WO2021088305A1 - 一种基于复合多层导电材料的柔性应力传感器的制备方法 - Google Patents

一种基于复合多层导电材料的柔性应力传感器的制备方法 Download PDF

Info

Publication number
WO2021088305A1
WO2021088305A1 PCT/CN2020/081899 CN2020081899W WO2021088305A1 WO 2021088305 A1 WO2021088305 A1 WO 2021088305A1 CN 2020081899 W CN2020081899 W CN 2020081899W WO 2021088305 A1 WO2021088305 A1 WO 2021088305A1
Authority
WO
WIPO (PCT)
Prior art keywords
pss
pedot
conductive
solution
stress sensor
Prior art date
Application number
PCT/CN2020/081899
Other languages
English (en)
French (fr)
Inventor
何鑫
沈耿哲
陈柏桦
杨为家
梁天龙
黄慰庆
李海峰
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Priority to US17/774,672 priority Critical patent/US20220291061A1/en
Publication of WO2021088305A1 publication Critical patent/WO2021088305A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Definitions

  • the invention relates to the technical field of sensors, in particular to a method for preparing a flexible stress sensor based on a composite multilayer conductive material.
  • the flexible pressure sensor reflects the pairing relationship between the physical signal and the electrical signal by converting the physical stimulation signal into an electronic signal.
  • the flexible pressure sensor usually consists of two main components, namely the flexible substrate and the conductive layer material.
  • the flexible substrate is usually a plastic film, for example, polydimethylsiloxane, polyethylene terephthalate, polyimide or polyvinyl chloride, which gives the sensor excellent durability and can be attached comfortably On the human body.
  • various advanced materials have been used to make conductive layers, such as silver nanowires (AgNW), copper nanowires (CuNW), gold nanowires (AuNWs), carbon nanotubes (CNT), graphene, and conductive polymers.
  • the characteristics of flexible sensors can also be enhanced by constructing sensors with novel microstructures.
  • the high compressibility of the microstructure makes it deformable even under low applied pressure.
  • the microstructure can reduce the impact of the polymer's viscoelasticity and hysteresis, thereby increasing the response speed.
  • the sensing range of the sensor prepared by the above method is usually relatively narrow ( ⁇ 30kPa).
  • the application is relatively simple, and the pairing change of resistance is not obvious.
  • the microstructure is relatively simple and sticks to the response of one kind of microstructure, while neglecting the application of multiple structural pairings. Therefore, it is still a huge challenge to manufacture innovative, high-sensitivity, wide-detection range, stable and long-life flexible pressure sensors.
  • the present invention provides a method for preparing a flexible stress sensor based on a composite multilayer conductive material.
  • the flexible resistive stress sensor provided by the present invention has the advantages of high sensitivity, wide detection range, stable and long life.
  • the technical scheme of the present invention is: a method for preparing a flexible stress sensor based on a composite multilayer conductive material, including the following steps:
  • step S102 soak the cotton fiber sheet of appropriate size into the modified PEDOT::PSS conductive solution in step S101), stir at room temperature for 3-5h, and then dry at 70-100°C for 1-3h;
  • step S103 repeat step S102) 2-5 times, until the modified PEDOT:PSS conductive solution evenly penetrates and firmly adheres to the cotton fiber sheet to obtain PEDOT:PSS conductive cotton;
  • step S104 Spread the PEDOT:PSS conductive cotton cloth obtained in step S103) on the surface of the PDMS solution, so that one side of the conductive cotton cloth is covered and fixed by the PDMS solution to obtain a PEDOT:PSS cotton cloth fiber layer.
  • step S202 Stir the solution obtained in step S201) at a constant temperature of 50-70°C for 3-8 hours to obtain a spinning solution, which is sealed and stored for later use;
  • a disordered conductive carbon cloth is prepared by a disordered electrospinning machine.
  • step S303 Introduce polyvinylpyrrolidone PVP into the bright yellow solution in step S301), continue to stir the mixture until the PVP is completely dissolved, and then seal it in the autoclave and heat it at 150-180°C for 3-8 hours, hot water After the reaction is completed, a gray-green precipitate is obtained;
  • step S304 wash the gray-green precipitate obtained in step S303) with a dilute nitric acid solution several times to remove the oxide layer on the surface of the nanowires; then add ethanol to remove the excess nitric acid under the action of a centrifuge, and collect the long Silver nanowires;
  • step S305 Cover the longer silver nanowires obtained in step S304) on glass, and heat for 2-3 hours at a temperature of 200-300°C, and then coat with PDMS and cure at 60-100°C for 2-6 hours , Peeled off to obtain a silver nanowire conductive film.
  • the PEDOT prepared in step S1): PSS cotton fiber layer, the disordered conductive carbon cloth prepared in step S2), and the silver nanowire conductive film prepared in step S3) are packaged together; the edges are packaged with PDMS and 60 Cured at -100°C for 0.5-2h;
  • the resistance of the obtained PEDOT:PSS cotton fiber layer is controlled to be 900-1200 ⁇ .
  • the PAN fiber is obtained after receiving a distance of 10-15cm, a voltage of 3-5KV, and spinning for 8-12h through a random electrospinning machine, and then passes through 900-1100°C and heated 1 -5h to prepare disordered conductive carbon cloth.
  • the resistance of the disordered conductive carbon cloth obtained is controlled to be 200-300 ⁇ .
  • the volume ratio of the glucose, silver nitrate, and iron sulfate dissolved in deionized water is 2:2:1.
  • the length of the long silver nanowire is 10-15 ⁇ m in length and 200-300 nm in diameter.
  • step S305 the resistance of the silver nanowire conductive film obtained is controlled to be 0.1-3 ⁇ .
  • the PEDOT PSS cotton fiber layer, disordered conductive carbon cloth, silver nanowire conductive film mounting sandwich structure for packaging, and the disordered conductive carbon cloth is located in PEDOT : Between the PSS cotton fiber layer and the silver nanowire conductive film.
  • the wire is a copper conductive tape.
  • the present invention strengthens the conductive channel by immersing PEDOT:PSS in cotton fiber and using the fiber as a carrier, and at the same time uses the shrinkage elasticity of the cotton itself to achieve structural strain, thereby changing the resistance;
  • the present invention prepares disordered conductive carbon cloth through electrostatic spinning, the method is simple, easy to operate, and can be mass-produced on a large scale;
  • the PDMS elastic substrate with silver nanowires of the present invention effectively enhances the adhesion ability of the silver nanowires, prevents the silver nanowires from falling off during movement, and enhances the service life;
  • the silver nanowires embedded in the PDMS of the present invention form a network conduction state to realize the connectivity of the conduction network
  • the silver nanowire, conductive carbon cloth, and PEDOT: PSS cotton fiber of the present invention are matched with each other with different conductivity materials, so that the resistance variability is more abundant, and the contact nodes between the layers have gaps that can be pressed. , To increase the resistance change range, have a higher resistance change rate, and have a sensing range of up to 70kPa;
