WO2020253352A1 - 一种化合物及其制备方法和应用 - Google Patents

一种化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2020253352A1
WO2020253352A1 PCT/CN2020/085842 CN2020085842W WO2020253352A1 WO 2020253352 A1 WO2020253352 A1 WO 2020253352A1 CN 2020085842 W CN2020085842 W CN 2020085842W WO 2020253352 A1 WO2020253352 A1 WO 2020253352A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
formula
unsubstituted
compound
Prior art date
Application number
PCT/CN2020/085842
Other languages
English (en)
French (fr)
Inventor
梅岩
Original Assignee
南京谷睿生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京谷睿生物科技有限公司 filed Critical 南京谷睿生物科技有限公司
Publication of WO2020253352A1 publication Critical patent/WO2020253352A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds

Definitions

  • the invention relates to the field of medicinal chemistry, in particular to a compound and its preparation method and application
  • the current methods of regulating the immune system to treat cancer mainly include tumor vaccines, recombinant cytokines, monoclonal antibodies, autologous T cell therapy, and small molecule immunomodulators. Because some tumor immune pathways and mechanisms can only be adjusted by small molecule drugs, small molecule drugs can regulate immune-related targets in the tumor microenvironment, which can expand the application range of tumor immunotherapy, and can also be tumor-targeted drugs and biological immunomodulators Combine therapies to find opportunities.
  • Small molecule drugs can modulate immunosuppressive cells such as bone marrow-derived suppressor cells (MDSCs), dendritic cells (DCs), tumor-associated macrophages (TAMs), and these cells are usually not regulated by immune checkpoint inhibitors .
  • MDSCs bone marrow-derived suppressor cells
  • DCs dendritic cells
  • TAMs tumor-associated macrophages
  • the regulation of MDSCs, DCs and TAMs can be achieved through indoleamine 2,3-dioxygenase 1 (IDO1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), and phosphodiesterase. -5 (PDE5) mediated, and the regulation of purinergic signal transduction can be mediated by ATP, CD39, CD73, adenosine, and elevated cAMP. Therefore, these targets may become the sites of action of small molecule drugs.
  • IDO1 indoleamine 2,3-dioxygena
  • the mechanism of action of arginase inhibitors is to further increase the proliferation of cytotoxic T cells and natural killer (NK) of the immune system by adjusting the tumor microenvironment, and exert its immunosuppressive effect to kill tumor cells.
  • NO has a variety of positive cardiovascular physiological effects, such as relaxing blood vessels, regulating local blood flow, inhibiting the proliferation of vascular smooth muscle cells, inhibiting platelet adhesion and aggregation, and preventing thrombosis.
  • Increasing the bioavailability of NO is expected to improve endothelial dysfunction, thereby delaying the occurrence and development of diabetic microvascular complications.
  • NO is produced by NOS catalyzed by L-arginine, and arginase can compete with NOS for the common substrates ornithine and urea. Therefore, arginase inhibitors can reduce the competition between arginase and NOS, and promote the increase of NO production.
  • arginase inhibitors can inhibit tumor growth in immune syngeneic mice. With the inhibition of tumor growth, the rapid increase in the local concentration of arginine leads to an increase in the number of CD3+ T cells in the tumor. Yudang indoleamine 2,3 dioxygenase (IDO) inhibitors block the degradation of tryptophan through IDO, which leads to the restoration of tumor and activated tryptophan levels in tumor-associated T cells.
  • IDO Yudang indoleamine 2,3 dioxygenase
  • arginase inhibitors can also be combined with other immuno-oncology therapeutic drugs that target T cell activation, such as CTLA-4 and PD-1 antibodies.
  • CTLA-4 and PD-1 antibodies Such small molecule Arg inhibitors have broad application prospects in the treatment of renal cell carcinoma, breast cancer, non-small cell lung cancer, acute myeloid leukemia and Arg-mediated marrow-derived suppressor cell-related tumors. Its combination with biological monoclonal antibody will be the most feasible and effective plan.
  • arginase inhibitors can effectively improve the endothelial function of T2DM microvascular complications.
  • Arginase inhibitors can significantly improve the endothelial function of patients and promote Local microvascular blood flow increases, effectively delaying the occurrence and development of microvascular complications of T2DM.
  • arginase inhibitors in diabetic nephropathy have also attracted attention.
  • An animal study published in the American Journal of Physilogy in 2015 showed that arginase preparations can effectively delay the progression of diabetic nephropathy.
  • Arginase inhibitors can increase renal medulla blood flow in diabetic mice and reduce urine protein.
  • renal pathological biopsy showed that arginase inhibitors can significantly improve the progression of diabetic nephropathy. Investigating the reason, it was found that arginase inhibitors can significantly improve the activity of kidney NOS and increase the production of NO.
  • arginase through MDSC/neutrophils. This enzyme can significantly reduce the level of arginine in the area surrounding the tumor. Once the body's immune cells are close to the tumor cells, energy deficiency will make them "weak” And inefficient. Therefore, inhibiting arginase can re-adjust the level of arginine around the tumor, charging the body's immune cells.
  • Arginase inhibitors are known to enhance the effect of inhibiting tumor cell growth. At present, the research status of arginase preparations is as follows:
  • the first batch of arginase inhibitors included boronic acid analogs (2) S-amino-6-boryl hexanoic acid and S-(2-boroethyl)-L-cysteine [S-(2- Both boronoethyl)-L-cysteine, BEC] inhibit the catalytic activity of arginase.
  • the study found that the plane triangular borate (instead of the guanidine group) in arginine binds to the active site of arginase through metal bridging ions, causing the boron atom to have a nucleophilic attack, thereby forming a tetrahedral boric acid Salt ion.
  • arginase inhibitor mainly represents N-hydroxy-L-arginine (NOHA) and N-hydroxy-n-L arginine (nor-NO-HA), which is characterized by N-hydroxy-guanidine X-ray diffraction analysis of the salt side chain shows that NOHA and nor-NO-HA inhibit arginase by replacing the metal bridge of arginase by N-hydroxyl group to bridge hydroxide ion. Based on this mechanism, nor-NO-HA is a more effective inhibitor.
  • NOHA N-hydroxy-L-arginine
  • nor-NO-HA N-hydroxy-n-L arginine
  • paclitaxel-3'-O- ⁇ -D-glucopyranoside which is an important part of rhubarb extract, has anti-oxidation and inhibition of arginase.
  • PG paclitaxel-3'-O- ⁇ -D-glucopyranoside
  • arginine inhibitors are currently published, including INCB-001158 (incyte and Calithera) and resminostat (4SC) currently in clinical phase II, and CB-280 (Calithera) in clinical phase I, but it is still necessary Research more active arginine inhibitors.
  • the technical problem to be solved by the present invention is to provide a compound and its preparation method and application.
  • the compound provided by the present invention has high activity as an arginine inhibitor.
  • the present invention provides a compound and a preparation method and application thereof.
  • the compound with the structure of formula (I) provided by the present invention is obtained by selecting a specific main chain structure and its corresponding substituent
  • the compound can be used as an arginase inhibitor with high activity and has potential therapeutic prospects in a variety of diseases.
  • Figure 1 is a schematic diagram of pLVX plasmid map and arginase I insertion site
  • Figure 2 is a detection diagram of arginase 1 content in a stable cell line
  • Figure 3 shows the number of inoculated cells and the detection result of arginase activity
  • FIG. 4 shows the results of the most suitable absorption wavelength
  • Figure 5 shows the optimum concentration of enzyme, substrate and Mn 2+ .
  • the present invention provides a compound having formula (I) or its tautomer, meso, racemate, enantiomer, diastereomer, or mixture thereof , Or its pharmaceutically acceptable salt,
  • the R 1 is selected from a hydroxyl group, a substituted or unsubstituted C1-C10 alkoxy group, or a substituted or unsubstituted C3-C30 acyloxyalkoxy group;
  • the R 5 and R 6 are each independently selected from hydrogen atoms
  • the R 2 is selected from substituted or unsubstituted C1-C15 alkoxy groups, substituted or unsubstituted C2-C8 acyl groups, substituted or unsubstituted C2-C15 unsaturated hydrocarbon groups, or substituted or unsubstituted C2-C15 unsaturated hydrocarbon groups
  • the substituted C4-C10 heterocyclyloxy group wherein the substituents in the substituted alkoxy group, substituted acyl group, substituted unsaturated hydrocarbon group and substituted heterocyclyloxy group independently select deuterium, hydroxyl, Halogen, C3 ⁇ C10 cycloalkyl or 4-10 membered heterocyclic group;
  • the R 3 is selected from hydrogen or formula (R 3 -1),
  • the R 4 is selected from a substituted or unsubstituted C1-C15 alkoxy group, a substituted or unsubstituted C2-C8 acyl group, a substituted or unsubstituted C2-C15 unsaturated hydrocarbon group, or a substituted or unsubstituted C2-C15 unsaturated hydrocarbon group
  • the substituted C4-C6 heterocyclyloxy group, wherein the substituents in the substituted alkoxy group, substituted acyl group, substituted unsaturated hydrocarbon group and substituted heterocyclyloxy group are independently selected from deuterium, hydroxyl , Halogen, C3 ⁇ C10 cycloalkyl or 4-10 membered heterocyclic group.
