
  • the film thickness T1 of the silicon oxide film 14a of the lowermost layer and the film thickness T3 of the silicon oxide film of the uppermost layer are formed so that T1 ⁇ T3.
  • the silicon nitride films 15a and 15b having a large coefficient of thermal expansion are formed so as to be closer to the lower layer side than the thickness center of the lower layer laminated film 3a.
  • the film thickness of the silicon oxide film 14b sandwiched between the plurality of silicon nitride films is T2
  • the film is formed so that T3> T2.
  • the silicon nitride film 15b is formed on the lower layer side, and when the heat generating resistor 5 is heated, the lower layer side of the lower layer laminated film 3a expands significantly, and the bending moment acting on the diaphragm 4 increases. , The bending strain generated in the diaphragm 4 can be made larger.
  • FIG. 9 shows a configuration in which the effects of the present invention can be further obtained with respect to the plurality of silicon nitride films contained in the lower layer laminated film 3a.
  • the lowest layer silicon nitride film 15a is formed to be the thickest. That is, the silicon nitride film 15b is made thinner by the amount that the silicon nitride film 15a is made thicker.
  • the expansion of the lower layer side can be increased when the heat generating resistor 5 is heated without changing the synthesized thickness of the silicon nitride film of the entire film.
  • the upper laminated film 3b is composed of silicon oxide films 14d and 14e and the silicon nitride film 15c, and the silicon nitride film 15c contained in the upper laminated film 3b is more than the silicon nitride film 15a and 15b contained in the lower laminated film 3a. It is thinly formed. As a result, the coefficient of thermal expansion of the upper laminated film 3b can be made smaller, and the coefficient of thermal expansion on the lower layer side of the diaphragm 4 can be made larger. With this configuration, when the heat generating resistor 5 is heated, the expansion of the lower layer side of the lower layer laminated film 3a becomes large, so that the bending moment increases, and a large bending strain can be generated by the diaphragm 4.
  • the configuration in which the silicon nitride film contained in the lower layer laminated film 3a is formed in two layers has been described, but the effect of the present invention can be obtained even in the configuration in which three layers are formed.
  • the thin silicon nitride film has little influence on the expansion of the entire diaphragm. Therefore, such a significantly thinned film (for example, ⁇ 20 nm, or 1/10 or less of the total film thickness of the entire silicon nitride) is ignored.
  • At least two silicon nitride films are formed on the lower laminated film 3a, and the thickness T2 of the silicon oxide film 14b sandwiched between the two silicon nitride films 15a and 15b of the lower laminated film is the lower layer laminated film 3a. It is smaller than the film thickness T3 of the uppermost silicon oxide film 14c.
  • the silicon nitride film 15b is formed on the lower layer side, and when the heat generating resistor 5 is heated, the lower layer side of the lower layer laminated film 3a expands significantly, and the diaphragm Since the bending moment acting on the diaphragm 4 is increased, the bending strain generated in the diaphragm 4 can be further increased.
  • the film thickness Tn1 of the lowest layer silicon nitride film 15a is the largest among the plurality of silicon nitride films 15a and 15b contained in the lower layer laminated film 3a.
  • the expansion of the lower layer side can be increased when the heat generating resistor 5 is heated without changing the combined thickness Tn1 + Tn2 of the silicon nitride films 15a and 15b of the entire film.
  • the heat generating resistor 5 when the heat generating resistor 5 is heated, the lower layer side of the lower layer laminated film 3a expands significantly and the bending moment acting on the diaphragm 4 increases, so that the bending strain generated in the diaphragm 4 becomes larger. be able to.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. It is also possible to add a part of the configuration of another embodiment to the configuration of one embodiment, delete a part of the configuration of one embodiment, or replace it with a part of another embodiment. It is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Fluid Mechanics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

発熱抵抗体の熱膨張による塑性変形を抑制して発熱抵抗体の抵抗変化を低減することにより、長期間測定精度を維持できる熱式センサ装置を提供する。 開口部2aが形成された基板2と、開口部2aを架橋するように、下層積層膜3a、発熱抵抗体5、および上層積層膜3bを積層した構造のダイアフラム4とを備えた熱式センサ装置1において、下層積層膜3aの膜厚が上層積層膜3bの膜厚よりも大きく、下層積層膜3aの平均熱膨張係数が上層積層膜3bの平均熱膨張係数よりも大きく、下層積層膜3aが熱膨張係数の異なる複数の膜から成り、前記複数の膜のうち最も熱膨張係数の大きい膜が下層積層膜3aの厚さ中心よりも下側に形成されている。