  • the three multi-layer conductive materials provided by the present invention are both flexible, have good bending resistance, and can be stretched and pressed and are suitable for preparing electronic components such as flexible sensors.
  • Figure 1 is a schematic diagram of the structure of a flexible stress sensor prepared by the present invention
  • Figure 2 is an SEM image of the carbon fiber of the conductive carbon cloth of the present invention.
  • Figure 3 is an SEM image of the silver nanowire conductive film of the present invention.
  • Example 4 is a diagram of the relative change in resistance and time of the flexible stress sensor prepared in Example 1 of the present invention starting from 0.5 kPa and increasing from 0.5 kPa to 2.5 kPa in sequence;
  • 1-PEDOT PSS cotton fiber layer, 2-wire, 3-disordered conductive carbon cloth, 4 silver nanowire conductive film.
  • a method for preparing a flexible stress sensor based on a composite multilayer conductive material includes the following steps:
  • step S102 Soak a 1x5cm cotton fiber sheet into the modified PEDOT::PSS conductive solution in step S101), stir for 4 hours at room temperature, and then dry for 2 hours at a temperature of 80°C;
  • step S103 repeat step S102) 3 times, until the modified PEDOT:PSS conductive solution evenly penetrates and firmly adheres to the cotton fiber sheet to obtain PEDOT:PSS conductive cotton;
  • step S104 Spread the PEDOT:PSS conductive cotton cloth obtained in step S103) on the surface of the PDMS solution, so that one side of the conductive cotton cloth is covered and fixed by the PDMS solution to obtain a PEDOT:PSS cotton cloth fiber layer, and the resistance is controlled at 989 ⁇ .
  • step S202 Stir the solution obtained in step S201) at a constant temperature of 60°C for 6 hours to obtain a spinning solution, which is sealed and stored for later use;
  • step S303 Introduce 4.5 g of polyvinylpyrrolidone PVP into the bright yellow solution in step S301), continue to stir the mixture until the PVP is completely dissolved, and then seal it in the autoclave and heat it at 160°C for 8 hours. The hot water reaction is complete Then a gray-green precipitate is obtained;
  • step S304 wash the gray-green precipitate obtained in step S303) with a dilute nitric acid solution several times to remove the oxide layer on the surface of the nanowires; then add ethanol to remove the excess nitric acid under the action of a centrifuge, and collect the long Of silver nanowires, as shown in Figure 3;
  • step S305 Cover the longer silver nanowires obtained in step S304) on glass with a thickness of 500nm, and heat for 1.5h at a temperature of 250°C, and then coat with PDMS and cure at 80°C for 3h, then peel off , The silver nanowire conductive film is obtained, and the resistance is controlled at 0.5 ⁇ .
  • step S401 encapsulating the PEDOT:PSS cotton fiber layer prepared in step S1), the disordered conductive carbon cloth prepared in step S2), and the silver nanowire conductive film prepared in step S3) according to a sandwich structure to form a 1x1cm block; Use PDMS to encapsulate the edges and cure at 80°C for 1h;
  • the sensor includes PEDOT: PSS cotton fiber layer 2, disordered conductive carbon cloth 3, and silver nanowire conductive film 4 from top to bottom.
  • the disordered conductive carbon cloth 3 is located in PEDOT: Between the PSS cotton fiber layer 1 and the silver nanowire conductive film 4.
  • the wire 2 is a copper conductive tape.
  • the sensor prepared in this example starts from 0.5kPa and gradually increases from 0.5kPa to 2.5kPa.
  • the diagram of the relative change in resistance and time during the period is shown in Figure 4. It can be seen from the figure that the gradient increases according to 0.5kPa.
  • the relative change of resistance gradually increases, the relative change of resistance is 0.015 at 0.5kPa, the relative change of resistance is 0.035 at 1kPa, the relative change of resistance is 0.040. at 1.5kPa, the relative change of resistance is 0.045 at 2kPa, and the relative change of resistance at 2.5kPa is 0.055.
  • a method for preparing a flexible stress sensor based on a composite multilayer conductive material includes the following steps:
  • step S102 Soak a 1x5cm cotton fiber sheet into the modified PEDOT::PSS conductive solution in step S101), stir for 4 hours at room temperature, and then dry for 2 hours at a temperature of 80°C;
  • step S103 repeat step S102) 3 times, until the modified PEDOT:PSS conductive solution evenly penetrates and firmly adheres to the cotton fiber sheet to obtain PEDOT:PSS conductive cotton;
  • step S104 Spread the PEDOT:PSS conductive cotton cloth obtained in step S103) on the surface of the PDMS solution, so that one side of the conductive cotton cloth is covered and fixed by the PDMS solution to obtain a PEDOT:PSS cotton cloth fiber layer, and the resistance is controlled at 1012 ⁇ .
  • step S202 Stir the solution obtained in step S201) at a constant temperature of 60°C for 6 hours to obtain a spinning solution, which is sealed and stored for later use;
  • a random electrospinning machine receives a distance of 10cm, a voltage of 4.5KV, and spinning for 12 hours to obtain a PAN fiber, and then a disordered conductive carbon cloth is prepared by heating at 1000°C for 2 hours, and the resistance is controlled at 200 ⁇ .
  • step S303 Introduce 4.5 g of polyvinylpyrrolidone PVP into the bright yellow solution in step S301), continue to stir the mixture until the PVP is completely dissolved, and then seal it in the autoclave and heat it at 160°C for 8 hours. The hot water reaction is complete Then a gray-green precipitate is obtained;
  • step S304 wash the gray-green precipitate obtained in step S303) with a dilute nitric acid solution several times to remove the oxide layer on the surface of the nanowires; then add ethanol to remove the excess nitric acid under the action of a centrifuge, and collect the long Silver nanowires;
  • step S305 Cover the longer silver nanowires obtained in step S304) on a glass with a thickness of 500nm, and heat for 1.5h at a temperature of 250°C, and then coat with PDMS and cure at 80°C for 3h, then peel it off , The silver nanowire conductive film is obtained, and the resistance is controlled at 2 ⁇ .
  • step S401 encapsulating the PEDOT:PSS cotton fiber layer prepared in step S1), the disordered conductive carbon cloth prepared in step S2), and the silver nanowire conductive film prepared in step S3) according to a sandwich structure to form a 1x1cm block; Use PDMS to encapsulate the edges and cure at 80°C for 1h;
  • the sensor includes PEDOT: PSS cotton fiber layer 2, disordered conductive carbon cloth 3, and silver nanowire conductive film 4 from top to bottom.
  • the disordered conductive carbon cloth 3 is located in PEDOT: Between the PSS cotton fiber layer 1 and the silver nanowire conductive film 4.
  • the wire 2 is a copper conductive tape.
  • the sensor prepared in this example starts from 1.25kPa and increases from 1.25kPa to 7.5kPa in sequence.
  • the graph of the relative change in resistance and time during the period is shown in Figure 5.
  • the relative change of resistance is 0.038 at 1.25kPa
  • the relative change of resistance at 2.5kPa is 0.058
  • the relative change of resistance at 3.75kPa is 0.07