  • the R 1 is preferably selected from hydroxyl, substituted or unsubstituted C2-C6 alkoxy or substituted or unsubstituted C6-C20 acyloxyalkoxy; wherein, the substituted
  • the hydrogen in the alkoxy group and the substituted acyloxy alkoxy group may be substituted by one or more substituents, the substituents are preferably hydroxy or halogen;
  • the R 1 is more preferably selected from hydroxy, methoxy, Ethoxy, propoxy, methyl acyloxy methoxy, ethyl acyloxy methoxy, n-propyl acyloxy methoxy, isopropyl acyloxy methoxy, n-butyl Acyloxy methoxy, isobutyl acyloxy methoxy, tert-butyl acyloxy methoxy, n-pentyl acyloxy methoxy, isopentyl acyloxy methoxy, ne
  • the heterocyclic group is preferably an oxazolidinyl group;
  • the R 2 is selected from substituted or unsubstituted C2-10 alkoxy, substituted or unsubstituted C3-C6 acyl, substituted or unsubstituted C3-C10 unsaturated hydrocarbon group or The substituted or unsubstituted C4-C8 heterocyclyloxy group, wherein any one or more hydrogens on the alkoxy group, acyl group, unsaturated hydrocarbon group and heterocyclyloxy group may be replaced by one or more Substituents are substituted, wherein the substituents are selected from deuterium, hydroxyl, halogen, C3-C10 cycloalkyl or 4-10 membered heterocyclic groups; wherein the unsaturated hydrocarbon group is preferably an alkynyl group; the R 2 More preferably, methoxy, ethoxy, propoxy, n-butoxy, isobutoxy, cyclopropylmethoxy, n-pentyloxy, n-he
  • the R 4 is selected from substituted or unsubstituted C2-10 alkoxy, substituted or unsubstituted C3-C6 acyl, substituted or unsubstituted C3-C10 unsaturated hydrocarbon group or A substituted or unsubstituted C4-C8 heterocyclyloxy group, wherein any one or more of the substituted alkoxy group, substituted acyl group, substituted unsaturated hydrocarbon group or substituted heterocyclyloxy group Hydrogen may be substituted by one or more substituents, wherein the substituents are selected from deuterium, hydroxyl, halogen, C3-C10 cycloalkyl or 4-10 membered heterocyclic group; wherein, the unsaturated hydrocarbon group Preferably, it is an alkynyl group; the R 4 is more preferably methoxy, ethoxy, propoxy, n-butoxy, isobutoxy, cyclopropylmethoxy, n-penty
  • the compound is selected from formula (I-A), formula (I-B), formula (I-C) or formula (I-D),
  • the compound is selected from formula (I-E) and formula (I-F):
  • R A is selected from C1-C15 alkyl or C3-C8 cycloalkyl
  • Ring A is selected from C4-C10 heterocyclic groups, wherein the same carbon atom is connected to the oxygen atom and deuterium atom of ring A;
  • the compound is selected from Formula (I-1), Formula (I-2), Formula (I-3), Formula (I-4), Formula (I-5), Formula (I-6) , Formula (I-7), Formula (I-8), Formula (I-9), Formula (I-10), Formula (I-11) or Formula (I-12),
  • the present invention also provides a method for preparing a compound having a structure of (I-A), formula (I-B), (I-C) or (I-D), including:
  • the R 1 is selected from a hydroxyl group, a substituted or unsubstituted C1-C10 alkoxy group, or a substituted or unsubstituted C3-C30 acyloxyalkoxy group;
  • the R 5 and R 6 are each independently selected from hydrogen atoms
  • the R 2 is selected from substituted or unsubstituted C1-C15 alkoxy groups, substituted or unsubstituted C2-C8 acyl groups, substituted or unsubstituted C2-C15 unsaturated hydrocarbon groups, or substituted or unsubstituted C2-C15 unsaturated hydrocarbon groups
  • the substituted C4-C10 heterocyclyloxy group wherein the substituents in the substituted alkoxy group, substituted acyl group, substituted unsaturated hydrocarbon group and substituted heterocyclyloxy group independently select deuterium, hydroxyl, Halogen, C3 ⁇ C10 cycloalkyl or 4-10 membered heterocyclic group; said R 3 is selected from hydrogen or formula (R 3 -1),
  • the R 4 is selected from a substituted or unsubstituted C1-C15 alkoxy group, a substituted or unsubstituted C2-C8 acyl group, a substituted or unsubstituted C2-C15 unsaturated hydrocarbon group, or a substituted or unsubstituted C2-C15 unsaturated hydrocarbon group
  • the substituted C4-C6 heterocyclyloxy group, wherein the substituents in the substituted alkoxy group, substituted acyl group, substituted unsaturated hydrocarbon group and substituted heterocyclyloxy group are independently selected from deuterium, hydroxyl , Halogen, C3 ⁇ C10 cycloalkyl or 4-10 membered heterocyclic group.
  • the present invention does not specifically limit the source of each raw material. Those skilled in the art can design a suitable route to synthesize each raw material according to actual needs. The present invention does not have special requirements on the reaction conditions. Those skilled in the art can follow the essence of the reaction Select appropriate reaction conditions. Specifically, the compound of the present invention is preferably prepared according to the following process:
  • the present invention also provides an arginase inhibitor, including the compound of the formula (I) structure of the present invention or its tautomers, mesosomes, racemates, and enantiomers , Diastereomers, or mixtures thereof, or pharmaceutically acceptable salts thereof; the compounds with the structure of formula (I) or tautomers, mesosomes, racemates, Enantiomers, diastereomers, or mixtures thereof, or pharmaceutically acceptable salts thereof.
  • the resulting compound can be used as an arginase inhibitor , And has high activity. Specifically, it increases the concentration of arginine in tumor tissues by inhibiting arginase activity, accelerates the proliferation of immune T cells and enhances their immune function, increases the response rate of tumor immune responses, and then enhances cells Inhibit the growth of tumor cells.
  • the present invention also provides a tumor immunotherapy drug, including the compound of the formula (I) structure of the present invention or its tautomer, mesosome, racemate, enantiomer, non- Enantiomers, or mixtures thereof, or pharmaceutically acceptable salts thereof.
  • the compounds of the present invention or their tautomers, mesosomes, racemates, enantiomers, diastereomers, or mixtures thereof, or their pharmaceutically acceptable salts are excluded from In addition to regulating the local concentration of arginine, as an arginase inhibitor, it can also be combined with other immuno-oncology therapeutic drugs that target T cell activation, such as CTLA-4 and PD-1 antibodies.
  • arginase inhibitors have broad application prospects in the treatment of renal cell carcinoma, breast cancer, non-small cell lung cancer, acute myeloid leukemia, and arginine-mediated bone marrow-derived suppressor cell-related tumors. Its combination with biological monoclonal antibody will be the most feasible and effective plan.
  • arginase inhibitors have potential therapeutic prospects for many diseases such as ischemia-regeneration perfusion injury (heart, lung, kidney), hypertension, atherosclerosis, diabetes, erectile dysfunction, pulmonary hypertension and so on.
  • Substituted refers to one or more hydrogen atoms in the group, preferably up to 5, more preferably 1 to 3 hydrogen atoms, independently of each other, substituted with a corresponding number of substituents. It goes without saying that the substituents are only in their possible chemical positions, and those skilled in the art can determine (by experiment or theory) possible or impossible substitutions without too much effort. For example, an amino group or a hydroxyl group with free hydrogen may be unstable when combined with a carbon atom with an unsaturated (eg, olefinic) bond.
  • Cx ⁇ Cy heterocyclic group refers to the number of carbons in the heterocyclic group is x ⁇ y, x is the minimum value of carbon atoms and y is the maximum value of carbon atoms, and does not represent a heterocyclic group The size of the ring.
  • x and y refer to the number of atoms forming the ring.
  • substituted Cx ⁇ Cy groups refer to the number of carbons on the group and do not include substituents.
  • substituted C1 ⁇ C15 alkoxy groups refer to alkoxy groups.
  • the carbon number of is 1-15 and does not include the number of substituents.
  • “Pharmaceutically acceptable salt” refers to certain salts of the above compounds that can maintain the original biological activity and are suitable for medical use.
  • the pharmaceutically acceptable salt of the compound represented by formula (I) may be a metal salt or an amine salt formed with a suitable acid.
  • “Pharmaceutical composition” means a mixture containing one or more compounds described herein or their physiologically pharmaceutically acceptable salts or prodrugs and other chemical components, as well as other components such as physiologically pharmaceutically acceptable carriers and excipients. Shape agent. The purpose of the pharmaceutical composition is to promote the administration of the biological body, and facilitate the absorption of the active ingredient to exert biological activity.
  • Cis-3-(dibenzylamino)-N-methoxy-N-methylcyclobutanecarboxamide 8.12g (0.024mol) dissolved in 30ml tetrahydrofuran, cooled in an ice-salt bath, and added 0.5mol/L dropwise 3- 100ml (0.05mol) of butene magnesium bromide, control the temperature not higher than 5°C. After dripping, the reaction was allowed to warm up overnight. Adjust the pH to 5-6 with 1 mol/L hydrogen chloride solution, extract with ethyl acetate, wash and dry the organic phase with saturated brine, and flash column chromatography to obtain 5.4 g with a yield of 66%.
  • Cis-2-Acetylamino-N-tert-butyl-2-(3-(dibenzylamino)cyclobutyl-6-(4,4,5,5-tetramethyl-1,3,2-di 1g (1.66mmol) of oxaborolan-2-yl)hexanamide was dissolved in 20ml of methanol, 0.1g of acetic acid, 0.3g of 5wt% palladium on carbon were added, and 3kg of pressure was hydrogenated for 16 hours. The palladium on carbon was removed by filtration and reduced in pressure. Concentrate to obtain 0.8 g of acetate.
  • Cis-(S)-2-(3-((4'-(tetrahydrofuran-3-yloxy)-[1,1'-biphenyl]-4-yl)methylamino)cyclobutyl)-2 0.36 g (0.5 mmol, trifluoroacetate) of amino-6-boronic acid hexanoic acid was dissolved in 10 ml of DMF, 0.35 g (2.5 mmol) of potassium carbonate and 11 mg of bromoethane were added, and reacted at 5-10 degrees for 5 hours. Potassium carbonate was filtered out, DMF was concentrated to about 2ml, purified by pre-hplc, and lyophilized to obtain 182mg.
  • Cis-2-Acetylamino-2-(3-aminocyclobutyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxolane Boran-2-yl)hexanamide acetate 1.68g (3.44mmol), (S)-4'-(tetrahydrofuran-3-yloxy)-4-formylbiphenyl 0.92g (3.44mmol) dissolved in Dichloromethane 30ml, 1.08g (5.28mmol) of sodium triacetoxyborohydride was added, and reacted overnight. Dilute with dichloromethane, stir with saturated sodium carbonate solution, separate the layers, wash the organic phase with saturated brine, and obtain 1.09gA by column chromatography.
  • 0.56g (0.0023mol) of the intermediate was added to the reaction flask, and 0.34g (0.0023mol) of 4-formylphenylboronic acid, 0.22g (0.1mmol) of tetrakistriphenylphosphine oxide, 0.69g (0.0065mol) of sodium carbonate, and dioxygen were added.
  • the hexacyclic ring was 10ml, water was 10ml, and the reaction system was replaced with argon three times, and reacted at 80°C for 4 hours.
  • the reaction solution was poured into 20 ml of water, extracted with ethyl acetate, and the crude product was obtained by column chromatography to obtain 0.45 g, with a yield of 72.9%.
  • Arginase can catalyze the conversion of L-arginine to L-ornithine and urea, so the level of arginase activity can be judged by detecting the content of urea in the solution at the end of the reaction. Based on the published methods, optimizations and improvements have been made. details as follows:
  • Arginase I of human origin was dissolved in sterile deionized water containing 0.1% bovine serum albumin, and the stock solution concentration was 200 ⁇ g/mL.
  • (S)-2-Amino-6-borocaproic acid and all candidate inhibitors are dissolved in dimethyl sulfoxide (DMSO), and the stock solution concentration is selected according to the weight of the compound provided (50mM/100mM). Both L-arginine (500mM) and magnesium sulfate (250mM) were prepared using sterile DMEM medium.
  • each reaction concentration is set with 4-6 independent replicates, a total of 8 different concentration gradients.
  • the inhibitor candidate dimethyl sulfoxide (DMSO) was dissolved and aliquoted, and the different concentration gradients shown in Table 4 were designed.