Description

熱式センサ装置
 本発明は、ダイアフラムに発熱抵抗体を形成した熱式センサ装置に関する。
 本技術分野の背景技術として、特許文献1がある。特許文献1には、発熱抵抗体を保持する下部薄膜と上部薄膜の膜厚を厚くして機械的強度を高めることができ、且つ全体の反りを低減したエアフローセンサが記載されている。このエアフローセンサは、シリコン基板に形成した空洞部を架橋するように、下部薄膜、ヒータ層および上部薄膜を積層した構造の薄膜発熱部(以下、ダイアフラム)を有する。下部薄膜及び上部薄膜は、それぞれ圧縮応力膜と引張応力膜とを組み合わせた構成とし、ヒータ層を挟んで下部薄膜と上部薄膜とが対称構造となるように積層される。圧縮応力膜は密着性の良い酸化シリコン膜で構成し、引張応力膜は、耐湿性の良い窒化シリコン膜で構成している。下部薄膜と上部薄膜とを対称構造にすることで反りモーメントを打ち消してダイアフラム全体の反りを抑制できる。これにより、特許文献1のエアフローセンサは、下部薄膜及び上部薄膜の膜厚を厚くすることができ、ダイアフラムの機械的強度の向上を図っている。
 また、本技術分野の背景技術として、特許文献2がある。特許文献2には、発熱抵抗体の下層の絶縁膜について、圧縮応力を有する膜と引っ張り応力を有する膜とが交互に配置され且つ引っ張り応力膜を有する膜が2層以上配置している。これによりダイアフラムのたわみを低減している。
特開平11-271123号公報
特開2010-133897号公報
 気体の流れや濃度などの微小な変化を検出するためには、発熱抵抗体の温度を高温化し検出感度を高める必要がある。例えば、エアフローセンサにおいては、発熱抵抗体を200℃程度の高温に加熱している。また、湿度などの気体濃度を計測するためには発熱抵抗体を500℃程度に加熱している。
 発熱抵抗体を加熱するとダイアフラムの温度が上昇し熱膨張が生じる。熱膨張によりひずみが生じ、この状態で長期間継続すると発熱抵抗体に塑性変形が生じ抵抗値が変化する。この抵抗値の変化により加熱温度が変化して計測値に誤差が生じる。
 特許文献1や特許文献2では、室温でのダイアフラムの反りを低減することが可能であるが、発熱抵抗体を加熱することによるダイアフラムの膨張は生じる。この膨張が発熱抵抗体へ与える影響については考慮されておらず配慮が十分ではなかった。
 高温状態を長期間継続することによる発熱抵抗体の抵抗変化を低減するためには、発熱抵抗体の膨張を抑えひずみを小さくすることが有効である。温度変化によるひずみを低減するためには、熱膨張係数の小さい酸化シリコン膜により発熱抵抗体を覆い、熱膨張係数の大きい窒化シリコン膜は極力使用しないことが望ましい。しかし、このような構成にすると、ダイアフラムを保持するシリコン基板との熱膨張係数差が大きくなりダイアフラムにしわが生じ異形化する。ダイアフラムが異形化すると、ダイアフラムに割れが発生しやすくなり機械的信頼性が損なわれる。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、発熱抵抗体の熱膨張による塑性変形を抑制して発熱抵抗体の抵抗変化を低減することにより、長期間測定精度を維持できる熱式センサ装置を提供することにある。
 上記目的を達成するために、本発明は、開口部が形成された基板と、前記開口部を架橋するように、下層積層膜、発熱抵抗体、および上層積層膜を積層した構造のダイアフラムとを備えた熱式センサ装置において、前記下層積層膜の膜厚が前記上層積層膜の膜厚よりも大きく、前記下層積層膜の平均熱膨張係数が前記上層積層膜の平均熱膨張係数よりも大きく、前記下層積層膜が熱膨張係数の異なる複数の膜から成り、前記複数の膜のうち最も熱膨張係数の大きい膜が前記下層積層膜の厚さ中心よりも下側に形成されているものとする。
 以上のように構成した本発明によれば、下層積層膜の膜厚が上層積層膜の膜厚よりも大きいため、ダイアフラムの厚さ中心よりも上層側に発熱抵抗体が配置される。また、下層積層膜の平均熱膨張係数が上層積層膜の平均熱膨張係数よりも大きいため、発熱抵抗体を加熱したときにダイアフラムに曲げ変形が生じる。そのため、ダイアフラムの厚さ中心よりも上層側には、ダイアフラムの熱膨張による伸びひずみに加えて、ダイアフラムの曲げ変形による圧縮ひずみが生じる。その結果、ダイアフラムの厚さ中心より上層側に配置されている発熱抵抗体の伸びひずみは、ダイアフラムの曲げ変形による圧縮ひずみによって低減される。以上の作用により、発熱抵抗体の熱膨張による塑性変形が抑制され、発熱抵抗体の抵抗変化が低減されるため、熱式センサ装置の測定精度を長期間維持することが可能となる。
 本発明に係る熱式センサ装置によれば、発熱抵抗体の熱膨張による塑性変形を抑制して発熱抵抗体の抵抗変化を低減することにより、長期間測定精度を維持することが可能となる。
