WO2022021815A1 - 一种嵌入式耐高温透明导电薄膜、其制备方法及应用 - Google Patents

一种嵌入式耐高温透明导电薄膜、其制备方法及应用 Download PDF

Info

Publication number
WO2022021815A1
WO2022021815A1 PCT/CN2021/072171 CN2021072171W WO2022021815A1 WO 2022021815 A1 WO2022021815 A1 WO 2022021815A1 CN 2021072171 W CN2021072171 W CN 2021072171W WO 2022021815 A1 WO2022021815 A1 WO 2022021815A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
nano
conductive film
silver
transparent conductive
Prior art date
Application number
PCT/CN2021/072171
Other languages
English (en)
French (fr)
Inventor
钱凯
孙博文
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2022021815A1 publication Critical patent/WO2022021815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Definitions

  • the invention belongs to the technical field of flexible transparent conductive films, in particular to an embedded flexible transparent high temperature resistant conductive film of AgNWs coffee ring and polyimide (PI), a preparation method and application thereof.
  • PI polyimide
  • Flexible transparent conductive film is a new type of transparent conductive material with lateral conductivity and longitudinal transparency. It is an indispensable part of modern electronics manufacturing and can be applied to touch screens, solar cells, organic light emitting diodes, electromagnetic shielding devices, dipole antennas, field effect transistors, supercapacitors, actuators, smart contact lenses, speakers, heating various electronic equipment. It has great application prospects in the field of flexible electronics and wearable electronics.
  • the traditional commercial transparent conductive film material is mainly tin-doped indium tin oxide (ITO).
  • ITO indium tin oxide
  • indium is a scarce precious metal material, which also limits the long-term development of ITO transparent conductive films. Therefore, it is a very promising research to select silver nanowires (AgNWs) with good ductility, good conductivity, high light transmittance and low cost as an alternative.
  • AgNWs silver nanowires
  • various methods are used to reduce the influence of contact resistance on electrical conductivity when preparing conductive films.
  • the thermal stability of AgNWs itself is not very prominent.
  • the polyol method was provided to prepare the pentagonal double silver nanowires, the surface of the silver nanowires was covered with polyvinylpyrrolidone (PVP), and then the nanowires were redispersed in 30 mL of methanol.
  • PVP polyvinylpyrrolidone
  • the dispersed silver nanowires are drop-cast onto the suspended silicon nitride windows to form nanowire connections and then etch.
  • the pretreatment steps of this method are relatively complicated, and also include simply mixing the AgNWs suspension into a well-controlled viscous solvent through a stirring-assisted method, and by simply controlling the stirring speed and duration, the single-layer AgNWs can be arranged in Pre-strained poly(ethyleneimine) (PEI)-coated polydimethylsiloxane (PDMS) substrates.
  • PEI poly(ethyleneimine)
  • PDMS polydimethylsiloxane
  • the conductive film has good temperature resistance and can withstand temperatures within 100 °C.
  • the inventor believes that although the flexible conductive film prepared by the above method can reduce the contact resistance to a certain extent, there are still some deficiencies: the above scheme has high requirements on the preparation equipment, such as the AG Heatpulse 210 system rapid annealing furnace, and the preparation process involves excessive Ammonium sulfate, N,N'-dimethyl-acrylamide and other chemical reagents that are harmful to human body.
  • the inventor believes that although the above solution can reduce the contact resistance to a certain extent, the temperature resistance of the conductive film is generally poor, and it cannot be suitable for high temperature working environment, which greatly limits the application of the conductive film.
  • the purpose of the present invention is to provide a conductive film with a simple preparation process, low requirements for equipment, and better device performance in terms of electrical conductivity and thermal stability.
  • the present invention provides an embedded flexible high-temperature-resistant conductive film based on AgNWs coffee rings and PI, which has a simple preparation process and good stability.
  • an embedded high temperature resistant transparent conductive film is provided, one surface of the conductive film has a nano-silver layer, and the nano-silver has a coffee ring structure and is embedded in a flexible substrate.
  • the purpose of the present invention is to provide a conductive film material with good high temperature resistance.
  • the polyimide material itself has good thermal stability, and the use of polyimide as the substrate material is expected to obtain good thermal stability.
  • the present invention uses the "coffee ring effect" that everyone has experienced daily but is often overlooked, that is, when a certain concentration of AgNWs solution is sprayed on the substrate, the surface of the substrate will be pinned and sprayed out. Since the evaporation rate in the middle of the droplet is lower than that in the edge region, a capillary flow will be generated, so that the AgNWs in the solution are driven from the center position to the edge position, resulting in a "coffee ring".
  • the uniqueness of this method lies in its low cost, simple preparation, low requirements on experimental equipment, materials and environment, and can significantly reduce the contact resistance of AgNWs, which is convenient for mass production. It can also be adjusted, so that reasonable square resistance and transparency can be selected according to the needs of practical applications.
  • a method for preparing the embedded high temperature resistant transparent conductive film according to the first aspect includes the following steps: spraying nano-silver solution on the surface of the polymer film, and spin-coating the nano-silver after drying.
  • a layer of liquid flexible substrate is heated to solidify the liquid flexible substrate, and after cooling, the conductive film is peeled off from the polymer film to obtain the conductive film.
  • a third aspect of the present invention provides applications of the embedded high temperature resistant transparent conductive film described in the first aspect in the fields of information, energy, medical care and national defense.
  • the conductive film provided by the present invention has outstanding improvement in temperature resistance, it is applied to electronic equipment working in extreme environments, such as aerospace, metallurgical equipment in high temperature working environment, or chemical equipment containing chemical corrosion.
  • the conductive thin film materials in the prior art have significant advantages.