  • the relative change of resistance at 5kPa is 0.08
  • the relative change of resistance at 6.25kPa is The relative change of resistance is 0.10 at 0.085 and 7.5kPa.
  • a method for preparing a flexible stress sensor based on a composite multilayer conductive material includes the following steps:
  • step S102 Soak a 1x5cm cotton fiber sheet into the modified PEDOT::PSS conductive solution in step S101), stir for 4 hours at room temperature, and then dry for 2 hours at a temperature of 80°C;
  • step S103 repeat step S102) 3 times, until the modified PEDOT:PSS conductive solution evenly penetrates and firmly adheres to the cotton fiber sheet to obtain PEDOT:PSS conductive cotton;
  • step S104 Spread the PEDOT:PSS conductive cotton cloth obtained in step S103) on the surface of the PDMS solution, so that one side of the conductive cotton cloth is covered and fixed by the PDMS solution to obtain a PEDOT:PSS cotton cloth fiber layer, and the resistance is controlled at 950 ⁇ .
  • step S202 Stir the solution obtained in step S201) at a constant temperature of 60°C for 6 hours to obtain a spinning solution, which is sealed and stored for later use;
  • a random electrospinning machine receives a distance of 10cm, a voltage of 5KV, and spinning for 8 hours to obtain a PAN fiber, and then heats at 900°C for 2 hours to prepare a disordered conductive carbon cloth, and the resistance is controlled at 200 ⁇ .
  • step S303 Introduce 4.5 g of polyvinylpyrrolidone PVP into the bright yellow solution in step S301), continue to stir the mixture until the PVP is completely dissolved, and then seal it in the autoclave and heat it at 170°C for 8 hours. The hot water reaction is complete Then a gray-green precipitate is obtained;
  • step S304 wash the gray-green precipitate obtained in step S303) with a dilute nitric acid solution several times to remove the oxide layer on the surface of the nanowires; then add ethanol to remove the excess nitric acid under the action of a centrifuge, and collect the long Silver nanowires;
  • step S305 Cover the longer silver nanowires obtained in step S304) on a glass with a thickness of 500nm, and heat it for 1.5h at a temperature of 250°C, and then coat with PDMS and cure at 90°C for 3h, then peel it off , The silver nanowire conductive film is obtained, and the resistance is controlled at 2.5 ⁇ .
  • step S401 encapsulating the PEDOT:PSS cotton fiber layer prepared in step S1), the disordered conductive carbon cloth prepared in step S2), and the silver nanowire conductive film prepared in step S3) according to a sandwich structure to form a 1x1cm block; Use PDMS to encapsulate the edges and cure at 80°C for 1h;
  • the sensor includes PEDOT: PSS cotton fiber layer 2, disordered conductive carbon cloth 3, and silver nanowire conductive film 4 from top to bottom.
  • the disordered conductive carbon cloth 3 is located in PEDOT: Between the PSS cotton fiber layer 1 and the silver nanowire conductive film 4.
  • the wire 2 is a copper conductive tape.
  • the sensor prepared in this embodiment starts from 1.25kPa and increases sequentially from 2.75kPa to 15kPa.
  • the graph of the relative change in resistance and time during the period is shown in Figure 6. It can be seen from the figure that the gradient increases according to 2.75kPa, and the pressure increases.
  • the relative change of resistance gradually increases.
  • the relative change of resistance is 0.038 at 1.25kPa
  • the relative change of resistance is 0.06 at 4kPa
  • the relative change of resistance is 0.09 at 6.75kPa
  • the relative change of resistance is 0.11 at 9.5kPa
  • the relative change of resistance is 0.12 at 12.25kPa.
  • the relative change of resistance is 0.14 at 15kPa.
  • a method for preparing a flexible stress sensor based on a composite multilayer conductive material includes the following steps:
  • step S102 Soak a 1x5cm cotton fiber sheet into the modified PEDOT::PSS conductive solution in step S101), stir for 4 hours at room temperature, and then dry for 2 hours at a temperature of 80°C;
  • step S103 repeat step S102) 3 times, until the modified PEDOT:PSS conductive solution evenly penetrates and firmly adheres to the cotton fiber sheet to obtain PEDOT:PSS conductive cotton;
  • step S104 Spread the PEDOT:PSS conductive cotton cloth obtained in step S103) on the surface of the PDMS solution, so that one side of the conductive cotton cloth is covered and fixed by the PDMS solution to obtain a PEDOT:PSS cotton cloth fiber layer, and the resistance is controlled at 909 ⁇ .
  • step S202 Stir the solution obtained in step S201) at a constant temperature of 60°C for 6 hours to obtain a spinning solution, which is sealed and stored for later use;
  • the PAN fiber After receiving a distance of 10cm and a voltage of 4.5KV through a random electrospinning machine, the PAN fiber is obtained after spinning for 8 hours, and then heated at 900°C for 2 hours to prepare a disordered conductive carbon cloth, and the resistance is controlled at 200 ⁇ .
  • step S303 Introduce 4.5 g of polyvinylpyrrolidone PVP into the bright yellow solution in step S301), continue to stir the mixture until the PVP is completely dissolved, and then seal it in the autoclave and heat it at 170°C for 8 hours. The hot water reaction is complete Then a gray-green precipitate is obtained;
  • step S304 wash the gray-green precipitate obtained in step S303) with a dilute nitric acid solution several times to remove the oxide layer on the surface of the nanowires; then add ethanol to remove the excess nitric acid under the action of a centrifuge, and collect the long Silver nanowires;
  • step S305 Cover the longer silver nanowires obtained in step S304) on a glass with a thickness of 500 nm, and heat it at a temperature of 260°C for 1 hour, and then apply PDMS to cure at 110°C for 3 hours, and peel it off.
  • the silver nanowire conductive film is obtained, and the resistance is controlled at 2.2 ⁇ .
  • step S401 encapsulating the PEDOT:PSS cotton fiber layer prepared in step S1), the disordered conductive carbon cloth prepared in step S2), and the silver nanowire conductive film prepared in step S3) according to a sandwich structure to form a 1x1cm block; Use PDMS to encapsulate the edges and cure at 80°C for 1h;
  • the sensor includes PEDOT: PSS cotton fiber layer 2, disordered conductive carbon cloth 3, and silver nanowire conductive film 4 from top to bottom.
  • the disordered conductive carbon cloth 3 is located in PEDOT: Between the PSS cotton fiber layer 1 and the silver nanowire conductive film 4.
  • the wire 2 is a copper conductive tape.
  • the sensor prepared in this embodiment gradually increases from 2.5kPa to 70kPa.
  • the diagram of the relative change in resistance and time during the period is shown in Figure 7. It can be seen from the figure that the gradient increases according to 2.5kPa, with increasing pressure The relative change of resistance gradually increases, and the connection of the highest point shows a linear change below 20kPa, and the sensitivity is high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种基于复合多层导电材料的柔性应力传感器的制备方法,包括以下步骤:S1)PEDOT:PSS棉布纤维层(1)的制备;S2)导电碳布(3)的制备;S3)金属银纳米线导电薄膜(4)的制备;S4)柔性应力传感器的制备:通过将PEDOT:PSS棉布纤维层(1)、无序导电碳布(3)、银纳米线导电薄膜(4)进行封装在一起,并从PEDOT:PSS棉布纤维层(1)和银纳米线导电薄膜(4)上分别引出导线(2),得到柔性应力传感器。该制备方法将银纳米线、导电碳布(3)、PEDOT:PSS棉布纤维三种导电性不同的物质相互匹配,使电阻变化性更丰富,使层与层之间接触节点处,具有可按压的空隙,使电阻变化范围提高,具有较高电阻变化率,感测范围高达70kPa。

