WO2020255222A1 - 温度入力ユニット、温度測定装置、及びプログラム - Google Patents

温度入力ユニット、温度測定装置、及びプログラム Download PDF

Info

Publication number
WO2020255222A1
WO2020255222A1 PCT/JP2019/023970 JP2019023970W WO2020255222A1 WO 2020255222 A1 WO2020255222 A1 WO 2020255222A1 JP 2019023970 W JP2019023970 W JP 2019023970W WO 2020255222 A1 WO2020255222 A1 WO 2020255222A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermocouple
temperature
resistance
lead wire
measured
Prior art date
Application number
PCT/JP2019/023970
Other languages
English (en)
French (fr)
Inventor
恒平 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020506375A priority Critical patent/JP6707214B1/ja
Priority to CN201980097377.4A priority patent/CN113950617B/zh
Priority to PCT/JP2019/023970 priority patent/WO2020255222A1/ja
Priority to US17/417,791 priority patent/US11307101B2/en
Priority to TW109111586A priority patent/TW202100962A/zh
Publication of WO2020255222A1 publication Critical patent/WO2020255222A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/10Arrangements for compensating for auxiliary variables, e.g. length of lead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/021Particular circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/026Arrangements for signalling failure or disconnection of thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit

Definitions

  • the present invention relates to a temperature input unit, a temperature measuring device, and a program.
  • a temperature sensor using a thermocouple is a temperature sensor that utilizes the characteristic that the thermoelectromotive force generated in the thermocouple changes with temperature change.
  • a temperature sensor using a thermocouple passes a direct current through the thermocouple and the compensating lead wire, measures the potential difference between both ends of the thermocouple and the compensating lead wire as a thermoelectromotive force, and detects the temperature from the measured voltage value.
  • the compensating lead wire is a lead wire that connects the thermocouple and the measuring instrument.
  • thermocouple applies a weak direct current to the thermocouple and the compensating lead wire in order to detect the disconnection of the thermocouple and the compensating lead wire, and detects the disconnection of the thermocouple and the compensating lead wire based on the change in the current. It may be provided with a disconnection detecting means. It is known that when the disconnection detecting means is provided, an error occurs in the measured value of the thermoelectromotive force. This is because when a weak direct current is passed through the thermocouple and the compensating lead wire, an error due to a voltage drop caused by the resistance of the compensating lead wire is included in the measured value of the thermoelectromotive force.
  • the user raises the temperature of the measurement target, measures the temperature of the measurement target with a thermocouple, then measures the resistance value of the compensating lead wire, and heats up by the error of the voltage value obtained from the resistance value. The measured value of power was corrected. Then, after the correction of the thermoelectromotive force was completed, the temperature of the measurement target was measured again.
  • Patent Document 1 describes that an alternating current is passed through a thermocouple and a compensating lead wire instead of a direct current, and a disconnection is detected based on a change in an alternating current component.
  • the thermoelectromotive force is measured based on the change in the DC component, and the disconnection is detected based on the change in the AC component. Therefore, there is no error in the measured value of thermoelectromotive force.
  • the resistance value of the compensating lead wire is measured in advance and the measured value of the thermocouple is corrected by the error of the voltage value obtained from the resistance value
  • the user prior to the measurement of the temperature of the measurement target. Therefore, it is necessary to raise the temperature of the measurement target, measure the temperature of the measurement target with a thermocouple, and then measure the resistance of the compensating lead wire. Therefore, the user has to perform complicated pre-work.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to correct a temperature measurement error caused by a resistance of a compensating lead wire with a simple configuration without requiring complicated prior work by a user. And.
  • the temperature input unit has a function of measuring the temperature of an object to be measured by at least one of a thermocouple and a resistance temperature detector, and when the temperature is measured by the thermocouple, the thermocouple is used.
  • the compensating lead wire connected to the thermocouple are provided with a disconnection detecting means for passing a disconnection detection current for detecting the disconnection.
  • the thermocouple detection circuit included in the temperature input unit detects the thermoelectromotive force of the thermocouple and the compensating lead wire connected to the temperature input unit when the temperature is measured by the thermocouple.
  • the resistance temperature detector detection circuit detects the resistance of the resistance temperature detector by passing a constant current through the resistance temperature detector connected to the temperature input unit.
  • the connection switching unit connects the compensating lead wire to the thermocouple detection circuit or the resistance temperature detector detection circuit.
  • the measuring unit obtains the temperature of the object to be measured from the thermoelectromotive force detected by the thermocouple detection circuit, and detects the resistance thermometer when measuring the temperature with a resistance temperature detector. Obtain the temperature of the object to be measured from the resistance of the resistance temperature detector detected by the circuit.
  • the measuring unit Before measuring the temperature of the object to be measured with a thermocouple, the measuring unit connects the compensating lead wire to the resistance temperature detector detection circuit by controlling the connection switching section, and when a disconnection detection current is applied, the compensating lead wire Find the predicted value of the voltage drop caused by the resistance.
  • the measuring unit connects the compensating lead wire to the thermocouple detection circuit by controlling the connection switching unit, subtracts the predicted value from the measured value of the thermoelectromotive force detected by the thermocouple detection circuit, and measures the corrected thermoelectromotive force. Find the value.
  • the compensating lead wire before measuring the temperature of the object to be measured by the thermocouple, the compensating lead wire was connected to the resistance temperature detector detection circuit by controlling the connection switching unit, and the disconnection detection current was passed. Occasionally, the predicted value of the voltage drop caused by the resistance of the compensating lead wire is obtained, the compensating lead wire is connected to the thermocouple detection circuit by controlling the connection switching part, and the predicted value is predicted from the measured value of the thermoelectromotive force detected by the thermocouple detection circuit. Decrease the value to obtain the corrected thermoelectromotive force measurement value.
  • the temperature input unit Since the temperature input unit has such a configuration, the temperature of the object to be measured is raised in order to measure the resistance value of the compensating lead wire before the temperature of the object to be measured is measured, and the temperature is increased by a thermocouple. No need to measure. Therefore, it is possible to correct the measurement error caused by the voltage drop caused by the resistance of the compensating lead wire without requiring complicated pre-work by the user. Further, since the temperature input unit obtains the correction value by using the resistance temperature detector input circuit provided for temperature measurement, no major configuration change is required. Therefore, with a simple configuration, it is possible to correct the measurement error caused by the voltage drop caused by the resistance of the compensating lead wire.
  • thermocouple input circuit when the compensation lead wire which concerns on embodiment is connected to a thermocouple input circuit.
  • the temperature input unit 100 shown in FIG. 1 is a functional unit included in a programmable logic controller that operates in a production system, a control system, or the like.
  • the temperature input unit 100 has a function of measuring the temperature of the object to be measured using a thermocouple and a function of measuring the temperature of the object to be measured using a resistance temperature detector.
  • the temperature input unit 100 outputs the measured temperature to the CPU unit that controls the entire programmable logic controller.
  • Thermocouples include circuits made by connecting two different types of metal conductors, and take advantage of the characteristic that thermoelectromotive force is generated by the temperature difference between one junction and the other junction of the circuit. It is a sensor to measure.
  • thermocouple is connected to the temperature input unit 100 via a compensating lead wire.
  • the compensating lead wire is a lead wire that connects the thermocouple to the temperature input unit 100.
  • a resistance temperature detector is a sensor that measures temperature by utilizing the characteristic that the electrical resistance of a metal or metal oxide changes with a change in temperature.
  • the temperature input unit 100 obtains a correction value for correcting an error in the measured value before measuring the temperature using a thermocouple.
  • the temperature input unit 100 measures the temperature of the object to be measured using a thermocouple
  • the temperature input unit 100 corrects the measured value by a correction value obtained in advance.
  • the temperature input unit 100 is an example of the temperature input unit of the present invention.
  • the temperature input unit 100 includes means for passing a direct current for detecting the disconnection through the thermocouple and the compensating lead wire in order to detect the disconnection of the thermocouple and the compensating lead wire.
  • a direct current for detecting disconnection is passed through the thermocouple and the compensating lead wire, a voltage drop occurs due to the resistance of the thermocouple and the compensating lead wire.
  • This voltage drop causes an error in the thermoelectromotive force measurement.
  • the resistance value of the wire of the thermocouple is about several ohms per meter, and the wire of the thermocouple is often short. Therefore, the resistance of the thermocouple is considered to be small. Therefore, in the embodiment, the voltage drop caused by the resistance of the thermocouple does not affect the error of the measured value, and the error caused by the voltage drop caused by the resistance of the compensating lead wire is corrected.
  • the temperature input unit 100 includes a thermocouple input terminal 11 to which a thermocouple 1 and a compensation lead wire 2 are connected, a resistance temperature detector input terminal 12 to which a resistance temperature detector is connected, and a thermocouple.
  • a terminal switching unit 13 that switches the connection destination of the input terminal 11, an input circuit switching unit 14 that switches the input from the sensor, a thermocouple input circuit 15 that detects the thermocouple of the thermocouple 1, a thermocouple 1 and a compensation lead wire.
  • a disconnection detection circuit 16 for detecting the disconnection of 2 a constant current source 17 for passing a current through the resistance temperature detector, a resistance temperature detector input circuit 18 for detecting a change in the resistance of the resistance temperature detector, and a thermocouple input circuit.
  • a / D (Analog / Digital) conversion unit 19 that converts the output values of 15 and the resistance temperature detector input circuit 18 into digital values, a control unit 20 that controls each unit of the temperature input unit 100, and a memory that stores correction values. It has a part 21 and.
  • the thermocouple 1 is, for example, a K thermocouple, an S thermocouple, or an R thermocouple.
  • the compensating lead wire 2 is a lead wire using a metal having a thermoelectromotive force characteristic almost the same as that of the thermocouple 1, and is a lead wire connecting the thermocouple 1 and the temperature input unit 100.