  • the conductive film provided by the invention has the advantages of low cost, simple preparation, low requirements on experimental equipment, materials and environment, strong controllability, and can be mass-produced. And good temperature resistance, can withstand high temperature of 400 °C, much higher than the general flexible conductive film. At the same time, the conductive film has good conductivity, the square resistance is about 30 ⁇ / ⁇ , and the transparency is about 68.1%.
  • the flexible conductive film can also withstand a variety of organic solvents, such as ethanol, acetone, toluene, etc., and can be applied to the preparation of electronic components in high-temperature chemical equipment, which greatly expands the application mode compared to the existing conductive films.
  • FIG. 1 is a schematic diagram of the reference flow of the preparation method of the high temperature resistant conductive film according to the present invention.
  • FIG. 2 is a thermal stability map of the high temperature resistant conductive film according to Example 1 of the present invention.
  • FIG. 3 is an optical microscope spectrum of the high temperature resistant conductive film described in Example 1 of the present invention.
  • Example 4 is a scanning electron microscope spectrum of the high temperature resistant conductive film described in Example 1 of the present invention.
  • Fig. 4(a) is 1000 times the size
  • Fig. 4(b) is 8424 times the size.
  • FIG. 5 is a chemical stability map of the high temperature resistant conductive film according to Example 1 of the present invention.
  • FIG. 6 is the transparency test chart of the high temperature resistant conductive film described in Example 1 of the present invention.
  • Figure 7(a) is the SEM image of the node at the junction of the coffee ring attached to the surface of the PI film (that is, the circle in Figure b), and the magnification is 5890 times;
  • Figure 7(c) shows the silver nanowire bundle at the junction of the coffee ring (that is, the box in Figure b), with a magnification of 10,000 times.
  • Example 8 is a SEM image of the embedded conductive film described in Example 1;
  • the present invention proposes an AgNWs coffee ring and PI based flexible Thermally stable conductive film.
  • an embedded high temperature resistant transparent conductive film is provided, one surface of the conductive film has a nano-silver layer, and the nano-silver has a coffee ring structure and is embedded in a flexible substrate.
  • the flexible substrate includes but is not limited to polyimide (PI) film, colorless polyimide (CPI) film, polyester (PET) film, polydimethylsiloxane (PDMS) film , styrene rubber (SEBS) film, polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), etc.
  • PI polyimide
  • CPI colorless polyimide
  • PET polyester
  • PDMS polydimethylsiloxane
  • SEBS styrene rubber
  • PTFE polytetrafluoroethylene
  • PVC polyvinyl chloride
  • the flexible substrate is a polyimide film; further, the thickness of the polyimide film is 10-1000um.
  • the polyimide film can obtain good stability, including thermal stability and chemical stability.
  • the thickness of the polyimide film can be easily adjusted by the spin coating method. Within the above data range, as the thickness increases, the film stability will also increase. Those skilled in the art can select an appropriate thickness according to the purpose of use, and when the thickness is large, it can be achieved by applying glue multiple times.
  • the diameter of the nano-silver is 10-100 nm.
  • the length of the nano-silver is 10-500um.
  • a method for preparing the embedded high temperature resistant transparent conductive film according to the first aspect includes the following steps: spraying nano-silver solution on the surface of the polymer film, and spin-coating the nano-silver after drying.
  • a layer of liquid flexible substrate is heated to solidify the liquid flexible substrate, and after cooling, the conductive film is peeled off from the polymer film to obtain the conductive film.
  • the main function of the above-mentioned polymer film is to provide a surface with a certain tension and hydrophobicity for the formation of the nano-silver coffee ring structure.
  • the above-mentioned polyimide (PI) film, colorless polyimide (CPI) Films, polyester (PET) films, polydimethylsiloxane (PDMS) films, styrene rubber (SEBS), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC) films can all be ideally formed. Ring effect.
  • the polymer film is a polyimide film.
  • the polymer film is a polyimide film
  • the flexible substrate is also a polyimide film.
  • the polyimide material itself has good high temperature resistance and can maintain stable performance during the drying process, and the polymer film and the flexible substrate use the same It is easier to peel off after cooling, which can effectively reduce the damage of mechanical peeling to the conductive film.
  • the nano-silver solution is an aqueous solution of nano-silver, an organic solution or a mixed solution of water and an organic solution.
  • the concentration of the nano-silver solution is 0.001-10 mg/ml.
  • the diameter of the nozzle of the spray gun is 0.1-10 mm
  • the distance from the nozzle to the PI film is 1-100 cm
  • the carrier gas is an inert gas
  • the inert gas includes but is not limited to high-purity air , nitrogen, argon, etc.
  • the size of the coffee ring can be adjusted by the pressure of the carrier gas, the size of the nozzle, and the viscosity of the fluid.
  • the solid content of the liquid flexible substrate is 5-50%
  • the heating temperature is 60-350°C.
  • the heating time is 20-120 min.
  • the heating is performed by drying; in a specific embodiment, the spin-coated film material is placed in an oven to be cured for the liquid flexible substrate.
  • the application of the information includes, but is not limited to, the preparation of electronic displays, electronic storage materials, touch control materials, printing equipment, and the like.
  • the applications in the medical field include but are not limited to the preparation of flexible wearable medical devices.
  • the applications in the energy field include but are not limited to thin-film solar cells, metallurgical equipment, heat treatment equipment, and the like.
  • the application in the national defense field includes but is not limited to the application in the aerospace field.
