WO2020250405A1 - 部品内蔵基板、及び部品内蔵基板の製造方法 - Google Patents

部品内蔵基板、及び部品内蔵基板の製造方法 Download PDF

Info

Publication number
WO2020250405A1
WO2020250405A1 PCT/JP2019/023596 JP2019023596W WO2020250405A1 WO 2020250405 A1 WO2020250405 A1 WO 2020250405A1 JP 2019023596 W JP2019023596 W JP 2019023596W WO 2020250405 A1 WO2020250405 A1 WO 2020250405A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
metal piece
electronic component
substrate
embedded substrate
Prior art date
Application number
PCT/JP2019/023596
Other languages
English (en)
French (fr)
Inventor
松本 徹
正勝 石原
保明 関
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to CN201980097514.4A priority Critical patent/CN114008769A/zh
Priority to JP2019569846A priority patent/JP6716045B1/ja
Priority to PCT/JP2019/023596 priority patent/WO2020250405A1/ja
Publication of WO2020250405A1 publication Critical patent/WO2020250405A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a component-embedded substrate and a method for manufacturing a component-embedded substrate.
  • the printed wiring board on which the heat generating component is mounted is generally provided with a heat radiating mechanism, for example, as disclosed as the prior art of Patent Documents 1 and 2. More specifically, these conventional techniques are configured by providing heat generating components and heat sinks on both sides of the substrate so as to sandwich a heat transfer member provided so as to penetrate the substrate. As a result, the heat generated by the heat generating component mounted on one surface of the substrate is transferred to the heat sink arranged on the other surface of the substrate via the heat transfer member and dissipated.
  • the heat transfer member forming the heat dissipation path between the heat generating component and the heat sink is formed as, for example, a metal piece made of a lump of copper, so that heat is dissipated as compared with the case where a plurality of thermal vias are formed. It is easy to secure the cross-sectional area of the path, and heat can be efficiently dissipated even when the amount of heat generated by the heat-generating component is relatively large.
  • the electronic component according to the prior art of Patent Document 1 is provided with electrode terminals on the surface opposite to the contact surface with the substrate, and the electrode terminals are bonded wires to the conductive pattern formed on the substrate surface. It is connected. Further, in the electronic component according to the prior art of Patent Document 2, the electrode terminals formed on the contact surface side with the substrate are connected by solder to the conductive pattern formed on the substrate surface. That is, the electronic component mounted on the surface of the substrate can introduce a heat radiating mechanism via the heat transfer member as described above regardless of which surface the electrode terminals are formed on.
  • the electrode terminals of the electronic component and the conductive pattern formed on the substrate are generally connected by a conductive via, and the electronic component having the electrode terminals formed on both sides is generally connected to the substrate.
  • conductive vias had to be formed on both sides of the electronic component, and it was not possible to introduce a heat dissipation mechanism that efficiently dissipates heat using metal pieces.
  • efficient heat dissipation is still limited by the limit of the cross-sectional area of the heat dissipation path.
  • the present invention has been made in view of such a situation, and an object of the present invention is to improve heat dissipation characteristics even when an electronic component having electrode terminals formed on both sides is incorporated.
  • An object of the present invention is to provide a component-embedded substrate and a method for manufacturing the component-embedded substrate.
  • a first partial substrate on which a through hole is formed, a metal piece fixed to the through hole, and a first electrode terminal in contact with the metal piece are provided on the first surface. It is a component-embedded substrate including an electronic component provided with a second electrode terminal on a second surface opposite to the first surface, and a second partial substrate including an insulating layer for embedding the electronic component.
  • the component-embedded board contains electronic components in which the first electrode terminal and the second electrode terminal are provided on both sides.
  • the electronic component is mounted on the circuit via the metal piece when the first electrode terminal formed on the first surface is in contact with the metal piece, and the boundary surface with the metal piece is inside the component-embedded substrate. A heat dissipation path to the surface of the substrate is secured while having the above.
  • the heat dissipation path can be set to have a larger cross-sectional area than the conventional heat dissipation mechanism formed by densely forming a plurality of thermal vias, and efficient heat dissipation becomes possible. Therefore, according to the component-embedded substrate according to the first aspect of the present invention, the heat dissipation characteristics can be improved even when an electronic component having electrode terminals formed on both sides is incorporated.
  • the second aspect of the present invention is the component-embedded substrate in which the metal piece is fixed to the through hole by mutual stress with the inner surface of the through hole in the first aspect of the present invention described above. is there.
  • the component-embedded substrate according to the second aspect of the present invention it is not necessary to separately provide a material such as an adhesive or solder when fixing the metal piece to the through hole of the first partial substrate. It is possible to prevent the accompanying cost increase and decrease in conductivity and thermal conductivity.
  • the solder used for other parts of the component-embedded substrate in the previous process and the subsequent process is used. For example, it may be melted by heating in the reflow treatment, and the conductivity of the connection portion due to soldering may be lowered.