  • DMSO dimethyl sulfoxide
  • FIG. 1 is a schematic diagram of the pLVX plasmid map and the insertion site of arginase I;
  • the inhibitor candidates for the preliminary screening are further screened at the cell level and tested for the cytological toxicity of the inhibitor, and finally an inhibitor compound with high efficiency and low toxicity is obtained.
  • Figure 2 shows the detection diagram of Arginase 1 content in a stable cell line
  • Day 1 Seed cells (96-well plate). Count and seed 0, 0.5, 1.0, 1.5, 2, 2.5, 3, 4 ( ⁇ 10 4 ) cells in sequence;
  • Example 2 According to the screening method obtained in Example 2, the activity of the compound of the application as an arginine inhibitor was tested.
  • the specific experimental method is as follows:
  • L-arginine 500mM, DMEM
  • anhydrous manganese sulfate 250mM, DMEM
  • stop solution A ultrafiltered water
  • stop solution B ultrafiltered water
  • different concentrations of inhibitors 0.,0.001,0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100 mM, DMSO).
  • reaction system is:
  • reaction is operated in a 96-well plate, 5 replicates/concentration/inhibitor.
  • step 2 follows the system in step 2 to add each reaction component to the well plate, taking care not to generate bubbles.
  • stop solution mixture a mixture of 75 ⁇ L of solution A and 75 ⁇ L of solution B
  • Day 1 Inoculate the target cells. 2 ⁇ 10 4 pcs/well, 96-well plate, 3-5 wells repeated;
  • the experimental group is the wells inoculated with cells, and the control group is the wells not inoculated with cells, both of which are 3-5 wells repeated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐及其制备方法和应用,本发明提供的具有式(I)结构的化合物通过选择特定的主链结构以及其相应的取代基,使得得到的化合物能够作为精氨酸酶抑制剂,且活性较高,在多种疾病中具有潜在的治疗前景。

Description

一种化合物及其制备方法和应用 技术领域
本发明涉及药物化学领域,尤其涉及一种化合物及其制备方法和应用
背景技术
目前通过调节免疫系统来治疗癌症的方法主要包括肿瘤疫苗、重组细胞因子、单克隆抗体、自体T细胞疗法以及小分子免疫调节剂。由于一些肿瘤免疫通路和机制只能通过小分子药物来调节,小分子药物在肿瘤微环境中调节免疫相关靶点可以扩大肿瘤免疫疗法的应用范围,也可以为肿瘤靶向药物和生物免疫调节剂相结合的疗法寻找机会。
小分子药物可以调节如骨髓衍生抑制细胞(MDSCs)、树突状细胞(DCs)、肿瘤相关巨噬细胞(TAMs)发挥免疫抑制作用的细胞,而这些细胞通常不能被免疫检查点抑制剂所调节。对MDSCs、DCs以及TAMs的调节可以通过吲哚胺2,3-双加氧酶1(IDO1)、精氨酸酶1(ARG1)、诱导型一氧化氮合酶(iNOS)、磷酸二酯酶-5(PDE5)介导,而对嘌呤能信号转导的调节可以通过ATP、CD39、CD73、腺苷以及升高的cAMP介导。因此,这些靶点都有可能成为小分子药物作用的位点。
精氨酸酶抑制剂的作用机制是通过调节肿瘤微环境进一步来提高免疫系统的细胞毒性T细胞和自然杀伤(NK)的增殖,发挥它的免疫抑制效应进而杀死肿瘤细胞。NO具有多种正性心血管生理效应,如舒张血管、调节局部血流、抑制血管平滑肌细胞增殖、抑制血小板黏附聚集、防止血栓形成等。增加NO生物利用度有望改善内皮功能障碍,进而延缓糖尿病微血管并发症的发生发展。NO是以L-精氨酸为底物由NOS催化生成的,精氨酸酶可以与NOS竞争共同底物鸟氨酸及尿素。因此,精氨酸酶抑制剂可以减弱精氨酸酶与NOS竞争,促使NO生成增加。
有研究显示精氨酸酶抑制剂能够抑制免疫同系小鼠的肿瘤生长,伴随着肿瘤生长的抑制,精氨酸的局部浓度的迅速增加,导致肿瘤内的CD3+T细胞的数目增加,这类似于当吲哚胺2,3双加氧酶(IDO)抑制剂通过IDO阻断色氨酸的降解会导致在肿瘤相关T细胞的肿瘤与活化色氨酸水平的恢复。
除在调控精氨酸局部浓度的作用外,精氨酸酶抑制剂也可以与其它靶向T细胞活化的免疫肿瘤治疗药物联合作用,例如CTLA-4和PD-1抗体。这类小分子Arg抑制剂在肾细胞癌,乳腺癌,非小细胞肺癌,急性粒细胞白血病以及Arg介导骨髓来源抑制性细胞相关的肿瘤治疗中具有广泛的应用前景。它与生物单抗的联合用药将是最可行也是最有效的方案。
另外,2016年7月在Journal of Clinical Endocrinology&Metabolism上的一篇研究显示了精氨酸酶抑制剂有效改善T2DM微血管并发症内皮功能的疗效,精氨酸酶抑制剂可显著改善患者内皮舒张功能,促使局部微血管血流增加,有效延缓T2DM微血管并发症的发生发展。
同时,精氨酸酶抑制剂在糖尿病肾病方面的研究亦引发关注。2015年发表于American Journal of Physilogy的一篇动物研究显示精氨酸酶制剂可有效延缓糖尿病肾病的进展。精氨酸酶抑制剂可增加糖尿小鼠肾脏髓质血流,减少尿蛋白量。且肾脏病理活检显示精氨酸酶抑制剂可明显改善糖尿病肾病的进展。究其缘由,发现精氨酸酶抑制剂可明显改善肾脏NOS活性,促使NO生成增加。
癌细胞通过MDSC/嗜中性粒细胞表达精氨酸酶,这种酶能够使肿瘤周围区域的精氨酸水平显著下降,一旦机体免疫细胞靠近肿瘤细胞,能量缺乏会使它们变得"乏力"和低效。因此抑制精氨酸酶可以重新调高肿瘤周围精氨酸的水平,为机体免疫细胞充电。已知精氨酸酶抑制剂在增强细胞抑制肿瘤细胞生长的作用,目前,关于精氨酸酶制剂的研究现状如下:
第一批精氨酸酶抑制剂包括硼酸类似物(2)S-氨基-6-硼基己酸和S-(2-硼乙烷基)-L-半胱氨酸[S-(2-boronoethyl)-L-cysteine,BEC]两者均抑制精氨酸酶的催化活性。研究发现,精氨酸中平面三角形的硼酸根(而不是胍基基团),通过金属桥接离子结合到精氨酸酶活性部位,使硼原子产生亲核攻击作用,从而形成一个四面体硼酸盐离子。
另一类精氨酸酶抑制剂主要代表N-羟基-L-精氨酸(NOHA)和N-羟基-正-L精氨酸(nor-NO-HA),特点是有N-羟基-胍盐侧链,通过X衍射分析其晶体结构表明,NOHA和nor-NO-HA通过N-羟基团取代精氨酸酶的金属桥接氢氧根离子来抑制精氨酸酶。基于这一机制,nor-NO-HA是一种更有效的抑制剂。
也有一些研究人员集中研究一些能够抑制精氨酸酶的植物衍生的化合物。如白皮杉醇-3’-O-β-D-吡喃葡萄糖苷(PG),是大黄提取物的一个重要的部分,具有抗氧化、抑制精氨酸酶等作用。相关实验证明,PG抑制精氨酸酶I和精氨酸酶II活性及用剂量依赖的方式增加一氧化氮产量。
此外,X衍射晶体学展示了氮和精氨酸酶活性部位的Asp181(精氨酸酶I)和Asp200A(精氨酸酶II)的羧基侧链的密切联系,从而发现了(R)-2-氨基-6-硼基-2(2-(哌啶-1-基)乙烷基)已酸,但是目前公开的精氨酸抑制剂的活性还不是很高。
目前公开了一系列的精氨酸抑制剂,包括目前处于临床II期的INCB-001158(incyte和Calithera)和resminostat(4SC),以及处于临床I期的CB-280(Calithera),但仍然有必要研究活性更高的精氨酸抑制剂。
发明内容
有鉴于此,本发明所要解决的技术问题在于提供一种化合物及其制备方法和应用,本发明提供的化合物作为精氨酸抑制剂活性较高。
与现有技术相比,本发明提供了一种化合物及其制备方法和应用,本发明提供的具有式(I)结构的化合物通过选择特定的主链结构以及其相应的取代基,使得得到的化合物能够作为精氨酸酶抑制剂,且活性较高,在多种疾病中具有潜在的治疗前景。
附图说明
图1为pLVX质粒图谱及精氨酸酶I插入位点示意图;
图2为稳定细胞系中精氨酸酶1含量检测图;
图3为接种细胞数摸索及精氨酸酶活性检测结果;
图4为最适吸收波长的摸索结果;
图5为酶、底物及Mn 2+最适浓度摸索结果。
具体实施方式
本发明提供了一种具有式(I)所示的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐,
Figure PCTCN2020085842-appb-000001
其中
所述R 1选自羟基、取代的或未取代的C1~C10的烷氧基或取代的或未取代的C3~C30的酰氧基烷氧基;
所述R 5和R 6各自独立地选自氢原子;
或者,R 1与R 5和与它们相连接的氮和碳原子一起形成4~8元杂环基,优选为5~6元杂环基,其中,所述的杂环基内含有一个或多个N、O、S或SO 2,并且4~8元杂环上的氢任选进一步被一个或多个选自羟基、卤素、C1~C10烷基、C1~C10烷氧基或=O的取代基所取代;
所述R 2选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C10的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选择氘、羟基、卤素、C3~C10环烷基或4~10元杂环基;
所述R 3选自氢或式(R 3-1),
Figure PCTCN2020085842-appb-000002
所述R 4选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C6的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选自氘、羟基、卤素、C3~C10环烷基或4~10元杂环基。
按照本发明,所述R 1优选选自羟基、取代的或未取代的C2~C6的烷氧基或取代的或未取代的C6~C20的酰氧基烷氧基;其中,所述取代的烷氧基、取代的酰氧基烷氧基中的氢可以被一个或多个取代基所取代,所述取代基优选为羟基或卤素;所述R 1更优选选自羟基、甲氧基、乙氧基、丙氧基、甲基酰氧基甲氧基、乙基基酰氧基甲氧基、正丙基酰氧基甲氧基、异丙基酰氧基甲氧基、正丁基酰氧基甲氧基、异丁基酰氧基甲氧基、叔丁基酰氧基甲氧基、正戊基酰氧基甲氧基、异戊基基酰氧基甲氧基、新戊基酰氧基甲氧基、甲基酰氧基乙氧基、乙基酰氧基乙氧基、正丙基酰氧基乙氧基、异丙基酰氧基乙氧基、正丁基酰氧基乙氧基、异丁基酰氧基乙氧基、叔丁基酰氧基乙氧基、正戊基酰氧基乙氧基、异戊基基酰氧基乙氧基、新戊基酰氧基乙氧基;