  • an embedded high temperature resistant transparent conductive film is provided, and the preparation method of the conductive film is as follows: selecting nano-silver with a diameter and a length of 30 nm and 20 ⁇ m respectively and adding them into IPA to configure AgNWs with a concentration of 0.5 mg/ml solution, add the AgNWs solution into a spray gun, the diameter of the nozzle is 0.3 mm, the spray distance is 20 cm, the AgNWs solution is sprayed on the polyimide film, and it is allowed to dry.
  • the dried polyimide film was placed on a glue spinner, and the liquid polyimide solution was spin-coated on the PI film sprayed with AgNWs coffee rings at a rotational speed of 500 rpm. Put the to-be-cured film together with the PI film coated with the AgNWs coffee ring into an oven, and heat at 100° C. for 60 min. The to-be-cured film forms a cured flexible conductive film, which is sprayed with After the PI film of the AgNWs coffee ring and the cured flexible conductive film were cooled, the flexible conductive film was peeled off.
  • an embedded high-temperature resistant transparent conductive film is provided, and the preparation method of the conductive film is as follows: nano-silver with a diameter of 10 nm and a length of 20 ⁇ m is selected and added into IPA to prepare an AgNWs solution with a concentration of 5 mg/ml, The AgNWs solution was added to a spray gun, the diameter of the nozzle was 0.1 mm, and the spray distance was 30 cm, the AgNWs solution was sprayed on the polyimide film, and it was allowed to dry.
  • the dried polyimide film was placed on a glue spinner, and the liquid polyimide solution was spin-coated on the PI film sprayed with AgNWs coffee rings at a rotational speed of 600 rpm. Put the to-be-cured film together with the PI film coated with the AgNWs coffee ring into an oven, and heat it at 120° C. for 30 min. The to-be-cured film forms a cured flexible conductive film. After the PI film of the AgNWs coffee ring and the cured flexible conductive film were cooled, the flexible conductive film was peeled off.
  • an embedded high temperature resistant transparent conductive film is provided, and the preparation method of the conductive film is as follows: nano-silver with a diameter of 80 nm and a length of 60 ⁇ m is selected and added to IPA to prepare an AgNWs solution with a concentration of 2 mg/ml, The AgNWs solution was added to a spray gun, the diameter of the nozzle was 3 mm, and the spray distance was 70 cm, the AgNWs solution was sprayed on the polyimide film, and it was allowed to dry.
  • the dried polyimide film was placed on a glue spinner, and the liquid polyimide solution was spin-coated on the PI film sprayed with AgNWs coffee rings at a rotational speed of 500 rpm.
  • the to-be-cured film and the PI film coated with the AgNWs coffee ring were put into an oven, heated at 130° C. for 50 min, and the to-be-cured film formed a cured flexible conductive film, which was sprayed with After the PI film of the AgNWs coffee ring and the cured flexible conductive film were cooled, the flexible conductive film was peeled off.
  • a non-embedded conductive film is provided.
  • 0.5 mg/ml AgNWs solution is added into a spray gun, the diameter of the nozzle is 0.3 mm, and the spray distance is 20 cm.
  • the solution is sprayed on the polyimide film, and after drying, a conductive film with a nano-silver layer attached to the surface of the polyimide film is obtained.
  • the temperature resistance of the conductive films described in Embodiments 1 and 4 is tested, and the results are shown in Fig. 2. It can be seen from Fig. 2 that the conductive films described in Embodiment 1 have embedded The conductive film of the structure can withstand a high temperature of about 400°C, while the conductive film material prepared by the method in Example 4 can only withstand a temperature of about 200°C. The comparison of the results can prove that the high temperature resistance of the conductive film in the present invention is not only brought about by the polyimide material, but also the nano-silver has an important influence on the bonding form of the polyimide.
  • this example also verifies the electrical properties and stability of the high temperature resistant conductive film described in Example 1.
  • the conductive films prepared by the method of the present invention have uniform coffee rings in size.
  • the square resistance of the flexible conductive film prepared in Example 1 is about 30 ⁇ / ⁇ , the transparency is about 68.1%, and the conductive film is also resistant to organic solvents, such as ethanol, acetone, toluene etc., its electrical properties are still stable after being immersed in organic reagents for a long time and will not change.
  • the embedded high temperature resistant transparent conductive film prepared in Example 1 has the Ag NWs coffee ring embedded in the polyimide.
