WO2020253306A1 - 一种柔性压阻式应力传感器及其制备方法 - Google Patents

一种柔性压阻式应力传感器及其制备方法 Download PDF

Info

Publication number
WO2020253306A1
WO2020253306A1 PCT/CN2020/081907 CN2020081907W WO2020253306A1 WO 2020253306 A1 WO2020253306 A1 WO 2020253306A1 CN 2020081907 W CN2020081907 W CN 2020081907W WO 2020253306 A1 WO2020253306 A1 WO 2020253306A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
solution
stress sensor
pdms
pedot
Prior art date
Application number
PCT/CN2020/081907
Other languages
English (en)
French (fr)
Inventor
何鑫
沈耿哲
陈腾
杨为家
张弛
陈柏桦
何傑
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2020253306A1 publication Critical patent/WO2020253306A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/04Networks or arrays of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors

Definitions

  • the invention belongs to the technical field of flexible electronic materials and sensing, and specifically relates to a flexible piezoresistive stress sensor and a preparation method thereof.
  • flexible stress sensors overcome the shortcomings of fragility, and have good biocompatibility, stretchability, transparency, wearability and continuous detection, etc.
  • Conductive materials commonly used in flexible stress sensors include nanoparticles, carbon nanotubes, metal nanowires, graphene, and organic conductive materials.
  • the simple characteristics of a single material can no longer meet people's needs for multi-functional materials. Only by constantly looking for a combination of multiple materials can we improve material advantages and multi-functionality.
  • one of the objectives of the present invention is to provide a flexible piezoresistive stress sensor.
  • Another object of the present invention is to provide a method for preparing the above-mentioned flexible piezoresistive stress sensor.
  • a flexible piezoresistive stress sensor consists of a first PDMS (polydimethylsiloxane) microstructure substrate, Ag nanowire/PEDOT:PSS conductive layer, a second PDMS microstructure substrate and wires (such as conductive copper wire) ) Composition, the first PDMS microstructure substrate and the second PDMS microstructure substrate sandwich the Ag nanowire/PEDOT:PSS conductive layer.
  • first PDMS microstructure substrate and/or the second PDMS microstructure substrate have a grid microstructure.
  • first PDMS microstructure substrate and/or the second PDMS microstructure substrate are constructed by near-field electrospinning.
  • first PDMS microstructure substrate and/or the second PDMS microstructure substrate are manufactured by the following steps:
  • solution A dissolve polyacrylonitrile (PAN) in NN dimethylformamide (DMF) solvent and mix well to obtain solution A; the humidity is 10-80%, preferably 30 -50%, such as 30%, 40%, 50%; the concentration of solution A is 1-50% by weight, preferably 6-20% by weight, such as 6% by weight, 10% by weight, and 20% by weight.
  • PAN polyacrylonitrile
  • DMF dimethylformamide
  • the substrate uses conductive ITO glass , Stainless steel sheet, aluminum foil, tin foil, the thickness of the substrate is 0.01-10cm, preferably 0.2-1cm; the diameter of the syringe is 10-15mm, preferably 13mm; the electrospinning conditions :The advance rate is 0.001-0.05mL/min, preferably 0.003-0.02mL/min, the voltage is 2.5-8.5kV, preferably 3.6-7.8kV, and the distance between the needle and the substrate is 0.1-5mm, preferably 0.5 -2mm, the receiver operating speed is 1-300mm/s, preferably 10-250mm/s, the residence time after spinning a thread is 1-50s, preferably 10-20s, the grid interval is 10-800 ⁇ m, preferably The ground is 100-500 ⁇ m;
  • the heating temperature is 40-200°C, preferably 50-100°C; the curing time 10-100min, preferably 30-60min;
  • the PDMS solution is made by mixing PDMS, the basic component of Dow Corning SYLGARD184 silicone rubber, and curing agent in a ratio of 10:1.
  • a dissolving agent Place the composite substrate in a dissolving agent, remove the ordered grid of PAN organic fibers, leave an ordered grid groove, and dry at 60°C for 30 minutes to obtain a PDMS microstructure substrate;
  • the dissolving agent It is a mixed solution of water and ethanol (volume ratio 1:0.1-10); dissolution conditions: temperature is 30-100°C, preferably 60°C, stirring speed is 100-1500rpm, preferably 900rpm, stirring time is 1 -10h, preferably 2-4h, and the ultrasonic vibration time is 0.5-5h, preferably 1-2h.
  • step (1) the humidity mentioned in step (1) is under the condition of 30-50%, which can prevent dripping during the spinning process.
  • step (3) Hongfeng Enterprise Co., Ltd., direct-write high-pressure spinning equipment FES-COW.
  • the electrospinning method in step (3) opens up a new etching method compared with ordinary etching, and has the advantages of large groove area, easy preparation, and low cost.
  • the preparation method of the Ag nanowire/PEDOT:PSS conductive layer includes the following steps: adding 2-20 mg of dried Ag nanowires to 0.1-10 mL of PEDOT:PSS suspension, and stirring uniformly, wherein PEDOT: The mass ratio of PSS is 1:1.
  • the flexible piezoresistive stress sensor is manufactured by the following method:
  • the Ag nanowire/PEDOT:PSS composite solution is Fix the Ag nanowire/PEDOT:PSS composite solution between the first and second PDMS microstructure substrates. After the Ag nanowire and PEDOT:PSS are composited, they are viscous and can be attached to the PDMS substrate with grid grooves. on. , Forming a conductive layer and drying to obtain a flexible piezoresistive stress sensor precursor film; the mass ratio of the Ag nanowire and the PEDOT:PSS composite solution is 1:0.5-5, preferably 1:1; the PEDOT The coating volume of the PSS composite solution is 1-15ml, preferably 2-10ml; the PEDOT:PSS composite solution is produced by Zhuhai Kaiwei Optoelectronics Technology Co., Ltd. ELP3145; the drying temperature is 50-100°C, Preferably the temperature is 60-80°C, and the drying time is 0.5-5h, preferably 1-3h; the conductive layer is Ag nanowire/PEDOT:PSS conductive layer;
  • Two wires are respectively drawn from the first and second PDMS microstructure substrates of the flexible piezoresistive stress sensor precursor film to obtain a flexible piezoresistive stress sensor.
  • the Ag nanowires are synthesized by a hydrothermal method, specifically:
  • (a) Dissolve glucose, silver nitrate, and iron sulfate in a solvent at room temperature, and mix the above three solutions according to a certain volume ratio to obtain mixture A;
  • the amount of glucose is 0.1-5 mmol, preferably 2mmol;
  • the amount of silver nitrate is 0.1-5mmol, preferably 1.5mmol;
  • the amount of ferric sulfate is 0.1-5mmol, preferably 0.3mmol;
  • the volume ratio of the three solutions is 2:1-5 :0.5-3, preferably 2:2:1, glucose 0.25mol/L, silver nitrate 0.075mol/L, iron sulfate 0.03mol/L;
  • the solvent is an inorganic solvent, preferably deionized water;
  • the detergent washes the above precipitation to remove the oxide layer on the surface of the Ag nanowires;
  • the detergent is a strong oxidizing solution, preferably a dilute nitric acid solution;
  • step (f) Add ethanol to the system of step (e), centrifuge to remove excess nitric acid, and repeatedly filter to obtain Ag nanowires.
  • the near-field electrospinning method prepares PDMS microstructure substrates, which is simple, easy to operate, and can be mass-produced;
  • the PDMS microstructure substrate effectively enhances the adsorption capacity of the substrate surface
  • Microstructure PDMS microstructure substrates with different gap sizes the gap size is different, the density of conductive paths is different, the smaller the gap, the more paths, and the higher the sensitivity;
  • the Ag nanowire/PEDOT:PSS conductive layer embedded in the gap of the PDMS microstructure elastic film realizes the connectivity of the conductive network
  • Ag nanowire network combined with PEDOT:PSS, strengthens the coordination of the conductivity of Ag nanowire network, and expands the application scope of Ag nanowire;
  • the flexible piezoresistive stress sensor precursor film has good bending resistance: it is bent 1000 times, and the resistance is only reduced by 5%. It has mechanical properties such as stretchability and compression. It is suitable for preparing electronic components such as flexible sensors.
  • Figure 1 is an experimental flow chart for preparing Ag nanowires/PEDOT:PSS films based on PDMS microstructure substrates (the general process is: near-field electrospinning silk spinning ordered grid ⁇ ordered grid substrate ⁇ coating PDMS Solution ⁇ coating Ag nanowire/PEDOT:PSS composite solution);
  • Figure 2 is a schematic diagram of a flexible piezoresistive stress sensor, 1 is the first PDMS microstructure substrate; 2 is the second PDMS microstructure substrate; 3 is the Ag nanowire/PEDOT:PSS conductive layer; 4 is the conductive copper wire;
  • Figure 3 is an SEM image of Ag nanowire/PEDOT:PSS composite film based on PDMS microstructure substrate
  • Figure 4 is an optical microscope image of a PDMS microstructure substrate
  • Figure 5 is a diagram of resistance changes of flexible piezoresistive stress sensors under different pressures
  • Figure 6 is a test diagram of the flexible piezoresistive stress sensor in a cycle of 200s between 0-1kPa;
  • Figure 7 is a diagram showing the force response of a flexible piezoresistive stress sensor under a constant force of 1kPa;
  • Figure 8 is a test diagram of a flexible piezoresistive stress sensor with an initial resistance of 250 ⁇ at 100kPa;
  • Figure 9 is a test diagram of a flexible piezoresistive stress sensor with an initial resistance of 275 ⁇ at 100kPa;
  • Figure 10 is a test diagram of a flexible piezoresistive stress sensor with an initial resistance of 265 ⁇ at 100kPa;
  • a preparation method of PDMS microstructure substrate includes the following steps:
  • the substrate is made of stainless steel sheet (thickness 0.5cm). After spinning, the substrate with spinning grid is heated and cured at 70°C for 30 minutes to prepare an ordered grid of PAN organic fibers; then at 450 rpm , Drop the pre-configured PDMS solution to make it evenly cover the PAN ordered grid, place it in an oven for pre-curing at 60°C for 30-60min, and then curing at 80°C for 4h. Place the above film in a solution of water and ethanol (volume ratio 1:1), stir at a constant temperature of 60°C at 900 rpm for 2 hours, and then sonicate for 1 hour to remove the PAN ordered grid and leave an ordered grid on the surface of the PDMS film. groove.
  • the PDMS microstructure substrate is prepared.
  • the left side is without grid grooves, and the right side is grid grooves with a spacing of 100 ⁇ m. It is obvious that the composite solution on the left cannot be spread evenly, and the composite solution on the right is uniformly adsorbed on the PDMS surface, making it easier to coat the conductive solution;