或者,R 1与R 5和与它们相连接的氮和碳原子一起形成4~8元杂环基,优选为5~6元杂环基,其中所述的杂环基内含有一个或多个N、O、S或SO 2,并且4~8元杂环上的氢任选进一步被一个或多个选自羟基、卤素、C1~C10烷基、C1~C10烷氧基或=O的取代基所取代;其中,杂环基优选为氧代恶唑烷基;
按照本发明,所述R 2选自取代的或未取代的C2~10的烷氧基、取代的或未取代的C3~C6的酰基、取代的或未取代的C3~C10的不饱和烃基或取代的或未取代的C4~C8的杂环基氧基,其中,所述的烷氧基、酰基、不饱和烃基和杂环基氧基上的任意一个或多个氢可被一个或多个取代基所取代,其中,所述取代基选自氘、羟基、卤素、C3~C10环烷基或4~10元杂环基的;其中所述的不饱和烃基优选为炔基;所述R 2更优选为甲氧基、乙氧基、丙氧基、正丁氧基、异丁氧基、环丙甲氧基、正戊基氧基、正己基氧基、乙酰基、正丙基酰基、异丙基酰基、丁基酰基、戊基酰基、乙烯基、乙炔基、丙烯基、丙炔基、四氢呋喃-3-基氧基、四氢呋喃-2-基氧基、四氢吡喃-3-基氧基或四氢吡喃-2-基氧基,最优选选自甲氧基、乙氧基、丙氧基、正丁氧基、异丁氧基、环丙甲氧基、正戊基氧基、正己基氧基、乙酰基、正丙基酰基、异丙基酰基、丁基酰基、戊基酰基、乙烯基、乙炔基、丙烯基、丙炔基、(S)-四氢呋喃-3-基氧基、(S)-四氢呋喃-2-基氧基、(S)-四氢吡喃-3-基氧基、(S)-四氢吡喃-2-基氧基、(R)-四氢呋喃-3-基氧基、(R)-四氢呋喃-2-基氧基、(R)-四氢吡喃-3-基氧基、(S)-四氢吡喃-2-基氧基、S-四氢呋喃-3-基氧基、外消旋四氢呋喃-2-基氧基、外消旋四氢吡喃-3-基氧基或外消旋四氢吡喃-2-基氧基。
按照本发明,所述R 4选自取代的或未取代的C2~10的烷氧基、取代的或未取代的C3~C6的酰基、取代的或未取代的C3~C10的不饱和烃基或取代的或未取代的C4~C8的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基或取代的杂环基氧基上的任意一个或多个氢可被一个或多个取代基所取代,其中,所述取代基选自氘、羟基、卤素、C3~C10环烷基或4~10元杂环基的;其中,所述的不饱和烃基优选为炔基;所述R 4更优选为甲氧基、乙氧基、丙氧基、正丁氧基、异丁氧基、环丙甲氧基、正戊基氧基、正己基氧基、乙酰基、正丙基酰基、异丙基酰基、丁基酰基、戊基酰基、乙烯基、乙炔基、丙烯 基、丙炔基、四氢呋喃-3-基氧基、四氢呋喃-2-基氧基、四氢吡喃-3-基氧基或四氢吡喃-2-基氧基,最优选选自甲氧基、乙氧基、丙氧基、正丁氧基、异丁氧基、环丙甲氧基、正戊基氧基、正己基氧基、乙酰基、正丙基酰基、异丙基酰基、丁基酰基、戊基酰基、乙烯基、乙炔基、丙烯基、丙炔基、(S)-四氢呋喃-3-基氧基、(S)-四氢呋喃-2-基氧基、(S)-四氢吡喃-3-基氧基、(S)-四氢吡喃-2-基氧基、(R)-四氢呋喃-3-基氧基、(R)-四氢呋喃-2-基氧基、(R)-四氢吡喃-3-基氧基、(S)-四氢吡喃-2-基氧基、S-四氢呋喃-3-基氧基、外消旋四氢呋喃-2-基氧基、外消旋四氢吡喃-3-基氧基或外消旋四氢吡喃-2-基氧基。
具体的,所述化合物选自式(I-A)、式(I-B)、式(I-C)或式(I-D),
Figure PCTCN2020085842-appb-000003
其中,各个取代基的取值与前述相同。
具体的,所述化合物选自式(I-E)、式(I-F):
Figure PCTCN2020085842-appb-000004
其中:
R A选自C1~C15烷基或C3~C8环烷基;
环A选自C4~C10杂环基,其中环A与氧原子和氘原子相连接的为同一个碳原子;
各个取代基的取值与前述相同。
更具体的,所述化合物选自式(I-1)、式(I-2)、式(I-3)、式(I-4)、式(I-5)、式(I-6)、式(I-7)、式(I-8)、式(I-9)、式(I-10)、式(I-11)或式(I-12),
Figure PCTCN2020085842-appb-000005
Figure PCTCN2020085842-appb-000006
本发明还提供了一种具有(I-A)、式(I-B)、(I-C)或(I-D)结构的化合物的制备方法,包括:
1)将式(II)结构的化合物和式(III)结构的化合物反应,得到式(IV)结构的化合物;
Figure PCTCN2020085842-appb-000007
2-A)将得到的式(IV)结构的化合物转化为式(I-A)的化合物;
Figure PCTCN2020085842-appb-000008
2-B)将得到的式(IV)结构的化合物与式(V)反应得到式(VI)结构的化合物,再将式(VI)结构的化合物转化为式(I-B),
Figure PCTCN2020085842-appb-000009
Figure PCTCN2020085842-appb-000010
3)任选地,将得到的(I-A)化合物在酸性条件下与多聚甲醛反应,转化为式(I-C),
Figure PCTCN2020085842-appb-000011
4)任选的,将得到的(I-B)化合物酸性条件下与多聚甲醛反应,转化为式(I-D),
Figure PCTCN2020085842-appb-000012
其中:
所述R 1选自羟基、取代的或未取代的C1~C10的烷氧基或取代的或未取代的C3~C30的酰氧基烷氧基;
所述R 5和R 6各自独立地选自氢原子;
或者,R 1与R 5和与它们相连接的氮和碳原子一起形成4~8元杂环基,优选为5~6元杂环基,其中,所述的杂环基内含有一个或多个N、O、S或SO 2,并且4~8元杂环上的氢任选进一步被一个或多个选自羟基、卤素、C1~C10烷基、C1~C10烷氧基或=O的取代基所取代;
所述R 2选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C10的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选择氘、羟基、卤素、C3~C10环烷基或4~10元杂环基;所述R 3选自氢或式(R 3-1),
Figure PCTCN2020085842-appb-000013
所述R 4选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C6的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选自氘、羟基、卤素、C3~C10环烷基或4~10元杂环基。
本发明中,本发明对各个原料的来源没有特殊限定,本领域技术人员可以根据实际需要设计合适的路线合成各个原料,本发明对反应的条件也没有特殊要求,本领域技术人员可以根据反应实质选择合适的反应条件,具体的,本发明所述的化合物优选按照以下流程制备得到,
Figure PCTCN2020085842-appb-000014
本发明还提供了一种精氨酸酶抑制剂,包括本发明所述的式(I)结构的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐;本发明提供的具有式(I)结构的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐通过选择特定的主链结构以及其相应的取代基,使得得到的化合物能够作为精氨酸酶抑制剂,且活性较高,具体的,其通过抑制精氨酸酶活性来提高肿瘤组织中精氨酸浓度,加速免疫T细胞的增殖并增强其免疫功能,提高肿瘤免疫反应的应答率,进而增强细胞抑制肿瘤细胞生长的作用。
本发明还提供了一种肿瘤免疫治疗药物,包括本发明所述的式(I)结构的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐。本发明所述的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐除在调控精氨酸局部浓度的作用外,作为精氨酸酶抑制剂也可以与其它靶向T细胞活化的免疫肿瘤治疗药物联合作用,例如CTLA-4和PD-1抗体。这类小分子精氨酸酶抑制剂在肾细胞癌、乳腺癌、非小细胞肺癌、急性粒细胞白血病以及精氨酸介导骨髓来源抑制性细胞相关的肿瘤治疗中具有广泛的应用前景。它与生物单抗的联合用药将是最可行也是最有效的方案。另外,精氨酸酶抑制剂对缺血再生灌注损伤(心、肺、肾)、高血压、动脉粥样硬化、糖尿病、勃起功能障碍、肺动脉高压等很多疾病中都有潜在的治疗前景。
为了更容易理解本发明,首先定义某些术语。另外,应当注意,每当列举参数的值或值范围时,所列举值中间的值和范围也旨在成为本发明的一部分。另外,除非本文另外定义,否则结合本披露使用的科学和技术术语应具有本领域的普通技术人员通常所理解的含义。
“取代的”指基团中的一个或多个氢原子,优选为最多5个,更优选为1~3个氢原子彼此独立地被相应数目的取代基取代。不言而喻,取代基仅处在它们的可能的化学位置,本领域技术人员能够在不付出过多努力的情况下确定(通过实验或理论)可能或不可能的取代。例如,具有游离氢的氨基或羟基与具有不饱和(如烯属)键的碳原子结合时可能是不稳定的。
文中涉及的“Cx~Cy的杂环基”指的是杂环基中的碳数是x~y,x是碳原子的最小值并且y是碳原子的最大值,并不代表杂环基的环的大小。
文中涉及的“x-y元杂环基”这里的x和y指的是成环的原子数。
文中涉及的取代的Cx~Cy的基团中,x和y指的是基团上的碳数,并不包换取代基的,如取代的C1~C15的烷氧基,是指烷氧基的碳数为1~15个,并不包含取代基的个数。
本说明书所述的“取代”或“取代的”,如无特别指出,均是指基团可被一个或多个选自以下的基团取代:烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、疏基、羟基、硝基、氰基、环烷基、杂环基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、氨基、卤代烷基、羟烷基、羧基、羧酸酯基或=O的取代基所取代;其中,=O是指氧通过双键连接在所在的基团上。
“可药用的盐”是指上述化合物能保持原有生物活性并且适合于医药用途的某些盐类。式(I)所表示的化合物的可药用的盐可以为金属盐、与合适的酸形成的胺盐。
“药物组合物”表示含有一种或多种本文所述化合物或其生理学上可药用的盐或前体药物与其他化学组分的混合物,以及其他组分例如生理学可药用的载体和赋形剂。药物组合物的目的是促进对生物体的给药, 利于活性成分的吸收进而发挥生物活性。
下面将结合本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1 化合物的制备
Figure PCTCN2020085842-appb-000015
顺-3-(二苄基氨基)环丁烷羧酸甲酯
反应瓶中加入3-氧代环丁烷甲酸甲酯14g(0.11mol),四氢呋喃360ml,乙酸9.9g(0.165mol),搅拌下加入二苄胺22.88g(0.116mol),冰水浴降温。于15min内分批加入三乙酰氧基硼氢化钠34.97g(0.165mol),加完撤去冰水浴,于15~25℃反应过夜。减压浓缩掉大部分四氢呋喃,剩余物加饱和碳酸钠溶液,调pH至碱性,二氯甲烷萃取,有机相饱和食盐水洗涤干燥,快速柱层析得22.6g,收率66.9%
1H NMR(300M,CDCl 3):δ2.14-2.24(m,4H),2.61-2.71(m,1H),3.06-3.14(m,1H),3.50(s,4H),3.65(s,3H),7.22-7.31(m,10H);
MS实验值m/z:310.18(M+1)。
Figure PCTCN2020085842-appb-000016
顺-3-(二苄基氨基)-N-甲氧基-N-甲基环丁烷甲酰胺
顺-3-(二苄基氨基)环丁烷羧酸甲酯17g(0.055mol)溶于四氢呋喃200ml,加入2mol/L氢氧化钠溶液300ml,于15~25℃搅拌反应过夜。用3mol/L氯化氢溶液调pH至6~7,乙酸乙酯萃取,盐水洗涤干燥。快速柱层析得粘稠物15.6g。
粘稠物15g(0.05mol)溶于二氯甲烷200ml,加入EDCI19.2g(0.1mol),N,O-二甲基羟胺盐酸盐9.7g(0.1mol),冰盐浴降温,滴加三乙胺10.1g(0.),控制温度不高于5℃。滴完,自然升温反应过夜。反应液中加入半饱和食盐水,搅拌分液,水相二氯甲烷萃取,合并有机相,饱和食盐水洗涤干燥,柱层析得15g,收率81%。