  • the flexible conductive film prepared in Example 4 the Ag NWs coffee ring is attached to the polyimide surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明提供了一种嵌入式耐高温透明导电薄膜、其制备方法及应用。针对现有技术中纳米银薄膜材料难以耐受高温环境,制备工艺较为复杂的缺陷。本发明目的在于提供一种制备工艺简单并且具有良好热稳定性的导电薄膜材料。基于该目的,本发明提供了一种基于AgNWs咖啡环和PI的柔性耐高温导电薄膜,通过向聚合物薄膜表面喷覆纳米银溶液,待纳米银干燥后再旋涂一层液态柔性衬底,加热使液态柔性衬底固化,冷却后将导电薄膜与聚合物薄膜剥离得到所述导电薄膜。经本发明验证,该导电薄膜耐温性佳,并且同时具有良好的导电性,还能够耐受多种有机溶剂,可应用于某些极端环境中电子设备的制备。

Description

一种嵌入式耐高温透明导电薄膜、其制备方法及应用 技术领域
本发明属于柔性透明导电薄膜技术领域,具体涉及一种AgNWs咖啡环和聚酰亚胺(PI)的嵌入式柔性透明耐高温导电薄膜、其制备方法及应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
柔性透明导电膜是一种横向具有导电性,纵向具有透明性的新型的透明导电材料。它是现代电子制造业不可缺少的一部分,可适用于触摸屏、太阳能电池、有机发光二极管、电磁屏蔽设备、偶极子天线、场效应晶体管、超级电容器、致动器、智能隐形眼镜、扬声器、加热器等各种电子设备。在柔性电子领域和可穿戴电子领域呈现出非常巨大的应用前景。
传统的商用透明导电薄膜材料主要是锡掺杂的氧化铟锡(ITO)。虽然技术成熟,但ITO是一种固有脆性高的刚性材料,而且热不稳定,很难在高温下正常工作。除此之外,铟是一种稀缺的贵金属材料,这也限制了ITO透明导电膜的长期发展。所以目前选用延展性、导电性好透光率高,成本低的银纳米线(AgNWs)作为替代物是非常有前景的一项研究。但由于AgNWs的接触电阻对其导电性能有很大限制,所以在制备导电薄膜时会用各种方法来减小接触电阻对导电性的影响,除此之外,AgNWs本身的热稳定性能并不是很突出。
目前研究中提供了多元醇法制备了五边形双纳米银线,在纳米银线表面覆盖聚乙烯吡咯烷酮(PVP),然后将纳米线重新分散在30mL的甲醇中。分散后的银纳米线滴铸到悬浮的氮化硅窗口上,形成纳米线连接再进行刻蚀。发明人认为,该方法的预处理步骤较为复杂,还包括通过搅拌辅助方法简单地将AgNWs悬浮液混入控制良好的粘性溶剂中,通过简单地控制搅拌速度和持续时间,可以将单层AgNWs排列在预应变的带有聚(乙烯亚胺)(PEI)涂层的聚二甲基硅氧烷(PDMS)基板上。该材料中,AgNWs能够得到规则的正交网格形状,减少接触电阻,此外该导电薄膜耐温性良好,可耐100℃以内的温度。发明人认为,虽 然上述方式制备的柔性导电薄膜在一定程度上能减小接触电阻,但仍然存在一些不足:上述方案对制备的设备要求高,如AG Heatpulse 210系统快速退火炉,制备过程涉及过硫酸铵、N,N'-二甲基-丙烯酰胺等对人体有危害的化学试剂。
针对上述研究,发明人认为,虽然上述方案能够在一定程度上能减少接触电阻,但导电薄膜的耐温性普遍都很差,无法适用于高温工作环境,很大程度限制了导电薄膜的应用。
发明内容
针对上述背景技术中的记载,本发明目的在于提供一种制备工艺简单,对设备要求低,器件在导电性和热稳定上表现较佳的导电薄膜。基于该技术目的,本发明提供了一种基于AgNWs咖啡环和PI的嵌入式柔性耐高温导电薄膜,制备工艺简单的同时还具有良好的稳定性。
基于上述技术效果,本发明提供以下技术方案:
本发明第一方面,提供一种嵌入式耐高温透明导电薄膜,所述导电薄膜的一个表面具有纳米银层,所述纳米银呈现咖啡环结构并嵌入于柔性衬底中。
本发明目的在于提供一种具有良好耐高温性能导电薄膜材料,聚酰亚胺材料本身具有良好的热稳定性,采用聚酰亚胺作为衬底材料有望获得良好热稳定性能。
相比于现有技术,本发明使用大家日常都会经历过但又时常被忽视的“咖啡环效应”,即当在衬底上喷射一定浓度的AgNWs溶液时,在衬底表面会钉扎喷射出来的小液滴,因为液滴中间蒸发速度要低于边缘地区,这样就会产生毛细流动,使得溶液中的AgNWs从中心位置被驱动到边缘位置,产生“咖啡环”。该方法独特之处在于成本低,制备简单,对实验设备、材料、环境要求较低,并且可以显著降低AgNWs的接触电阻,便于大规模批量生产,除此之外,咖啡环的大小根据实际需要也是可以调控的,这样可以根据实际应用的需要选择合理的方阻与透明度。
依据本发明的研究结果,采用咖啡环结构的AgNWs与聚酰亚胺衬底结合能够兼顾导电效果及耐高温性能,应用于极限环境的导电材料具有良好的开发前景。并且本发明的进一步研究表明,纳米银与聚酰亚胺的结合形式能够进一步影响该导电薄膜的热稳定性。依据本发明的研究结果,当纳米银环状结构嵌入聚酰 亚胺薄膜内,所述导电薄膜的耐温性能实现了一倍的提升效果,耐温极限显著提高,最高可耐受400℃左右的高温,显著超过现有研究中导电材料的耐热能力,并且还具有良好的化学稳定性。基于该效果,本发明还提供所述嵌入结构导电薄膜的制备方法。
本发明第二方面,提供第一方面所述嵌入式耐高温透明导电薄膜的制备方法,所述制备方法包括以下步骤:向聚合物薄膜表面喷覆纳米银溶液,待纳米银干燥后再旋涂一层液态柔性衬底,加热使液态柔性衬底固化,冷却后将导电薄膜与聚合物薄膜剥离得到所述导电薄膜。
本发明提供的制备工艺简单,对于工业化扩大生产十分友好,并且能够通过调节喷涂的参数很容易的实现对咖啡环尺寸的调节,从而根据应用目的对导电性能进行改善。
本发明第三方面,提供第一方面所述嵌入式耐高温透明导电薄膜在信息、能源、医疗及国防领域的应用。
由于本发明提供的导电薄膜在耐温性能方面有突出的提升,应用于极端环境中工作的电子设备,如高温工作环境中的航空航天、冶金设备,或含有化学腐蚀的化工设备中,相比现有技术中的导电薄膜材料具有显著的优势。
以上一个或多个技术方案的有益效果是:
本发明所提供的导电薄膜,成本低、制备简单、对实验设备、材料、环境要求低、可调控性强,可大规模批量生产。并且耐温性佳,可承受400℃的高温,远高于一般的柔性导电薄膜。同时,该导电薄膜具有良好的导电性,方阻均匀约为30Ω/□,此时透明度约为68.1%。此外,所述柔性导电薄膜还能耐受多种有机溶剂,如乙醇、丙酮、甲苯等,可应用于高温化工设备的电子元器件制备,相比现有导电薄膜大大扩展了应用方式。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明所述耐高温导电薄膜的制备方法的参考流程示意图。
图2是本发明实施例1所述耐高温导电薄膜的热稳定图谱。
图3是本发明实施例1所述耐高温导电薄膜的光学显微镜图谱。
图4是本发明实施例1所述耐高温导电薄膜的扫描电子显微镜图谱;
其中,图4(a)为1000倍尺寸,图4(b)为8424倍尺寸。
图5是本发明实施例1所述耐高温导电薄膜的化学稳定性图谱。
图6是本发明实施例1所述耐高温导电薄膜的透明度测试图谱。
图7为本发明实施例4中所述非嵌入式导电薄膜SEM图;
其中,图7(a)为咖啡环交接处的节点附着在PI薄膜表面的SEM图(即图b中圆圈所示),放大倍数为5890倍;
图7(b)为部分导电薄膜附着在PI膜表面的微观结构SEM图,放大倍数为1780倍;
图7(c)为咖啡环交接处的银纳米线束(即图b中方框所示),放大倍数为10000倍。
图8为实施例1中所述嵌入式导电薄膜SEM图;
其中,图8为AgNWs咖啡环嵌入在PI薄膜内的SEM图,放大倍数为507倍。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,针对现有技术中导电薄膜耐温性能不佳,并且预处理方式较为复杂的缺陷,为了解决如上的技术问题,本发明提出了一种基于AgNWs咖啡环和PI的柔性热稳定导电薄膜。
本发明第一方面,提供一种嵌入式耐高温透明导电薄膜,所述导电薄膜的一个表面具有纳米银层,所述纳米银呈现咖啡环结构并嵌入于柔性衬底中。
优选的,所述柔性衬底包括但不限于聚酰亚胺(PI)薄膜、无色聚酰亚胺(CPI) 薄膜、聚酯(PET)薄膜、聚二甲基硅氧烷(PDMS)薄膜、苯乙烯橡胶(SEBS)薄膜、聚四氟乙烯(PTFE)、聚氯乙烯(PVC)等。
进一步优选的,所述柔性衬底为聚酰亚胺薄膜;更进一步的,所述聚酰亚胺薄膜的厚度为10-1000um。
依据本发明的研究结果,采用聚酰亚胺薄膜能够获得良好的稳定性,包括热稳定及化学稳定。采用旋涂法可以方便的对聚酰亚胺薄膜的厚度进行调节,上述数据范围内,随着厚度的提升,薄膜稳定性也会随之提升。本领域技术人员可以依据使用目的选择合适的厚度,厚度较大时,可以通过多次涂胶的方式实现。
优选的,所述纳米银的直径为10-100nm。
优选的,所述纳米银的长度为10-500um。
本发明第二方面,提供第一方面所述嵌入式耐高温透明导电薄膜的制备方法,所述制备方法包括以下步骤:向聚合物薄膜表面喷覆纳米银溶液,待纳米银干燥后再旋涂一层液态柔性衬底,加热使液态柔性衬底固化,冷却后将导电薄膜与聚合物薄膜剥离得到所述导电薄膜。
优选的,所述聚合物薄膜为包括但不限于聚酰亚胺(PI)薄膜、无色聚酰亚胺(CPI)薄膜、聚酯(PET)薄膜、聚二甲基硅氧烷(PDMS)薄膜、苯乙烯橡胶(SEBS)、聚四氟乙烯(PTFE)、聚氯乙烯(PVC)薄膜中的一种。
上述聚合物薄膜的主要职能在于为纳米银咖啡环结构的形成提供具有一定张力及疏水性表面,依据本发明研究,采用上述聚酰亚胺(PI)薄膜、无色聚酰亚胺(CPI)薄膜、聚酯(PET)薄膜、聚二甲基硅氧烷(PDMS)薄膜、苯乙烯橡胶(SEBS)、聚四氟乙烯(PTFE)、聚氯乙烯(PVC)薄膜都能得到比较理想的成环效果。
进一步优选的,所述聚合物薄膜为聚酰亚胺薄膜。
在上述优选技术方案的一些具体实施方式中,所述聚合物薄膜为聚酰亚胺薄膜,所述柔性衬底也是聚酰亚胺薄膜。当柔性衬底厚度增加,需要较高温度烘干时,聚酰亚胺材料自身具有良好的耐高温性能,能够在烘干过程中保持稳定性能,并且所述聚合物薄膜与柔性衬底采用同种材料,其冷却后会更容易剥离,可以有效减少机械剥离对导电薄膜的破坏。
优选的,所述纳米银溶液为纳米银的水溶液、有机溶液或水与有机溶液的混 合液。
进一步优选的,所述有机溶液为纳米银的IPA、乙醇或甲醇溶液。
优选的,所述纳米银溶液的浓度为0.001-10mg/ml。
优选的,所述纳米银溶液通过喷枪喷覆于聚合物薄膜表面。
在本发明一些具体的实施方式中,所述喷枪的喷嘴的直径为0.1-10mm,喷嘴到PI薄膜的距离为1-100cm,载运气体为惰性气体,所述惰性气体包括但不限于高纯空气、氮气、氩气等。
咖啡环的尺寸可以通过载运气体的压强、喷嘴尺寸、以及流体的粘滞性加以调节。载运气体压强越高,喷嘴尺寸越小,更容易使AgNWs溶液分散成小液滴,这样这些小液滴被喷覆到衬底上,溶剂挥发干燥后得到的咖啡环尺寸就会更小;同理,当纳米银溶液的浓度较小,即流体的粘滞性较小时,载运气体更容易将溶液分散成小的液滴,得到尺寸较小的咖啡环。
优选的,所述液态柔性衬底中固含量为5~50%
优选的,所述加热温度为60-350℃。
优选的,所述加热时间为20-120min。
进一步优选的,所述加热采用烘干的方式;具体的实施方式中,将旋涂后的薄膜材料置于烘箱中待液态柔性衬底固化。
本发明第三方面,提供第一方面所述嵌入式耐高温透明导电薄膜在信息、能源、医疗及国防领域的应用。
优选的,所述信息方面的应用包括范不限于用于制备电子显示器、电子储存材料、触控材料、印刷设备等。
优选的,所述医疗领域的应用包括但不限于用于制备柔性可穿戴医疗设备。
优选的,所述能源领域的应用包括但不限于薄膜太阳能电池、冶金设备及热处理设备等。
优选的,所述国防领域的应用包括但不限于在航空航天领域的应用。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1
本实施例中,提供一种嵌入式耐高温透明导电薄膜,所述导电薄膜的制备方 法如下:选取直径和长度分别为30nm,20um的纳米银加入IPA中配置成浓度为0.5mg/ml的AgNWs溶液,将所述AgNWs溶液加入喷枪中,所述喷嘴直径为0.3mm,喷射距离为20cm,将所述AgNWs溶液喷覆在聚酰亚胺薄膜上,待其干燥。
将干燥后的聚酰亚胺薄膜置于匀胶机上,在转速500rpm条件下将液态聚酰亚胺溶液旋涂于喷覆有AgNWs咖啡环的PI薄膜上。将所述的待固化薄膜与涂覆有AgNWs咖啡环的PI薄膜一起放入烘箱中,在100℃的条件下加热60min,所述待固化薄膜形成固化的柔性导电薄膜,待所述喷覆有AgNWs咖啡环的PI薄膜与固化的柔性导电薄膜冷却后,将所述柔性导电薄膜剥离下来。
实施例2