  • the thermocouple input terminal 11 is an input terminal to which the compensation lead wire 2 is connected.
  • the thermocouple input terminal 11 is connected to the thermocouple input circuit 15 by the terminal switching unit 13.
  • the compensating lead wire 2 is connected to one of the thermocouple input terminals 11.
  • the other of the thermocouple input terminals 11 is grounded.
  • the resistance temperature detector input terminal 12 is an input terminal to which a resistance temperature detector (not shown) is connected.
  • a resistance temperature detector is connected to one of the resistance temperature detector input terminals 12.
  • the other side of the resistance temperature detector input terminal 12 is grounded.
  • the terminal switching unit 13 includes, for example, a semiconductor switch, and connects the thermocouple input terminal 11 to the thermocouple input circuit 15 or the resistance temperature detector input circuit 18 under the control of the control unit 20.
  • the user connects one end of the compensation lead wire 2 to which the thermocouple 1 is connected to the thermocouple input terminal 11.
  • the switch of the terminal switching unit 13 is turned on to the A side, the compensation lead wire 2 and the thermocouple input circuit 15 are electrically connected.
  • the switch of the terminal switching unit 13 is turned on to the B side, the compensation lead wire 2 and the resistance temperature detector input circuit 18 are electrically connected.
  • the input circuit switching unit 14 includes, for example, a semiconductor switch, and connects the thermocouple input circuit 15 or the resistance temperature detector input circuit 18 to the A / D conversion unit 19 under the control of the control unit 20.
  • the switch of the input circuit switching unit 14 is turned on to the C side, the thermocouple input circuit 15 and the A / D conversion unit 19 are electrically connected.
  • the switch of the input circuit switching unit 14 is turned on to the D side, the resistance temperature detector input circuit 18 and the A / D conversion unit 19 are electrically connected.
  • the terminal switching unit 13 and the input circuit switching unit 14 are examples of the connection switching unit of the present invention.
  • the thermocouple input circuit 15 is connected to the thermocouple input terminal 11 via the terminal switching unit 13, and is connected to the A / D conversion unit 19 via the input circuit switching unit 14.
  • the thermocouple input circuit 15 includes an amplifier, amplifies and outputs an input voltage signal.
  • the switch of the terminal switching unit 13 is turned on to the A side
  • the switch of the input circuit switching unit 14 is turned on to the C side.
  • the pair input circuit 15 amplifies the thermoelectromotive force input from the thermocouple 1 and the compensating lead wire 2, and outputs the amplified voltage signal to the A / D conversion unit 19.
  • thermocouple input circuit 15 since one end of the thermocouple input terminal 11 is grounded, the thermocouple input circuit 15 outputs a voltage signal in which the potential difference between the thermocouple 1 and the compensation lead wire 2 and the ground is amplified.
  • the thermocouple input circuit 15 functions as a thermocouple detection circuit for detecting the thermoelectromotive force of the thermocouple and the compensating lead wire together with the A / D conversion unit 19 and the control unit 20 described later.
  • the disconnection detection circuit 16 is a means for detecting the disconnection of the thermocouple 1 and the compensation lead wire 2, and is connected to the compensation lead wire 2 via the terminal switching unit 13. When the switch of the terminal switching unit 13 is turned on to the A side, the compensation lead wire 2 and the disconnection detection circuit 16 are electrically connected.
  • the disconnection detection circuit 16 includes a power supply 161 and a disconnection detection resistor 162.
  • the power supply 161 is a power supply for passing a direct current through the thermocouple 1 and the compensating lead wire 2.
  • the disconnection detection resistor 162 limits the current flowing from the power supply 161 to the thermocouple 1 and the compensating lead wire 2. Therefore, the current flowing through the thermocouple 1 and the compensating lead wire 2 can be made weak.
  • the current that the disconnection detection circuit 16 passes through the thermocouple 1 and the compensating lead wire 2 is referred to as a disconnection detection current.
  • the constant current source 17 is a current source that allows a constant current to flow through the resistance temperature detector.
  • a constant current is passed through the resistance temperature detector, and the resistance value of the resistance temperature detector is obtained from the potential difference between both ends of the resistance temperature detector.
  • the resistance temperature detector input circuit 18 is connected to the resistance temperature detector input terminal 12 and is connected to the A / D conversion unit 19 via the input circuit switching unit 14.
  • the resistance temperature detector input circuit 18 includes an amplifier to amplify and output the input voltage signal.
  • the resistance temperature detector When the resistance temperature detector is connected to the resistance temperature detector input terminal 12 and the switch of the input circuit switching unit 14 is turned on to the D side, the resistance temperature detector input circuit 18 inputs from the resistance temperature detector.
  • the voltage signal is amplified, and the amplified voltage signal is output to the A / D conversion unit 19.
  • the resistance temperature detector input circuit 18 outputs a signal obtained by amplifying the potential difference between the ground and the resistance temperature detector.
  • the constant current source 17 and the resistance temperature detector input circuit 18 function as a resistance temperature detector detection circuit that detects the resistance of the resistance temperature detector together with the A / D conversion unit 19 and the control unit 20 described later.
  • the temperature input unit 100 obtains a correction value for correcting an error in the measured value before the temperature measurement using the thermocouple 1. Therefore, the temperature measuring resistor input circuit 18 is connected to the thermocouple input terminal 11 when the switch of the terminal switching unit 13 is turned on to the B side and the switch of the input circuit switching unit 14 is turned on to the D side. The input voltage signal is amplified, and the amplified signal is output to the A / D conversion unit 19.
  • the A / D conversion unit 19 converts the analog value indicated by the input voltage signal into a digital value, and outputs the converted value to the control unit 20.
  • the A / D conversion unit 19 converts the analog value indicated by the voltage signal output by the thermocouple input circuit 15 into a digital value, and converts the converted value into a digital value. Output to the control unit 20.
  • the A / D conversion unit 19 converts the analog value indicated by the voltage signal output by the temperature measuring resistor input circuit 18 into a digital value and converts the analog value. The value is output to the control unit 20.
  • the control unit 20 includes a CPU (Central Processing Unit) and executes a program stored in the storage unit 21 to realize various functions of the temperature input unit 100.
  • CPU Central Processing Unit
  • the control unit 20 controls the terminal switching unit 13 and the input circuit switching unit 14, and the compensating lead wire 2 and the thermocouple input circuit 15 ,
  • the A / D conversion unit 19 is electrically connected.
  • the thermocouple input circuit 15 amplifies the voltage signal input from the thermocouple input terminal 11, and outputs the amplified voltage signal to the A / D conversion unit 19.
  • the A / D conversion unit 19 converts an analog value indicating a voltage signal supplied from the thermocouple input circuit 15 into a digital value, and outputs the converted value to the control unit 20. Therefore, when the digital value is supplied from the A / D conversion unit 19, the control unit 20 corrects the supplied digital value.
  • the control unit 20 refers to the reference thermoelectromotive force table stored in the storage unit 21 and acquires the measured temperature value corresponding to the corrected digital value.
  • the control unit 20 supplies, for example, data indicating the acquired temperature to the CPU unit.
  • the control unit 20 obtains a correction value for correcting the error of the measured value before the temperature measurement using the thermocouple 1, and corrects it from the digital value supplied from the A / D conversion unit 19. Decrease the value to get the corrected digital value.
  • the control unit 20 controls the terminal switching unit 13 and the input circuit switching unit 14 before the temperature measurement, and the thermocouple input terminal 11, the resistance temperature detector input circuit 18, and the A / The D conversion unit 19 is electrically connected. At this time, the resistance temperature detector input circuit 18 amplifies the voltage signal input from the thermocouple input terminal 11, and outputs the amplified voltage signal to the A / D conversion unit 19.
  • the A / D conversion unit 19 converts an analog value indicating a voltage signal supplied from the resistance temperature detector input circuit 18 into a digital value, and outputs the converted value to the control unit 20. Therefore, the control unit 20 obtains a correction value from the digital value supplied from the A / D conversion unit 19, and stores the obtained correction value in the storage unit 21. The method of calculating the correction value will be described later.
  • the control unit 20 controls the input circuit switching unit 14 when performing temperature measurement using the resistance temperature detector, and controls the resistance temperature detector input terminal 12, the resistance temperature detector input circuit 18, and the A / D.
  • the conversion unit 19 is electrically connected.
  • the resistance temperature detector input circuit 18 amplifies the voltage signal input from the resistance temperature detector input terminal 12, and outputs the amplified voltage signal to the A / D conversion unit 19.
  • the A / D conversion unit 19 converts an analog value indicating a voltage signal supplied from the resistance temperature detector input circuit 18 into a digital value, and outputs the converted value to the control unit 20.
  • the control unit 20 calculates the resistance value of the resistance temperature detector from the supplied digital value and the current value of the current flowing from the constant current source 17.
  • the control unit 20 refers to the resistance value table stored in the storage unit 21 and acquires the measured temperature value corresponding to the calculated resistance value.
  • the control unit 20 supplies, for example, data indicating the acquired temperature to the CPU unit.
  • the control unit 20 is an example of the measurement unit of the present invention.
  • the storage unit 21 includes a volatile memory and a non-volatile memory, and stores a program for realizing various functions of the temperature input unit 100 and data used for executing the program.
  • the storage unit 21 further stores a reference thermoelectromotive force table used for temperature measurement using the thermocouple 1 and a resistance value table of the resistance temperature detector used for temperature measurement using the resistance temperature detector.
  • the standard thermoelectromotive force table and the resistance value table are, for example, in accordance with JIS standards.
  • the storage unit 21 stores the correction value calculated in advance by the method described later.
  • FIG. 2 shows an equivalent circuit of a portion surrounded by a broken line in FIG. 1 when the switch of the terminal switching unit 13 is turned on to the A side.
  • the resistance value of the thermocouple 1 is r1
  • the resistance value of each of the compensating lead wire 2 is r2
  • the on-resistance value when the switch of the terminal switching unit 13 is connected to the A side is r3A
  • the current value of the direct current flowing from the power supply 161 is I1.
  • the voltage V1 input to the thermocouple input circuit 15 is represented by the following equation (1).
  • V1 (r1 + 2 x r2 + r3A) x I1 ... (1)
  • thermocouple 1 As described above, the resistance of the thermocouple 1 is often smaller than the resistance of the compensating lead wire 2, and the voltage drop caused by the resistance of the thermocouple 1 often has a small effect on the error of the measured value.