Description

一种基于复合多层导电材料的柔性应力传感器的制备方法 技术领域
本发明涉及传感器技术领域,尤其是一种基于复合多层导电材料的柔性应力传感器的制备方法。
背景技术
随着新一代柔性电子材料和传感技术的快速发展,柔性应力传感器逐渐成为研究人员关注的重要对象。
柔性压力传感器通过将物理刺激信号转换为电子信号来反映物理信号与电信号之间的配对关系。柔性压力传感器通常由两个主要组件组成,即柔性衬底和导电层材料。
柔性衬底通常是塑料薄膜,例如,聚二甲基硅氧烷,聚对苯二甲酸乙二酯,聚酰亚胺或聚氯乙烯,这使传感器具有出色的耐用性,并可以舒适地附着在人体上。同时,各种先进的材料已用于制造导电层,例如银纳米线(AgNW),铜纳米线(CuNW),金纳米线(AuNWs),碳纳米管(CNT),石墨烯和导电聚合物。除了使用新材料之外,还可以通过构造具有新颖微观结构的传感器来增强柔性传感器的特性。微观结构的高压缩性使其即使在低施加压力下也能变形。此外,微观结构可以减少聚合物的粘弹性和滞后效应的影响,从而提高响应速度。
但是,通过上述方法制备的传感器感测范围通常相对较窄(<30kPa)。在传统传感器导电层材料运用上较为单一,电阻的配对变化不明显。微观结构较为简单拘泥于一种微结构的响应,而忽略的多种结构配对的运用。因此,制造具有创新性,高灵敏度和宽检测范围,稳定寿命长的柔性压力传感器仍然是巨大的挑战。
发明内容
针对现有技术的不足,本发明提供一种基于复合多层导电材料的柔性应力传感器的制备方法,本发明提供的柔性电阻式应力传感器具有高灵敏度,宽检测范围,稳定寿命长的优点。
本发明的技术方案为:一种基于复合多层导电材料的柔性应力传感器的制备方法,包括以下步骤:
S1)、PEDOT:PSS棉布纤维层的制备
S101)、将聚3,4-乙烯二氧噻吩单体:聚苯乙烯磺酸盐PEDOT:PSS加入到二甲基亚砜DMSO溶液进行改性,并在40-60℃油浴搅拌加热0.5-2h后,滴加无水乙醇1-3h,得到改性的PEDOT:PSS导电溶液;
S102)、将合适尺寸的棉布纤维片浸泡到步骤S101)中改性的PEDOT::PSS导电溶液中,常温搅拌3-5h,然后70-100℃烘干1-3h;
S103)、重复步骤S102)2-5次,直至改性的PEDOT:PSS导电溶液均匀渗透牢固的附着在棉布纤维片上,得到PEDOT:PSS导电棉布;
S104)、将步骤S103)中得到的PEDOT:PSS导电棉布铺在PDMS溶液表面,使导电棉布一面被PDMS溶液覆盖固定起来,得到PEDOT:PSS棉布纤维层。
S2)、导电碳布的制备
S201)、通过在湿度为40-60%的条件下,将聚丙烯腈PAN溶解于N-N二甲基甲甲酰胺DMF溶剂中配置成10-20wt%浓度的溶液;
S202)、将步骤S201)中得到的溶液在50-70℃恒温搅拌3-8h,得到纺丝溶液,密封保存备用;
S203)、通过无序静电纺丝机制备得到无序导电碳布。
S3)、金属银纳米线导电薄膜的制备
S301)、在室温条件下,将一定量的葡萄糖、硝酸银、硫酸铁分别在去离子水中溶解后混合在一起并磁力搅拌几分钟以产生亮黄色溶液;
S303)、将聚乙烯吡咯烷酮PVP引入步骤S301)中的亮黄色溶液中,持续搅拌混合物直至PVP完全溶解,然后高压反应釜中,将其密封并在150-180℃加热3-8小时,热水反应完成后得到灰绿色沉淀;
S304)、用稀硝酸溶液洗涤步骤S303)中得到的灰绿色沉淀数次,以除去纳米线表面上的氧化层;然后加入乙醇在离心机作用下除去过量的硝酸,并通过反复过滤来收集长的银纳米线;
S305)将步骤S304)中得到的较长的银纳米线覆在玻璃上,并在温度为200-300℃的条件下加热2-3h,然后再涂覆PDMS在60-100℃固化2-6h,剥离下来,得到银纳米线导电薄膜。
S4)、柔性应力传感器的制备
S401)、将步骤S1)制备的PEDOT:PSS棉布纤维层、步骤S2)制备的无序导电碳布、步骤S3)制备的银纳米线导电薄膜进行封装在一起;边缘使用PDMS进行封装并在60-100℃固化0.5-2h;
S402)、从PEDOT:PSS棉布纤维层和银纳米线导电薄膜上分别引出导线,得到柔性应力传感器。
优选的,上述方法中,步骤S104)中,得到的PEDOT:PSS棉布纤维层的电阻控制在 900-1200Ω。
优选的,上述方法中,步骤S203)中,通过无序静电纺丝机接收距离10-15cm,电压3-5KV,纺制8-12h后,得到PAN纤维,再经过900-1100℃,加热1-5h制备得到无序导电碳布。
优选的,上述方法中,步骤S203)中,得到的无序导电碳布的电阻控制在200-300Ω。
优选的,上述方法中,步骤S301)中,所述的葡萄糖、硝酸银、硫酸铁溶于去离子水后的体积比为2:2:1。
优选的,上述方法中,步骤S304)中,所述长的银纳米线的长度为长度为10-15μm,直径200-300nm。
优选的,上述方法中,步骤S305)中,得到的银纳米线导电薄膜的电阻控制在0.1-3Ω。
优选的,上述方法中,步骤S401)中,所述的PEDOT:PSS棉布纤维层、无序导电碳布、银纳米线导电薄膜安装三明治结构进行封装,并且所述的无序导电碳布位于PEDOT:PSS棉布纤维层和银纳米线导电薄膜之间。
优选的,上述方法中,步骤S402)中,所述的导线为铜导电胶带。
本发明的有益效果为:
1、本发明通过将PEDOT:PSS浸泡在棉布纤维中通过纤维作为载体,加强了导电通道,同时又利用了棉布本身的收缩弹性实现结构应变,从而改变电阻;
2、本发明通过静电纺丝制备无序导电碳布,方法简单、易操作,可以大规模批量化生产;
3、本发明具有银纳米线的PDMS弹性衬底有效地增强银纳米线的黏附能力,防止运动过程中银纳米线的脱落,增强了使用寿命;
4、本发明嵌入PDMS的银纳米线形成网络导通状态,实现导通网络的联通性;
5、本发明的银纳米线、导电碳布、PEDOT:PSS棉布纤维三种导电性不同的物质相互匹配,使电阻变化性更丰富,使层与层之间接触节点处,具有可按压的空隙,使电阻变化范围提高,具有较高电阻变化率,具有感测范围高达70kPa;
6、本发明提供的三种多层导电材料均兼具柔性,具有良好的耐弯折性能,可拉伸、可按压等力学性能适用于制备柔性传感器等电子元器件。
附图说明
图1为本发明制备的柔性应力传感器的结构示意图;
图2为本发明导电碳布的碳纤维的SEM图;
图3为本发明银纳米线导电薄膜的SEM图;
图4为本发明实施例1制备的柔性应力传感器从0.5kPa开始依次递增0.5kPa至2.5kPa,期间电阻相对变化量与时间的图;
图中,1-PEDOT:PSS棉布纤维层,2-导线,3-无序导电碳布,4银纳米线导电薄膜。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例1
一种基于复合多层导电材料的柔性应力传感器的制备方法,包括以下步骤:
S1)、PEDOT:PSS棉布纤维层的制备