  • the metal piece can be fixed to the through hole without setting the melting start temperature of the solder.
  • a third aspect of the present invention is, in the first or second aspect of the present invention described above, the metal piece is a component-embedded substrate having a shape in which the entire first surface of the electronic component is in contact with the electronic component.
  • the entire first surface of the electronic component can be configured as a heat dissipation path via the metal piece, so that the electronic component having a relatively large amount of heat can be generated.
  • heat can be dissipated efficiently.
  • the electronic component is made of a metal piece. In addition to being protected, the warpage of the component-embedded substrate is suppressed, so that the risk of the conductive vias peeling off can be reduced.
  • the conductive paste is applied to the contact surface between the first electrode terminal and the metal piece of the electronic component. It is a board with built-in components.
  • the electrically and thermal connection state between the first electrode terminal and the metal piece can be kept good by the conductive paste.
  • a fifth aspect of the present invention includes, in any one of the first to fourth aspects of the present invention described above, a conductive via that penetrates the insulating layer and is connected to the second electrode terminal of the electronic component. It is a component-embedded substrate in which surface mount components are arranged so as to be in contact with the conduction via.
  • the second electrode terminal of the electronic component and the surface mount component are directly connected via a conductive via. Therefore, since the wiring length between the two is suppressed to only the height of the conductive via, the influence of the wiring resistance and the reactance component can be reduced and the electrical characteristics can be improved.
  • a sixth aspect of the present invention is a component-embedded substrate containing an electronic component having a first electrode terminal provided on a first surface and a second electrode terminal provided on a second surface opposite to the first surface.
  • a through hole forming step of forming a through hole in the first partial substrate, a metal piece fixing step of fixing a metal piece to the through hole, and the metal piece and the first electrode terminal are in contact with each other.
  • This is a method for manufacturing a component-embedded substrate, which includes a component installation step of installing the electronic component and a component embedding step of forming a second partial substrate for embedding the electronic component with an insulating layer.
  • a metal piece is fixed in a through hole of the first partial substrate, and an electronic component is installed so that the metal piece and the first electrode terminal are in contact with each other.
  • the electronic components are embedded in the insulating layer of the second partial substrate.
  • the electronic component built in the component-embedded substrate is mounted on the circuit via the metal piece when the first electrode terminal formed on the first surface comes into contact with the metal piece, and the boundary surface with the metal piece. Is provided inside the component-embedded substrate, and a heat dissipation path to the substrate surface is secured.
  • the heat dissipation path can be set to have a larger cross-sectional area than the conventional heat dissipation mechanism formed by densely forming a plurality of thermal vias, and efficient heat dissipation becomes possible. Therefore, according to the sixth aspect of the present invention, it is possible to manufacture a component-embedded substrate capable of improving heat dissipation characteristics even when an electronic component having electrode terminals formed on both sides is incorporated.
  • a seventh aspect of the present invention is, in the sixth aspect of the present invention described above, in the metal piece fixing step, the metal piece is penetrated by mutual stress between the inner surface of the through hole and the metal piece. This is a method for manufacturing a component-embedded substrate that is fixed in a hole.
  • the method for manufacturing a component-embedded substrate according to the seventh aspect of the present invention it is not necessary to separately provide a material such as an adhesive or solder for fixing the metal piece to the through hole of the first partial substrate. It is possible to prevent an increase in cost and a decrease in conductivity and thermal conductivity due to the use of.
  • the solder used for other parts of the component-embedded substrate in the previous process and the subsequent process is used. For example, it may be melted by heating in the reflow treatment, and the conductivity of the connection portion due to soldering may be lowered.
  • the seventh aspect of the present invention it is possible to manufacture a component-embedded substrate capable of fixing a metal piece in a through hole without setting a melting start temperature of solder or the like.
  • the entire first surface of the electronic component can be configured as a heat dissipation path via a metal piece, it is efficient even for an electronic component having a relatively large amount of heat generation. It is possible to manufacture a component-embedded substrate that can dissipate heat. Further, according to the eighth aspect of the present invention, even when an electronic component that is vulnerable to warpage of the component-embedded substrate is incorporated due to the thinning, the electronic component is protected by the metal piece. Since the warp of the component-embedded substrate is suppressed, it is possible to manufacture the component-embedded substrate that can reduce the possibility that the conductive via will come off.
  • a ninth aspect of the present invention is, in any of the sixth to eighth aspects of the present invention described above, in the component installation step, on the contact surface between the first electrode terminal of the electronic component and the metal piece. This is a method for manufacturing a component-embedded substrate by applying a conductive paste.
  • the ninth aspect of the present invention it is possible to manufacture a component-embedded substrate capable of maintaining a good electrical and thermal connection state between the first electrode terminal and the metal piece by using the conductive paste.
  • a tenth aspect of the present invention forms a conductive via that penetrates the insulating layer and is connected to the second electrode terminal of the electronic component in any of the sixth to ninth aspects of the present invention described above.