  • a method for preparing a flexible piezoresistive stress sensor includes the following steps:
  • the substrate is made of stainless steel sheet (thickness 0.5cm). After spinning, the substrate with spinning grid is heated and cured at 70°C for 30 minutes to prepare an ordered grid of PAN organic fibers; then at 450 rpm , Drop the pre-configured PDMS solution, make it evenly spin-coated on the PAN ordered grid, place it in an oven for pre-curing at 60°C for 30-60min, and then curing at 80°C for 4h. Place the above film in a solution of water and ethanol (volume ratio 1:1), stir for 2 hours at a constant temperature of 60°C at 900 rpm, and then sonicate for 1 hour to remove the PAN ordered grid and leave an ordered grid on the surface of the PDMS film Groove.
  • the pre-configured silver nanowire/PEDOT:PSS composite solution with a mass ratio of 1:1 is coated by a coating method. Drying at 70°C for 3h, through the upper and lower layers of PDMS film with grid grooves, sandwiching the middle layer Ag nanowire/PEDOT:PSS, and drawing out two wires from the upper layer and the lower layer to obtain a resistance of 250 ⁇ based on PDMS
  • the Ag nanowire/PEDOT:PSS composite flexible stress sensor with microstructure substrate has a sensitivity of 15.9kPa -1 .
  • a method for preparing a flexible piezoresistive stress sensor includes the following steps:
  • the substrate is made of stainless steel sheet (thickness 0.5cm). After spinning, the substrate with spinning grid is heated and cured at 70°C for 30 minutes to prepare an ordered grid of PAN organic fibers; then at 450 rpm , Drop the pre-configured PDMS solution, make it evenly spin-coated on the PAN ordered grid, place it in an oven for pre-curing at 60°C for 30-60min, and then curing at 80°C for 4h. Place the above film in a solution of water and ethanol (volume ratio 1:1), stir for 2 hours at a constant temperature of 60°C at 900 rpm, and then sonicate for 1 hour to remove the PAN ordered grid and leave an ordered grid on the surface of the PDMS film Groove.
  • the pre-configured silver nanowire/PEDOT:PSS composite solution with a mass ratio of 1:1 is coated by a coating method. Drying at 70°C for 3h, through the upper and lower layers of PDMS film with grid grooves, sandwiching the middle layer Ag nanowire/PEDOT:PSS, and drawing out two wires from the upper layer and the lower layer to obtain a resistance of 250 ⁇ based on PDMS Ag nanowire/PEDOT:PSS composite flexible stress sensor with microstructure substrate, its sensitivity is 7.5kPa -1 .
  • a method for preparing a flexible piezoresistive stress sensor includes the following steps:
  • the substrate is made of stainless steel sheet (thickness 0.3cm). After spinning, the substrate with spinning grid is heated at 80°C and cured for 60 minutes to prepare an ordered grid of PAN organic fibers; then at 200rpm, dropwise add
  • the pre-configured PDMS solution is uniformly covered on the PAN ordered grid, placed in an oven at 60°C for pre-curing for 60 minutes, and then aged at 110°C for 4-6 hours. Place the above-mentioned film in a solution of water and ethanol (volume ratio 1:1), stir for 4h at a constant temperature of 60°C at 900rpm, and then sonicate for 2h to remove the PAN ordered grid and leave an ordered grid on the surface of the PDMS film Groove.
  • a pre-configured silver nanowire/PEDOT:PSS composite solution with a mass ratio of 1:1 is coated by a coating method. Drying at 80°C for 3h, through the upper and lower two layers of PDMS film with grid grooves, sandwiching the middle layer Ag nanowire/PEDOT:PSS, and drawing out two wires from the upper layer and the lower layer to obtain a PDMS-based microstructure lining
  • the bottom Ag nanowire/PEDOT:PSS composite flexible stress sensor has a sensitivity of 9.9kPa -1 .
  • a method for preparing a flexible piezoresistive stress sensor includes the following steps:
  • the substrate is made of stainless steel sheet (thickness 0.8cm). After spinning, the substrate with spinning grid is heated and cured at 80°C for 60 minutes to prepare an ordered grid of PAN organic fibers; then, at 500 rpm, Drop the pre-configured PDMS solution to uniformly cover the above-mentioned PAN ordered grid, place it in an oven for pre-curing at 60°C for 60 minutes, and then curing at 80°C for 4 hours. The film was placed in a solution of water and ethanol (volume ratio 1:1), stirred at a constant temperature of 60°C at 900 rpm/min for 2 hours, and then sonicated for 1 hour to remove PAN and leave an ordered grid groove on the surface of the PDMS film.
  • a pre-configured Ag nanowire/PEDOT:PSS composite solution with a mass ratio of 1:1 is coated by a coating method. Dry for 2h at 60°C, pass the upper and lower layers of PDMS film with grid grooves, sandwich the middle layer Ag nanowire/PEDOT:PSS, and draw out two wires from the upper layer and the lower layer to obtain a PDMS-based microstructure substrate
  • the Ag nanowire/PEDOT:PSS composite flexible stress sensor has a sensitivity of 15.9kPa -1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种柔性压阻式应力传感器,由第一PDMS微结构衬底(1)、Ag纳米线/PEDOT:PSS导电层(3)、第二PDMS微结构衬底(2)和导线(4)组成,第一PDMS微结构衬底(1)和第二PDMS微结构衬底(2)包夹住Ag纳米线/PEDOT:PSS导电层(3)。柔性压阻式应力传感器具有良好的耐弯折性能,具有可拉伸、可按压性能。还提供了一种应力传感器的制备方法。