  • the resistance of the thermocouple 1 is not considered.
  • the voltage V1 input to the thermocouple input circuit 15 is expressed by the following equation (2).
  • V1 (2 x r2 + r3A) x I1 ...
  • the control unit 20 measures the voltage across the compensating lead wire 2 in advance in a state where the disconnection detection current is not flowing, and obtains a correction value from the measured voltage value.
  • the control unit 20 measures the voltage across the compensating lead wire 2 in a state where the disconnection detection current is not flowing by the following method.
  • the control unit 20 turns on the switch of the terminal switching unit 13 to the B side and connects the compensation lead wire 2 to the resistance temperature detector input circuit 18 before measuring the temperature with the thermocouple 1.
  • the direct current flowing from the constant current source 17 flows in the order of the terminal switching unit 13, the compensating lead wire 2, the thermocouple 1, and the compensating lead wire 2.
  • FIG. 3 shows an equivalent circuit of a portion surrounded by a broken line in FIG.
  • V2 (r1 + 2 x r2 + r3B) x I2 ... (3)
  • V2 (2 x r2 + r3B) x I2 ... (4)
  • the on-resistance value r3A when the terminal switching unit 13 is connected to the A side and the on-resistance value r3B when the terminal switching unit 13 is connected to the B side are different only in different channels within the same component. Therefore, it can be approximated as r3A ⁇ r3B.
  • r3A ⁇ r3B r3.
  • the resistance value r2 of the compensating lead wire 2 and the on-resistance value r3 of the terminal switching unit 13 are often several hundred ohms or less, respectively.
  • the disconnection detection resistor 162 for example, a resistor of about several megaohms is often used. It can be said that the resistance value of the disconnection detection resistor 162 is higher than the resistance value r2 of the compensating lead wire 2 and the on-resistance value r3 of the terminal switching unit 13. Therefore, the current flowing from the power supply 161 can be regarded as a constant current.
  • the control unit 20 measures the voltage V2 input to the resistance temperature detector input circuit 18 in a state where the disconnection detection current is not flowing. By dividing this voltage V2 by the value of the current, the sum of the resistance value r2 of the compensating lead wire 2 and the on-resistance value r3 of the terminal switching unit 13 can be obtained.
  • the direct current flowing in the circuit shown in FIG. 3 is I2, but the direct current flowing in the circuit shown in FIG. 2 is I1, so that the control unit 20 converts the measured value of the voltage V2 into a digital value I1 /. Multiply by I2 to obtain the predicted value of the voltage drop generated by the wiring resistance of the compensating lead wire 2 and the on-resistance of the terminal switching unit 13 when the disconnection detection current is passed.
  • the measured value excluding the measurement error can be obtained by subtracting the predicted value of the voltage drop from the value indicated by the voltage signal output by the thermocouple input circuit 15.
  • the predicted value of the voltage drop is set to the correction value C1 for correcting the measured value at the time of measurement.
  • Correction value C1 V2 x I1 / I2 ... (6)
  • control unit 20 When measuring the temperature using the thermocouple 1, the control unit 20 corrects the measured value by subtracting the correction value C1 from the value indicated by the voltage signal output by the thermocouple input circuit 15.
  • thermocouple 1 a series of processes in which the temperature input unit 100 having the above configuration measures the temperature using the thermocouple 1 will be described.
  • the user has written a parameter to the PLC CPU unit indicating that the thermocouple 1 and the compensation lead wire 2 are connected to the thermocouple input terminal 11 and the temperature measurement using the thermocouple 1 is performed using the setting tool. And. Since the thermoelectromotive force of the thermocouple 1 changes depending on the ambient temperature due to the above-mentioned characteristics, a slight error occurs in the correction value C1 with the thermocouple 1 connected, and it is difficult to correctly calculate the correction value C1. Therefore, it is preferable to short-circuit the tip of the compensating lead wire 2. Therefore, it is assumed that the user short-circuits the tip of the compensation lead wire 2. After that, it is assumed that the user restarts each unit of PLC. After restarting, the control unit 20 executes a pre-process for calculating the following correction value, and then executes a temperature measurement process.
  • the control unit 20 when executing the preprocessing, connects the compensation lead wire 2 to the resistance temperature detector input circuit 18 (step S11). Specifically, the control unit 20 controls the terminal switching unit 13, automatically switches the switch of the terminal switching unit 13 to the B side, controls the input circuit switching unit 14, and automatically switches the input circuit switching unit 14. Switch to the D side. Therefore, the compensation lead wire 2, the resistance temperature detector input circuit 18, and the A / D conversion unit 19 are electrically connected.
  • a direct current flows from the constant current source 17 in the order of the terminal switching unit 13 and the compensating lead wire 2.
  • the resistance temperature detector input circuit 18 amplifies the input voltage signal and outputs it to the A / D converter 19.
  • the A / D conversion unit 19 converts the analog value indicated by the input voltage signal into a digital value (step S12).
  • the A / D conversion unit 19 outputs the converted value to the control unit 20.
  • the value output by the A / D converter 19 to the control unit 20 is a digital value of the voltage V2 input to the resistance temperature detector input circuit 18.
  • the control unit 20 multiplies the digital value supplied from the A / D conversion unit 19 by I1 / I2 to calculate the correction value C1 (step S13).
  • the control unit 20 stores the calculated correction value C1 in the storage unit 21.
  • the above is the pre-processing. Since the tip of the compensating lead wire 2 is short-circuited, the user connects the thermocouple 1 to the compensating lead wire 2 after the pretreatment is completed.
  • the control unit 20 starts the temperature measurement process.
  • the control unit 20 connects the compensation lead wire 2 to the thermocouple input circuit 15 (step S21).
  • the control unit 20 controls the terminal switching unit 13 to automatically switch the switch of the terminal switching unit 13 to the A side, controls the input circuit switching unit 14, and automatically switches the input circuit switching unit 14. Switch to the C side. Therefore, the thermocouple 1 and the compensation lead wire 2, the thermocouple input circuit 15, and the A / D conversion unit 19 are electrically connected.
  • thermocouple input circuit 15 amplifies the input voltage signal and outputs it to the A / D converter 19.
  • the A / D conversion unit 19 converts the analog value indicated by the input voltage signal into a digital value (step S22).
  • the A / D conversion unit 19 outputs the converted value to the control unit 20.
  • the control unit 20 corrects the measured value by subtracting the correction value C1 from the digital value supplied from the A / D conversion unit 19 (step S23).
  • the control unit 20 refers to the reference thermoelectromotive force table stored in the storage unit 21 and acquires the measured value of the temperature corresponding to the corrected measured value (step S24).
  • the above is the measurement process.
  • the above-mentioned steps S11 to S13 and steps S21 to S24 are examples of processes executed by the program in the present invention.
  • the temperature input unit 100 includes a thermocouple input circuit 15 that detects the thermoelectromotive force of the thermocouple 1 and a resistance temperature detector that detects a change in the resistance of the resistance temperature detector. It includes an input circuit 18.
  • the temperature input unit 100 connects the compensation lead wire 2 to the resistance temperature detector input circuit 18 before the measurement using the thermocouple 1, and in a state where the disconnection detection current is not flowing, the wiring resistance and the terminal switching unit of the compensation lead wire 2 Find the sum with the on-resistance of 13.
  • the temperature input unit 100 obtained and obtained a predicted value of the voltage drop generated when a disconnection detection current was passed through the thermocouple 1 and the compensation lead wire 2 from the sum of the wiring resistance of the compensation lead wire 2 and the on resistance of the terminal switching unit 13. Let the value be the correction value. At the time of temperature measurement, the temperature input unit 100 corrects the measured value by subtracting the correction value from the measured value. Therefore, the user does not need to raise the temperature of the object to be measured in order to measure the resistance value of the compensating lead wire 2 and measure the temperature with the thermocouple 1 before measuring the temperature of the object to be measured. Therefore, the user does not need to perform complicated work before measuring the temperature of the object to be measured.
  • the temperature input unit 100 obtains a correction value by using the resistance temperature detector input circuit 18 provided for temperature measurement, for example, as in the configuration described in Patent Document 1, a general thermocouple There is no need to add a configuration that is not used in the input circuit, and there is no need to significantly change the configuration of the thermocouple input circuit. Therefore, with a simple configuration, it is possible to correct the measurement error caused by the voltage drop caused by the wiring resistance of the compensating lead wire 2.
  • the storage unit 21 in the temperature input unit 100 stores the program and data for realizing the above functions, but the present invention is not limited to this.
  • the program and data may be stored in a storage unit included in another device connected to the temperature input unit 100.
  • Other devices are, for example, CPU units and other functional units.
  • the temperature input unit 100 may store the obtained correction value in a storage unit of another device.
  • the one including the temperature input unit 100 and the device connected to the temperature input unit 100 corresponds to an example of the temperature measuring device in the present invention.
  • the temperature input unit 100 of the programmable logic controller measures the temperature and corrects the measured value
  • the present invention is not limited to this.
  • the CPU unit may have the above configuration, measure the temperature, and correct the measured value.
  • another functional unit may have the above configuration, measure the temperature, and correct the measured value.
  • the user has described an example in which the tip of the compensating lead wire 2 is short-circuited in the pretreatment before the temperature measurement, but the user does not have to short-circuit the tip of the compensating lead wire 2.
  • the temperature input unit 100 is generated by the wiring resistance of the compensating lead wire 2 as in the embodiment, although the correction value C1 contains a slight error due to the thermoelectromotive force of the thermocouple 1. It is possible to correct the measurement error caused by the voltage drop.
  • Recording media for recording the above programs include USB memory, flexible disk, CD, DVD, Blu-ray (registered trademark), MO, SD card, memory stick (registered trademark), and other magnetic disks, optical disks, and magneto-optical disks.
  • Computer-readable recording media including semiconductor memory and magnetic tape can be used.
  • thermocouple C1 correction value, V1, V2 voltage, r1, r2 resistance value, r3, r3A, r3B on-resistance value, 1 thermocouple, 2 compensation lead wire, 11 thermocouple input terminal, 12 resistance temperature detector input terminal, 13 terminal switching unit , 14 input circuit switching unit, 15 thermocouple input circuit, 16 disconnection detection circuit, 17 constant current source, 18 resistance temperature detector input circuit, 19 A / D conversion unit, 20 control unit, 21 storage unit, 100 temperature input unit , 161 power supply, 162 disconnection detection resistance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