  • a method of manufacturing a component-embedded substrate which includes a surface mounting step of arranging surface-mounted components so as to be in contact with the conductive via.
  • the wiring length between the two is limited to the height of the conductive via. It is possible to manufacture a component-embedded substrate that can be suppressed, reduce the influence of wiring resistance and reactance components, and improve electrical characteristics.
  • a component-embedded substrate capable of improving heat dissipation characteristics and a method for manufacturing the component-embedded substrate even when an electronic component having electrode terminals formed on both sides is incorporated. ..
  • the method for manufacturing the component-embedded substrate 1 and the manufactured component-embedded substrate 1 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 7.
  • the completed component-embedded substrate 1 is provided with a heat-dissipating mechanism that efficiently dissipates heat while incorporating the electronic component 20 as a heat-generating component having electrodes formed on both sides.
  • surface mount components 60 to 62 that conduct with the electrode are mounted.
  • the component-embedded substrate 1 can be used for various purposes such as electronic devices such as mobile phones, notebook computers, and digital cameras, and control devices in various in-vehicle devices.
  • the method for manufacturing the component-embedded substrate 1 according to the first embodiment of the present invention includes a through-hole forming process, a metal piece fixing process, a component installation process, a component embedding process, a via forming process, a patterning process, and a surface mounting process.
  • FIG. 1 is a cross-sectional view showing a through hole forming step according to the first embodiment of the present invention.
  • the first partial substrate 10 as a base for manufacturing the component-embedded substrate 1 is prepared, and the through hole 15 is formed in the first partial substrate 10.
  • the first partial substrate 10 in the present embodiment includes the first conductive layer 11, the first inner layer pattern 12, the second inner layer pattern 13, and the first insulating layer 14.
  • the first partial substrate 10 is provided with the first conductive layer 11 on one surface and the first inner layer pattern 12 on the other surface, and a plurality of second inner layer patterns are provided between them. 13 is formed.
  • the first conductive layer 11, the first inner layer pattern 12, and the second inner layer pattern 13 are metal layers that become a circuit pattern by being subjected to a patterning process, and are insulated from each other by the first insulating layer 14.
  • each metal layer is partially connected by vias or the like (not shown) so that a circuit is formed as a whole.
  • the first insulating layer 14 may be made of an insulating resin material and may contain a rigid core base material, or may contain a prepreg having fluidity when heated in a manufacturing process.
  • the through hole 15 having a position, size, and shape corresponding to the electronic component 20 installed in the later step is formed.
  • the through hole 15 having a cylindrical shape is formed. The relationship between the electronic component 20 and the through hole 15 will be described in detail later.
  • the first inner layer pattern 12 and the second inner layer pattern 13 are not essential components in the present invention. Further, the number of the second inner layer patterns 13 can be appropriately changed according to the specifications of the component-embedded substrate 1.
  • the patterning process is performed at the stage when the first partial substrate 10 is prepared. Further, in the present embodiment, the through hole 15 of the first partial substrate 10 is plated with copper on the inner surface thereof, but the plating treatment is not essential.
  • FIG. 2 is a cross-sectional view showing a metal piece fixing step according to the first embodiment of the present invention.
  • the metal piece 16 is made of a metal having conductivity and thermal conductivity, and is, for example, a lump of copper. That is, the metal piece 16 is a heat transfer member called a so-called copper inlay, a copper coin, or a copper pin.
  • the metal piece 16 is fixed so as to fill the through hole 15 formed in the first partial substrate 10.
  • the metal piece 16 can be fixed to the through hole 15 of the first partial substrate 10 by, for example, a press-fitting method or a caulking method. More specifically, in the press-fitting method, a metal piece 16 having a height slightly larger than the inner diameter of the through hole 15 and the same height as the thickness of the first partial substrate 10 is pushed into the through hole 15 by, for example, a press machine. This is a method of fixing the through hole 15 so as to be filled with the metal piece 16. Further, in the caulking method, a metal piece 16 slightly smaller than the inner diameter of the through hole 15 and having a height higher than the thickness of the first portion substrate 10 is arranged in the through hole 15, and the metal piece 16 is pressed by, for example, a press machine. This is a method of fixing the through hole 15 so as to be filled with the metal piece 16 by deforming the through hole 15.
  • a press-fitting method a metal piece 16 having a height slightly larger than the inner diameter of the through hole 15 and the same height as the thickness of the first
  • the metal piece 16 is fixed to the through hole 15 by mutual stress with the inner surface of the through hole 15 regardless of the press-fitting method or the caulking method. , There is no need to separately provide materials such as adhesives and solders.
  • FIG. 3 is a cross-sectional view showing a component installation process according to the first embodiment of the present invention.
  • the electronic component 20 has a plate shape thinner than the thickness of the component built-in substrate 1, and is a so-called power MOSFET used for, for example, an inverter or a converter.
  • Power MOSFETs have better switching speeds and conversion efficiencies than ordinary MOSFETs, but because they are components that handle large currents, dealing with heat generation associated with operation is an issue.