Description

一种柔性压阻式应力传感器及其制备方法 技术领域
本发明属于柔性电子材料和传感技术领域,具体涉及一种柔性压阻式应力传感器及其制备方法。
背景技术
随着新一代柔性电子材料和传感技术的快速发展,柔性应力传感器克服了易脆的缺点,且具有较好的生物相容性、可拉伸性、透明性、可穿戴性和连续检测等优势。柔性应力传感器常用的导电材料包括纳米粒子、碳纳米管、金属纳米线、石墨烯和有机导电材料等。目前单一材料的简单特性,已经不能够满足人们对材料多功能化的需求,只有不断寻找多种材料复合,才能提高材料优势和多功能化。
由于无机材料的本质,Ag纳米线和柔性衬底之间建立的连接并不紧密,导致Ag纳米线导电网络容易脱落和破坏,薄膜性能下降,使柔性压阻式应力传感器的透过性和柔性下降;同时,通过暴露在空气环境下,银纳米线由于氧化还原电位较低,容易被氧化,导致导电性能下降,使用寿命降低;而且单纯一种Ag纳米线无法满足于现代社会对兼具多功能性的新型透明导电薄膜电极的需求,因此现在需要一种高透过性、柔性和导电性良好的柔性压阻式应力传感器。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种柔性压阻式应力传感器。本发明的另一目的在于提供上述柔性压阻式应力传感器的制备方法。
本发明采用以下技术方案:
一种柔性压阻式应力传感器由第一PDMS(聚二甲基硅氧烷)微结构衬底、Ag纳米线/PEDOT:PSS导电层、第二PDMS微结构衬底和导线(例如导电铜线)组成,所述第一PDMS微结构衬底和第二PDMS微结构衬底包夹住Ag纳米线/PEDOT:PSS导电层。
进一步地,所述第一PDMS微结构衬底和/或第二PDMS微结构衬底具有网格微结构。
进一步地,所述第一PDMS微结构衬底和/或第二PDMS微结构衬底由近场静电纺丝的方式构筑。
进一步地,所述第一PDMS微结构衬底和/或第二PDMS微结构衬底由以下步骤制得:
(1)在一定湿度条件下,将聚丙烯腈(PAN)溶解于N-N二甲基甲酰胺(DMF)溶剂 中,混匀,得到溶液A;所述湿度为10-80%,优选地为30-50%,例如30%、40%、50%;溶液A的浓度为1-50wt%,优选地为6-20wt%,例如6wt%、10wt%、20wt%。
(2)将溶液A在60-80℃下恒温搅拌6-8h,得到纺丝溶液,密封保存备用;
(3)将纺丝溶液转入注射器中,使用近场静电纺丝机将纺丝溶液纺于衬底上,得到有序有机网格衬底前体;所述衬底使用的是导电ITO玻璃、不锈钢片、铝箔、锡纸中的一种或几种,衬底厚度为0.01-10cm,优选地为0.2-1cm;所述注射器直径为10-15mm,优选地为13mm;所述静电纺丝条件:推进速率为0.001-0.05mL/min,优选地为0.003-0.02mL/min,电压为2.5-8.5kV,优选地为3.6-7.8kV,针头于衬底距离为0.1-5mm,优选地为0.5-2mm,接收器运行速度为1-300mm/s,优选地为10-250mm/s,纺完一条线停留时间为1-50s,优选地为10-20s,网格间隔为10-800μm,优选地为100-500μm;
(4)将有序有机网格衬底前体加热,固化,得到PAN有机纤维有序网格衬底;所述加热温度为40-200℃,优选地为50-100℃;所述固化时间为10-100min,优选地为30-60min;
(5)将PDMS溶液采用的是道康宁SYLGARD184硅橡胶基本成分PDMS与固化剂按10:1比例混合制成。旋涂至PAN有机纤维有序网格衬底,预固化,熟化,得到复合衬底;所述旋涂转速为100-800rpm,优选地为在200-600rpm转速下;预固化温度为50-100℃,优选地为60-80℃,预固化时间为10-120min,优选地为30-60min;熟化温度为60-200℃,优选地为80-120℃,熟化时间为3-10h,优选地为4-6h;
(6)将复合衬底置于溶解剂中,除去PAN有机纤维有序网格,留下有序网格凹槽,烘干60℃烘干30min,得到PDMS微结构衬底;所述溶解剂为水与乙醇(体积比为1:0.1-10)的混合溶液;溶解条件:温度为30-100℃,优选地为60℃,搅拌转速为100-1500rpm,优选地为900rpm,搅拌时间为1-10h,优选地为2-4h,超声震荡时间为0.5-5h,优选地为1-2h。
进一步地,步骤(1)中所述的湿度在30-50%的条件下,可以预防纺丝过程中的滴液现象。
进一步地,步骤(3)中所述的近场静电纺丝机型号:鸿隼企业有限公司,直写型高压纺丝设备FES-COW。
进一步地,步骤(3)所述静电纺丝法相对于普通刻蚀,开辟了一种新的刻蚀方法,具有凹槽面积大,易制备,成本低的优势。
可选地,所述Ag纳米线/PEDOT:PSS导电层的制备方法包括以下步骤:将2-20mg干燥的Ag纳米线加入到0.1-10mL的PEDOT:PSS悬浮液中,搅拌均匀,其中PEDOT:PSS的质量比为1:1。
进一步地,所述柔性压阻式应力传感器,由以下方法制得:
1)将Ag纳米线/PEDOT:PSS复合溶液固定于第一和第二PDMS微结构衬底之间Ag纳 米线与PEDOT:PSS复合后具有粘性可以黏附在带有网格凹槽的PDMS衬底上。,形成导电层,烘干,得到柔性压阻式应力传感器前体薄膜;所述Ag纳米线和PEDOT:PSS复合溶液的质量比为1:0.5-5,优选地为1:1;所述PEDOT:PSS复合溶液的涂覆体积为1-15ml,优选地为2-10ml;所述PEDOT:PSS复合溶液的产自珠海凯为光电技术有限公司ELP3145;所述烘干温度为50-100℃,优选地为60-80℃,烘干时间为0.5-5h,优选地为1-3h;所述导电层为Ag纳米线/PEDOT:PSS导电层;