本発明の熱式センサ装置に用いられるセンサ素子の一実施例に係る平面図である。 図1のX-X‘断面を示す断面図である。 本発明の熱式センサ装置の駆動回路(回路構成)の一実施例を示す回路図である。 ダイアフラムが引張性である場合と圧縮性である場合の反り形状を示す図である。 本発明に係るセンサ素子の一実施例における発熱部を拡大した断面図である。 本発明に係るセンサ素子の一実施例における発熱部の断面方向のひずみを示す図である。 本発明の熱式センサ装置に用いられるセンサ素子の一実施例に係る断面図である。 本発明の熱式センサ装置に用いられるセンサ素子の一実施例に係る断面図である。 本発明の熱式センサ装置に用いられるセンサ素子の一実施例に係る断面図である。
 以下、本発明に係る実施例について説明する。各実施例は、一例としてエンジンの吸気通路に取り付け、吸気通路を流れる吸入空気の流量計測を行うものについて説明するが、発熱抵抗体の放熱量や温度の変化から気体の湿度や水素濃度を計測する気体センサにも適用できる。
 本発明に係る第1の実施例について以下説明する。本実施例による熱式流量計のセンサ素子1の構成を図1により説明する。センサ素子1の基板2は、シリコンなどの熱伝導率の良い材料で構成される。そして、基板2上に下層積層膜3a,上層積層膜3bを形成する。下層積層膜3aと上層積層膜3bに挟まれるように発熱抵抗体5と、発熱抵抗体5の周囲に発熱抵抗体5の加熱温度を検出する加熱温度センサ7と、加熱温度センサ7の両側には上流側温度センサ8a,8b、下流側温度センサ9a,9bが形成される。上流側温度センサ8a,8bは発熱抵抗体5に対して空気流6の流れの上流側、下流側温度センサ9a,9bは発熱抵抗体5に対して空気流6の流れの下流側に配置する。また、下層積層膜3a上には、空気流6の温度に応じて抵抗値が変化する感温抵抗体10,11,12を配置する。そして、センサ素子1の最表面は上層積層膜3bによって覆われる。上層積層膜3bは電気的絶縁を行うほか、保護膜としても働く。さらに、基板2の一部を裏面からエッチングなどにより除去することで、薄膜発熱部としてのダイアフラム4を形成する。
 上記の構成において、発熱抵抗体5の温度を加熱温度センサ7で検出し、空気流6の温度に対して一定温度高くなるように加熱制御し、空気流6により生じる上流側温度センサ8a,8bと下流側温度センサ9a,9bの温度差から空気流量を検出する。
 これらの発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12は温度によって抵抗値が変化する材料で形成する。例えば、白金、モリブデン、タングステン、ニッケル合金などの抵抗温度係数の大きい金属材料により形成すると良い。また、下層積層膜3a、上層積層膜3bは酸化シリコン(SiO2)や窒化シリコン(Si3N4)により約2ミクロン厚の薄膜状に形成し、熱絶縁効果が得られる構造とする。
 センサ素子1の端部には、発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12を構成する各抵抗体を駆動・検出回路と接続するための複数の電極が形成された電極パッド13を設ける。尚、電極パッド13はアルミなどで形成する。また、発熱抵抗体5や各温度センサと電極パッド13を接続するための配線を形成する。
 図2にセンサ素子1の断面構造を示す。基板2上には下層積層膜3aが形成される。下層積層膜3aは、酸化シリコン膜と窒化シリコン膜を交互に積層した構成である。下層から順に、Si基板を熱酸化した酸化シリコン膜14a、窒化シリコン膜15a、酸化シリコン膜14cが形成される。これらの酸化シリコン膜14a,14c及び窒化シリコン膜15aはCVD法により形成することができる。下層積層膜3a上には発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9bが形成される。これらの上層には上層積層膜3bが形成される。上層積層膜は下から順に、酸化シリコン膜14d、窒化シリコン膜15c、酸化シリコン膜14eが形成される。これらの酸化シリコン膜14d~14e及び窒化シリコン膜15cはプラズマCVD法により形成することができる。
 本実施例では、下層積層膜3aの材料として熱膨張係数の異なる酸化シリコン膜と窒化シリコン膜を用いた構成としているがこれらの材料に限定されるものではない。例えば、酸化シリコン膜の熱膨張係数は0.5×10-6(/℃)、窒化シリコン膜の熱膨張係数は3.6×10-6(/℃)程度である。これらの膜の他に、熱膨張係数の異なる材料を用いることができ例えば窒化シリコン膜に変えて窒化アルミニウムなどの用いることができる。窒化アルミニウムの熱膨張係数は5.7×10-6(/℃)程度である。
 本実施例では、上層積層膜3bの材料として酸化シリコン膜と窒化シリコン膜を用いたがこれらの膜に限定されるものではない。本発明の実施においては、上層積層膜3bの平均熱膨張係数が下層積層膜3aの平均熱膨張係数よりも小さくなる構成とすればよい。したがって、酸化シリコン膜と窒化シリコン膜など2種の膜を用いる必要はなく、酸化シリコン膜のみで構成しても良い。平均熱膨張係数は、それぞれの膜の熱膨張係数の膜厚の加重平均で定義される。
 上記に示した酸化シリコン膜および窒化シリコン膜の具体的な膜厚は本発明による作用・効果とともに後述する。
 次に、センサ素子1の駆動・検出回路について説明する。