  • the first electrode terminal 22 is provided on the first surface 21, and two second electrode terminals 24 are provided on the second surface 23 opposite to the first surface 21.
  • the first electrode terminal 22 constitutes the entire first surface 21 of the electronic component 20 as a drain terminal of the power MOSFET.
  • the two second electrode terminals 24 form a part of the second surface 23 of the electronic component 20 as a source terminal and a gate terminal of the power MOSFET, respectively.
  • the number, arrangement, and shape of each electrode terminal of the electronic component 20 may differ depending on the type of the electronic component 20.
  • the electronic component 20 is such that the metal piece 16 and the first electrode terminal 22 are in contact with each other on the other surface of the first partial substrate 10, that is, the surface on which the first inner layer pattern 12 is formed. It is installed on the metal piece 16.
  • a conductive paste 30 made of a paste-like material such as a conductive adhesive or solder is preferable to apply to the contact surface between the first electrode terminal 22 of the electronic component 20 and the metal piece 16.
  • a conductive paste 30 made of a paste-like material such as a conductive adhesive or solder to the contact surface between the first electrode terminal 22 of the electronic component 20 and the metal piece 16.
  • the conductive paste 30 does not form one layer that dissociates the electronic component 20 and the metal piece 16, but only a slight gap that may locally occur between the electronic component 20 and the metal piece 16. It fills in. Therefore, the conductive paste 30 can be suppressed to a width of several tens of ⁇ m or less at the maximum between the electronic component 20 and the metal piece 16. Therefore, the conductive paste 30 is made of solder (thermal conductivity of Sn, which is the main component: about 50 W / m ⁇ K), which has a lower thermal conductivity than copper (thermal conductivity: about 400 W / m ⁇ K), for example. Even in this case, the influence of suppressing the heat conduction from the electronic component 20 to the metal piece 16 can be minimized.
  • the metal piece 16 in the present embodiment is set in a shape including its size so that the entire first surface 21 of the electronic component 20 is in contact with the metal piece 16. More specifically, the metal piece 16 of the present embodiment having a cylindrical shape is formed together with the through hole 15 of the first partial substrate 10 so as to have a larger horizontal dimension than the electronic component 20. That is, the positions, sizes, and shapes of the through hole 15 and the metal piece 16 are set so that the contour of the metal piece 16 surrounds the contour of the electronic component 20 when the component-embedded substrate 1 is viewed in a plan view. ..
  • FIG. 4 is a cross-sectional view showing a component burying process according to the first embodiment of the present invention.
  • the electronic component 20 is embedded in the second insulating layer 41, and the second conductive layer 42 is provided on the surface of the second insulating layer 41 to form the second partial substrate 40.
  • the second insulating layer 41 can be formed by laminating molding using a thermoplastic resin or a thermosetting resin.
  • the second insulating layer 41 may be a prepreg containing a glass cloth as a reinforcing material, or may be a resin sheet containing no glass cloth, and further, a circuit (not shown) at a position avoiding the electronic component 20. The pattern may be included separately.
  • FIG. 5 is a cross-sectional view showing a via forming step according to the first embodiment of the present invention.
  • a conductive via 50 that conducts both is formed from the second conductive layer 42 of the second partial substrate 40 toward the second electrode terminal 24 of the electronic component 20.
  • a hole is made in the second electrode terminal 24 by laser processing from the position of the second conductive layer 42 directly above the second electrode terminal 24, and the hole is filled with copper plating to form the second conductive layer 42 and the second conductive layer 42.
  • a conductive via 50 that conducts with the electrode terminal 24 can be formed.
  • FIG. 6 is a cross-sectional view showing a patterning step according to the first embodiment of the present invention.
  • the metal layers of the first conductive layer 11 and the second conductive layer 42 where the circuits are not formed are removed by etching treatment.
  • the portion of the first conductive layer 11 and the second conductive layer 42 to be insulated after patterning may be coated with a solder resist.
  • FIG. 7 is a cross-sectional view showing the surface mounting process according to the first embodiment of the present invention.
  • a plurality of components provided in the outer layer circuit of the component-embedded substrate 1 are mounted on the first conductive layer 11 and the second conductive layer 42, respectively.
  • the components in which the first electrode terminal 22 of the electronic component 20 and the two second electrode terminals 24 are electrically connected are shown as surface mount components 60 to 62.
  • the surface mount components 60 to 62 can take various shapes depending on their types, but in the present embodiment, all of them are exemplified as having a shape in which electrodes cover both ends of the component body. .. Then, in the component-embedded substrate 1 shown in FIG. 7, the surface mount components 60 and 61 are arranged so that their respective electrodes are in contact with the conductive via 50, and are mounted by, for example, a known reflow process using solder. Further, in the component-embedded substrate 1 shown in FIG. 7, the surface mount component 62 is mounted on the circuit of the first conductive layer 11 conducting the metal piece 16 by a known reflow process also using solder.