本实施例中,提供一种嵌入式耐高温透明导电薄膜,所述导电薄膜的制备方法如下:选取直径10nm和长度分别为20μm的纳米银加入IPA中配置成浓度为5mg/ml的AgNWs溶液,将所述AgNWs溶液加入喷枪中,所述喷嘴直径为0.1mm,喷射距离为30cm,将所述AgNWs溶液喷覆在聚酰亚胺薄膜上,待其干燥。
将干燥后的聚酰亚胺薄膜置于匀胶机上,在转速600rpm条件下将液态聚酰亚胺溶液旋涂于喷覆有AgNWs咖啡环的PI薄膜上。将所述的待固化薄膜与涂覆有AgNWs咖啡环的PI薄膜一起放入烘箱中,在120℃的条件下加热30min,所述待固化薄膜形成固化的柔性导电薄膜,待所述喷覆有AgNWs咖啡环的PI薄膜与固化的柔性导电薄膜冷却后,将所述柔性导电薄膜剥离下来。
实施例3
本实施例中,提供一种嵌入式耐高温透明导电薄膜,所述导电薄膜的制备方法如下:选取直径80nm和长度分别为60μm的纳米银加入IPA中配置成浓度为2mg/ml的AgNWs溶液,将所述AgNWs溶液加入喷枪中,所述喷嘴直径为3mm,喷射距离为70cm,将所述AgNWs溶液喷覆在聚酰亚胺薄膜上,待其干燥。
将干燥后的聚酰亚胺薄膜置于匀胶机上,在转速500rpm条件下将液态聚酰亚胺溶液旋涂于喷覆有AgNWs咖啡环的PI薄膜上。将所述的待固化薄膜与涂覆有AgNWs咖啡环的PI薄膜一起放入烘箱中,在130℃的条件下加热50min,所述待固化薄膜形成固化的柔性导电薄膜,待所述喷覆有AgNWs咖啡环的PI薄膜与固化的柔性导电薄膜冷却后,将所述柔性导电薄膜剥离下来。
实施例4
本实施例中,提供一种非嵌入式的导电薄膜,将0.5mg/ml的AgNWs溶液,将所述AgNWs溶液加入喷枪中,所述喷嘴直径为0.3mm,喷射距离为20cm,将所述AgNWs溶液喷覆在聚酰亚胺薄膜上,待其干燥,得到一种纳米银层附着在聚酰亚胺薄膜表面上的导电薄膜。
本实施例中,对实施例1和实施例4中所述导电薄膜的耐温性能进行了检测,结果如附图2所示,从图2中可以看出,实施例1中所述具有嵌入结构的导电薄膜能够耐受400℃左右的高温,而实施例4中方法制备的导电薄膜材料只能耐受200℃左右的温度。通过该结果的对比可以证明,本发明中所述导电薄膜的耐高温性能不止由聚酰亚胺材料带来,纳米银对聚酰亚胺的结合形式也具有重要的影响作用。
另外,本实施例还针对实施例1中所述耐高温导电薄膜的电学性能及稳定性进行了验证。
从附图3和4中可以看出,本发明方法制备的导电薄膜,其中咖啡环大小均匀。
根据附图5和6,实施例1中制备的柔性导电薄膜,方阻均匀约为30Ω/□,此时透明度约为68.1%,并且,该导电薄膜还能耐有机溶剂,如乙醇、丙酮、甲苯等,长时间浸泡于有机试剂中其电学性能依然稳定,不会发生改变。
根据附图8,实施例1中制备的嵌入式耐高温透明导电薄膜,其Ag NWs咖啡环镶嵌在聚酰亚胺里面。
根据附图7,实施例4中制备的柔性导电薄膜,其Ag NWs咖啡环附着在聚酰亚胺表面。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种嵌入式耐高温透明导电薄膜,其特征在于,所述导电薄膜的一个表面具有纳米银层,所述纳米银呈现咖啡环结构并嵌入于柔性衬底中。
  2. 如权利要求1所述嵌入式耐高温透明导电薄膜,其特征在于,所述柔性衬底包括但不限于聚酰亚胺薄膜、无色聚酰亚胺薄膜、聚酯薄膜、聚二甲基硅氧烷薄膜、苯乙烯橡胶薄膜;
    优选的,所述柔性衬底为聚酰亚胺薄膜;更进一步的,所述聚酰亚胺薄膜的厚度为10-1000um。
  3. 如权利要求1所述嵌入式耐高温透明导电薄膜,其特征在于,所述纳米银的直径为10-100nm;
    或所述纳米银的长度为10-500um。
  4. 权利要求1-3任一项所述嵌入式耐高温透明导电薄膜的制备方法,其特征在于,所述制备方法包括以下步骤:向聚合物薄膜表面喷覆纳米银溶液,待纳米银干燥后再旋涂一层液态柔性衬底,加热使液态柔性衬底固化,冷却后将导电薄膜与聚合物薄膜剥离得到所述导电薄膜。
  5. 如权利要求4所述嵌入式耐高温透明导电薄膜的制备方法,其特征在于,所述聚合物薄膜为包括但不限于聚酰亚胺薄膜、无色聚酰亚胺薄膜、聚酯薄膜、聚二甲基硅氧烷薄膜、苯乙烯橡胶薄膜中的一种;
    优选的,所述聚合物薄膜为聚酰亚胺薄膜;进一步优选的,所述聚合物薄膜为聚酰亚胺薄膜,所述柔性衬底也是聚酰亚胺薄膜。
  6. 如权利要求4所述嵌入式耐高温透明导电薄膜的制备方法,其特征在于,所述纳米银溶液为纳米银的水溶液、有机溶液或水与有机溶液的混合液;
    优选的,所述有机溶液为纳米银的IPA、乙醇或甲醇溶液。
  7. 如权利要求4所述嵌入式耐高温透明导电薄膜的制备方法,其特征在于,所述纳米银溶液的浓度为0.001-10mg/ml;
    或,所述纳米银溶液通过喷枪喷覆于聚合物薄膜表面;
    优选的,所述喷枪的喷嘴的直径为0.1-10mm,喷嘴到PI薄膜的距离为1-100cm,载运气体为惰性气体,所述惰性气体包括但不限于高纯空气、氮气、氩气等。
  8. 如权利要求4所述嵌入式耐高温透明导电薄膜的制备方法,其特征在于, 所述液态柔性衬底中固化量为5~50%;
    或,所述加热温度为60-350℃;
    或,所述加热时间为20-120min;
    优选的,所述加热采用烘干的方式;具体的实施方式中,将旋涂后的薄膜材料置于烘箱中待液态柔性衬底固化。
  9. 权利要求1-3任一项所述嵌入式耐高温透明导电薄膜在信息、能源、医疗及国防领域的应用。
  10. 如权利要求9所述嵌入式耐高温透明导电薄膜在信息、能源、医疗及国防领域的应用,其特征在于,所述信息方面的应用包括范不限于用于制备电子显示器、电子储存材料、触控材料、印刷设备;
    或,所述医疗领域的应用包括但不限于用于制备柔性可穿戴医疗设备;
    或,所述能源领域的应用包括但不限于薄膜太阳能电池、冶金设备及热处理设备;
    或,所述国防领域的应用包括但不限于在航空航天领域的应用。
PCT/CN2021/072171 2020-07-31 2021-01-15 一种嵌入式耐高温透明导电薄膜、其制备方法及应用 WO2022021815A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010759459 2020-07-31
CN202010759459.5 2020-07-31
CN202010967804.4 2020-09-15