2)从柔性压阻式应力传感器前体薄膜的第一和第二PDMS微结构衬底分别引出两条导线得到柔性压阻式应力传感器。
进一步地,所述Ag纳米线通过水热法合成,具体地为:
(a)在室温下,将葡萄糖、硝酸银、硫酸铁分别溶解于溶剂中,按一定体积比取上述三种溶液混匀,得到混合物A;所述葡萄糖的用量为0.1-5mmol,优选地为2mmol;所述硝酸银的用量为0.1-5mmol,优选地为1.5mmol;所述硫酸铁的用量为0.1-5mmol,优选地为0.3mmol;所述三种溶液的体积比为2:1-5:0.5-3,优选地为2:2:1,葡萄糖0.25mol/L,硝酸银为0.075mol/L,硫酸铁0.03mol/L;所述溶剂为无机溶剂,优选地为去离子水;
(b)将混合物A磁力搅拌产生亮黄色溶液B;所述搅拌时间为1-50min,优选地为10m;
(c)将聚乙烯吡咯烷酮(PVP,K30)加入溶液B中,混匀,得到溶液C;所述PVP的质量为1-10g,优选地为4.5g;
(d)将溶液C转移高压反应釜中,密封,加热,获得灰绿色沉淀;所述溶液C的体积为10-1000ml,优选地为100mL;所述加热温度为100-200℃,优选地为180℃,加热时间为1-10h,优选地为6h;
(e)洗涤剂洗涤上述沉淀,除去Ag纳米线表面上的氧化层;所述洗涤剂为强氧化性溶液,优选地为稀硝酸溶液;
(f)在步骤(e)的体系中加入乙醇,离心,除去过量的硝酸,反复过滤得到Ag纳米线。
本发明的有益效果:
1、近场静电纺丝法制备PDMS微结构衬底,方法简单、易操作、可以批量化生产;
2、PDMS微结构衬底有效地增强衬底表面吸附能力;
3、具有不同间隙大小的微结构PDMS微结构衬底,间隙的大小不同,导电通路的密集度不同,间隙越小,通路越多,灵敏度越高;
4、嵌入PDMS微结构弹性薄膜缝隙的Ag纳米线/PEDOT:PSS导电层,实现了导电网络的联通性;
5、Ag纳米线网络复合PEDOT:PSS,加强了Ag纳米线网络导电性能的可协调性,扩大 了Ag纳米线的适用范围;
6、Ag纳米线网络复合PEDOT:PSS,使线与线之间接触节点处,具有可按压的空隙,使电阻变化范围提高;
7、柔性压阻式应力传感器前体薄膜具有良好的耐弯折性能:弯曲1000次,电阻只降低5%,具有可拉伸、可按压等力学性能,适用于制备柔性传感器等电子元器件。
附图说明
图1是制备基于PDMS微结构衬底的Ag纳米线/PEDOT:PSS薄膜的实验流程图(大致流程为:近场静电纺丝丝纺有序网格→有序网格衬底→涂覆PDMS溶液→涂覆Ag纳米线/PEDOT:PSS复合溶液);
图2是柔性压阻式应力传感器示意图,1为第一PDMS微结构衬底;2为第二PDMS微结构衬底;3为Ag纳米线/PEDOT:PSS导电层;4为导电铜线;
图3是基于PDMS微结构衬底的Ag纳米线/PEDOT:PSS复合薄膜的SEM图;
图4是PDMS微结构衬底的光学显微镜图;
图5是柔性压阻式应力传感器的不同压强下电阻变化图;
图6是柔性压阻式应力传感器在0-1kPa间的循环200s测试图;
图7是柔性压阻式应力传感器在恒力1kPa作用下力的响应度图;
图8是初始电阻为250Ω柔性压阻式应力传感器在100kPa的测试图;
图9是初始电阻为275Ω柔性压阻式应力传感器在100kPa的测试图;
图10是初始电阻为265Ω柔性压阻式应力传感器在100kPa的测试图;
具体实施方式
为了更好的解释本发明,现结合以下具体实施例做进一步说明,但是本发明不限于具体实施例。
实施例1
一种PDMS微结构衬底的制备方法,包括以下步骤:
在湿度为50%的条件下,将聚丙烯腈(PAN)溶解于N-N二甲基甲酰胺(DMF)溶剂中配置成15wt%浓度的溶液;将上述溶液在60℃恒温搅拌6h,得到纺丝溶液,密封保存备用;制备的纺丝溶液转入直径为13mm的注射器中,然后将注射器安装在推进器上,按照0.015mL/min的推进速率,电压是3.6kV,针头于衬底距离0.5mm,纺丝时接收器的运行速度200mm/s,间隙停留时间为10s,制备网格间隔为150μm的有序有机网格。衬底使用的是不锈钢片(厚度为0.5cm),纺丝后将带有纺丝网格的衬底在70℃下加热固化30min,制备得 到PAN有机纤维有序网格;然后在450rpm转速下,滴加预先配置好的PDMS溶液,使其均匀覆盖在上述PAN有序网格上,放置在烘箱中60℃下预固化30-60min,再在80℃下熟化4h。将上述薄膜放置于水与乙醇(体积比1:1)溶液中,60℃恒温下以900rpm转速搅拌2h,再超声震荡1h,除去PAN有序网格在PDMS薄膜表面留下有序网格凹槽。制备得到PDMS微结构衬底。
附图3,左边为无网格凹槽的,右边为网格凹槽的间距为100μm,明显左边复合溶液无法均匀铺展,右边复合溶液均匀被吸附在PDMS表面,更加容易涂覆导电溶液;
由附图8,9,10可以看出有随网格数越密集,电阻变化率越高,间隙为200μm为0.7-0.8,150μm为0.8-0.9,100μm为0.9-1具有较高电阻变化率,随着恒定压强,250pa作用下,电阻变化率随之往复循环变化,可极大地提高传感器的灵敏度。
实施例2
一种柔性压阻式应力传感器的制备方法,包括以下步骤:
在湿度为50%的条件下,将聚丙烯腈(PAN)溶解于N-N二甲基甲酰胺(DMF)溶剂中配置成15wt%浓度的溶液;将上述溶液在60℃下恒温搅拌6h,得到纺丝溶液,密封保存备用;制备的纺丝溶液转入直径为13mm的注射器中,然后将注射器安装在推进器上,按照0.015mL/min的推进速率,电压是3.6kV,针头于衬底距离0.5mm,纺丝时接收器的运行速度200mm/s,间隙停留时间为10s,制备网格间隔为100μm有序有机网格。衬底使用的是不锈钢片(厚度为0.5cm),纺丝后将带有纺丝网格的衬底在70℃下加热固化30min,制备得到PAN有机纤维有序网格;然后在450rpm转速下,滴加预先配置好的PDMS溶液,使其均匀旋涂在上述的PAN有序网格上,放置在烘箱中60℃预固化30-60min,再在80℃下熟化4h。将上述薄膜放置在水与乙醇(体积比1:1)溶液中,60℃恒温下900rpm的转速下搅拌2h,再超声震荡1h,除去PAN有序网格在PDMS薄膜表面留下有序网格凹槽。烘干后,用涂覆法涂覆上质量配比为1:1的预先配置好的银纳米线/PEDOT:PSS复合溶液。在70℃下烘干3h,通过上下两层为带有网格凹槽的PDMS薄膜,包夹中间层Ag纳米线/PEDOT:PSS,从上层与下层分别引出两条导线得到电阻为250Ω基于PDMS微结构衬底的Ag纳米线/PEDOT:PSS复合柔性应力传感器,其灵敏度为15.9kPa -1
实施例3
一种柔性压阻式应力传感器的制备方法,包括以下步骤:
在湿度为50%的条件下,将聚丙烯腈(PAN)溶解于N-N二甲基甲酰胺(DMF)溶剂中配置成15wt%浓度的溶液;将上述溶液在60℃下恒温搅拌6h,得到纺丝溶液,密封保存备用;制备的纺丝溶液转入直径为13mm的注射器中,然后将注射器安装在推进器上,按照0.015mL/min的推进速率,电压是3.6kV,针头于衬底距离0.5mm,纺丝时接收器的运行速度 200mm/s,间隙停留时间为10s,制备网格间隔为200μm有序有机网格。衬底使用的是不锈钢片(厚度为0.5cm),纺丝后将带有纺丝网格的衬底在70℃下加热固化30min,制备得到PAN有机纤维有序网格;然后在450rpm转速下,滴加预先配置好的PDMS溶液,使其均匀旋涂在上述的PAN有序网格上,放置在烘箱中60℃预固化30-60min,再在80℃下熟化4h。将上述薄膜放置在水与乙醇(体积比1:1)溶液中,60℃恒温下900rpm的转速下搅拌2h,再超声震荡1h,除去PAN有序网格在PDMS薄膜表面留下有序网格凹槽。烘干后,用涂覆法涂覆上质量配比为1:1的预先配置好的银纳米线/PEDOT:PSS复合溶液。在70℃下烘干3h,通过上下两层为带有网格凹槽的PDMS薄膜,包夹中间层Ag纳米线/PEDOT:PSS,从上层与下层分别引出两条导线得到电阻为250Ω基于PDMS微结构衬底的Ag纳米线/PEDOT:PSS复合柔性应力传感器,其灵敏度为7.5kPa -1
实施例4
一种柔性压阻式应力传感器的制备方法,包括以下步骤:
在湿度为50%的条件下,将聚丙烯腈(PAN)溶解于N-N二甲基甲酰胺(DMF)溶剂中配置成15%wt浓度的溶液;将上述溶液在70℃下恒温搅拌8h,得到静电纺丝溶液,密封保存备用;制备的静电纺丝溶液转入直径为13mm的注射器中,然后将注射器安装在推进器上,按照0.012mL/min的推进速率,电压是3.8kV,针头于衬底距离0.5mm,纺丝时接收器的运行速度150mm/s,间隙停留时间为20s,制备网格间隔为150μm有序有机网格。衬底使用的是不锈钢片(厚度0.3cm),纺丝后将带有纺丝网格的衬底加热80℃固化60min,制备得到PAN有机纤维有序网格;然后在200rpm转速下,滴加预先配置好的PDMS溶液,使其均匀覆盖在上述的PAN有序网格上,放置在烘箱中60℃预固化60min,再110℃熟化4-6h。将上述薄膜放置于水与乙醇(体积比1:1)溶液中,60℃恒温下900rpm的转速下搅拌4h,再超声震荡2h,除去PAN有序网格在PDMS薄膜表面留下有序网格凹槽。烘干后,用涂覆法涂覆上为质量配比为1:1的预先配置好的银纳米线/PEDOT:PSS复合溶液。在80℃下烘干3h,通过上下两层为带有网格凹槽的PDMS薄膜,包夹中间层Ag纳米线/PEDOT:PSS,从上层与下层分别引出两条导线得到基于PDMS微结构衬底的Ag纳米线/PEDOT:PSS复合柔性应力传感器,其灵敏度为9.9kPa -1
实施例5
一种柔性压阻式应力传感器的制备方法,包括以下步骤:
在湿度为40%的条件下,将聚丙烯腈(PAN)溶解于N-N二甲基甲酰胺(DMF)溶剂中配置成15%wt浓度的溶液;将上述溶液在65℃下恒温搅拌,搅拌7h,得到静电纺丝溶液,密封保存备用;制备的静电纺丝溶液转入直径为13mm的注射器中,然后将注射器安装在推进器上,按照0.015mL/min的推进速率,电压是4.2kV,针头于衬底距离0.5mm,纺丝时接 收器的运行速度180mm/s,间隙停留时间为10s,制备出网格间隔为100μm有序有机网格。衬底使用的是不锈钢片(厚度0.8cm),纺丝后将带有纺丝网格的衬底在80℃下加热固化60min,制备得到PAN有机纤维有序网格;然后在500rpm转速下,滴加预先配置好的PDMS溶液,使其均匀覆盖在上述的PAN有序网格上,放置在烘箱中60℃预固化60min,再在80℃下熟化4h。将上述薄膜放置在水与乙醇(体积比1:1)溶液中,60℃恒温下900rpm/min搅拌2h,再超声震荡1h,除去PAN在PDMS薄膜表面留下有序网格凹槽。烘干后,用涂覆法涂覆上为质量配比为1:1的预先配置好的Ag纳米线/PEDOT:PSS复合溶液。60℃下烘干2h,通过上下两层为带有网格凹槽的PDMS薄膜,包夹中间层Ag纳米线/PEDOT:PSS,从上层与下层分别引出两条导线得到基于PDMS微结构衬底的Ag纳米线/PEDOT:PSS复合柔性应力传感器,其灵敏度为15.9kPa -1
以上所述仅为本发明的具体实施例,并非因此限制本发明的专利范围,凡是利用本发明作的等效变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围之中。