  • a heat sink 70 is provided so as to cover the metal piece 16.
  • the heat sink 70 can be attached by an adhesive having thermal conductivity at a position including the surface of the metal piece 16 on the first conductive layer 11.
  • an adhesive having an insulating property is adopted. Then, the component-embedded substrate 1 shown in FIG. 7 is completed by the above series of manufacturing processes.
  • each of the first electrode terminal 22 and the second electrode terminal 24 provided on both sides of the embedded electronic component 20 has an outer layer pattern of the component-embedded substrate 1.
  • the conductive path is secured by being conducted with respect to the first conductive layer 11 and the second conductive layer 42.
  • the electronic component 20 has conductive paths formed on both sides thereof, a heat dissipation path from the first surface 21 to the first conductive layer 11 via the metal piece 16 is also formed. Therefore, efficient heat dissipation according to the cross-sectional area of the metal piece 16 becomes possible. Therefore, according to the component-embedded substrate 1 according to the present invention, the heat dissipation characteristics can be improved even when the electronic component 20 having electrode terminals formed on both sides is incorporated.
  • the metal piece fixing step when the metal piece 16 is fixed to the through hole 15 of the first partial substrate 10 with solder, the previous step and the subsequent step unless the melting start temperature of the solder is appropriately set.
  • the solder used for the other part of the component-embedded substrate 1 may be melted by heating, for example, in the reflow treatment, and the conductivity of the connecting portion due to the solder may be lowered.
  • the metal piece and the through hole are fixed by mutual stress, for example, by a press machine.
  • the metal piece 16 can be fixed in the through hole 15 without setting the melting start temperature or the like.
  • the shape of the metal piece 16 is set so that the entire first surface 21 of the electronic component 20 is in contact with the metal piece 16. Therefore, the entire first surface 21 of the electronic component 20 is configured as a heat dissipation path via the metal piece 16, and heat can be efficiently dissipated even to the electronic component 20 having a relatively large amount of heat generation.
  • the metal piece 16 causes bending stress. On the other hand, it is reinforced to prevent cracks in the electronic component 20, and the warp of the component-embedded substrate is suppressed, so that the possibility of peeling of the conductive via can be reduced.
  • the conductive paste 30 is applied to the contact surface between the first electrode terminal 22 and the metal piece 16 of the electronic component 20, so that the first electrode terminal 22 and the metal piece 16 are coated. It is possible to maintain a good electrical and thermal connection with and.
  • the component-embedded substrate 1 according to the present invention is arranged so that the surface mount components 60 and 61 conducting with the second electrode terminal 24 of the electronic component 20 are in contact with the conducting via 50, wiring between the two is provided.
  • the length is limited to the height of the conductive via 50, and the influence of wiring resistance and reactance components can be reduced to improve electrical performance.
  • the component-embedded substrate 2 according to the second embodiment is different from the first embodiment in the configuration of the first conductive layer 11 in the component-embedded substrate 1 of the first embodiment described above.
  • the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 8 is a cross-sectional view of the component-embedded substrate 2 according to the second embodiment of the present invention.
  • the component-embedded substrate 2 according to the second embodiment is obtained by subjecting the surface of the first conductive layer 11 to copper plating before the patterning step (FIG. 6) described in the first embodiment. The thickness of the conductive layer 11 is increased.
  • a part of the first conductive layer 11 is formed between the metal piece 16 and the heat sink 70, and the metal piece 16 and the first conductive layer 11 are formed.
  • the electrical conductivity with and is improved.
  • the conductive path from the electronic component 20 to the surface mount component 62 via the metal piece 16 and the first conductive layer 11 has good conductivity even if the electronic component 20 handles a relatively large current. Can secure a sufficient cross-sectional area.
  • the third portion substrate 80 is formed between the second partial substrate 40 and the surface mount components 60 and 61 in the component-embedded substrate 1 of the first embodiment described above. It differs from the first embodiment in that.
  • the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 9 is a cross-sectional view of the component-embedded substrate 3 according to the third embodiment of the present invention.
  • the third partial substrate 80 is added at the timing between the patterning step (FIG. 6) and the surface mounting step (FIG. 7) described in the first embodiment.
  • the third partial substrate 80 has the same materials and processes as the second partial substrate 40 by laminating the third insulating layer 81 and the third conductive layer 82 on the second conductive layer 42 of the second partial substrate 40. Can be formed by Then, the surface mount components 60 and 61 are mounted by using the third conductive layer 82 as the outer layer circuit of the component-embedded substrate 3.
  • the surface mount component 60 can be arranged at different positions like the two conduction vias 50 that conduct the surface mount component 60 and the electronic component 20. It is possible to improve the degree of freedom of the circuit configuration including. Further, like the two conductive vias 50 that conduct the surface mount component 61 and the electronic component 20, the conductive layer is increased by adding the third partial substrate 80 by aligning the positions with each other and arranging them on a straight line. However, it is possible to minimize an increase in the wiring length between the surface mount component 61 and the electronic component 20.