 図3に示されるように、発熱抵抗体5の温度によって抵抗値が変化する加熱温度センサ7と感温抵抗体10とからなる直列回路と、感温抵抗体11と感温抵抗体12とからなる直列回路とを並列に接続したブリッジ回路を構成し、各直列回路に基準電圧Vrefを印加する。これらの直列回路の中間電圧を取り出し、増幅器16に接続する。増幅器16の出力は、トランジスタ17のベースに接続する。トランジスタ17のコレクタは電源VBに接続し、エミッタは発熱抵抗体5に接続し、フィードバック回路を構成する。これにより、発熱抵抗体5の温度Thは空気流6の温度Taに対して温度ΔTh(=Th-Ta)高くなるように制御される。
 そして、上流側温度センサ8aと下流側温度センサ9aとからなる直列回路と、下流側温度センサ9bと上流側温度センサ8bとからなる直列回路とを並列接続したブリッジ回路を構成し、ブリッジ回路に基準電圧Vrefを印加する。空気流により上流側温度センサ8a,8bと下流側温度センサ9a,9bとに温度差が発生すると、ブリッジ回路の抵抗バランスが変化して差電圧が発生する。この差電圧を増幅器18を介して検出することよって空気流量に応じた出力Voutが得られる。
 以下、上記のような熱式センサ装置における発熱抵抗体5の抵抗変化について説明する。尚、抵抗変化は発熱抵抗体5だけでなく加熱温度センサ7や上流側温度センサ8a,8bと下流側温度センサ9a,9bなどダイアフラム4上に形成された抵抗体にも生ずる。
特に温度が高くなる発熱抵抗体5と加熱温度センサ7は抵抗変化の大きく本発明によって得られる効果が高い。
 発熱抵抗体5の抵抗変化を低減するためには、発熱抵抗体5が形成される下層積層膜3a及び上層積層膜3bを熱膨張係数の小さい膜とするとこが好ましいことが発明者の実験により判明した。つまり酸化シリコンの膜厚を増やし、窒化シリコン膜の膜厚を減らすことが必要である。
 しかしながら、ダイアフラム4を酸化シリコンにより形成すると、ダイアフラム4が異形となる。図4にダイアフラム4が引張性である場合と圧縮性である場合の反り形状を示す。
 図4(A)は、熱式センサ装置に用いられるセンサ素子の変形を概念的に示す断面図であり、ダイアフラム4を形成する積層膜の合成応力が引張性となるように膜厚を設定した場合の、ダイアフラム4の断面形状を示す図である。図4(A)では、酸化シリコン膜と窒化シリコン膜を積層してダイアフラム4を形成している。酸化シリコン膜及び窒化シリコン膜の合成応力は引張性となるように、各膜厚が設定されている。この場合、図4(A)に示すように、ダイアフラム4は平坦な形状となり良好に製造することができる。
 図4(B)は、ダイアフラム4を形成する積層膜の合成応力が圧縮性となるように膜厚を設定した場合の、ダイアフラム4の断面形状を示す図である。図4(B)では、酸化シリコン膜及び窒化シリコン膜の合成応力は圧縮性となるように、各膜厚が設定されている。ダイアフラム4の酸化シリコン膜の比率を増して圧縮性とした場合、図に示すように、ダイアフラム4にしわが生じダイアフラム4が異形化する。
 以上のことから、ダイアフラム4の膜構成としては引張り性を持つように形成する必要があるため,引張応力が得られるように窒化シリコン膜を所定の厚さ設ける必要がある。
 上記のように窒化シリコン膜を所定の厚さ設ける必要があるため、ダイアフラム4の熱膨張係数の低減には制限が生じる。この制約を満たしてダイアフラム4の膨張による発熱抵抗体5のひずみを抑制することが本発明の目的である。本発明によれば、ダイアフラム4全体の窒化シリコン膜と酸化シリコン膜の膜厚比を変えることなく、発熱抵抗体5の膨張を抑制することができる。以下、具体的実施例を説明する。
 図5は、図2におけるセンサ素子1の発熱抵抗体5を加熱したときの変形を示す断面図である。下層積層膜3aは、下層から順に、酸化シリコン膜14a、窒化シリコン膜15a、酸化シリコン膜14cが形成される。ここで、下層積層膜3aのうち、下層側の酸化シリコン膜14aの膜厚T1と上層側の酸化シリコン膜の膜厚T3は、T1<T3となるように形成している。これにより熱膨張係数の大きい窒化シリコン膜15aがより下層側へ配置されるようになる。つまり、下層積層膜3aは熱膨張係数の異なる酸化シリコン膜14a,14c、窒化シリコン膜15aから成り、これらの膜のうち最も熱膨張係数の大きい窒化シリコン膜15aが下層積層膜3aの厚さ中心よりも下層側に形成される。この構成とすることで、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側が大きく膨張し、ダイアフラム4に作用する曲げモーメントが増大するため、ダイアフラム4に発生する曲げひずみをより大きくすることができる。
 以下、曲げひずみを増加させることによる効果を説明する。図6に本発明の構成において、発熱抵抗体5を加熱した時に発生するダイアフラム4の膜内部のひずみを示す。発熱抵抗体5を加熱するとダイアフラム4を構成する膜全体の平均熱膨張係数に応じて伸びひずみεsが生じる。これに加えて膜構成の非対称性により上層側と下層側の熱膨張係数差が生じることで曲げひずみεbが発生する。曲げ変形における内周側は圧縮ひずみが生じ、外周側は伸びひずみが生じる。発熱抵抗体5は、曲げ変形における内周側、つまりダイアフラム4の厚さ中心よりも上層側に配置されているため、曲げひずみεbによるひずみは圧縮ひずみεbmが働く。発熱体のひずみεsmは、この圧縮ひずみεbmより伸びひずみεsが相殺された値となる。これにより、発熱体の伸びひずみを低減され、温度の変化にともなう発熱体の伸縮を抑制し、伸縮にともなる発熱体の抵抗変化を低減することができる。