1H NMR(300M,CDCl 3):δ2.16-2.23(m,4H),3.0(br,1H),3.15-3.17(m,4H),3.49-3.52(m,4H),3.60(s,3H),7.18-7.33(m,10H);
HRMS实验值m/z:339.2174(M+1)。
Figure PCTCN2020085842-appb-000017
顺-1-(3-(二苄基氨基)环丁基)己-5-烯-1-酮
顺-3-(二苄基氨基)-N-甲氧基-N-甲基环丁烷甲酰胺8.12g(0.024mol)溶于四氢呋喃30ml,冰盐浴降温,滴加0.5mol/L 3-丁烯溴化镁100ml(0.05mol),控制温度不高于5℃。滴完,自然升温反应过夜。用1mol/L氯化氢溶液调pH至5~6,乙酸乙酯萃取,有机相饱和食盐水洗涤干燥,快速柱层析得5.4g,收率66%。
1H NMR(300M,CDCl 3):δ2.09(br,2H),2.14-2.21(m,2H),2.27-2.33(m,2H),2.42-2.46(m,2H),2.73-2.80(m,1H),3.12-3.16(m,1H),3.50(s,4H),4.95-5.03(m,2H),5.73-5.84(m,1H),7.23-7.32(m,10H);
MS实验值m/z:334.28(M+1)。
Figure PCTCN2020085842-appb-000018
顺-1-(-3-(二苄基氨基)环丁基)-5-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)戊-1-酮
将顺-1-(3-(二苄基氨基)环丁基)己-5-烯-1-酮2g(0.0058mol),1,5-环辛二烯氯化铱二聚体300mg(0.00045mol),1,2-双(二苯基膦)乙烷300mg(0.00075mol)加入反应瓶,抽换气三次,加入无水二氯甲烷50ml,冰水浴降温。滴加频哪醇硼烷2.5g(0.019mol),控制温度不高于10℃,滴完自然升温过夜。反应液加入二氯甲烷稀释,饱和食盐水洗涤干燥,柱层析得2.5g,收率94%。
1H NMR(300M,CDCl 3):δ0.74-0.78(t,2H),1.23-1.27(m,12H),1.35-1.41(m,2H),1.50-1.56(m,2H),2.04-2.16(m,4H),2.30-2.34(t,2H),2.73-2.81(m,1H),3.08-3.16(m,1H),3.49(s,4H),7.22-7.30(m,10H);
MS实验值m/z:462.33(M+1)。
Figure PCTCN2020085842-appb-000019
顺-2-乙酰氨基-N-叔丁基-2-(3-(二苄基氨基)环丁基-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)己酰胺
反应瓶中加入顺-1-(-3-(二苄基氨基)环丁基)-5-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)戊-1-酮2.5g(0.0054mol),乙酸铵5g(0.065mol),三氟乙醇10ml,异氰酸叔丁酯1.5g(0.018mol),于15~25℃反应过夜。反应液中加水,乙酸乙酯萃取,有机相饱和食盐水洗涤干燥,快速柱层析得2.5g,收率76.4%。
1H NMR(300M,CDCl 3):δ0.74-0.78(t,2H),1.25-1.29(m,21H),1.37-1.46(m,4H),1.67-1.75(m,2H),2.00(s,3H),2.03-2.24(m,4H),2.63-2.70(m,1H),2.88-2.91(m,1H),3.42-3.54(q,4H),7.24-7.34(m,10H);
MS实验值m/z:604.51(M+1)。
Figure PCTCN2020085842-appb-000020
顺-2-乙酰氨基-2-(3-氨基环丁基)-N-叔丁基-6-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)己酰胺醋酸盐
顺-2-乙酰氨基-N-叔丁基-2-(3-(二苄基氨基)环丁基-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)己酰胺1g(1.66mmol)溶于甲醇20ml,加入乙酸0.1g,5wt%钯碳0.3g,3kg压力加氢16小时。过滤除去钯碳,减压浓缩得醋酸盐0.8g。
MS实验值m/z:484.36(M+1)。
Figure PCTCN2020085842-appb-000021
4'-甲氧基-4-甲酰基-[1,1'-联苯]
4-甲氧基苯硼酸1.52g(0.01mol),对溴苯甲醛1.85g(0.01mol),四三苯基膦钯0.58g(0.0005mol),碳酸钠3.18g加入反应瓶,加入二氧六环30ml,水30ml,反应体系氩气置换三次后80度反应4h。反应液倒入30ml水中,乙酸乙酯萃取,粗品柱层析得1.69g,收率79.7%。
Figure PCTCN2020085842-appb-000022
顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
顺-2-乙酰氨基-2-(3-氨基环丁基)-N-叔丁基-6-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)己酰胺醋酸盐0.42g(0.86mmol),4'-甲氧基-4-甲酰联苯0.18g(0.86mmol)溶于二氯甲烷10ml,加入三乙酰氧基硼氢化钠0.28g(1.32mmol),反应过夜。加入二氯甲烷稀释,碳酸钠饱和溶液搅拌,分液,有机相饱和盐水洗涤,柱层析得0.22g中间体;加6mol/L盐酸,回流搅拌16h。反应液减压浓缩干,pre-hplc纯化,冻干得56mg。
1H NMR(300M,D 2O):δ0.73-0.77(m,2H),1.15-1.22(m,1H),1.34-1.43(m,3H),1.67-1.75(m,1H),1.89-2.06(m,2H),2.26-2.63(m,4H),3.65-3.74(m,1H),4.17(s,2H),4.28(s,3H),7.04-7.06(d,2H),7.48-7.50(d,2H),7.62-7.69(q,4H)。
MS实验值m/z:423.3(M+1-18)。
Figure PCTCN2020085842-appb-000023
4'-环丙甲氧基-4-甲酰基-[1,1'-联苯]
4-(环丙基甲氧基)苯硼酸1.92g(0.01mol),对溴苯甲醛1.85g(0.01mol),四三苯基膦钯0.58g(0.0005mol),碳酸钠3.18g加入反应瓶,加入二氧六环30ml,水30ml,反应体系氩气置换三次后80度反应4h。反应液倒入30ml水中,乙酸乙酯萃取,粗品柱层析得1.63g,收率64.7%。
Figure PCTCN2020085842-appb-000024
顺-2-(3-((4'-环丙甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
使用顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,原料醛使用4'-环丙甲氧基-4-甲酰联苯,制得目标产物49mg。
1H NMR(300M,D 2O):δ0.36-0.38(m,2H),0.67-0.69(m,2H),0.73-0.77(m,2H),1.15-1.22(m,1H),1.24-1.43(m,4H),1.67-1.75(m,1H),1.89-2.06(m,2H),2.26-2.63(m,4H),3.65-3.74(m,1H),3.88-3.90(d,2H),4.17(s,2H),7.04-7.06(d,2H),7.48-7.50(d,2H),7.63-7.70(q,4H)
MS实验值m/z:463.3(M+1-18)。
Figure PCTCN2020085842-appb-000025
使用4'-甲氧基-4-甲酰联苯的制备方法,原料使用4-乙炔基苯硼酸,制得4'-乙炔基-4-甲酰联苯0.99g。
Figure PCTCN2020085842-appb-000026
4'-乙炔基-4-甲酰基[1,1'-联苯]
顺-2-(3-((4'-乙炔基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
使用顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,原料醛使用4'-乙炔基-4-甲酰联苯,制得目标产物77mg。
1H NMR(300M,D 2O):δ0.73-0.77(m,2H),1.15-1.22(m,1H),1.34-1.43(m,3H),1.67-1.75(m,1H),1.89-2.06(m,2H),2.26-2.63(m,4H),3.65-3.74(m,1H),3.22(s,1H),4.17(s,2H),7.06-7.08(d,2H),7.50-7.52(d,2H),7.63-7.70(q,4H)
MS实验值m/z:417.2(M+1-18)。
Figure PCTCN2020085842-appb-000027
4'-乙酰基-4-甲酰基[1,1'-联苯]
使用4'-甲氧基-4-甲酰联苯的制备方法,原料使用4-乙酰苯硼酸,得4'-乙酰-4-甲酰联苯1.59g
Figure PCTCN2020085842-appb-000028
顺-2-(3-((4'-乙酰基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
使用顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,原料醛使用4'-乙酰-4-甲酰联苯,制得目标产物121mg。
1H NMR(300M,D 2O):δ0.72-0.76(m,2H),1.14-1.21(m,1H),1.34-1.43(m,3H),1.67-1.75(m,1H),1.89-2.06(m,2H),2.26-2.63(m,4H),2.66(s,3H),3.66-3.75(m,1H),4.17(s,2H),7.05-7.07(d,2H),7.49-7.51(d,2H),7.63-7.70(q,4H)
MS实验值m/z:435.3(M+1-18)。
Figure PCTCN2020085842-appb-000029
3-(4-溴苯氧基)-四氢呋喃
3-羟基四氢呋喃0.5g(0.0057mol),四溴苯酚0.94g(0.0054mol),三苯基膦1.71g(0.0065mol)溶于15ml四氢呋喃,降温至0度,滴加偶氮二甲酸二乙酯1.14g(0.0065mol),自然升温过夜。浓缩掉大部分四氢呋喃,加甲基叔丁基醚20ml,搅拌滤除三苯氧膦,滤液0.5M氢氧化钠洗涤,水洗,盐水洗,粗品柱层析得1.03g,收率74.6%。
Figure PCTCN2020085842-appb-000030
4'-(四氢呋喃-3-基氧基)-4-甲酰基[1,1'-联苯]
1.03g(0.0042mol)中间体加入反应瓶,加入4-甲酰苯硼酸0.64g(0.0043mol),四三苯基氧膦0.25g(0.2mmol),碳酸钠1.37g(0.0129mol),二氧六环15ml,水15ml,反应体系氩气置换三次,80度反应4小时。反应液倒入20ml水中,乙酸乙酯萃取,粗品柱层析得0.79g,收率69.5%。
1H NMR(300M,CDCl 3):δ2.18-2.32(m,2H),3.92-3.97(m,1H),4.01-4.08(m,3H),4.99-5.03(m,1H),6.98-7.00(m,2H),7.59-7.61(m,2H),7.72-7.74(m,2H),7.93-7.96(m,2H),10.05(s,1H)
Figure PCTCN2020085842-appb-000031
顺-2-(3-((4'-(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
使用顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,原料醛使用4'-(四氢呋喃-3-基氧基)-4-甲酰联苯,制得目标产物131mg。