  • the component-embedded substrate 4 according to the fourth embodiment is different from the first embodiment in the shapes of the electronic component 20 and the metal piece 16 in the component-embedded substrate 1 of the first embodiment described above.
  • the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 10 is a cross-sectional view showing a component installation process according to a fourth embodiment of the present invention.
  • the electronic component 20'of the component-embedded substrate 4 according to the fourth embodiment is provided with the first electrode terminal 22'so as to project from the surface of the first surface 21, and 2 so as to project from the surface of the second surface 23.
  • Two second electrode terminals 24' are provided.
  • the metal piece 16' according to the fourth embodiment has a recess 16a formed on the surface on which the electronic component 20'is installed so as to fit into the first electrode terminal 22'.
  • the recess 16a is formed in the metal piece fixing step described above. That is, for example, when the press-fitting method is adopted, the metal piece 16'is formed by pushing the metal piece 16'in which the recess 16a is formed in advance into the through hole 15 of the first partial substrate 10, and the caulking method is adopted. If so, it is formed by being pressed by a press jig having substantially the same shape as the first surface 21 of the electronic component 20'.
  • the conductive paste 30 may be applied to the contact surface between the two, as in the component installation step in the first embodiment described above.
  • FIG. 11 is a cross-sectional view of the component-embedded substrate 4 according to the fourth embodiment of the present invention.
  • the electronic component 20' is provided with the recess 16a in the metal piece 16'.
  • the entire first surface 21 of the above is in contact with the metal piece 16'including the first electrode terminal 22'. Therefore, according to the component-embedded substrate 4, the conductivity and thermal conductivity of the electronic component 20'and the metal piece 16'can be kept good.

Abstract

部品内蔵基板1は、貫通孔15が形成された第1部分基板10と、貫通孔15に固定された金属片16と、金属片16と接する第1電極端子22が第1面21に設けられ、第1面21と反対側の第2面23に第2電極端子24が設けられた電子部品20と、電子部品20を埋設する第2絶縁層41を含む第2部分基板40と、を備える。

Description

部品内蔵基板、及び部品内蔵基板の製造方法
 本発明は、部品内蔵基板、及び部品内蔵基板の製造方法に関する。
 発熱部品が実装されるプリント配線基板は、例えば特許文献1及び2の従来技術として開示されているように、基板に放熱機構が備えられるのが一般的である。より具体的には、これらの従来技術は、基板を貫通するように設けられた伝熱部材を挟むように、基板の両面に発熱部品とヒートシンクとをそれぞれ設けて構成されている。これにより、基板の一方の面に実装された発熱部品が発する熱は、伝熱部材を介して基板の他方の面に配置されたヒートシンクに伝えられて放熱されることになる。このとき、発熱部品とヒートシンクとの間で放熱経路を形成する伝熱部材は、例えば銅の塊からなる金属片として形成されることにより、複数のサーマルビアが形成される場合と比較して放熱経路の断面積を確保しやすく、発熱部品の発熱量が比較的大きい場合にも効率的に放熱することができる。