S101)、将3g的聚3,4-乙烯二氧噻吩单体:聚苯乙烯磺酸盐PEDOT:PSS加入到0.45g二甲基亚砜DMSO溶液进行改性,并在50℃油浴搅拌加热1h后,滴加5mL无水乙醇50℃,2h,得到改性的PEDOT:PSS导电溶液;
S102)、将合1x5cm的棉布纤维片浸泡到步骤S101)中改性的PEDOT::PSS导电溶液中,常温搅拌4h,然后温度为80℃的条件下烘干2h;
S103)、重复步骤S102)3次,直至改性的PEDOT:PSS导电溶液均匀渗透牢固的附着在棉布纤维片上,得到PEDOT:PSS导电棉布;
S104)、将步骤S103)中得到的PEDOT:PSS导电棉布铺在PDMS溶液表面,使导电棉布一面被PDMS溶液覆盖固定起来,得到PEDOT:PSS棉布纤维层,电阻控制在989Ω。
S2)、导电碳布的制备
S201)、通过在湿度为50%的条件下,将聚丙烯腈PAN溶解于N-N二甲基甲甲酰胺DMF溶剂中配置成15wt%浓度的溶液;
S202)、将步骤S201)中得到的溶液在60℃恒温搅拌6h,得到纺丝溶液,密封保存备用;
S203)、通过无序静电纺丝机接收距离10cm,电压4.5KV,纺制12h后,得到PAN纤维,再经过1000℃,加热2h制备得到无序导电碳布,电阻控制在250Ω,所述无序导电碳布的碳纤维的SEM图如图2所示。
S3)、金属银纳米线导电薄膜的制备
S301)、在室温条件下,将2mmol的葡萄糖、1.5mmol硝酸银、0.3mmol的硫酸铁分别在去离子水中溶解后混合在一起并磁力搅拌几分钟以产生亮黄色溶液;
S303)、将4.5g聚乙烯吡咯烷酮PVP引入步骤S301)中的亮黄色溶液中,持续搅拌混合物直至PVP完全溶解,然后高压反应釜中,将其密封并在160℃加热8小时,热水反应完成后得到灰绿色沉淀;
S304)、用稀硝酸溶液洗涤步骤S303)中得到的灰绿色沉淀数次,以除去纳米线表面上 的氧化层;然后加入乙醇在离心机作用下除去过量的硝酸,并通过反复过滤来收集长的银纳米线,如图3所示;
S305)将步骤S304)中得到的较长的银纳米线覆在厚度为500nm玻璃上,,并在温度为250℃的条件下加热1.5h,然后再涂覆PDMS在80℃固化3h,剥离下来,得到银纳米线导电薄膜,电阻控制在0.5Ω。
S4)、柔性应力传感器的制备
S401)、将步骤S1)制备的PEDOT:PSS棉布纤维层、步骤S2)制备的无序导电碳布、步骤S3)制备的银纳米线导电薄膜按照三明治结构进行封装在一起形成1x1cm的块状;边缘使用PDMS进行封装并在80℃固化1h;
S402)、从PEDOT:PSS棉布纤维层和银纳米线导电薄膜上分别引出导线,得到柔性应力传感器。如图1所示,所述的传感器从上至下依次包括PEDOT:PSS棉布纤维层2、无序导电碳布3、银纳米线导电薄膜4,所述的无序导电碳布3位于PEDOT:PSS棉布纤维层1和银纳米线导电薄膜4之间。所述的导线2为铜导电胶带。本实施例制备的传感器从0.5kPa开始依次递增0.5kPa至2.5kPa,期间电阻相对变化量与时间的图如图4所示,从图中可以看出,按照0.5kPa为梯度递增,随着压强的电阻相对变化逐渐增大,0.5kPa时电阻相对变化为0.015,1kPa时电阻相对变化为0.035,1.5kPa时电阻相对变化为0.040.,2kPa时电阻相对变化为0.045,2.5kPa时电阻相对变化为0.055。
实施例2
一种基于复合多层导电材料的柔性应力传感器的制备方法,包括以下步骤:
S1)、PEDOT:PSS棉布纤维层的制备
S101)、将2.5g的聚3,4-乙烯二氧噻吩单体:聚苯乙烯磺酸盐PEDOT:PSS加入到0.35g二甲基亚砜DMSO溶液进行改性,并在50℃油浴搅拌加热1h后,滴加5mL无水乙醇50℃,2h,得到改性的PEDOT:PSS导电溶液;
S102)、将合1x5cm的棉布纤维片浸泡到步骤S101)中改性的PEDOT::PSS导电溶液中,常温搅拌4h,然后温度为80℃的条件下烘干2h;
S103)、重复步骤S102)3次,直至改性的PEDOT:PSS导电溶液均匀渗透牢固的附着在棉布纤维片上,得到PEDOT:PSS导电棉布;
S104)、将步骤S103)中得到的PEDOT:PSS导电棉布铺在PDMS溶液表面,使导电棉布一面被PDMS溶液覆盖固定起来,得到PEDOT:PSS棉布纤维层,电阻控制在1012Ω。
S2)、导电碳布的制备
S201)、通过在湿度为50%的条件下,将聚丙烯腈PAN溶解于N-N二甲基甲甲酰胺DMF溶剂中配置成15wt%浓度的溶液;
S202)、将步骤S201)中得到的溶液在60℃恒温搅拌6h,得到纺丝溶液,密封保存备用;
S203)、通过无序静电纺丝机接收距离10cm,电压4.5KV,纺制12h后,得到PAN纤维,再经过1000℃,加热2h制备得到无序导电碳布,电阻控制在200Ω。
S3)、金属银纳米线导电薄膜的制备
S301)、在室温条件下,将2mmol的葡萄糖、1.5mmol硝酸银、0.3mmol的硫酸铁分别在去离子水中溶解后混合在一起并磁力搅拌几分钟以产生亮黄色溶液;
S303)、将4.5g聚乙烯吡咯烷酮PVP引入步骤S301)中的亮黄色溶液中,持续搅拌混合物直至PVP完全溶解,然后高压反应釜中,将其密封并在160℃加热8小时,热水反应完成后得到灰绿色沉淀;
S304)、用稀硝酸溶液洗涤步骤S303)中得到的灰绿色沉淀数次,以除去纳米线表面上的氧化层;然后加入乙醇在离心机作用下除去过量的硝酸,并通过反复过滤来收集长的银纳米线;
S305)将步骤S304)中得到的较长的银纳米线覆在厚度为500nm的玻璃上,并在温度为250℃的条件下加热1.5h,然后再涂覆PDMS在80℃固化3h,剥离下来,得到银纳米线导电薄膜,电阻控制在2Ω。
S4)、柔性应力传感器的制备
S401)、将步骤S1)制备的PEDOT:PSS棉布纤维层、步骤S2)制备的无序导电碳布、步骤S3)制备的银纳米线导电薄膜按照三明治结构进行封装在一起形成1x1cm的块状;边缘使用PDMS进行封装并在80℃固化1h;
S402)、从PEDOT:PSS棉布纤维层和银纳米线导电薄膜上分别引出导线,得到柔性应力传感器。如图1所示,所述的传感器从上至下依次包括PEDOT:PSS棉布纤维层2、无序导电碳布3、银纳米线导电薄膜4,所述的无序导电碳布3位于PEDOT:PSS棉布纤维层1和银纳米线导电薄膜4之间。所述的导线2为铜导电胶带。本实施例制备的传感器从1.25kPa开始依次递增1.25kPa至7.5kPa,期间电阻相对变化量与时间的图如图5所示,从图中可以看出,按照1.25kPa为梯度递增,随着压强的电阻相对变化逐渐增大,1.25kPa时电阻相对变化为0.038,2.5kPa时电阻相对变化为0.058,3.75kPa时电阻相对变化为0.07,5kPa时电阻相对变化为0.08,6.25kPa时电阻相对变化为0.085,7.5kPa时电阻相对变化为0.10。
实施例3