1H NMR(300M,D 2O):δ0.75-0.78(m,2H),1.15-1.23(m,1H),1.33-1.44(m,3H),1.67-1.75(m,1H),1.88-2.05(m,2H),2.11-2.19(m,1H),2.26-2.53(m,4H),2.54-2.63(m,1H),3.65-3.74(m,1H),3.88-4.03(m,4H),4.17(s,2H),5.13(m,1H),7.05-7.08(d,2H),7.49-7.52(d,2H),7.63-7.70(q,4H)
MS实验值m/z:479.3(M+1-18)。
Figure PCTCN2020085842-appb-000032
(S)-4'-(四氢呋喃-3-基氧基)-4-甲酰基[1,1'-联苯]
使用4'-(四氢呋喃-3-基氧基)-4-甲酰联苯的制备方法,原料使用(R)-3-羟基四氢呋喃,制得(S)-4'-(四氢呋喃-3-基氧基)-4-甲酰联苯1.03g。
Figure PCTCN2020085842-appb-000033
顺-(S)-2-(3-((4'-(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
使用顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,原料醛使用(S)-4'-(四氢呋喃-3-基氧基)-4-甲酰联苯,制得目标产物105mg。
1H NMR(300M,D 2O):δ0.74-0.78(m,2H),1.15-1.22(m,1H),1.34-1.42(m,3H),1.67-1.75(m,1H),1.89-2.06(m,2H),2.11-2.18(m,1H),2.26-2.63(m,5H),3.65-3.74(m,1H),3.88-4.02(m,4H),4.17(s,2H),5.13(m,1H),7.05-7.07(d,2H),7.49-7.51(d,2H),7.63-7.70(q,4H)
MS实验值m/z:479.3(M+1-18)。
Figure PCTCN2020085842-appb-000034
(R)-4'-(四氢呋喃-3-基氧基)-4-甲酰基[1,1'-联苯]
使用4'-(四氢呋喃-3-基氧基)-4-甲酰联苯的制备方法,原料使用(S)-3-羟基四氢呋喃,制得(R)-4'-(四氢呋喃-3-基氧基)-4-甲酰联苯1.26g。
Figure PCTCN2020085842-appb-000035
顺-(R)-2-(3-((4'-(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
使用顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,原料醛使用(R)-4'-(四氢呋喃-3-基氧基)-4-甲酰联苯,制得目标产物164mg。
1H NMR(300M,D 2O):δ0.74-0.79(m,2H),1.16-1.22(m,1H),1.33-1.42(m,3H),1.67-1.75(m,1H),1.88-1.96(m,1H),1.99-2.06(m,1H),2.11-2.18(m,1H),2.26-2.40(m,2H),2.43-2.63(m,3H),3.65-3.74(m,1H),3.89-4.03(m,4H),4.17(s,2H),5.13(m,1H),7.05-7.07(d,2H),7.49-7.51(d,2H),7.63-7.70(q,4H)
MS实验值m/z:479.3(M+1-18)。
Figure PCTCN2020085842-appb-000036
顺-(S)-2-(3-((4'-(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸乙酯
顺-(S)-2-(3-((4'-(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸0.36g(0.5mmol,三氟乙酸盐)溶于10mlDMF,加入碳酸钾0.35g(2.5mmol),溴乙烷11mg,5~10度反应5小时。滤除碳酸钾,DMF浓缩至2ml左右,pre-hplc纯化,冻干得182mg。
1H NMR(300M,D 2O):δ0.72-0.79(m,2H),1.16-1.23(m,1H),1.31-1.34(t,3H),1.36-1.44(m,2H),1.65-1.76(m,1H),1.86-2.17(m,3H),2.28-2.35(m,2H),2.46-2.55(m,2H),3.06-3.14(m,2H),3.71-3.79(m,1H),3.89-3.95(m,2H),3.98-4.03(m,2H)4.26-4.33(m,2H),5.14(m,1H),7.05-7.09(q,2H),7.53-7.55(d,2H),7.64-7.67(q,2H),7.70-7.72(d,2H)
MS实验值m/z:507.3(M+1-18)。
Figure PCTCN2020085842-appb-000037
顺-(S)5-(3-((4'(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-5-氨基-6-氧代-6-(新戊酰氧基甲氧基)己基硼酸
使用顺-(S)-2-(3-((4'-(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸乙酯的制备方法,原料使用特戊酸氯甲酯,制得目标产物163mg。
1H NMR(300M,D 2O):δ0.77-0.80(m,2H),1.08-1.19(m,10H),1.34-1.45(m,3H),1.81-1.88(m,1H),1.98-2.13(m,2H),2.19-2.44(m,5H),2.67-2.74(m,1H),3.72-3.80(m,1H),3.93-4.00(m,2H),4.02-4.08(m,2H),4.25(s,2H),5.21(m,1H),5.85-5.96(q,2H),7.12-7.14(d,2H),7.55-7.57(d,2H),7.71-7.77(q,4H)
MS实验值m/z:611.3(M+1)。
Figure PCTCN2020085842-appb-000038
顺-2-乙酰氨基-2-(3-氨基环丁基)-N-叔丁基-6-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)己酰胺醋酸盐1.68g(3.44mmol),(S)-4'-(四氢呋喃-3-基氧基)-4-甲酰联苯0.92g(3.44mmol)溶于二氯甲烷30ml,加入三乙酰氧基硼氢化钠1.08g(5.28mmol),反应过夜。加入二氯甲烷稀释,碳酸钠饱和溶液搅拌,分液,有机相饱和盐水洗涤,柱层析得1.09gA。
Figure PCTCN2020085842-appb-000039
A 1g(1.11mmol)溶于10ml二氯甲烷,加入氯甲酸-9-芴甲酯0.7g(2.7mmol),饱和碳酸氢钠溶液10ml,室温反应过夜。分液浓缩,粗品柱层析得0.7gB。
1H NMR(300M,CDCl 3):δ0.70-0.74(m,2H),1.21(s,12H),1.29(s,9H),1.35(w,4H),1.64(s,3H),2.20(w,3H),2.19-2.66(m,6H),3.72-3.81(m,1H),3.90-3.95(m,1H),3.99-4.06(m,3H),4.21(w,1H),4.43-4.47(m,4H),4.98(m,1H),6.94-6.96(d,2H),7.06-7.08(d,2H),7.2(w,2H),7.38(m,4H),7.45-7.52(q,4H),7.71-7.73(d,2H)
MS实验值m/z:898.5(M+1)。
Figure PCTCN2020085842-appb-000040
B加入6M盐酸回流10h,减压浓缩干,加入二氯甲烷溶解,碳酸氢钠洗涤,水洗,浓缩得C(粗品)。
Figure PCTCN2020085842-appb-000041
顺-(S)4-(3-((4'(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-5-氧代恶唑烷-4-基)丁基硼酸
0.3g C溶于30ml甲苯,加入对甲苯磺酸30mg,多聚甲醛0.1g,回流分水8小时。甲苯用碳酸氢钠洗涤,水洗,浓缩。浓缩物溶于5ml乙腈,加入二乙胺5ml,室温反应1小时。减压浓缩干,甲醇溶解,pre-hplc纯化,冻干得23mg。
1H NMR(300M,D 2O):δ0.74-0.79(m,2H),1.16-1.22(m,1H),1.33-1.42(m,3H),1.67-1.75(m,1H),1.88-1.96(m,1H),1.99-2.06(m,1H),2.11-2.18(m,1H),2.23-2.40(m,2H),2.43-2.66(m,3H),3.64-3.75(m,1H),3.89-4.03(m,4H),4.17(s,2H),4.22(m,2H),5.13(m,1H),7.05-7.07(d,2H),7.49-7.51(d,2H),7.63-7.70(q,4H)
MS实验值m/z:509.3(M+1)。
Figure PCTCN2020085842-appb-000042
使用顺-(S)-2-(3-((4'-(四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,分离得到二联苯取代物D
MS实验值m/z:928.6(M+1)。
Figure PCTCN2020085842-appb-000043
顺-2-(3-(二((4'-(((S)-四氢呋喃-3-基)氧基)-[1,1'-联苯]-4-基)甲基)氨基)环丁基)-2-氨基-6-硼己酸
D加入6M氯化氢水解,反应液浓缩干,pre-hplc纯化,冻干得77mg
1H NMR(300M,MeOD):0.8(w,2H),1.16-1.41(m,4H),1.71-1.78(m,1H),1.91-1.96(m,1H),2.10-2.16(m,2H),2.20-2.44(m,5H),2.53-2.67(m,2H),3.87-4.01(m,9H),4.33(w,4H),5.06-5.08(m,2H),6.98-7.00(d,4H),7.57-7.69(m,12H)
MS实验值m/z:731.4(M+1-18)。
Figure PCTCN2020085842-appb-000044
二氢-3(2H)-呋喃酮0.86g(0.01mol),溶于无水四氢呋喃5ml,冰水浴,加入氘代四氢锂铝0.42g(0.01mol),半小时后撤去冰水浴,继续反应半小时,加水淬灭,过滤,滤液柱层析得产品0.32g。
1H NMR(300M,D 2O):δ1.89-2.17(m,2H),3.76-3.90(m,3H),3.98-4.06(m,1H)
Figure PCTCN2020085842-appb-000045
3-羟基-3-D-四氢呋喃0.32g(0.0036mol),四溴苯酚0.57g(0.0033mol),三苯基膦1.05g(0.004mol) 溶于15ml四氢呋喃,降温至0度,滴加偶氮二甲酸二乙酯0.71g(0.004mol),自然升温过夜。浓缩掉大部分四氢呋喃,加甲基叔丁基醚20ml,搅拌滤除三苯氧膦,滤液0.5M氢氧化钠洗涤,水洗,盐水洗,粗品柱层析得0.57g,收率71.3%。
1H NMR(300M,D 2O):δ2.15-2.28(m,2H),3.89-3.94(m,1H),3.99-4.06(m,3H),6.81-6.83(m,2H),7.49-7.51(m,2H)
Figure PCTCN2020085842-appb-000046
0.56g(0.0023mol)中间体加入反应瓶,加入4-甲酰苯硼酸0.34g(0.0023mol),四三苯基氧膦0.22g(0.1mmol),碳酸钠0.69g(0.0065mol),二氧六环10ml,水10ml,反应体系氩气置换三次,80度反应4小时。反应液倒入20ml水中,乙酸乙酯萃取,粗品柱层析得0.45g,收率72.9%。
1H NMR(300M,D 2O):δ2.16-2.29(m,2H),3.90-3.95(m,1H),3.99-4.06(m,3H),6.96-6.98(m,2H),7.58-7.60(m,2H),7.70-7.72(m,2H),7.92-7.94(m,2H),10.04(s,1H)