 本実施例では、開口部2aが形成された基板2と、開口部2aを架橋するように、下層積層膜3a、発熱抵抗体5、および上層積層膜3bを積層した構造のダイアフラム4とを備えた熱式センサ装置1において、下層積層膜3aの膜厚が上層積層膜3bの膜厚よりも大きく、下層積層膜3aの平均熱膨張係数が上層積層膜3bの平均熱膨張係数よりも大きく、下層積層膜3aが熱膨張係数の異なる複数の膜14a,15a,14cから成り、複数の膜14a,15a,14cのうち最も熱膨張係数の大きい膜15aが下層積層膜3aの厚さ中心よりも下側に形成されている。
 以上のように構成した本実施例によれば、下層積層膜3aの膜厚が上層積層膜3bの膜厚よりも大きいため、ダイアフラム4の厚さ中心よりも上層側に発熱抵抗体5が配置される。また、下層積層膜3aの平均熱膨張係数が上層積層膜3bの平均熱膨張係数よりも大きいため、発熱抵抗体5を加熱したときにダイアフラム4に曲げ変形が生じる。そのため、ダイアフラム4の厚さ中心よりも上層側には、ダイアフラム4の熱膨張による伸びひずみεsに加えて、ダイアフラム4の曲げ変形による圧縮ひずみεbmが生じる。その結果、ダイアフラム4の厚さ中心より上層側に配置されている発熱抵抗体5の伸びひずみは、ダイアフラム4の曲げ変形による圧縮ひずみεbmによって低減される。以上の作用により、発熱抵抗体5の熱膨張による塑性変形が抑制され、発熱抵抗体5の抵抗変化が低減されるため、熱式センサ装置1の測定精度を長期間維持することが可能となる。
 また、下層積層膜3aに酸化シリコン膜と窒化シリコン膜とが交互に形成されており、下層積層膜3aの最下層の酸化シリコン膜14aの膜厚T1が下層積層膜3aの最上層の酸化シリコン膜14cの膜厚T3よりも小さい。これにより、熱膨張係数の大きい窒化シリコン膜15aが下層積層膜3aの厚さ中心よりも下層側に寄せられて形成される。この構成とすることで、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側が大きく膨張し、ダイアフラム4に作用する曲げモーメントが増大するため、ダイアフラム4に発生する曲げひずみをより大きくすることができる。
 また、上層積層膜3bは、酸化シリコン膜と窒化シリコン膜とからなり、上層積層膜3bに含まれる窒化シリコン膜15cの膜厚が下層積層膜3aに含まれる窒化シリコン膜15aの膜厚よりも小さい。これにより、上層積層膜3bの熱膨張係数をより小さくし、ダイアフラム4の下層側の熱膨張係数を大きくすることができる。この構成とすることで、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側の膨張が大きくなることで曲げモーメントが増大し、ダイアフラム4により大きな曲げひずみを発生させることができる。
さらに、2つの窒化シリコン膜15c,15aの間に発熱抵抗体5が配置されるため、発熱抵抗体5の酸化を防ぐことができる。
 本発明に係る第2の実施例について以下説明する。実施例1と同様な構成には、同じ符号を付し、説明を省略する。
 本実施例では、下層積層膜3aに窒化シリコン膜を複数層設けた構成について説明する。図7にセンサ素子1の断面構造を示す。基板2上には下層積層膜3aが形成される。下層積層膜3aは、酸化シリコン膜と窒化シリコン膜を交互に積層した構成である。下層から順に、Si基板を熱酸化した酸化シリコン膜14a、窒化シリコン膜15a、酸化シリコン膜14b、窒化シリコン膜15b、酸化シリコン膜14cが形成される。これらの酸化シリコン膜14a~14c及び窒化シリコン膜15a,15bはCVD法により形成することができる。下層積層膜3a上には発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a、9bが形成される。これらの上層には上層積層膜3bが形成される。上層積層膜3bは下から順に、酸化シリコン膜14d、窒化シリコン膜15c、酸化シリコン膜14eが形成される。これらの酸化シリコン膜14d,14e及び窒化シリコン膜15cはプラズマCVD法により形成することができる。
 本実施例では、上層積層膜3bの材料として酸化シリコン膜と窒化シリコン膜を用いたがこれらの膜に限定されるものではない。本実施例においても、上層積層膜3bの平均熱膨張係数が下層積層膜3aの平均熱膨張係数を超えない構成とすればよい。したがって、酸化シリコン膜と窒化シリコン膜など2種の膜を用いる必要はなく、酸化シリコン膜のみで構成しても良い。
 また、本実施例においても、下層積層膜3aに酸化シリコン膜と窒化シリコン膜を用いているが、これらの膜の他に、熱膨張係数の異なる材料を用いることもできる。例えば窒化シリコン膜に変えて窒化アルミニウムなどの用いることができる。