温度入力ユニット(100)は、熱電対(1)及び測温抵抗体の少なくとも一方により測定対象物の温度を測定する機能を備え、熱電対(1)と熱電対に接続される補償導線(2)とに断線の検出のための断線検出電流を流す断線検出回路(16)を備える。制御部(20)は、熱電対(1)により測定対象物の温度を測定する前に、端子切替部(13)と入力回路切替部(14)とを制御することにより補償導線(2)を測温抵抗体入力回路(18)とA/D変換部(19)とに接続し、断線検出電流を流したときに補償導線(2)の抵抗により生じる電圧降下の予測値を求める。制御部(20)は、端子切替部(13)と入力回路切替部(14)とを制御することにより補償導線(2)を熱電対入力回路(15)とA/D変換部(19)とに接続し、熱電対入力回路(15)が検出した熱起電力の測定値から予測値を減じて、補正した熱起電力の測定値を求める。

Description

温度入力ユニット、温度測定装置、及びプログラム
 本発明は、温度入力ユニット、温度測定装置、及びプログラムに関する。
 熱電対を使用した温度センサは、熱電対に発生する熱起電力が温度変化に伴って変化する特性を利用した温度センサである。熱電対を使用した温度センサは、熱電対及び補償導線に直流電流を流し、熱電対及び補償導線の両端の電位差を熱起電力として測定し、測定した電圧値から温度を検出する。補償導線は、熱電対と計測器とを接続する導線である。
 熱電対を使用した温度センサは、熱電対及び補償導線の断線を検出するため、微弱な直流電流を熱電対及び補償導線に流し、その電流の変化に基づいて熱電対及び補償導線の断線を検出する断線検出手段を備えることがある。断線検出手段を設けた場合、熱起電力の測定値に誤差が生じることが知られている。微弱な直流電流を熱電対及び補償導線に流すと、補償導線の抵抗により発生する電圧降下に起因した誤差が熱起電力の測定値に含まれるからである。
 このため、従来は、ユーザが測定対象の温度を上昇させ熱電対で測定対象の温度を測定した後、補償導線の抵抗値を測定し、抵抗値から求めた電圧値の誤差の分だけ熱起電力の測定値を補正していた。そして、熱起電力の補正が完了した後に、再度測定対象の温度を測定していた。
 また、特許文献1には、熱電対及び補償導線に、直流電流ではなく、交流電流を流し、交流成分の変化に基づいて断線を検出することが記載されている。特許文献1に記載の構成では、熱起電力を直流成分の変化に基づいて測定し、断線を交流成分の変化に基づいて検出する。このため、熱起電力の測定値に誤差が生じない。
特開2005-83989号公報
 従来のように、補償導線の抵抗値を予め測定し、抵抗値から求めた電圧値の誤差の分だけ熱起電力の測定値を補正する方法では、ユーザは、測定対象の温度の測定に先立って、測定対象の温度を上昇させ熱電対で測定対象の温度を測定した後、補償導線の抵抗を測定する必要がある。このため、ユーザは煩雑な事前作業を行う必要があった。
 特許文献1に記載された構成では、熱電対を使用した温度センサでは一般的に使用しない交流信号発生手段を断線検出のために別途追加する必要があり、回路構成が複雑となる。さらに、費用もかさむ。
 本発明は、上記実情に鑑みてなされたものであり、ユーザによる煩雑な事前作業を要することなく、さらに、簡易な構成で、補償導線の抵抗に起因した温度の測定誤差を補正することを目的とする。
 上記目的を達成するため、本発明に係る温度入力ユニットは、熱電対及び測温抵抗体の少なくとも一方により測定対象物の温度を測定する機能を備え、熱電対により温度を測定する場合に熱電対と熱電対に接続される補償導線とに断線の検出のための断線検出電流を流す断線検出手段を備える。温度入力ユニットが備える熱電対検出回路は、熱電対により温度を測定する場合に、温度入力ユニットに接続された熱電対及び補償導線の熱起電力を検出する。測温抵抗体検出回路は、測温抵抗体により温度を測定する場合に、温度入力ユニットに接続された測温抵抗体に定電流を流し、測温抵抗体の抵抗を検出する。接続切替部は、補償導線を、熱電対検出回路または測温抵抗体検出回路に接続する。測定部は、熱電対により温度を測定する場合に、熱電対検出回路が検出した熱起電力から測定対象物の温度を求め、測温抵抗体により温度を測定する場合に、測温抵抗体検出回路が検出した測温抵抗体の抵抗から測定対象物の温度を求める。測定部は、熱電対により測定対象物の温度を測定する前に、接続切替部を制御することにより補償導線を測温抵抗体検出回路に接続し、断線検出電流を流したときに補償導線の抵抗により生じる電圧降下の予測値を求める。測定部は、接続切替部を制御することにより補償導線を熱電対検出回路に接続し、熱電対検出回路が検出した熱起電力の測定値から予測値を減じて、補正した熱起電力の測定値を求める。
 本発明に係る温度入力ユニットは、熱電対により測定対象物の温度を測定する前に、接続切替部を制御することにより補償導線を測温抵抗体検出回路に接続し、断線検出電流を流したときに補償導線の抵抗により生じる電圧降下の予測値を求め、接続切替部を制御することにより補償導線を熱電対検出回路に接続し、熱電対検出回路が検出した熱起電力の測定値から予測値を減じて、補正した熱起電力の測定値を求める。温度入力ユニットは、このような構成を備えているため、測定対象物の温度測定を行う前に、補償導線の抵抗値を測定するために測定対象物の温度を上昇させ、熱電対で温度を測定する必要がない。したがって、ユーザによる煩雑な事前作業を要することなく、補償導線の抵抗により発生する電圧降下に起因した測定誤差を補正することができる。また、温度入力ユニットは、温度測定のために備える測温抵抗体入力回路を利用して補正値を求めるため、大きな構成変更を必要としない。したがって、簡易な構成で、補償導線の抵抗により発生する電圧降下に起因した測定誤差を補正することができる。
本発明の実施の形態に係る温度入力ユニットの構成を示す図 実施の形態に係る補償導線が熱電対入力回路に接続されたときの熱電対入力回路の等価回路を示す図 実施の形態に係る補償導線が測温抵抗体入力回路に接続されたときの測温抵抗体入力回路の等価回路を示す図 実施の形態に係る温度入力ユニットが実行する事前処理のフローチャート 実施の形態に係る温度入力ユニットが実行する測定処理のフローチャート
(実施の形態)
 図1に示す温度入力ユニット100は、生産システム、制御システム等において稼動するプログラマブルロジックコントローラに含まれる機能ユニットである。温度入力ユニット100は、熱電対を使用して測定対象物の温度を測定する機能と、測温抵抗体を使用して測定対象物の温度を測定する機能とを備えている。温度入力ユニット100は、測定した温度を、プログラマブルロジックコントローラ全体を制御するCPUユニットに出力する。熱電対は、二種類の異なる金属導体をつないで作られた回路を含み、回路の一方の接合部と他方の接合部との温度差により熱起電力が発生するという特性を利用して温度を測定するセンサである。熱電対は、補償導線を介して温度入力ユニット100に接続される。補償導線は、熱電対を温度入力ユニット100に接続する導線である。測温抵抗体は、温度変化によって金属または金属酸化物の電気抵抗が変化する特性を利用して温度を測定するセンサである。
 実施の形態に特徴的な構成として、温度入力ユニット100は、熱電対を使用して温度を測定する前に、測定値の誤差を補正するための補正値を求める。温度入力ユニット100は、熱電対を使用して測定対象物の温度を測定すると、予め求めた補正値により測定値を補正する。温度入力ユニット100は、本発明の温度入力ユニットの一例である。
 測定値に誤差が生じるのは次のような理由による。温度入力ユニット100は、熱電対及び補償導線の断線を検出するため、熱電対及び補償導線に断線検出用の直流電流を流す手段を備えている。熱電対及び補償導線に断線検出用の直流電流を流すと熱電対及び補償導線の抵抗により電圧降下が生じる。この電圧降下によって、熱起電力の測定値に誤差が生じる。なお、一般的には熱電対の素線の抵抗値は1メートル当たり数オーム程度であり、さらに、熱電対の素線は短いことが多い。このため、熱電対の抵抗は小さいと考えられる。よって、実施の形態においては、熱電対の抵抗により生じた電圧降下は測定値の誤差に影響を与えないものとして、補償導線の抵抗により発生する電圧降下による誤差を補正する。
 図1に示すように、温度入力ユニット100は、熱電対1及び補償導線2が接続される熱電対入力端子11と、測温抵抗体が接続される測温抵抗体入力端子12と、熱電対入力端子11の接続先を切り替える端子切替部13と、センサからの入力を切り替える入力回路切替部14と、熱電対1の熱起電力を検出する熱電対入力回路15と、熱電対1及び補償導線2の断線を検出する断線検出回路16と、測温抵抗体に電流を流す定電流源17と、測温抵抗体の抵抗の変化を検出する測温抵抗体入力回路18と、熱電対入力回路15及び測温抵抗体入力回路18の出力値をデジタル値に変換するA/D(Analog/Digital)変換部19と、温度入力ユニット100各部を制御する制御部20と、補正値を記憶する記憶部21とを有する。
 熱電対1は、例えば、K熱電対、S熱電対、R熱電対である。補償導線2は、熱電対1とほぼ同等の熱起電力特性の金属を使用した導線であり、熱電対1と、温度入力ユニット100とをつなぐ導線である。
 熱電対入力端子11は、補償導線2が接続される入力端子である。熱電対入力端子11は、端子切替部13により熱電対入力回路15に接続される。図示する例では、熱電対入力端子11の一方には、補償導線2が接続される。熱電対入力端子11の他方は接地される。熱電対1を使用した温度測定の際には、ユーザが熱電対1及び補償導線2を熱電対入力端子11に接続する。
 測温抵抗体入力端子12は、不図示の測温抵抗体が接続される入力端子である。図示する例では、測温抵抗体入力端子12の一方には、測温抵抗体が接続される。測温抵抗体入力端子12の他方は接地される。測温抵抗体を使用した温度測定の際には、ユーザが測温抵抗体を測温抵抗体入力端子12に接続する。