ここで、特許文献1の従来技術に係る電子部品は、基板との接触面とは反対側の面に電極端子を備え、基板表面に形成された導電パターンに対して当該電極端子がボンディングワイヤで接続されている。また、特許文献2の従来技術に係る電子部品は、基板との接触面側に形成された電極端子が、基板表面に形成された導電パターンに対して半田により接続されている。すなわち、基板表面に実装される電子部品は、電極端子がいずれの面に形成されていても、上記のような伝熱部材を介する放熱機構を導入することができる。
ところで、上記のような発熱部品のうち、インバータやコンバータなどの電子部品は、近年のスイッチング速度の向上に伴い薄型化が進行している。このため、当該電子部品をプリント配線基板に内蔵することができれば、従来の部品内蔵基板と同様に、実装面積を節約して基板を小型化することができる他、配線長を短縮することにより配線抵抗やリアクタンス成分の影響を軽減して電気性能を向上させることができる。
特許第3922642号公報 特許第5546778号公報
 しかしながら、従来の部品内蔵基板においては、電子部品の電極端子と基板に形成された導電パターンとが導通ビアにより接続されるのが一般的であり、電極端子が両面に形成された電子部品を基板に内蔵する場合には、電子部品の両面に導通ビアを形成しなければならず、金属片を使用して効率的に放熱する放熱機構を導入することができなかった。また、基板の表面と内蔵部品とを接続する複数のサーマルビアを密集させて形成したとしても、やはり放熱経路の断面積の限界により効率的な放熱が制限されてしまうことになる。
 本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、両面に電極端子が形成された電子部品を内蔵する場合であっても、放熱特性を向上させることができる部品内蔵基板、及び部品内蔵基板の製造方法を提供することにある。
<本発明の第1の態様>
 本発明の第1の態様は、貫通孔が形成された第1部分基板と、前記貫通孔に固定された金属片と、前記金属片と接する第1電極端子が第1面に設けられ、前記第1面と反対側の第2面に第2電極端子が設けられた電子部品と、前記電子部品を埋設する絶縁層を含む第2部分基板と、を備える部品内蔵基板である。
 部品内蔵基板は、第1電極端子及び第2電極端子が両面に設けられた電子部品を内蔵している。ここで、電子部品は、第1面に形成された第1電極端子が金属片に接することにより当該金属片を介して回路に実装されると共に、金属片との境界面を部品内蔵基板の内部に有しながら基板表面への放熱経路が確保されることになる。
 このとき、当該放熱経路は、複数のサーマルビアを密集して形成する従来の放熱機構と比較して断面積を大きく設定することができ、効率的な放熱が可能になる。従って、本発明の第1の態様に係る部品内蔵基板によれば、両面に電極端子が形成された電子部品を内蔵する場合であっても、放熱特性を向上させることができる。
<本発明の第2の態様>
 本発明の第2の態様は、上記した本発明の第1の態様において、前記金属片は、前記貫通孔の内側面との互いの応力により前記貫通孔に固定されている、部品内蔵基板である。
 本発明の第2の態様に係る部品内蔵基板によれば、第1部分基板の貫通孔に対する金属片の固定において、接着剤や半田等の材料を別途設ける必要がないため、当該材料の使用に伴うコスト上昇と導電性及び熱伝導性の低下とを防止することができる。特に、貫通孔に対して金属片を半田で固定するときには、半田の溶融開始温度等を適切に設定しない限り、先の工程及び後の工程において部品内蔵基板の他の部分に使用される半田が例えばリフロー処理の加熱により溶融し、半田による接続部分の導電性を低下させてしまう虞が生じる。これに対し、本発明の第2の態様に係る部品内蔵基板によれば、半田の溶融開始温度等を設定せずとも、貫通孔に金属片を固定することができる。
<本発明の第3の態様>
 本発明の第3の態様は、上記した本発明の第1又は2の態様において、前記金属片は、前記電子部品における前記第1面の全体が接する形状である、部品内蔵基板である。
 本発明の第3の態様に係る部品内蔵基板によれば、電子部品における第1面の全体が金属片を介した放熱経路として構成することができるため、発熱量が比較的多い電子部品に対しても効率的に放熱することができる。また、本発明の第3の態様に係る部品内蔵基板によれば、薄型化されることにより部品内蔵基板の反りに対して脆弱な電子部品を内蔵する場合であっても、金属片により電子部品が保護される他、部品内蔵基板の反りが抑制されるため導通ビアが剥離する虞を低減することができる。
<本発明の第4の態様>
 本発明の第4の態様は、上記した本発明の第1乃至3のいずれかの態様において、前記電子部品の前記第1電極端子と前記金属片との接触面に導電性ペーストが塗布されている、部品内蔵基板である。
 本発明の第4の態様に係る部品内蔵基板によれば、導電性ペーストにより第1電極端子と金属片との電気的及び熱的な接続状態を良好に保つことができる。
<本発明の第5の態様>
 本発明の第5の態様は、上記した本発明の第1乃至4のいずれかの態様において、前記絶縁層を貫通して前記電子部品の前記第2電極端子に接続される導通ビアを含み、前記導通ビアに接するように表面実装部品が配設されている、部品内蔵基板である。
 本発明の第5の態様に係る部品内蔵基板によれば、電子部品の第2電極端子と表面実装部品とが導通ビアを介して直接接続されている。このため、両者の間の配線長が導通ビアの高さだけに抑えられるため、配線抵抗やリアクタンス成分の影響を軽減して電気特性を向上させることができる。
<本発明の第6の態様>