 図7は、図5におけるセンサ素子1の発熱抵抗体5を加熱したときの変形を示す断面図である。ここで、下層積層膜3aのうち、最下層の酸化シリコン膜14aの膜厚T1と最上層の酸化シリコン膜の膜厚T3は、T1<T3となるように形成している。これにより、熱膨張係数の大きい窒化シリコン膜15a,15bが下層積層膜3aの厚さ中心よりも下層側に寄せられて形成される。この構成とすることで、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側が大きく膨張し、ダイアフラム4に作用する曲げモーメントが増大するため、ダイアフラム4に発生する曲げひずみをより大きくすることができる。
 本実施例おいて、さらに効果的な構成を以下に説明する。
 図8に示した下層積層膜3aにおいて、複数の窒化シリコン膜に挟まれた酸化シリコン膜14bの膜厚をT2とすると、T3>T2となるように形成する。これにより、窒化シリコン膜15bがより下層側に形成されることになり、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側が大きく膨張し、ダイアフラム4に作用する曲げモーメントが増大するため、ダイアフラム4に発生する曲げひずみをより大きくすることができる。
 次に、本実施例において、下層積層膜3aに含まれる複数の窒化シリコン膜に関して、より本発明の効果が得られる構成を図9に示す。図9では、下層積層膜に含まれる複数の窒化シリコン膜15a,15bのうち最下層の窒化シリコン膜15aが最も厚く形成している。つまり、窒化シリコン膜15aを厚くした分、窒化シリコン膜15bを薄くする構成となる。これにより、膜全体の窒化シリコン膜の合成した厚さを変化させずに、発熱抵抗体5を加熱した時に下層側の膨張を大きくすることができる。この構成とすることで、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側が大きく膨張し、ダイアフラム4に作用する曲げモーメントが増大するため、ダイアフラム4に発生する曲げひずみをより大きくすることができる。
 次に、本実施例において、上層積層膜3bに含まれる窒化シリコン膜に関して、より本発明の効果が得られる構成を説明する。図9では、上層積層膜3bが酸化シリコン膜14d,14eと窒化シリコン膜15cから成り、上層積層膜3bに含まれる窒化シリコン膜15cが下層積層膜3aに含まれる窒化シリコン膜15a,15bよりも薄く形成している。これにより、上層積層膜3bの熱膨張係数をより小さくし、ダイアフラム4の下層側の熱膨張係数を大きくすることができる。この構成とすることで、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側の膨張が大きくなることで曲げモーメントが増大し、ダイアフラム4により大きな曲げひずみを発生させることができる。
 本実施例では、下層積層膜3aに含まれる窒化シリコン膜を2層形成した構成について説明したが、3層形成する構成としても本発明の効果が得られる。また、下層積層膜3aに含まれる複数の窒化シリコン膜のうちいずれかを極端に薄く形成すると、この薄い窒化シリコン膜は、ダイアフラム全体の膨張に関して影響が小さい。そのため、このような著しく薄くした膜(例えば~20nm、または全体の窒化シリコンの合計膜厚の1/10以下)については無視して考える。
 本実施例では、下層積層膜3aに窒化シリコン膜が少なくとも2層形成され、下層積層膜の2つの窒化シリコン膜15a,15bに挟まれた酸化シリコン膜14bの膜厚T2が下層積層膜3aの最上層の酸化シリコン膜14cの膜厚T3よりも小さい。
 以上のように構成した本実施例によれば、窒化シリコン膜15bがより下層側に形成されることになり、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側が大きく膨張し、ダイアフラム4に作用する曲げモーメントが増大するため、ダイアフラム4に発生する曲げひずみをより大きくすることができる。
 また、本実施例の変形例(図9に示す)では、下層積層膜3aに含まれる複数の窒化シリコン膜15a,15bのうち最下層の窒化シリコン膜15aの膜厚Tn1が最も大きい。これにより、膜全体の窒化シリコン膜15a,15bの合成した厚さTn1+Tn2を変化させずに、発熱抵抗体5を加熱した時に下層側の膨張を大きくすることができる。この構成とすることで、発熱抵抗体5を加熱した時に、下層積層膜3aの下層側が大きく膨張し、ダイアフラム4に作用する曲げモーメントが増大するため、ダイアフラム4に発生する曲げひずみをより大きくすることができる。
 以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。
 1…センサ素子(熱式センサ装置)、2…基板、2a…開口部、3a…下層積層膜、3b…上層積層膜、4…ダイアフラム、5…発熱抵抗体、6…空気流、7…加熱温度センサ、8a,8b…上流側温度センサ、9a,9b…下流側温度センサ、10,11,12…感温抵抗体、13…電極パッド、14a,14b,14c,14d,14e…酸化シリコン膜、15a,15b,15c…窒化シリコン膜、16…増幅器、17…トランジスタ、18…増幅器。