 端子切替部13は、例えば、半導体スイッチを含み、制御部20の制御により、熱電対入力端子11と、熱電対入力回路15または測温抵抗体入力回路18とを接続する。熱電対1を使用した温度測定の際には、ユーザが熱電対1を接続した補償導線2の一端を熱電対入力端子11に接続する。この場合、端子切替部13のスイッチがA側にオンすると、補償導線2と熱電対入力回路15とが電気的に接続される。端子切替部13のスイッチがB側にオンすると、補償導線2と測温抵抗体入力回路18とが電気的に接続される。
 入力回路切替部14は、例えば、半導体スイッチを含み、制御部20の制御により、熱電対入力回路15または測温抵抗体入力回路18を、A/D変換部19に接続する。入力回路切替部14のスイッチがC側にオンすると、熱電対入力回路15とA/D変換部19とが電気的に接続される。入力回路切替部14のスイッチがD側にオンすると、測温抵抗体入力回路18とA/D変換部19とが電気的に接続される。端子切替部13と入力回路切替部14とは、本発明の接続切替部の一例である。
 熱電対入力回路15は、端子切替部13を介して熱電対入力端子11に接続され、入力回路切替部14を介してA/D変換部19に接続されている。熱電対入力回路15は、増幅器を含み、入力された電圧信号を増幅して出力する。熱電対1及び補償導線2が熱電対入力端子11に接続されており、端子切替部13のスイッチがA側にオンし、入力回路切替部14のスイッチがC側にオンしているとき、熱電対入力回路15は、熱電対1及び補償導線2から入力された熱起電力を増幅し、増幅した電圧信号をA/D変換部19に出力する。図示する例では、熱電対入力端子11の一端を接地しているため、熱電対入力回路15は、熱電対1及び補償導線2とグランドとの電位差を増幅した電圧信号を出力する。熱電対入力回路15は、後述のA/D変換部19と制御部20とともに、熱電対及び補償導線の熱起電力を検出する熱電対検出回路として機能する。
 断線検出回路16は、熱電対1及び補償導線2の断線を検出する手段であって、端子切替部13を介して補償導線2に接続される。端子切替部13のスイッチがA側にオンしているとき、補償導線2と断線検出回路16とが電気的に接続される。断線検出回路16は、電源161と、断線検出用抵抗162とを含む。電源161は、熱電対1及び補償導線2に直流電流を流すための電源である。断線検出用抵抗162は、電源161から熱電対1及び補償導線2に流れる電流を制限する。よって、熱電対1及び補償導線2に流す電流を微弱なものとすることができる。断線検出回路16が熱電対1及び補償導線2に流す電流を断線検出電流と称する。
 定電流源17は、測温抵抗体に定電流を流す電流源である。図示する例では、測温抵抗体に定電流を流し、測温抵抗体の両端の電位差から測温抵抗体の抵抗値を求めるためである。
 測温抵抗体入力回路18は、測温抵抗体入力端子12に接続され、入力回路切替部14を介してA/D変換部19に接続されている。測温抵抗体入力回路18は、増幅器を含み、入力された電圧信号を増幅して出力する。測温抵抗体が測温抵抗体入力端子12に接続されており、入力回路切替部14のスイッチがD側にオンしているとき、測温抵抗体入力回路18は、測温抵抗体から入力された電圧信号を増幅し、増幅した電圧信号をA/D変換部19に出力する。図示する例では、測温抵抗体入力端子の一端を接地しているため、測温抵抗体入力回路18は、グランドと測温抵抗体との電位差を増幅した信号を出力する。定電流源17及び測温抵抗体入力回路18は、後述のA/D変換部19と制御部20とともに、測温抵抗体の抵抗を検出する測温抵抗体検出回路として機能する。
 前述のように、温度入力ユニット100は、熱電対1を使用した温度測定の前に、測定値の誤差を補正するための補正値を求める。このため、測温抵抗体入力回路18は、端子切替部13のスイッチがB側にオンし、かつ、入力回路切替部14のスイッチがD側にオンしているとき、熱電対入力端子11から入力された電圧信号を増幅し、増幅した信号をA/D変換部19に出力する。
 A/D変換部19は、入力された電圧信号が示すアナログ値をデジタル値に変換し、変換した値を制御部20に出力する。入力回路切替部14のスイッチがC側にオンしている場合、A/D変換部19は、熱電対入力回路15が出力した電圧信号が示すアナログ値をデジタル値に変換し、変換した値を制御部20に出力する。入力回路切替部14のスイッチがD側にオンしている場合、A/D変換部19は、測温抵抗体入力回路18が出力した電圧信号が示すアナログ値をデジタル値に変換し、変換した値を制御部20に出力する。
 制御部20は、CPU(Central Processing Unit)を含み、記憶部21に記憶されているプログラムを実行して、温度入力ユニット100の各種機能を実現する。
 実施の形態において、制御部20は、熱電対1を使用した温度測定を行う場合に、端子切替部13と入力回路切替部14とを制御して、補償導線2と、熱電対入力回路15と、A/D変換部19とが電気的に接続されるようにする。このとき、熱電対入力回路15は、熱電対入力端子11から入力された電圧信号を増幅し、増幅した電圧信号をA/D変換部19に出力する。A/D変換部19は、熱電対入力回路15から供給された電圧信号を示すアナログ値をデジタル値に変換し、変換した値を制御部20に出力する。よって、制御部20は、A/D変換部19からデジタル値が供給されると、供給されたデジタル値を補正する。制御部20は、記憶部21に格納されている規準熱起電力表を参照し、補正したデジタル値に対応する温度の測定値を取得する。制御部20は、取得した温度を示すデータを、例えば、CPUユニットに供給する。
 実施の形態において、制御部20は、熱電対1を使用した温度測定の前に、測定値の誤差を補正するための補正値を求め、A/D変換部19から供給されたデジタル値から補正値を減じて、補正したデジタル値を求める。具体的には、制御部20は、温度測定の前に、端子切替部13と入力回路切替部14とを制御して、熱電対入力端子11と、測温抵抗体入力回路18と、A/D変換部19とが電気的に接続されるようにする。このとき、測温抵抗体入力回路18は、熱電対入力端子11から入力された電圧信号を増幅し、増幅した電圧信号をA/D変換部19に出力する。A/D変換部19は、測温抵抗体入力回路18から供給された電圧信号を示すアナログ値をデジタル値に変換し、変換した値を制御部20に出力する。よって、制御部20は、A/D変換部19から供給されたデジタル値から補正値を求め、求めた補正値を記憶部21に格納する。補正値の算出方法は後述する。
 制御部20は、測温抵抗体を使用した温度測定を行う場合に、入力回路切替部14を制御して、測温抵抗体入力端子12と、測温抵抗体入力回路18と、A/D変換部19とが電気的に接続されるようにする。このとき、測温抵抗体入力回路18は、測温抵抗体入力端子12から入力された電圧信号を増幅し、増幅した電圧信号をA/D変換部19に出力する。A/D変換部19は、測温抵抗体入力回路18から供給された電圧信号を示すアナログ値をデジタル値に変換し、変換した値を制御部20に出力する。制御部20は、A/D変換部19からデジタル値が供給されると、供給されたデジタル値と定電流源17から流れる電流の電流値とから測温抵抗体の抵抗値を算出する。制御部20は、記憶部21に格納されている抵抗値表を参照し、算出した抵抗値に対応する温度の測定値を取得する。制御部20は、取得した温度を示すデータを、例えば、CPUユニットに供給する。制御部20は、本発明の測定部の一例である。
 記憶部21は、揮発性メモリと不揮発性メモリとを含み、温度入力ユニット100の各種機能を実現するためのプログラムとプログラムの実行に使用されるデータとを記憶する。記憶部21は、さらに、熱電対1を使用した温度測定に使用する規準熱起電力表と、測温抵抗体を使用した温度測定に使用する測温抵抗体の抵抗値表とを記憶する。規準熱起電力表と抵抗値表とは、例えば、JIS規格に則ったものである。記憶部21は、後述の方法で予め算出された補正値を記憶する。
 続いて、補正の方法を説明する。まず、熱電対1を使用した温度測定時に、断線検出回路16から流れる微弱な直流電流は、端子切替部13、補償導線2、熱電対1、補償導線2、の順に流れる。端子切替部13のスイッチがA側にオンしているときの、図1の破線で囲んだ部分の等価回路を図2に示す。熱電対1の抵抗値をr1、補償導線2それぞれの抵抗値をr2、端子切替部13のスイッチをA側に接続したときのオン抵抗値をr3A、電源161から流れる直流電流の電流値をI1とする。このとき、熱電対入力回路15に入力される電圧V1は、下記式(1)で表される。
 V1=(r1+2×r2+r3A)×I1・・・・・・(1)
 前述のように、熱電対1の抵抗は補償導線2の抵抗に比べ小さいことが多く、熱電対1の抵抗により生じた電圧降下は測定値の誤差に与える影響が小さいことが多いので、ここでは熱電対1の抵抗は考慮しない。この場合、熱電対入力回路15に入力される電圧V1は、下記式(2)のように表される。
 V1=(2×r2+r3A)×I1・・・・・・・・・(2)
 実施の形態においては、制御部20は、断線検出電流を流していない状態で補償導線2の両端の電圧を予め測定し、測定した電圧値から補正値を求める。制御部20は、次のような方法で、断線検出電流を流していない状態の補償導線2の両端の電圧を測定する。制御部20は、熱電対1での温度測定前に、端子切替部13のスイッチをB側にオンし、補償導線2を測温抵抗体入力回路18に接続する。このとき、定電流源17から流れる直流電流は、端子切替部13、補償導線2、熱電対1、補償導線2、の順に流れる。端子切替部13のスイッチがB側にオンしているときの、図1の破線で囲んだ部分の等価回路を図3に示す。補償導線2の抵抗値をr2、端子切替部13のスイッチをB側に接続したときのオン抵抗値をr3B、定電流源17から流れる直流電流の電流値をI2とする。このとき、測温抵抗体入力回路18に入力される電圧V2は、下記式(3)で表される。