一种基于复合多层导电材料的柔性应力传感器的制备方法,包括以下步骤:
S1)、PEDOT:PSS棉布纤维层的制备
S101)、将3.5g的聚3,4-乙烯二氧噻吩单体:聚苯乙烯磺酸盐PEDOT:PSS加入到0.35g二甲基亚砜DMSO溶液进行改性,并在50℃油浴搅拌加热1h后,滴加5mL无水乙醇50℃,2h,得到改性的PEDOT:PSS导电溶液;
S102)、将合1x5cm的棉布纤维片浸泡到步骤S101)中改性的PEDOT::PSS导电溶液中,常温搅拌4h,然后温度为80℃的条件下烘干2h;
S103)、重复步骤S102)3次,直至改性的PEDOT:PSS导电溶液均匀渗透牢固的附着在棉布纤维片上,得到PEDOT:PSS导电棉布;
S104)、将步骤S103)中得到的PEDOT:PSS导电棉布铺在PDMS溶液表面,使导电棉布一面被PDMS溶液覆盖固定起来,得到PEDOT:PSS棉布纤维层,电阻控制在950Ω。
S2)、导电碳布的制备
S201)、通过在湿度为50%的条件下,将聚丙烯腈PAN溶解于N-N二甲基甲甲酰胺DMF溶剂中配置成15wt%浓度的溶液;
S202)、将步骤S201)中得到的溶液在60℃恒温搅拌6h,得到纺丝溶液,密封保存备用;
S203)、通过无序静电纺丝机接收距离10cm,电压5KV,纺制8h后,得到PAN纤维,再经过900℃,加热2h制备得到无序导电碳布,电阻控制在200Ω。
S3)、金属银纳米线导电薄膜的制备
S301)、在室温条件下,将2mmol的葡萄糖、1.5mmol硝酸银、0.3mmol的硫酸铁分别在去离子水中溶解后混合在一起并磁力搅拌几分钟以产生亮黄色溶液;
S303)、将4.5g聚乙烯吡咯烷酮PVP引入步骤S301)中的亮黄色溶液中,持续搅拌混合物直至PVP完全溶解,然后高压反应釜中,将其密封并在170℃加热8小时,热水反应完成后得到灰绿色沉淀;
S304)、用稀硝酸溶液洗涤步骤S303)中得到的灰绿色沉淀数次,以除去纳米线表面上的氧化层;然后加入乙醇在离心机作用下除去过量的硝酸,并通过反复过滤来收集长的银纳米线;
S305)将步骤S304)中得到的较长的银纳米线覆在厚度为500nm的玻璃上,并在温度为250℃的条件下加热1.5h,然后再涂覆PDMS在90℃固化3h,剥离下来,得到银纳米线导电薄膜,电阻控制在2.5Ω。
S4)、柔性应力传感器的制备
S401)、将步骤S1)制备的PEDOT:PSS棉布纤维层、步骤S2)制备的无序导电碳布、 步骤S3)制备的银纳米线导电薄膜按照三明治结构进行封装在一起形成1x1cm的块状;边缘使用PDMS进行封装并在80℃固化1h;
S402)、从PEDOT:PSS棉布纤维层和银纳米线导电薄膜上分别引出导线,得到柔性应力传感器。如图1所示,所述的传感器从上至下依次包括PEDOT:PSS棉布纤维层2、无序导电碳布3、银纳米线导电薄膜4,所述的无序导电碳布3位于PEDOT:PSS棉布纤维层1和银纳米线导电薄膜4之间。所述的导线2为铜导电胶带。本实施例制备的传感器从1.25kPa开始依次递增2.75kPa至15kPa,期间电阻相对变化量与时间的图如图6所示,从图中可以看出,按照2.75kPa为梯度递增,随着压强的电阻相对变化逐渐增大,1.25kPa时电阻相对变化为0.038,4kPa时电阻相对变化为0.06,6.75kPa时电阻相对变化为0.09,9.5kPa时电阻相对变化为0.11,12.25kPa时电阻相对变化为0.12,15kPa时电阻相对变化为0.14。
实施例4
一种基于复合多层导电材料的柔性应力传感器的制备方法,包括以下步骤:
S1)、PEDOT:PSS棉布纤维层的制备
S101)、将4g的聚3,4-乙烯二氧噻吩单体:聚苯乙烯磺酸盐PEDOT:PSS加入到0.35g二甲基亚砜DMSO溶液进行改性,并在50℃油浴搅拌加热1h后,滴加5mL无水乙醇70℃,2h,得到改性的PEDOT:PSS导电溶液;
S102)、将合1x5cm的棉布纤维片浸泡到步骤S101)中改性的PEDOT::PSS导电溶液中,常温搅拌4h,然后温度为80℃的条件下烘干2h;
S103)、重复步骤S102)3次,直至改性的PEDOT:PSS导电溶液均匀渗透牢固的附着在棉布纤维片上,得到PEDOT:PSS导电棉布;
S104)、将步骤S103)中得到的PEDOT:PSS导电棉布铺在PDMS溶液表面,使导电棉布一面被PDMS溶液覆盖固定起来,得到PEDOT:PSS棉布纤维层,电阻控制在909Ω。
S2)、导电碳布的制备
S201)、通过在湿度为50%的条件下,将聚丙烯腈PAN溶解于N-N二甲基甲甲酰胺DMF溶剂中配置成15wt%浓度的溶液;
S202)、将步骤S201)中得到的溶液在60℃恒温搅拌6h,得到纺丝溶液,密封保存备用;
S203)、通过无序静电纺丝机接收距离10cm,电压4.5KV,纺制8h后,得到PAN纤维,再经过900℃,加热2h制备得到无序导电碳布,电阻控制在200Ω。
S3)、金属银纳米线导电薄膜的制备
S301)、在室温条件下,将2mmol的葡萄糖、1.5mmol硝酸银、0.3mmol的硫酸铁分别 在去离子水中溶解后混合在一起并磁力搅拌几分钟以产生亮黄色溶液;
S303)、将4.5g聚乙烯吡咯烷酮PVP引入步骤S301)中的亮黄色溶液中,持续搅拌混合物直至PVP完全溶解,然后高压反应釜中,将其密封并在170℃加热8小时,热水反应完成后得到灰绿色沉淀;
S304)、用稀硝酸溶液洗涤步骤S303)中得到的灰绿色沉淀数次,以除去纳米线表面上的氧化层;然后加入乙醇在离心机作用下除去过量的硝酸,并通过反复过滤来收集长的银纳米线;
S305)将步骤S304)中得到的较长的银纳米线覆在厚度为500nm的玻璃上,并在温度为260℃的条件下加热1h,然后再涂覆PDMS在110℃固化3h,剥离下来,得到银纳米线导电薄膜,电阻控制在2.2Ω。
S4)、柔性应力传感器的制备
S401)、将步骤S1)制备的PEDOT:PSS棉布纤维层、步骤S2)制备的无序导电碳布、步骤S3)制备的银纳米线导电薄膜按照三明治结构进行封装在一起形成1x1cm的块状;边缘使用PDMS进行封装并在80℃固化1h;
S402)、从PEDOT:PSS棉布纤维层和银纳米线导电薄膜上分别引出导线,得到柔性应力传感器。如图1所示,所述的传感器从上至下依次包括PEDOT:PSS棉布纤维层2、无序导电碳布3、银纳米线导电薄膜4,所述的无序导电碳布3位于PEDOT:PSS棉布纤维层1和银纳米线导电薄膜4之间。所述的导线2为铜导电胶带。本实施例制备的传感器从2.5kPa开始依次递增2.5kPa至70kPa,期间电阻相对变化量与时间的图如图7所示,从图中可以看出,按照2.5kPa为梯度递增,随着压强的电阻相对变化逐渐增大,最高点连线在20kPa之下呈现出线性变化,灵敏度高。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (9)