CN202010967804.4A CN112053800B (zh) 2020-07-31 2020-09-15 一种嵌入式耐高温透明导电薄膜、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2022021815A1 true WO2022021815A1 (zh) 2022-02-03

Family

ID=73603354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072171 WO2022021815A1 (zh) 2020-07-31 2021-01-15 一种嵌入式耐高温透明导电薄膜、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN112053800B (zh)
WO (1) WO2022021815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014438A (zh) * 2022-06-06 2022-09-06 中国科学技术大学 一种仿生多功能传感器及其制备方法、应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112053800B (zh) * 2020-07-31 2022-07-01 山东大学 一种嵌入式耐高温透明导电薄膜、其制备方法及应用
CN112863766A (zh) * 2021-01-12 2021-05-28 山东大学 一种基于硅基底制备咖啡环导电薄膜的方法及应用
CN112908521A (zh) * 2021-01-20 2021-06-04 山东大学 一种金属纳米线咖啡环结构的柔性电极及其制备方法
CN113270234A (zh) * 2021-05-11 2021-08-17 山东大学 一种咖啡环形貌金属纳米线导电电极的普适性制备方法
CN113393958A (zh) * 2021-06-17 2021-09-14 山东大学 一种有序网格结构透明柔性电极及其制备方法和应用
CN113871054B (zh) * 2021-09-27 2023-03-10 中国科学院长春应用化学研究所 一种柔性透明导电薄膜及其制备方法
CN114126116A (zh) * 2021-10-15 2022-03-01 山东大学 嵌入式银纳米线环状导电网络的柔性透明可降解薄膜加热器及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405492A (zh) * 2015-11-23 2016-03-16 华中科技大学 具备高热稳定性的柔性透明导电薄膜的制备方法及其产品
CN110931147A (zh) * 2019-12-10 2020-03-27 华中科技大学 一种纳米颗粒自组装的透明电路板及制备方法与应用
CN112053800A (zh) * 2020-07-31 2020-12-08 山东大学 一种嵌入式耐高温透明导电薄膜、其制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300681B2 (ja) * 2009-09-30 2013-09-25 東京エレクトロン株式会社 太陽電池の製造方法
CN105271110A (zh) * 2015-09-18 2016-01-27 北京工业大学 一种利用咖啡环效应用于制备致密纳米颗粒薄膜和有序纳米线薄膜的方法
CN106057359B (zh) * 2016-07-19 2018-08-10 中山大学 一种嵌入式多取向金属纳米线透明导电薄膜的制备方法
CN107068291B (zh) * 2017-04-10 2019-04-30 武汉理工大学 一种转移银纳米线透明导电薄膜到柔性衬底的方法
WO2019172851A1 (en) * 2018-03-08 2019-09-12 Nanyang Technological University Scalable electrically conductive nanowires bundle-ring-network for deformable transparent conductor
CN110942863B (zh) * 2019-11-11 2021-04-27 西安交通大学 一种柔性透明导电薄膜制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405492A (zh) * 2015-11-23 2016-03-16 华中科技大学 具备高热稳定性的柔性透明导电薄膜的制备方法及其产品
CN110931147A (zh) * 2019-12-10 2020-03-27 华中科技大学 一种纳米颗粒自组装的透明电路板及制备方法与应用
CN112053800A (zh) * 2020-07-31 2020-12-08 山东大学 一种嵌入式耐高温透明导电薄膜、其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LAYANI MICHAEL, GRUCHKO MICHAEL, MILO ODED, BALBERG ISAAC, AZULAY DORON, MAGDASSI SHLOMO: "Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 3, no. 11, 24 November 2009 (2009-11-24), US , pages 3537 - 3542, XP055890769, ISSN: 1936-0851, DOI: 10.1021/nn901239z *
ZHANG ZHILIANG, ZHU WEIYUE: "Controllable fabrication of a flexible transparent metallic grid conductor based on the coffee ring effect", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 2, no. 45, 1 January 2014 (2014-01-01), GB , pages 9587 - 9591, XP055890768, ISSN: 2050-7526, DOI: 10.1039/C4TC01908C *