 V2=(r1+2×r2+r3B)×I2・・・・・・(3)
 上述と同様に熱電対1の抵抗は考慮しない場合、測温抵抗体入力回路18に入力される電圧V2は、下記式(4)のように表される。
 V2=(2×r2+r3B)×I2・・・・・・・・・(4)
 ここで、端子切替部13をA側に接続したときのオン抵抗値r3Aと、端子切替部13をB側に接続したときのオン抵抗値r3Bとは、同一部品内において、チャネルが異なるだけであるので、r3A≒r3Bとして近似することができる。以下、r3A≒r3B=r3とする。この場合、測温抵抗体入力回路18に入力される電圧V2は、下記のように表される。
 V2=(2×r2+r3)×I2・・・・・・・・・(5)
 また、補償導線2の抵抗値r2と、端子切替部13のオン抵抗値r3は、それぞれ数百オーム程度か、それ以下の抵抗値であることが多い。一方、断線検出用抵抗162には、例えば、数メガオーム程度の抵抗が使用されることが多い。断線検出用抵抗162の抵抗値は、補償導線2の抵抗値r2、端子切替部13のオン抵抗値r3に比べて高いといえる。よって、電源161から流れる電流を定電流とみなすことができる。
 制御部20は、断線検出電流が流れていない状態で、測温抵抗体入力回路18に入力される電圧V2を測定する。この電圧V2を電流の値で割ることで、補償導線2の抵抗値r2と端子切替部13のオン抵抗値r3との和を求めることができる。図3に示す回路に流れる直流電流はI2であるが、図2に示す回路に流れる直流電流はI1であるため、制御部20は、電圧V2の測定値をデジタル値に変換した値にI1/I2を乗じて、断線検出電流を流したときに補償導線2の配線抵抗と端子切替部13のオン抵抗とにより発生する電圧降下の予測値を求める。熱電対1を使用した温度測定のときには、熱電対入力回路15が出力する電圧信号が示す値から電圧降下の予測値を減じることで、測定誤差を除いた測定値を得ることができる。電圧降下の予測値を測定時の測定値を補正する補正値C1とする。
 補正値C1=V2×I1/I2・・・・・・(6)
 制御部20は、熱電対1を使用した温度測定のときには、熱電対入力回路15が出力する電圧信号が示す値から補正値C1を減ずることにより、測定値を補正する。
 続いて、上記の構成を備える温度入力ユニット100が、熱電対1を使用した温度を測定する一連の処理を説明する。
 例えば、ユーザが、熱電対入力端子11に熱電対1及び補償導線2を接続し、設定ツールを使用して熱電対1を使用した温度測定を行うことを示すパラメータをPLCのCPUユニットに書き込んだとする。熱電対1の熱起電力は前述の特性により周囲温度によって変化するので、熱電対1を接続したままでは補正値C1に多少の誤差が生じ、補正値C1を正しく算出することが難しい。このため、補償導線2の先端を短絡しておくことが好ましい。したがって、ユーザが、補償導線2の先端を短絡したとする。その後、ユーザが、PLCの各ユニットを再起動したとする。制御部20は、再起動後に、下記の補正値を算出する事前処理を実行し、その後、温度の測定処理を実行する。
 まず、温度測定前に制御部20が実行する事前処理を説明する。図4に示すように、事前処理の実行に際して、制御部20は、補償導線2を測温抵抗体入力回路18に接続する(ステップS11)。具体的には、制御部20は、端子切替部13を制御して、自動で端子切替部13のスイッチをB側に切り替え、入力回路切替部14を制御して、自動で入力回路切替部14のスイッチをD側に切り替える。よって、補償導線2と、測温抵抗体入力回路18と、A/D変換部19とが電気的に接続される。
 このとき、図3に示すように、直流電流が、定電流源17から、端子切替部13、補償導線2の順に流れる。前述のように、補償導線2の先端が短絡されているため、熱電対1には直流電流が流れない。測温抵抗体入力回路18は、入力された電圧信号を増幅してA/D変換部19に出力する。A/D変換部19は、入力された電圧信号が示すアナログ値をデジタル値に変換する(ステップS12)。A/D変換部19は、変換した値を制御部20に出力する。A/D変換部19が制御部20に出力した値は、測温抵抗体入力回路18に入力される電圧V2のデジタル値である。
 制御部20は、上述の式(6)に示すように、A/D変換部19から供給されたデジタル値にI1/I2を乗じて補正値C1を算出する(ステップS13)。制御部20は、算出した補正値C1を記憶部21に格納する。以上が事前処理である。補償導線2の先端が短絡されているため、事前処理が終わると、ユーザは補償導線2に熱電対1を接続する。
 続いて、制御部20は、温度の測定処理を開始する。図5に示すように、測定処理の実行に際して、制御部20は、補償導線2を熱電対入力回路15に接続する(ステップS21)。具体的には、制御部20は、端子切替部13を制御して、自動で端子切替部13のスイッチをA側に切り替え、入力回路切替部14を制御して、自動で入力回路切替部14のスイッチをC側に切り替える。よって、熱電対1及び補償導線2と、熱電対入力回路15と、A/D変換部19とが電気的に接続される。
 このとき、断線検出回路16から流れる微弱な直流電流は、端子切替部13、補償導線2、熱電対1、補償導線2、の順に流れる。熱電対入力回路15は、入力された電圧信号を増幅してA/D変換部19に出力する。A/D変換部19は、入力された電圧信号が示すアナログ値をデジタル値に変換する(ステップS22)。A/D変換部19は、変換した値を制御部20に出力する。
 制御部20は、A/D変換部19から供給されたデジタル値から補正値C1を減じて、測定値を補正する(ステップS23)。制御部20は、記憶部21に格納されている規準熱起電力表を参照し、補正した測定値に対応する温度の測定値を取得する(ステップS24)。以上が測定処理である。上述のステップS11乃至ステップS13、及び、ステップS21乃至ステップS24は、本発明におけるプログラムによって実行される処理の一例である。
 以上、説明したように、実施の形態に係る温度入力ユニット100は、熱電対1の熱起電力を検出する熱電対入力回路15と、測温抵抗体の抵抗の変化を検出する測温抵抗体入力回路18とを備える。温度入力ユニット100は、熱電対1を使用した測定前に、補償導線2を測温抵抗体入力回路18に接続し、断線検出電流を流していない状態で補償導線2の配線抵抗と端子切替部13のオン抵抗との和を求める。温度入力ユニット100は、補償導線2の配線抵抗と端子切替部13のオン抵抗との和から熱電対1及び補償導線2に断線検出電流を流すと発生する電圧降下の予測値を求め、求めた値を補正値とする。温度測定時には、温度入力ユニット100は、測定値から補正値を減じて測定値を補正する。よって、ユーザは、測定対象物の温度測定を行う前に、補償導線2の抵抗値を測定するために測定対象物の温度を上昇させ、熱電対1で温度を測定する必要がない。したがって、ユーザは測定対象物の温度測定前に煩雑な作業を行う必要がない。
 また、温度入力ユニット100は、温度測定のために備える測温抵抗体入力回路18を使用して補正値を求めるため、例えば、特許文献1に記載された構成のように、一般的な熱電対入力回路では使用しない構成を別途追加する必要はなく、熱電対入力回路の構成を大きく変更する必要がない。よって、簡易な構成で、補償導線2の配線抵抗により発生する電圧降下に起因した測定誤差を補正することができる。
 実施の形態では、温度入力ユニット100内の記憶部21に上記機能を実現するためのプログラム及びデータを記憶させていたが、これに限られない。温度入力ユニット100に接続される他の装置が備える記憶部に、プログラム及びデータを記憶させておいてもよい。他の装置は、例えば、CPUユニット、他の機能ユニットである。温度入力ユニット100は、求めた補正値を他の装置の記憶部に格納してもよい。このような場合、温度入力ユニット100と温度入力ユニット100に接続される装置を含めたものが、本発明における温度測定装置の一例に該当する。
 上記の実施の形態においては、プログラマブルロジックコントローラの温度入力ユニット100が、温度を測定し、測定値を補正する例を説明したが、これに限られない。例えば、CPUユニットが、上記の構成を備え、温度を測定し、測定値を補正してもよい。あるいは、他の機能ユニットが、上記の構成を備え、温度を測定し、測定値を補正してもよい。
 実施の形態においては、ユーザが、温度測定前の事前処理において補償導線2の先端を短絡する例を説明したが、ユーザは補償導線2の先端を短絡しなくてもよい。補償導線2の先端を短絡しない場合、熱電対1の熱起電力により補正値C1にわずかな誤差が含まれるものの、実施の形態と同様に、温度入力ユニット100は補償導線2の配線抵抗により発生する電圧降下に起因した測定誤差を補正することが可能である。
 上記のプログラムを記録する記録媒体としては、USBメモリ、フレキシブルディスク、CD、DVD、Blu-ray(登録商標)、MO、SDカード、メモリースティック(登録商標)、その他、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリ、磁気テープを含むコンピュータ読取可能な記録媒体を使用することができる。
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
C1 補正値、V1,V2 電圧、r1,r2 抵抗値、r3,r3A,r3B オン抵抗値、1 熱電対、2 補償導線、11 熱電対入力端子、12 測温抵抗体入力端子、13 端子切替部、14 入力回路切替部、15 熱電対入力回路、16 断線検出回路、17 定電流源、18 測温抵抗体入力回路、19 A/D変換部、20 制御部、21 記憶部、100 温度入力ユニット、161 電源、162 断線検出用抵抗