Figure PCTCN2020085842-appb-000047
顺-2-(3-((4'-(3-D-四氢呋喃-3-基氧基)-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸
使用顺-2-(3-((4'-甲氧基-[1,1'-联苯]-4-基)甲基氨基)环丁基)-2-氨基-6-硼酸己酸的制备方法,原料醛使用4'-(四氢呋喃-3-基氧基)-4-甲酰联苯,制得目标产物23.1mg。
1H NMR(300M,D 2O):δ0.73-0.76(m,2H),1.16-1.22(m,1H),1.35-1.39(m,3H),1.68-1.76(m,1H),1.86-2.20(m,4H),2.32-2.37(m,2H),2.43-2.49(m,1H),2.54-2.63(m,1H),3.60-3.68(m,1H),3.78-3.91(m,4H),4.09-4.16(t,2H),6.82-6.84(d,2H),7.44-7.48(t,4H),7.55-7.57(d,2H)
MS实验值m/z:479.3(M+1-18)。
实施例2
一、精氨酸酶活性检测方法的建立和优化
精氨酸酶能催化L-精氨酸转换L-鸟氨酸和尿素,因此通过检测反应终点溶液中尿素的含量来判断精氨酸酶活性水平。基于已发表的方法,进行了优化和改进。具体如下:
· 材料来源如表1所示:
表1
Figure PCTCN2020085842-appb-000048
所有试剂收到后按照说明书要求存放,每次配制后均严格封存。
· 溶液配制:
Figure PCTCN2020085842-appb-000049
Figure PCTCN2020085842-appb-000050
人来源的精氨酸酶I被溶解在包含0.1%牛血清蛋白的无菌去离子水中,储存液浓度为200μg/mL。(S)-2-氨基-6-硼己酸及所有候选物抑制剂被溶解在二甲基亚砜(DMSO)中,储存液浓度根据提供的化合物重量选择(50mM/100mM)。L-精氨酸(500mM)及硫酸镁(250mM)的配制均使用无菌的DMEM培养基配制。
· 检测方法:
在优化过程中,对L-精氨酸浓度(5mM/25mM)、锰离子浓度(2.5mM/5mM)、精氨酸酶I用量(2ng/5ng/50ng/100ng)及吸光度读取波长(450nm/490nm)进行了不同梯度条件的摸索,获得最终优化结果。精氨酸酶活性检测方法步骤具体如下(1-6):
1.按照表2配制反应混合体系,并将混合液加入96孔板进行酶催化反应
表2
组分名称 体积(μl)
锰离子(250mM) 1
L-精氨酸(500mM) 1
精氨酸酶I(200μg/mL) 0.25
抑制剂(不同浓度,使用浓度为0.1%) 0.1
DMEM 97.65
获得抑制剂的IC50时,每个反应浓度设置4-6个独立重复,共8个不同的浓度梯度。
2. 37℃条件下,反应2小时。
3.按照表3配制终止缓冲液
表3
组分名称 体积(μl)
试剂A 75
试剂B 75
96孔板中,每个反应孔添加150μl终止缓冲液。
4.室温下静置1小时。
5.酶标仪中读取450nm条件下的吸光值。
6.数据分析,获得抑制剂的IC50。
通过对尿素试验(2ng)和抑制剂阳性对照(S)-2-氨基-6-硼己酸(IC50=2.1±1.0,文献报道为1.6±0.8)的测试分析,认为建立的精氨酸酶活性检测方法的灵敏度、重复性和准确性均较高,达到要求标准。
二、精氨酸酶I抑制剂候选物活性的筛选
抑制剂候选物,二甲基亚砜(DMSO)溶解并分装,设计如表4所示的不同浓度梯度。
表4
抑制剂浓度(储存液,mM) 体积(μl) 终浓度(μM)
0 0.1 0
0.01 0.1 0.01
0.05 0.1 0.05
0.1 0.1 0.1
0.5 0.1 0.5
1 0.1 1
2 0.1 2
5 0.1 5
通过文献报道和本申请进行的试验,证实二甲基亚砜(DMSO)用量≤0.1%时,对细胞没有影响,因此选择稀释浓度为0.1%。
针对每个抑制剂IC50的获得,设计的8个不同浓度梯度和4-6个独立的重复组。并每次平行进行阳 性对照(S)-2-氨基-6-硼己酸的平行试验,用于比较抑制活性。
三、精氨酸酶I过表达细胞系的构建
为了更准确反应精氨酸酶抑制剂在细胞水平上的抑制效果,构建精氨酸酶I过表达的细胞株。
将993bp(CCDS59038.1)的精氨酸酶I基因插入到pLVX慢病毒载体中,构建了重组质粒并通过包装慢病毒进行感染中国仓鼠卵巢细胞(CHO)和人肾脏上皮细胞(293T),最终获得精氨酸酶I稳定过量表达的细胞株,结果见图1,图1为pLVX质粒图谱及精氨酸酶I插入位点示意图;
利用构建的细胞株,将对初筛的抑制剂候选为进行细胞水平的进一步筛选并进行抑制剂的细胞学毒性测试,最终获得高效低毒性的抑制剂化合物。
稳定过表达细胞系中精氨酸I表达量和表达活性的检测
收集过表达细胞,提取RNA,反转录后进行RT-PCR检测,定量检测结果见图2,图2为稳定细胞系中精氨酸酶1含量检测图;
对构建的细胞系进行精氨酸酶活性检测并摸索合适的接种数,检测结果见图3,图3为接种细胞数摸索及精氨酸酶活性检测结果,根据实验结果和观察,接种1.5×10 4个/孔细胞比较合适,且过表达细胞系有精氨酸酶活性。实验步骤依据之前体外实验摸索并参考文献(Journal of Medicinal Chemistry,2013,56,2568-2580)而来,具体操作如下:
第1天:接种细胞(96孔板)。分别计数并依次接种0,0.5,1.0,1.5,2,2.5,3,4(×10 4)个细胞;
第2天:24小时后,去上清,向每孔中加入100ul、终浓度为5mM的L-精氨酸;
第3天:48小时后,取上清至新孔中,向每孔中加入150μl停止液(缓冲液A:缓冲液B=1:1),室温孵育2小时后,酶标仪读取OD 450数值。
实施例3
按照实施例2得到的筛选方法检测本申请化合物作为精氨酸抑制剂的活性,具体实验方法如下:
实验方法:
1、配制所需试剂:
L-精氨酸(500mM,DMEM);无水硫酸锰(250mM,DMEM);终止液A(超滤水);终止液B(超滤水);不同浓度抑制剂(0,0.001,0.01,0.05,0.1,0.5,1,2,5,10,50,100mM,DMSO)。
2、反应体系为:
Figure PCTCN2020085842-appb-000051
3、流程:
A、反应在96孔板中操作,5个重复/浓度/抑制剂。按照2步中的体系将各个反应组分添加到孔板中,注意不要产生气泡。
B、将添加好反应液体系的孔板移至37度条件下,孵育2小时。
C、取出孔板,每孔添加150μL的终止液混合物(75μL的A液和75μL的B液的混合液),室温下,反应1小时。
D、读取OD 450,分析数据,拟合并计算IC 50,结果见表5,
表5
Figure PCTCN2020085842-appb-000052
Figure PCTCN2020085842-appb-000053
Figure PCTCN2020085842-appb-000054
实施例4
细胞功能检测
操作步骤如下:
1、第1天:接种目的细胞。2×10 4个/孔,96孔板,3~5孔重复;
取对数生长期的目的细胞,消化收集,离心去上清。用PBS润洗1-2次,用DMEM/F12基础培养基重悬细胞,计数,将细胞稀释至2×10 5个/mL。取100μl细胞悬液接种至96孔板中,3~5孔细胞重复。
2、第2天:向细胞中加入待测精氨酸酶抑制剂;
吸弃孔板中的培养液,并向孔板中加入100μl/孔下述混合液,37度孵育2小时。
具体反应体系如表6所示:
表6
组分 浓度 体积
L-精氨酸 500mM 1μl
抑制剂 相应不同浓度 0.1μl
DMEM/F12空培 98.9μl
实验组为接种了细胞的孔,对照组为未接种细胞的孔,均为3~5孔重复。
3、第3天:终止反应并检测。
取出孔板,将上清转移至新的孔板中,并向每孔中加入150μl终止液(75μl的A液和75μl的B液的混合液),室温孵育1.5小时后,酶标仪读取OD450数值,分析数据,拟合并计算IC 50,结果见表7,
表7
Figure PCTCN2020085842-appb-000055
Figure PCTCN2020085842-appb-000056
Figure PCTCN2020085842-appb-000057
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (14)

  1. 一种化合物,具有式(I)所示结构,或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、溶剂化物、水合物、药学上可接受的盐或其混合物形式,
    Figure PCTCN2020085842-appb-100001
    其中:
    所述R 1选自羟基、取代的或未取代的C1~C10的烷氧基或取代的或未取代的C3~C30的酰氧基烷氧基;
    所述R 5和R 6各自独立地选自氢原子;
    或者,R 1与R 5和与它们相连接的氮和碳原子一起形成4~8元杂环基,优选为5~6元杂环基,其中,所述的杂环基内含有一个或多个N、O、S或SO 2,并且4~8元杂环上的氢任选进一步被一个或多个选自羟基、卤素、C1~C10烷基、C1~C10烷氧基或=O的取代基所取代;
    所述R 2选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C10的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选择氘、羟基、卤素、C3~C10环烷基或4~10元杂环基;
    所述R 3选自氢或式(R 3-1),
    Figure PCTCN2020085842-appb-100002
    所述R 4选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C6的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选自氘、羟基、卤素、C3~C10环烷基或4~10元杂环基。
  2. 根据权利要求1所述的化合物,其特征在于,所述化合物为式(I-A)、式(I-B)、(I-C)或(I-D):
    Figure PCTCN2020085842-appb-100003
    Figure PCTCN2020085842-appb-100004
    其中,
    所述R 1选自羟基、取代的或未取代的C1~C10的烷氧基或取代的或未取代的C3~C30的酰氧基烷氧基;
    所述R 2选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C10的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选择氘、羟基、卤素、C3~C10环烷基或4~10元杂环基;
    所述R 4选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的和未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C6的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基或取代的杂环基氧基中的取代基独立的选自氘、羟基、卤素、C3~C10环烷基或4~10元杂环基。
  3. 根据权利要求1所述的化合物,其特征在于,所述化合物为式(I-E)、式(I-F):
    Figure PCTCN2020085842-appb-100005
    其中:
    R A选自C1~C15烷基或C3~C8环烷基;
    环A选自C4~C10杂环基,其中环A与氧原子和氘原子相连接的为同一个碳原子;
    其它各个取代基的定义如权利要求1中所述。
  4. 根据权利要求1~3任一项所述的化合物,其特征在于,
    所述R 1选自羟基、C2~C6的烷氧基或C6~C20的酰氧基烷氧基;
    或者,R 1与R 5和与它们相连接的氮和碳原子一起形成氧代恶唑烷基。