Claims (10)

  1. 一种柔性压阻式应力传感器,其特征在于,由第一PDMS微结构衬底、Ag纳米线/PEDOT:PSS导电层、第二PDMS微结构衬底和导线组成,所述第一PDMS微结构衬底和第二PDMS微结构衬底包夹住Ag纳米线/PEDOT:PSS导电层。
  2. 根据权利要求1所述的应力传感器,其特征在于,所述第一PDMS微结构衬底和/或第二PDMS微结构衬底具有网格微结构。
  3. 根据权利要求1所述的应力传感器,其特征在于,所述第一PDMS微结构衬底和/或第二PDMS微结构衬底由以下步骤制得:
    (1)在湿度为10-80%条件下,将聚丙烯腈溶解于N-N二甲基甲酰胺中,得到浓度为1-50wt%的溶液A;
    (2)将溶液A在60-80℃下恒温搅拌6-8h,得到纺丝溶液;
    (3)将纺丝溶液通过近场静电纺丝的方法纺丝于衬底上,得到有序有机网格衬底前体;
    (4)将有序有机网格衬底前体于40-200℃加热,固化10-100min,得到聚丙烯腈有机纤维有序网格衬底;
    (5)将PDMS溶液涂覆至聚丙烯腈有机纤维有序网格衬底,然后在50-100℃下预固化10-120min,在60-200℃下熟化3-10h,得到复合衬底;
    (6)利用溶解剂除去复合衬底的聚丙烯腈有机纤维有序网格,得到有序网格凹槽,烘干,得到PDMS微结构衬底;其中所述溶解剂为体积比为1:0.1-10的水与乙醇的混合溶液;溶解剂除去复合衬底的条件:温度为30-100℃,搅拌转速为100-1500rpm,搅拌时间为1-10h,超声震荡时间为0.5-5h。
  4. 根据权利要求3所述的应力传感器,其特征在于,步骤(3)中所述衬底包括导电ITO玻璃、不锈钢片、铝箔、锡纸中的一种或多种,衬底厚度为0.01-10cm。
  5. 根据权利要求3所述的应力传感器,其特征在于,静电纺丝条件为:将纺丝溶液装入注射器中,注射器安装在推进器上,推进速率为0.001-0.05mL/min,电压为2.5-8.5kV,注射器针头与衬底的距离为0.1-5mm,接收器运行速度为1-300mm/s,纺完一条线停留时间为1-50s,制备出有序网格,网格间隔为10-800μm。
  6. 根据权利要求1所述的应力传感器,其特征在于,Ag纳米线通过水热法合成。
  7. 根据权利要求1所述的应力传感器,其特征在于,Ag纳米线的制备方法,包括以下步骤:
    (a)将0.1-5mmol葡萄糖、0.1-5mmol硝酸银、0.1-5mmol硫酸铁分别溶解于水中,按2:1-5:0.5-3的体积比将三种溶液混匀,得到混合物A;
    (b)将混合物A搅拌1-50min得到溶液B;
    (c)将1-10g聚乙烯吡咯烷酮加入溶液B中,混匀,得到溶液C;
    (d)将溶液C在100-200℃加热1-10h,获得沉淀;
    (e)利用强氧化性洗涤剂洗涤上述沉淀,除去Ag纳米线表面上的氧化层;
    (f)在步骤(e)的体系中加入乙醇,离心,除去过量的强氧化性洗涤剂,过滤得到Ag纳米线。
  8. 根据权利要求1所述的应力传感器,其特征在于,所述Ag纳米线/PEDOT:PSS导电层的制备方法包括以下步骤:将2-20mg干燥的Ag纳米线加入到0.1-10mL的PEDOT:PSS悬浮液中,搅拌均匀,其中PEDOT:PSS的质量比为1:1。
  9. 根据权利要求1-8任一项所述的应力传感器的制备方法,其特征在于,包括以下步骤:
    1)将Ag纳米线/PEDOT:PSS复合溶液固定于第一和第二PDMS微结构衬底之间,形成导电层,烘干,得到柔性压阻式应力传感器前体薄膜;
    2)从柔性压阻式应力传感器前体薄膜的第一和第二PDMS微结构衬底分别引出两条导线得到柔性压阻式应力传感器。
  10. 根据权利要求9所述的制备方法,其特征在于,步骤1)中Ag纳米线/PEDOT:PSS复合溶液的用量为1-15ml;所述烘干温度为50-100℃,时间为0.5-5h;所述导电层为Ag纳米线/PEDOT:PSS导电层。
PCT/CN2020/081907 2019-06-17 2020-03-28 一种柔性压阻式应力传感器及其制备方法 WO2020253306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910521359.6 2019-06-17
CN201910521359.6A CN110228789A (zh) 2019-06-17 2019-06-17 一种柔性压阻式应力传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2020253306A1 true WO2020253306A1 (zh) 2020-12-24