Claims (9)

  1.  熱電対及び測温抵抗体の少なくとも一方により測定対象物の温度を測定する機能を備え、前記熱電対により温度を測定する場合に前記熱電対と前記熱電対に接続される補償導線とに断線の検出のための断線検出電流を流す断線検出手段を備える温度入力ユニットであって、
     前記熱電対により温度を測定する場合に、前記温度入力ユニットに接続された熱電対及び補償導線の熱起電力を検出する熱電対検出回路と、
     前記測温抵抗体により温度を測定する場合に、前記温度入力ユニットに接続された測温抵抗体に定電流を流し、前記測温抵抗体の抵抗を検出する測温抵抗体検出回路と、
     前記補償導線を、前記熱電対検出回路または前記測温抵抗体検出回路に接続する接続切替部と、
     前記熱電対により温度を測定する場合に、前記熱電対検出回路が検出した前記熱起電力から前記測定対象物の温度を求め、前記測温抵抗体により温度を測定する場合に、前記測温抵抗体検出回路が検出した前記測温抵抗体の抵抗から前記測定対象物の温度を求める測定部と、
     を備え、
     前記測定部は、
     前記熱電対により前記測定対象物の温度を測定する前に、前記接続切替部を制御することにより前記補償導線を前記測温抵抗体検出回路に接続し、前記断線検出電流を流したときに前記補償導線の抵抗により生じる電圧降下の予測値を求め、
     前記接続切替部を制御することにより前記補償導線を前記熱電対検出回路に接続し、前記熱電対検出回路が検出した前記熱起電力の測定値から前記予測値を減じて、補正した前記熱起電力の測定値を求める、
     温度入力ユニット。
  2.  前記測定部は、前記測温抵抗体検出回路により前記補償導線の抵抗値を求め、前記抵抗値と前記断線検出電流の電流値とから、前記予測値を求める、
     請求項1に記載の温度入力ユニット。
  3.  前記測定部は、前記補償導線に前記熱電対が接続された状態で前記測定値を求める、
     請求項1または2に記載の温度入力ユニット。
  4.  熱電対及び測温抵抗体の少なくとも一方により測定対象物の温度を測定する機能を備え、前記熱電対により温度を測定する場合に前記熱電対と前記熱電対に接続される補償導線とに断線の検出のための断線検出電流を流す断線検出手段を備える温度測定装置であって、
     前記熱電対により温度を測定する場合に、前記温度測定装置に接続された熱電対及び補償導線の熱起電力を検出する熱電対検出回路と、
     前記測温抵抗体により温度を測定する場合に、前記温度測定装置に接続された測温抵抗体に定電流を流し、前記測温抵抗体の抵抗を検出する測温抵抗体検出回路と、
     前記補償導線を、前記熱電対検出回路または前記測温抵抗体検出回路に接続する接続切替部と、
     前記熱電対により温度を測定する場合に前記熱電対検出回路が検出した前記熱起電力から前記測定対象物の温度を求め、前記測温抵抗体により温度を測定する場合に前記測温抵抗体検出回路が検出した前記測温抵抗体の抵抗から前記測定対象物の温度を求める測定部と、
     を備え、
     前記測定部は、
     前記熱電対により前記測定対象物の温度を測定する前に、前記接続切替部を制御することにより前記補償導線を前記測温抵抗体検出回路に接続し、前記断線検出電流を流したときに前記補償導線の抵抗により生じる電圧降下の予測値を求め、
     前記接続切替部を制御することにより前記補償導線を前記熱電対検出回路に接続し、前記熱電対検出回路が検出した前記熱起電力の測定値から前記予測値を減じて、補正した前記熱起電力の測定値を求める、
     温度測定装置。
  5.  前記測定部は、前記測温抵抗体検出回路により前記補償導線の抵抗値を求め、前記抵抗値と前記断線検出電流の電流値とから、前記予測値を求める、
     請求項4に記載の温度測定装置。
  6.  前記測定部は、前記補償導線に前記熱電対が接続された状態で前記測定値を求める、
     請求項4または5に記載の温度測定装置。
  7.  熱電対及び測温抵抗体の少なくとも一方により測定対象物の温度を測定する機能を備え、前記熱電対により温度を測定する場合に前記熱電対と前記熱電対に接続される補償導線とに断線の検出のための断線検出電流を流す断線検出手段を備える温度測定装置に、実行させるプログラムであって、
     前記温度測定装置は、
     前記熱電対により温度を測定する場合に、前記温度測定装置に接続された熱電対及び補償導線の熱起電力を検出する熱電対検出回路と、
     前記測温抵抗体により温度を測定する場合に、前記温度測定装置に接続された測温抵抗体に定電流を流し、前記測温抵抗体の抵抗を検出する測温抵抗体検出回路と、
     前記補償導線を、前記熱電対検出回路または前記測温抵抗体検出回路に接続する接続切替部と、
     前記熱電対により温度を測定する場合に、前記熱電対検出回路が検出した前記熱起電力から前記測定対象物の温度を求め、前記測温抵抗体により温度を測定する場合に、前記測温抵抗体検出回路が検出した前記測温抵抗体の抵抗から前記測定対象物の温度を求める測定部と、
     を備える装置であり、
     前記熱電対により前記測定対象物の温度を測定する前に、前記補償導線を前記測温抵抗体検出回路に接続するよう前記接続切替部を制御させ、
     前記断線検出電流を流したときに前記補償導線の抵抗により生じる電圧降下の予測値を求めさせ、
     前記補償導線を前記熱電対検出回路に接続するよう前記接続切替部を制御させ、
     前記熱電対検出回路が検出した前記熱起電力の測定値から前記予測値を減じて、補正した前記熱起電力の測定値を求めさせる、
     プログラム。
  8.  前記測定部に、前記測温抵抗体検出回路により前記補償導線の抵抗値を求めさせ、前記抵抗値と前記断線検出電流の電流値とから、前記予測値を求めさせる、
     請求項7に記載のプログラム。
  9.  前記測定部に、前記補償導線に前記熱電対が接続された状態で前記測定値を求めさせる、
     請求項7または8に記載のプログラム。
PCT/JP2019/023970 2019-06-17 2019-06-17 温度入力ユニット、温度測定装置、及びプログラム WO2020255222A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020506375A JP6707214B1 (ja) 2019-06-17 2019-06-17 温度入力ユニット、温度測定装置、及びプログラム
CN201980097377.4A CN113950617B (zh) 2019-06-17 2019-06-17 温度输入单元、温度测定装置及计算机可读取的记录介质
PCT/JP2019/023970 WO2020255222A1 (ja) 2019-06-17 2019-06-17 温度入力ユニット、温度測定装置、及びプログラム
US17/417,791 US11307101B2 (en) 2019-06-17 2019-06-17 Temperature input unit, temperature measuring device, and recording medium
TW109111586A TW202100962A (zh) 2019-06-17 2020-04-07 溫度輸入單元、溫度測定裝置及程式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023970 WO2020255222A1 (ja) 2019-06-17 2019-06-17 温度入力ユニット、温度測定装置、及びプログラム