  5. 根据权利要求1~3任一项所述的化合物,其特征在于,所述R 1选自羟基、甲氧基、乙氧基、丙氧基、甲基酰氧基甲氧基、乙基基酰氧基甲氧基、正丙基酰氧基甲氧基、异丙基酰氧基甲氧基、正丁基酰氧基甲氧基、异丁基酰氧基甲氧基、叔丁基酰氧基甲氧基、正戊基酰氧基甲氧基、异戊基基酰氧基甲氧基、新戊基酰氧基甲氧基、甲基酰氧基乙氧基、乙基基酰氧基乙氧基、正丙基酰氧基乙氧基、异丙基酰氧基乙 氧基、正丁基酰氧基乙氧基、异丁基酰氧基乙氧基、叔丁基酰氧基乙氧基、正戊基酰氧基乙氧基、异戊基基酰氧基乙氧基、新戊基酰氧基乙氧基;
    或者,R 1与R 5和与它们相连接的氮和碳原子一起形成氧代恶唑烷基。
  6. 根据权利要求1或2所述的化合物,其特征在于,所述R 2选自C2~10的烷氧基、C3~C6的酰基、C3~C10的不饱和烃基或C4~C8的杂环基氧基,其中,所述的烷氧基任选进一步被C3~C10环烷基取代;所述不饱和烃基优选为炔基。
  7. 根据权利要求1~3任意一项所述的化合物,其特征在于,所述R 2选自甲氧基、乙氧基、丙氧基、正丁氧基、异丁氧基、环丙甲氧基、正戊基氧基、正己基氧基、乙酰基、正丙基酰基、异丙基酰基、丁基酰基、戊基酰基、乙烯基、乙炔基、丙烯基、丙炔基、四氢呋喃-3-基氧基、四氢呋喃-2-基氧基、四氢吡喃-3-基氧基或四氢吡喃-2-基氧基。
  8. 根据权利要求1~3任意一项所述的化合物,其特征在于,所述R 4选自C2~10的烷氧基、C3~C6的酰基、C3~C10的不饱和烃基或C4~C8的杂环基氧基,其中,所述不饱和烃基优选为炔基。
  9. 根据权利要求1所述的化合物,其特征在于,所述化合物选自式(I-1)、式(I-2)、式(I-3)、式(I-4)、式(I-5)、式(I-6)、式(I-7)、式(I-8)、式(I-9)、式(I-10)、式(I-11)或式(I-12),
    Figure PCTCN2020085842-appb-100006
    Figure PCTCN2020085842-appb-100007
  10. 一种具有式(I)结构的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐的制备方法,包括:
    1)将式(II)结构的化合物和式(III)结构的化合物反应,得到式(IV)结构的化合物;
    Figure PCTCN2020085842-appb-100008
    2-A)将得到的式(IV)结构的化合物转化为式(I-A)的化合物;
    Figure PCTCN2020085842-appb-100009
    2-B)将得到的式(IV)结构的化合物与式(V)反应得到式(VI)结构的化合物,再将式(VI)结构的化合物转化为式(I-B),
    Figure PCTCN2020085842-appb-100010
    2-C)将得到的(I-A)化合物在酸性条件下与多聚甲醛反应,转化为式(I-C),
    Figure PCTCN2020085842-appb-100011
    2-D)将得到的(I-B)化合物酸性条件下与多聚甲醛反应,转化为式(I-D),
    Figure PCTCN2020085842-appb-100012
    其中:
    所述R 1选自羟基、取代的或未取代的C1~C10的烷氧基或取代的或未取代的C3~C30的酰氧基烷氧基;
    所述R 5和R 6各自独立地选自氢原子;
    或者,R 1与R 5和与它们相连接的氮和碳原子一起形成4~8元杂环基,优选为5~6元杂环基,其中,所述的杂环基内含有一个或多个N、O、S或SO 2,并且4~8元杂环上的氢任选进一步被一个或多个选自羟基、卤素、C1~C10烷基、C1~C10烷氧基或=O的取代基所取代;
    所述R 2选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C10的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选择氘、羟基、卤素、C3~C10环烷基或4~10元杂环基;
    所述R 3选自氢或式(R 3-1),
    Figure PCTCN2020085842-appb-100013
    所述R 4选自取代的或未取代的C1~C15的烷氧基、取代的或未取代的C2~C8的酰基、取代的或未取代的C2~C15的不饱和烃基或取代的或未取代的C4~C6的杂环基氧基,其中,所述取代的烷氧基、取代的酰基、取代的不饱和烃基和取代的杂环基氧基中的取代基独立的选自氘、羟基、卤素、C3~C10环烷基或4~10元杂环基。
  11. 一种药物组合物,所述的药物组合物包括有效剂量的权利要求1~9中任何一项所述的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、溶剂化物、水合物、药学上可接受的盐或其混合物形式。
  12. 一种精氨酸酶抑制剂,包括权利要求1~9任意一项所述的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐或权利要求11所述的药物组合物。
  13. 一种肿瘤免疫治疗药物,包括权利要求1~9任意一项所述的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐或权利要求11所述的药物组合物。
  14. 一种缺血再生灌注损伤、高血压、动脉粥样硬化、糖尿病、勃起功能障碍或肺动脉高压的治疗药物,包括权利要求1~9任意一项所述的化合物或其互变异构体、内消旋体、外消旋体、对映异构体、非对映异构体、或其混合物形式、或其可药用盐或权利要求11所述的药物组合物。
PCT/CN2020/085842 2019-06-21 2020-04-21 一种化合物及其制备方法和应用 WO2020253352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547881.1A CN112110944B (zh) 2019-06-21 2019-06-21 一种化合物及其制备方法和应用
CN201910547881.1 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020253352A1 true WO2020253352A1 (zh) 2020-12-24

Family

ID=73795414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085842 WO2020253352A1 (zh) 2019-06-21 2020-04-21 一种化合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112110944B (zh)
WO (1) WO2020253352A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068830A (zh) * 2010-04-22 2013-04-24 马尔斯公司 精氨酸酶抑制剂及其治疗应用
CN104244932A (zh) * 2011-10-19 2014-12-24 马尔斯公司 精氨酸酶抑制剂和其治疗应用
CN104540836A (zh) * 2012-04-18 2015-04-22 马尔斯公司 作为精氨酸酶抑制剂的环约束类似物
CN108794517A (zh) * 2017-04-27 2018-11-13 南京谷睿生物科技有限公司 一种精氨酸酶抑制剂及其制备方法与用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10143699B2 (en) * 2015-06-23 2018-12-04 Calithera Biosciences, Inc. Compositions and methods for inhibiting arginase activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068830A (zh) * 2010-04-22 2013-04-24 马尔斯公司 精氨酸酶抑制剂及其治疗应用
CN104244932A (zh) * 2011-10-19 2014-12-24 马尔斯公司 精氨酸酶抑制剂和其治疗应用
CN104540836A (zh) * 2012-04-18 2015-04-22 马尔斯公司 作为精氨酸酶抑制剂的环约束类似物
CN108794517A (zh) * 2017-04-27 2018-11-13 南京谷睿生物科技有限公司 一种精氨酸酶抑制剂及其制备方法与用途

Also Published As

Publication number Publication date
CN112110944A (zh) 2020-12-22
CN112110944B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
JP7097880B2 (ja) Malt1分解のための化合物
KR102485620B1 (ko) Acc 억제제 및 그의 고체 형태를 제조하는 방법
JP6644792B2 (ja) ベンザゼピンスルホンアミド化合物
CN111868026B (zh) 含有n杂五元环的衣壳蛋白装配抑制剂、其药物组合物和用途
JP5583592B2 (ja) Ido阻害剤
JP2017538678A (ja) 免疫調節剤
CA2981657A1 (en) Inhibitors of indoleamine 2,3-dioxygenase for the treatment of cancer
CN111410661B (zh) 帽依赖性内切核酸酶抑制剂及其用途
JP2020512399A (ja) Idoを抑制する化合物、その調製方法及びその使用
WO2015010297A1 (en) Therapeutically active compounds and their methods of use
CN113387840B (zh) PD-1/PD-L1和HDACs双靶点抑制剂、制备方法和用途
JP2020527166A (ja) Bcl−2タンパク質を阻害するためのN−ベンゼンスルホニルベンズアミド系化合物、その組成物および使用
CN104010501A (zh) 含src同源区2蛋白酪胺酸磷酸酶-1增效剂及其治疗方法
CA2946609A1 (en) Naphthaquinone methyltransferase inhibitors and uses thereof
EP2350039A1 (en) Viral polymerase inhibitors
RU2704251C2 (ru) П-толуолсульфонат для ингибитора мек-киназы и его кристаллическая форма, и способ его получения
JP2006527206A (ja) パピローマウイルスのインヒビター
WO2020253352A1 (zh) 一种化合物及其制备方法和应用
WO2020187292A1 (zh) 2-取代吡唑氨基-4-取代氨基-5-嘧啶甲酰胺类化合物、组合物及其应用
CN112876411A (zh) 化合物及其在合成pdl1拮抗剂类药物分子中的应用
CN108794517B (zh) 一种精氨酸酶抑制剂及其制备方法与用途
TW201934547A (zh) 一種嘧啶類化合物、其製備方法及其醫藥用途
CA3030697C (en) Pyrazolylaminobenzimidazole derivatives as jak inhibitors
TW201922690A (zh) 環-amp反應元素結合蛋白的抑制劑
JP2024516194A (ja) Pd1/pd-l1阻害剤としての化合物及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825614

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20825614

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2022)