  1. 一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于,包括以下步骤:
    S1)、PEDOT:PSS棉布纤维层的制备
    S101)、将聚3,4-乙烯二氧噻吩单体:聚苯乙烯磺酸盐PEDOT:PSS加入到二甲基亚砜DMSO溶液进行改性,并在40-60℃油浴搅拌加热0.5-2h后,滴加无水乙醇1-3h,得到改性的PEDOT:PSS导电溶液;
    S102)、将合适尺寸的棉布纤维片浸泡到步骤S101)中改性的PEDOT::PSS导电溶液中,常温搅拌3-5h,然后70-100℃烘干1-3h;
    S103)、重复步骤S102)2-5次,直至改性的PEDOT:PSS导电溶液均匀渗透牢固的附着在棉布纤维片上,得到PEDOT:PSS导电棉布;
    S104)、将步骤S103)中得到的PEDOT:PSS导电棉布铺在PDMS溶液表面,使导电棉布一面被PDMS溶液覆盖固定起来,得到PEDOT:PSS棉布纤维层;
    S2)、导电碳布的制备
    S201)、通过在湿度为40-60%的条件下,将聚丙烯腈PAN溶解于N-N二甲基甲甲酰胺DMF溶剂中配置成10-20wt%浓度的溶液;
    S202)、将步骤S201)中得到的溶液在50-70℃恒温搅拌3-8h,得到纺丝溶液,密封保存备用;
    S203)、通过无序静电纺丝机制备得到无序导电碳布;
    S3)、金属银纳米线导电薄膜的制备
    S301)、在室温条件下,将一定量的葡萄糖、硝酸银、硫酸铁分别在去离子水中溶解后混合在一起并磁力搅拌几分钟以产生亮黄色溶液;
    S303)、将聚乙烯吡咯烷酮PVP引入步骤S301)中的亮黄色溶液中,持续搅拌混合物直至PVP完全溶解,然后高压反应釜中,将其密封并在150-180℃加热3-8小时,热水反应完成后得到灰绿色沉淀;
    S304)、用稀硝酸溶液洗涤步骤S303)中得到的灰绿色沉淀数次,以除去纳米线表面上的氧化层;然后加入乙醇在离心机作用下除去过量的硝酸,并通过反复过滤来收集长的银纳米线;
    S305)将步骤S304)中得到的长的银纳米线覆在玻璃上,并在温度为200-300℃的条件下加热2-3h,然后再涂覆PDMS在60-100℃固化2-6h,剥离下来,得到银纳米线导电薄膜;
    S4)、柔性应力传感器的制备
    S401)、将步骤S1)制备的PEDOT:PSS棉布纤维层、步骤S2)制备的无序导电碳布、 步骤S3)制备的银纳米线导电薄膜进行封装在一起;边缘使用PDMS进行封装并在60-100℃固化0.5-2h;
    S402)、从PEDOT:PSS棉布纤维层和银纳米线导电薄膜上分别引出导线,得到柔性应力传感器。
  2. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S104)中,得到的PEDOT:PSS棉布纤维层的电阻控制在900-1200Ω。
  3. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S203)中,通过无序静电纺丝机接收距离10-15cm,电压3-5KV,纺制8-12h后,得到PAN纤维,再经过900-1100℃,加热1-5h制备得到无序导电碳布。
  4. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S203)中,得到的无序导电碳布的电阻控制在200-300Ω。
  5. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S301)中,所述的葡萄糖、硝酸银、硫酸铁溶于去离子水后的体积比为2:2:1。
  6. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S304)中,所述长的银纳米线的长度为10-15μm,直径200-300nm
  7. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S305)中,得到的银纳米线导电薄膜的电阻控制在0.1-3Ω。
  8. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S401)中,所述的PEDOT:PSS棉布纤维层、无序导电碳布、银纳米线导电薄膜安装三明治结构进行封装,并且所述的无序导电碳布位于PEDOT:PSS棉布纤维层和银纳米线导电薄膜之间。
  9. 根据权利要求1所述的一种基于复合多层导电材料的柔性应力传感器的制备方法,其特征在于:步骤S402)中,所述的导线为铜导电胶带。
PCT/CN2020/081899 2019-11-08 2020-03-28 一种基于复合多层导电材料的柔性应力传感器的制备方法 WO2021088305A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/774,672 US20220291061A1 (en) 2019-11-08 2020-03-28 Preparation method for a flexible stress sensor based on a composite multilayer conductive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089672.3A CN110895173B (zh) 2019-11-08 2019-11-08 一种基于复合多层导电材料的柔性应力传感器的制备方法
CN201911089672.3 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021088305A1 true WO2021088305A1 (zh) 2021-05-14