Family

ID=67859986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081907 WO2020253306A1 (zh) 2019-06-17 2020-03-28 一种柔性压阻式应力传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN110228789A (zh)
WO (1) WO2020253306A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029404A (zh) * 2021-03-10 2021-06-25 电子科技大学 基于石墨烯的双通道柔性多态应力传感器的制备方法
CN113029402A (zh) * 2021-03-01 2021-06-25 电子科技大学 一种可穿戴柔性传感器及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110228789A (zh) * 2019-06-17 2019-09-13 五邑大学 一种柔性压阻式应力传感器及其制备方法
CN110693469B (zh) * 2019-10-08 2020-12-08 华中科技大学 一种具有分级压峰结构的电子皮肤及其制备方法
CN110895173B (zh) * 2019-11-08 2021-02-26 五邑大学 一种基于复合多层导电材料的柔性应力传感器的制备方法
CN110952225B (zh) * 2019-12-03 2021-09-21 大连理工大学 一种柔性一体化压电传感材料及其制备方法
CN111141423B (zh) * 2020-01-17 2022-04-01 闽江学院 一种同时调控灵敏度和可延展性的应力传感器及制备方法
CN114216591B (zh) * 2021-12-24 2023-08-04 济南大学 一种柔性压力传感材料、传感器及其制备方法
CN115356018B (zh) * 2022-08-17 2024-07-16 上海大学 一种柔性生物传感器及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170211A1 (en) * 2004-02-02 2005-08-04 Sharp Kabushiki Kaisha Organic electroluminescent element
CN105738015A (zh) * 2016-02-01 2016-07-06 上海交通大学 一种电阻式薄膜拉力传感器及其制备方法
CN105738013A (zh) * 2016-02-02 2016-07-06 上海交通大学 一种高灵敏度压力式传感器及其制作方法
CN106500886A (zh) * 2016-09-22 2017-03-15 太原理工大学 一种基于纳米导电材料的柔性应力传感器的制备方法
CN107290084A (zh) * 2017-06-28 2017-10-24 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件
CN107655598A (zh) * 2017-09-12 2018-02-02 电子科技大学 基于碳纳米管和银纳米线复合导电薄膜的柔性应力传感器
CN109095782A (zh) * 2018-07-27 2018-12-28 五邑大学 一种基于三维立体微结构的银纳米线透明导电薄膜的制备方法
CN110228789A (zh) * 2019-06-17 2019-09-13 五邑大学 一种柔性压阻式应力传感器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672957B (zh) * 2011-03-18 2014-08-06 中国科学院大连化学物理研究所 以纳米电纺丝为模板对聚合物表面进行修饰的方法及应用
CN104240798A (zh) * 2014-09-25 2014-12-24 上海交通大学 一种透明导电薄膜及其制备方法
CN104810079A (zh) * 2015-05-12 2015-07-29 重庆文理学院 一种复合Ag纳米线透明导电薄膜的制备方法
KR102433790B1 (ko) * 2015-07-07 2022-08-18 삼성디스플레이 주식회사 전극, 그 제조 방법 및 이를 포함하는 유기 발광 표시 장치
KR20180026007A (ko) * 2016-09-01 2018-03-12 삼성디스플레이 주식회사 투명 전극 및 이의 제조 방법
CN107782475B (zh) * 2017-10-24 2020-08-11 北京石墨烯研究院 电阻式压力传感器及制备方法
CN108318162B (zh) * 2018-01-10 2019-11-29 中山大学 一种柔性传感器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170211A1 (en) * 2004-02-02 2005-08-04 Sharp Kabushiki Kaisha Organic electroluminescent element
CN105738015A (zh) * 2016-02-01 2016-07-06 上海交通大学 一种电阻式薄膜拉力传感器及其制备方法
CN105738013A (zh) * 2016-02-02 2016-07-06 上海交通大学 一种高灵敏度压力式传感器及其制作方法
CN106500886A (zh) * 2016-09-22 2017-03-15 太原理工大学 一种基于纳米导电材料的柔性应力传感器的制备方法
CN107290084A (zh) * 2017-06-28 2017-10-24 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件
CN107655598A (zh) * 2017-09-12 2018-02-02 电子科技大学 基于碳纳米管和银纳米线复合导电薄膜的柔性应力传感器
CN109095782A (zh) * 2018-07-27 2018-12-28 五邑大学 一种基于三维立体微结构的银纳米线透明导电薄膜的制备方法
CN110228789A (zh) * 2019-06-17 2019-09-13 五邑大学 一种柔性压阻式应力传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU, CHUNYU: "Study on Preparation and Reliability Protection of Silver Nanowires Transparent Electrode", CHINA MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY Ⅰ, no. 02, 15 February 2018 (2018-02-15), ISSN: 1674-0246, DOI: 20200611132748Y *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029402A (zh) * 2021-03-01 2021-06-25 电子科技大学 一种可穿戴柔性传感器及其制备方法
CN113029404A (zh) * 2021-03-10 2021-06-25 电子科技大学 基于石墨烯的双通道柔性多态应力传感器的制备方法

Also Published As

Publication number Publication date
CN110228789A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2020253306A1 (zh) 一种柔性压阻式应力传感器及其制备方法
He et al. Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit
CN109095782B (zh) 一种基于三维立体微结构的银纳米线透明导电薄膜的制备方法
Shao et al. Fabrication of polyaniline/graphene/polyester textile electrode materials for flexible supercapacitors with high capacitance and cycling stability
Hsu et al. Passivation coating on electrospun copper nanofibers for stable transparent electrodes
CN105762291B (zh) 透明电极及其制造方法
Jiang et al. Facile preparation of Cu/Ag core/shell electrospun nanofibers as highly stable and flexible transparent conductive electrodes for optoelectronic devices
Kim et al. Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates
WO2022021815A1 (zh) 一种嵌入式耐高温透明导电薄膜、其制备方法及应用
CN109520410B (zh) 三维石墨烯泡沫柔性应变传感器及其制备方法
CN104134484A (zh) 基于纳米银线的柔性透明导电薄膜及制备方法
WO2021088305A1 (zh) 一种基于复合多层导电材料的柔性应力传感器的制备方法
WO2012079360A1 (zh) 一种透明电极材料及其制备方法
CN108288513B (zh) 一种基于分形结构银微粒的柔性和可拉伸导体及其制备方法
CN109867959B (zh) 一种在弹性体薄膜表面形成褶皱的方法
CN110054797B (zh) 一种具有压阻效应的石墨烯基复合材料及其制备方法
CN109887647A (zh) 一种复合柔性透明导电薄膜及其制备方法
CN106084268A (zh) 一种银纳米线/聚二甲基硅氧烷复合薄膜的制备方法
CN111150367B (zh) 石墨烯/聚合物纳米纤维复合膜及其制备方法和应用
CN103390467A (zh) 一种弹性导电纤维的制备方法
Liu et al. Synchronous dual roles of copper sulfide on the insulating PET fabric for high-performance portable flexible supercapacitors
CN108707996B (zh) 一种基于壳聚糖/碳纳米管/银纳米线的柔性导电纤维的制备方法
Li et al. Solution‐Grown Serpentine Silver Nanofiber Meshes for Stretchable Transparent Conductors
CN107910128B (zh) 一种氧化石墨烯自组装复合银纳米线改善柔性器件机械性能的方法
CN113161042A (zh) 一种基于银纳米线的羧甲基纤维素钠柔性透明导电薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827724

Country of ref document: EP

Kind code of ref document: A1