Claims (5)

  1.  開口部が形成された基板と、
     前記開口部を架橋するように、下層積層膜、発熱抵抗体、および上層積層膜を積層した構造のダイアフラムとを備えた熱式センサ装置において、
     前記下層積層膜の膜厚が前記上層積層膜の膜厚よりも大きく、
     前記下層積層膜の平均熱膨張係数が前記上層積層膜の平均熱膨張係数よりも大きく、
     前記下層積層膜が熱膨張係数の異なる複数の膜から成り、
     前記複数の膜のうち最も熱膨張係数の大きい膜が前記下層積層膜の厚さ中心よりも下側に形成されている
     ことを特徴とする熱式センサ装置。
  2.  請求項1記載の熱式センサ装置において、
     前記下層積層膜に酸化シリコン膜と窒化シリコン膜とが交互に形成されており、
     前記下層積層膜の最下層の酸化シリコン膜の膜厚が前記下層積層膜の最上層の酸化シリコン膜の膜厚よりも小さい
     ことを特徴とする熱式センサ装置。
  3.  請求項2に記載の熱式センサ装置において、
     前記下層積層膜に窒化シリコン膜が少なくとも2層形成され、
     前記下層積層膜の2つの窒化シリコン膜に挟まれた酸化シリコン膜の膜厚が前記下層積層膜の最上層の酸化シリコン膜の膜厚よりも小さい
     ことを特徴とする熱式センサ装置。
  4.  請求項1乃至3のいずれか1項に記載の熱式センサ装置において、
     前記上層積層膜は、酸化シリコン膜と窒化シリコン膜とからなり、
     前記上層積層膜に含まれる窒化シリコン膜の膜厚が前記下層積層膜に含まれる窒化シリコン膜の膜厚よりも小さい
     ことを特徴とする熱式センサ装置。
  5.  請求項3に記載の熱式センサ装置において、
     前記下層積層膜に含まれる複数の窒化シリコン膜のうち最下層の窒化シリコン膜の膜厚が最も大きい
     ことを特徴とする熱式センサ装置。
PCT/JP2020/022619 2019-06-17 2020-06-09 熱式センサ装置 WO2020255788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/607,441 US11982555B2 (en) 2019-06-17 2020-06-09 Thermal sensor device
DE112020001589.0T DE112020001589T5 (de) 2019-06-17 2020-06-09 Wärmesensorvorrichtung
CN202080034643.1A CN113811744B (zh) 2019-06-17 2020-06-09 热式传感器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-111695 2019-06-17
JP2019111695A JP7134920B2 (ja) 2019-06-17 2019-06-17 熱式センサ装置