Family

ID=69786559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081899 WO2021088305A1 (zh) 2019-11-08 2020-03-28 一种基于复合多层导电材料的柔性应力传感器的制备方法

Country Status (3)

Country Link
US (1) US20220291061A1 (zh)
CN (1) CN110895173B (zh)
WO (1) WO2021088305A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218189A1 (en) 2022-05-10 2023-11-16 Ramsay Technologies Ltd A sensor device and a method of forming a sensor device
WO2023223021A1 (en) 2022-05-16 2023-11-23 Ramsay Technologies Ltd An item of protective equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895173B (zh) * 2019-11-08 2021-02-26 五邑大学 一种基于复合多层导电材料的柔性应力传感器的制备方法
CN114112128B (zh) * 2021-10-15 2024-01-23 中国人民解放军海军工程大学 大量程耐高温高压电阻式压力传感器及其制备方法
CN114184307A (zh) * 2021-12-15 2022-03-15 深圳先进技术研究院 一种微结构柔性压力传感器及其制备方法
CN115993086B (zh) * 2023-01-10 2023-06-06 合肥工业大学 基于pedot:pss的柔性应变传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076031A (zh) * 2013-01-04 2013-05-01 青岛大学 一种柔性可拉伸应变式传感器的制备方法
US20160340534A1 (en) * 2015-05-22 2016-11-24 Board Of Regents, The University Of Texas System Inks, piezoresistive sensors, and conductive materials on flexible substrates
CN109029801A (zh) * 2018-05-25 2018-12-18 苏州大学 一种金属纳米线复合膜压力传感器及其制备方法
CN109974907A (zh) * 2019-03-15 2019-07-05 钛深科技(深圳)有限公司 一体化主动供电柔性压力传感器
CN110228789A (zh) * 2019-06-17 2019-09-13 五邑大学 一种柔性压阻式应力传感器及其制备方法
CN110895173A (zh) * 2019-11-08 2020-03-20 五邑大学 一种基于复合多层导电材料的柔性应力传感器的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271827B1 (ko) * 2010-07-22 2013-06-07 포항공과대학교 산학협력단 탄소 박막 제조 방법
JP5988974B2 (ja) * 2010-08-07 2016-09-07 ティーピーケイ ホールディング カンパニー リミテッド 表面埋込添加物を有する素子構成要素および関連製造方法
KR101500840B1 (ko) * 2013-06-24 2015-03-10 서울대학교산학협력단 변형 센서 제조 방법, 변형 센서 및 변형 센서를 이용한 움직임 감지 장치
CN106637678A (zh) * 2015-10-30 2017-05-10 尤世元 一种纳米纤维布的制备方法
CN109095782B (zh) * 2018-07-27 2021-10-01 五邑大学 一种基于三维立体微结构的银纳米线透明导电薄膜的制备方法
CN110130096A (zh) * 2019-05-30 2019-08-16 上海应用技术大学 一种柔性纤维织物复合热电材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076031A (zh) * 2013-01-04 2013-05-01 青岛大学 一种柔性可拉伸应变式传感器的制备方法
US20160340534A1 (en) * 2015-05-22 2016-11-24 Board Of Regents, The University Of Texas System Inks, piezoresistive sensors, and conductive materials on flexible substrates
CN109029801A (zh) * 2018-05-25 2018-12-18 苏州大学 一种金属纳米线复合膜压力传感器及其制备方法
CN109974907A (zh) * 2019-03-15 2019-07-05 钛深科技(深圳)有限公司 一体化主动供电柔性压力传感器
CN110228789A (zh) * 2019-06-17 2019-09-13 五邑大学 一种柔性压阻式应力传感器及其制备方法
CN110895173A (zh) * 2019-11-08 2020-03-20 五邑大学 一种基于复合多层导电材料的柔性应力传感器的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218189A1 (en) 2022-05-10 2023-11-16 Ramsay Technologies Ltd A sensor device and a method of forming a sensor device
WO2023223021A1 (en) 2022-05-16 2023-11-23 Ramsay Technologies Ltd An item of protective equipment

Also Published As

Publication number Publication date
CN110895173B (zh) 2021-02-26
CN110895173A (zh) 2020-03-20
US20220291061A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2021088305A1 (zh) 一种基于复合多层导电材料的柔性应力传感器的制备方法
Huang et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors
Wang et al. Mechanically flexible conductors for stretchable and wearable e‐skin and e‐textile devices
Yang et al. Graphene textile strain sensor with negative resistance variation for human motion detection
Trung et al. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature
Cai et al. Flexible temperature sensors constructed with fiber materials
He et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks
CN107192485B (zh) 一种柔性可拉伸的多功能纳米纤维传感器及其制备方法
He et al. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating
Chen et al. Permeable conductors for wearable and on‐skin electronics
CN110864828A (zh) 一种银纳米线/MXene柔性应力传感器的制备方法
CN109137105B (zh) 一种基于石墨烯纳米纤维纱的柔性可拉伸多功能传感器及其制备方法
CN109520410B (zh) 三维石墨烯泡沫柔性应变传感器及其制备方法
Wang et al. Carbon nanotube‐based strain sensors: Structures, fabrication, and applications
Ma et al. Recent progress in flexible capacitive sensors: Structures and properties
WO2020253306A1 (zh) 一种柔性压阻式应力传感器及其制备方法
Liu et al. Highly stable pressure sensor based on carbonized melamine sponge using fully wrapped conductive path for flexible electronic skin
CN206214260U (zh) 一种可穿戴电加热系统
Cheng et al. Highly stretchable and compressible carbon nanofiber–polymer hydrogel strain sensor for human motion detection
CN109341736B (zh) 一种柔性可穿戴式应变传感器及其制备方法
CN107504893B (zh) 高灵敏度网状石墨烯/弹性体应变传感器及其制备方法
Shi et al. Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus
CN113670487B (zh) 一种基于仿生多级结构复合柔性压阻传感器及其制备方法
Yin et al. Electrospun micro/nanofiber with various structures and functions for wearable physical sensors
Wang et al. Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884729

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20884729

Country of ref document: EP

Kind code of ref document: A1