Publications (1)

Publication Number Publication Date
WO2020255222A1 true WO2020255222A1 (ja) 2020-12-24

Family

ID=70976319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023970 WO2020255222A1 (ja) 2019-06-17 2019-06-17 温度入力ユニット、温度測定装置、及びプログラム

Country Status (5)

Country Link
US (1) US11307101B2 (ja)
JP (1) JP6707214B1 (ja)
CN (1) CN113950617B (ja)
TW (1) TW202100962A (ja)
WO (1) WO2020255222A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413888B2 (ja) * 2020-03-27 2024-01-16 横河電機株式会社 診断装置、及び診断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273026A (ja) * 1987-05-01 1988-11-10 Yamatake Honeywell Co Ltd 温度測定装置の入力回路
JPH01291131A (ja) * 1988-05-17 1989-11-22 Yokogawa Electric Corp 熱電対温度変換装置
JPH03269227A (ja) * 1990-03-19 1991-11-29 Fuji Electric Co Ltd 温度センサ回路の断線検知方法
JPH06207861A (ja) * 1993-01-12 1994-07-26 Mitsubishi Electric Corp 信号処理変換方法
JP2000088672A (ja) * 1998-09-17 2000-03-31 Yamatake Corp センサ入力回路および計測器
US20150276498A1 (en) * 2014-03-27 2015-10-01 Rockwell Automation Technologies, Inc. Thermocouple module with wire resistance compensation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2096047A (en) 1934-10-10 1937-10-19 Leeds & Northrup Co Temperature measuring system
JPS5480174A (en) * 1977-12-08 1979-06-26 Toshiba Corp Temperature measuring method
JPS5877630A (ja) 1981-11-02 1983-05-11 Nissan Motor Co Ltd 温度測定装置
US6293700B1 (en) 1999-09-24 2001-09-25 Fluke Corporation Calibrated isothermal assembly for a thermocouple thermometer
JP2005083989A (ja) 2003-09-10 2005-03-31 Omron Corp 熱電対の入力回路
TWI276779B (en) 2005-11-16 2007-03-21 Nat Kaohsiung First University Temperature correction method and device for pulsed eddy current measurements
KR20100101990A (ko) * 2009-03-10 2010-09-20 엘에스산전 주식회사 열전대 온도측정장치
ES2755326T3 (es) 2014-01-06 2020-04-22 Kobe Steel Ltd Detector de deterioro y dispositivo de inspección de termopar
CN106885588B (zh) * 2015-12-14 2019-08-20 英飞凌科技股份有限公司 具有热电动势补偿的传感器布置
CN206573227U (zh) * 2017-01-24 2017-10-20 无锡市百川科技股份有限公司 实时自校准热电偶测温电路
CN111397772B (zh) * 2020-05-09 2021-06-22 河南科创铝基新材料有限公司 异型热电偶的检定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273026A (ja) * 1987-05-01 1988-11-10 Yamatake Honeywell Co Ltd 温度測定装置の入力回路
JPH01291131A (ja) * 1988-05-17 1989-11-22 Yokogawa Electric Corp 熱電対温度変換装置
JPH03269227A (ja) * 1990-03-19 1991-11-29 Fuji Electric Co Ltd 温度センサ回路の断線検知方法
JPH06207861A (ja) * 1993-01-12 1994-07-26 Mitsubishi Electric Corp 信号処理変換方法
JP2000088672A (ja) * 1998-09-17 2000-03-31 Yamatake Corp センサ入力回路および計測器
US20150276498A1 (en) * 2014-03-27 2015-10-01 Rockwell Automation Technologies, Inc. Thermocouple module with wire resistance compensation

Also Published As

Publication number Publication date
US20220042855A1 (en) 2022-02-10
CN113950617B (zh) 2022-11-04
CN113950617A (zh) 2022-01-18
JP6707214B1 (ja) 2020-06-10
US11307101B2 (en) 2022-04-19
TW202100962A (zh) 2021-01-01
JPWO2020255222A1 (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6490096B2 (ja) 温度補償付シャント電流測定
CN107076786B (zh) 使用漏-源电压的高电流感测方案
EP2302344A2 (en) An apparatus for measuring temperature and method thereof
US10386392B2 (en) Hall element driving circuit, sensor circuit, and current measuring apparatus
WO2020255222A1 (ja) 温度入力ユニット、温度測定装置、及びプログラム
JP4865516B2 (ja) 測定装置
JP6714860B2 (ja) 測定モジュール
US11167366B2 (en) Methods and apparatus for detecting leakage current
JP6032518B2 (ja) オフセット電圧補償装置
JP4249081B2 (ja) 測定装置及び測定装置の温度補償方法
JP4127084B2 (ja) センサ装置
TW201925795A (zh) 感測器的讀取電路及其讀取方法
JP6054100B2 (ja) 電力測定装置および電力測定方法
JP2017161409A (ja) 電圧検出装置、電流検出装置及びコンピュータプログラム
JP2009216550A (ja) 加熱検知用サーミスタの補正値検査方法および加熱検知用サーミスタを備えた装置の制御方法
US10910183B2 (en) Power supply control device, power supply control method, and computer program
JP4816656B2 (ja) センサ装置
JP4980006B2 (ja) 測定装置
JP6662033B2 (ja) 蓄電素子の抵抗の測定方法および測定装置
JP5178605B2 (ja) 状態制御装置
JP2019074437A (ja) 電流センサ回路
JP6314681B2 (ja) 排気ガスセンサのa/d変換データ補正システム
JP2017079418A (ja) センサインタフェースキャリブレーション装置
KR20090106862A (ko) 모터 구동 제어 장치 및 방법
JP6545579B2 (ja) 測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020506375

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933304

Country of ref document: EP

Kind code of ref document: A1