ZHAO WENXIU; ZHOU YIHUA; QIAN JUN: "Development of Transparent Conductive Films Based on Printed Electronics", IMAGING SCIENCE AND PHOTOCHEMISTRY, vol. 33, no. 3, 31 May 2015 (2015-05-31), Beijing China , pages 251 - 263, XP009533546, ISSN: 1674-0475 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014438A (zh) * 2022-06-06 2022-09-06 中国科学技术大学 一种仿生多功能传感器及其制备方法、应用
CN115014438B (zh) * 2022-06-06 2023-07-14 中国科学技术大学 一种仿生多功能传感器及其制备方法、应用

Also Published As

Publication number Publication date
CN112053800B (zh) 2022-07-01
CN112053800A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022021815A1 (zh) 一种嵌入式耐高温透明导电薄膜、其制备方法及应用
CN105405492B (zh) 具备高热稳定性的柔性透明导电薄膜的制备方法及其产品
US8840954B2 (en) Transparent carbon nanotube electrode with net-like carbon nanotube film and preparation method thereof
Zhao et al. High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions
Liu et al. High‐Performance, Micrometer Thick/Conformal, Transparent Metal‐Network Electrodes for Flexible and Curved Electronic Devices
WO2020253306A1 (zh) 一种柔性压阻式应力传感器及其制备方法
Huang et al. A transparent, conducting tape for flexible electronics
CN104505149A (zh) 一种叠层透明电极及其制备方法
Wang et al. Ultraflexible photothermal superhydrophobic coating with multifunctional applications based on plasmonic TiN nanoparticles
US20200081312A1 (en) Ultra-flexible and robust silver nanowire films for controlling light transmission and method of making the same
CN108882661A (zh) 一种透明柔性可拉伸的电磁屏蔽薄膜及其制备方法
CN109080281A (zh) 基于浸润性基底精细喷墨打印制备柔性透明导电膜的方法
Zhao et al. High-performance copper mesh transparent flexible conductors based on electroplating with vacuum-free processing
Yang et al. Printed flexible transparent electrodes for harsh environments
WO2019109711A1 (zh) 柔性透明导电电极
Kinner et al. Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates
Zhang et al. Controllable assembly of a hierarchical multiscale architecture based on silver nanoparticle grids/nanowires for flexible organic solar cells
Oytun et al. Coupling layer-by-layer assembly and multilayer transfer to fabricate flexible transparent film heater
CN109773209A (zh) 铜纳米线、制备方法及其在透明导电薄膜上的应用
Park et al. PDMS micro-dewy spider-web-like metal nanofiber films for fabrication of high-performance transparent flexible electrode with improved mechanical strength
CN104761154B (zh) 一种利用有机大分子材料作催化剂制备ito纳米线的方法
Zhao et al. Facile preparation of wearable heater based on conductive silver paste with low actuation voltage and rapid response
CN109819535B (zh) 一种高温服役银纳米线导电薄膜加热器的制备方法
Wang et al. A comprehensive study of high-performance of flexible transparent conductive silver nanowire films
CN113393958A (zh) 一种有序网格结构透明柔性电极及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851006

Country of ref document: EP

Kind code of ref document: A1