Publications (1)

Publication Number Publication Date
WO2020255788A1 true WO2020255788A1 (ja) 2020-12-24

Family

ID=73838337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022619 WO2020255788A1 (ja) 2019-06-17 2020-06-09 熱式センサ装置

Country Status (5)

Country Link
US (1) US11982555B2 (ja)
JP (1) JP7134920B2 (ja)
CN (1) CN113811744B (ja)
DE (1) DE112020001589T5 (ja)
WO (1) WO2020255788A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215318U1 (ru) * 2022-10-18 2022-12-08 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Тепловой датчик расхода газов калориметрического типа

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423212A (en) * 1993-06-18 1995-06-13 Ricoh Seiki Company, Ltd. Flow sensor
JP2003042824A (ja) * 2001-07-27 2003-02-13 Denso Corp フローセンサ
JP2013190320A (ja) * 2012-03-14 2013-09-26 Hitachi Automotive Systems Ltd 熱式流体流量センサおよびその製造方法
JP2015210201A (ja) * 2014-04-28 2015-11-24 日立オートモティブシステムズ株式会社 熱式空気流量センサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888988A (en) * 1987-12-23 1989-12-26 Siemens-Bendix Automotive Electronics L.P. Silicon based mass airflow sensor and its fabrication method
JP3867393B2 (ja) * 1998-03-20 2007-01-10 株式会社デンソー マイクロヒータおよびその製造方法ならびにエアフローセンサ
JP3433124B2 (ja) * 1998-12-15 2003-08-04 株式会社日立製作所 熱式空気流量センサ
JP2002048616A (ja) * 2000-08-07 2002-02-15 Hitachi Ltd 熱式空気流量センサ及び内燃機関制御装置
KR101121399B1 (ko) * 2004-06-18 2012-03-21 미쓰비시 마테리알 가부시키가이샤 서미스터 박막 및 그 형성 방법
JP5108234B2 (ja) * 2005-02-07 2012-12-26 日本特殊陶業株式会社 マイクロヒータ及びセンサ
JP4845187B2 (ja) * 2006-02-07 2011-12-28 株式会社山武 センサのパッケージ構造及びこれを有するフローセンサ
JP4888908B2 (ja) * 2007-10-17 2012-02-29 株式会社神戸製鋼所 メンブレン構造素子及びその製造方法
JP5276964B2 (ja) 2008-12-08 2013-08-28 日立オートモティブシステムズ株式会社 熱式流体流量センサおよびその製造方法
JP5699454B2 (ja) * 2009-06-04 2015-04-08 東レ株式会社 負の熱膨張係数を有するフィルム、その製造方法および積層体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423212A (en) * 1993-06-18 1995-06-13 Ricoh Seiki Company, Ltd. Flow sensor
JP2003042824A (ja) * 2001-07-27 2003-02-13 Denso Corp フローセンサ
JP2013190320A (ja) * 2012-03-14 2013-09-26 Hitachi Automotive Systems Ltd 熱式流体流量センサおよびその製造方法
JP2015210201A (ja) * 2014-04-28 2015-11-24 日立オートモティブシステムズ株式会社 熱式空気流量センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215318U1 (ru) * 2022-10-18 2022-12-08 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Тепловой датчик расхода газов калориметрического типа

Also Published As

Publication number Publication date
DE112020001589T5 (de) 2021-12-30
US20220214197A1 (en) 2022-07-07
JP7134920B2 (ja) 2022-09-12
JP2020204500A (ja) 2020-12-24
CN113811744B (zh) 2024-05-07
US11982555B2 (en) 2024-05-14
CN113811744A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US11499932B2 (en) Gas sensor
JP5683192B2 (ja) 熱式流量センサ
JP5055349B2 (ja) 熱式ガスセンサ
JP5276964B2 (ja) 熱式流体流量センサおよびその製造方法
JP5210491B2 (ja) 熱式流量センサ
JP4307738B2 (ja) 圧力センサ
JP4976469B2 (ja) 熱式湿度センサ
JP2002202168A (ja) フローセンサ及びその製造方法
JP2008170382A (ja) 熱式流体流量センサ及びその製造方法
JP3678180B2 (ja) フローセンサ
JP6603633B2 (ja) センサ装置
JP2012032247A (ja) 熱式流量計
JP2017156293A (ja) ガス検出装置
JPH05157758A (ja) 流速センサの温度特性補正方法
JP6669957B2 (ja) 流量センサ
WO2020255788A1 (ja) 熱式センサ装置
JP6119701B2 (ja) ガスセンサ
JP6438706B2 (ja) センサ装置
JP5492834B2 (ja) 熱式流量計
JP5628236B2 (ja) 熱式湿度センサ
JP3454265B2 (ja) 熱式流速センサ
JPH09318412A (ja) 熱式流速センサ
JP2020064071A (ja) 流量センサ
TW201930824A (zh) 熱型氣壓高度計
JP5319744B2 (ja) 熱式流量センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826092

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20826092

Country of ref document: EP

Kind code of ref document: A1