 本発明の第6の態様は、第1面に第1電極端子が設けられ、前記第1面と反対側の第2面に第2電極端子が設けられた電子部品を内蔵する部品内蔵基板の製造方法であって、第1部分基板に貫通孔を形成する貫通孔形成工程と、金属片を前記貫通孔に固定する金属片固定工程と、前記金属片と前記第1電極端子とが接するように前記電子部品を設置する部品設置工程と、前記電子部品を絶縁層で埋設する第2部分基板を形成する部品埋設工程と、を含む、部品内蔵基板の製造方法である。
 本発明の第6の態様に係る部品内蔵基板の製造方法によれば、第1部分基板の貫通孔に金属片を固定し、当該金属片と第1電極端子とが接するように電子部品を設置した上で、第2部分基板の絶縁層で電子部品を埋設している。そして、部品内蔵基板に内蔵された電子部品は、第1面に形成された第1電極端子が金属片に接することにより当該金属片を介して回路に実装されると共に、金属片との境界面を部品内蔵基板の内部に有しながら基板表面への放熱経路が確保されることになる。
 このとき、当該放熱経路は、複数のサーマルビアを密集して形成する従来の放熱機構と比較して断面積を大きく設定することができ、効率的な放熱が可能になる。従って、本発明の第6の態様によれば、両面に電極端子が形成された電子部品を内蔵する場合であっても、放熱特性を向上させることができる部品内蔵基板を製造することができる。
<本発明の第7の態様>
 本発明の第7の態様は、上記した本発明の第6の態様において、前記金属片固定工程においては、前記貫通孔の内側面と前記金属片との互いの応力により前記金属片を前記貫通孔に固定する、部品内蔵基板の製造方法である。
 本発明の第7の態様に係る部品内蔵基板の製造方法によれば、第1部分基板の貫通孔に対する金属片の固定において、接着剤や半田等の材料を別途設ける必要がないため、当該材料の使用に伴うコスト上昇と導電性及び熱伝導性の低下とを防止することができる。特に、貫通孔に対して金属片を半田で固定するときには、半田の溶融開始温度等を適切に設定しない限り、先の工程及び後の工程において部品内蔵基板の他の部分に使用される半田が例えばリフロー処理の加熱により溶融し、半田による接続部分の導電性を低下させてしまう虞が生じる。これに対し、本発明の第7の態様によれば、半田の溶融開始温度等を設定せずとも、貫通孔に金属片を固定することができる部品内蔵基板を製造することができる。
<本発明の第8の態様>
 本発明の第8の態様は、上記した本発明の第6又は7の態様において、前記金属片固定工程においては、前記電子部品における前記第1面の全体が前記金属片に接するように前記金属片の形状が設定される、部品内蔵基板の製造方法である。
 本発明の第8の態様によれば、電子部品における第1面の全体が金属片を介した放熱経路として構成することができるため、発熱量が比較的多い電子部品に対しても効率的に放熱することができる部品内蔵基板を製造することができる。また、本発明の第8の態様によれば、薄型化されることにより部品内蔵基板の反りに対して脆弱な電子部品を内蔵する場合であっても、金属片により電子部品が保護される他、部品内蔵基板の反りが抑制されるため導通ビアが抜ける虞を低減することができる部品内蔵基板を製造することができる。
<本発明の第9の態様>
 本発明の第9の態様は、上記した本発明の第6乃至8のいずれかの態様において、前記部品設置工程においては、前記電子部品の前記第1電極端子と前記金属片との接触面に導電性ペーストを塗布する、部品内蔵基板の製造方法である。
 本発明の第9の態様によれば、導電性ペーストにより第1電極端子と金属片との電気的及び熱的な接続状態を良好に保つことができる部品内蔵基板を製造することができる。
<本発明の第10の態様>
 本発明の第10の態様は、上記した本発明の第6乃至9のいずれかの態様において、前記絶縁層を貫通して前記電子部品の前記第2電極端子に接続される導通ビアを形成し、前記導通ビアに接するように表面実装部品を配設する表面実装工程を含む、部品内蔵基板の製造方法である。
 本発明の第10の態様によれば、電子部品の第2電極端子と表面実装部品とが導通ビアを介して直接接続されているため、両者の間の配線長が導通ビアの高さだけに抑えられ、配線抵抗やリアクタンス成分の影響を軽減して電気特性を向上させることができる部品内蔵基板を製造することができる。
 本発明によれば、両面に電極端子が形成された電子部品を内蔵する場合であっても、放熱特性を向上させることができる部品内蔵基板、及び部品内蔵基板の製造方法を提供することができる。
本発明の第1実施形態に係る貫通孔形成工程を表す断面図である。 本発明の第1実施形態に係る金属片固定工程を表す断面図である。 本発明の第1実施形態に係る部品設置工程を表す断面図である。 本発明の第1実施形態に係る部品埋設工程を表す断面図である。 本発明の第1実施形態に係るビア形成工程を表す断面図である。 本発明の第1実施形態に係るパターニング工程を表す断面図である。 本発明の第1実施形態に係る表面実装工程を表す断面図である。 本発明の第2実施形態に係る部品内蔵基板の断面図である。 本発明の第3実施形態に係る部品内蔵基板の断面図である。 本発明の第4実施形態に係る部品設置工程を表す断面図である。 本発明の第4実施形態に係る部品内蔵基板の断面図である。
 以下、図面を参照し、本発明の実施の形態について詳細に説明する。尚、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
<第1実施形態>
 以下において、図1乃至7を参照しつつ、本発明の第1実施形態に係る部品内蔵基板1の製造方法及び製造される部品内蔵基板1について詳細に説明する。完成形としての部品内蔵基板1は、図7において後述するように、両面に電極が形成された発熱部品としての電子部品20を内蔵しつつ、電子部品20を効率的に放熱させる放熱機構が設けられると共に、当該電極と導通する表面実装部品60~62が実装されている。部品内蔵基板1は、例えば、携帯電話、ノートパソコン、デジタルカメラ等の電子機器や、各種の車載機器における制御装置など、様々な用途に利用することができる。
 本発明の第1実施形態に係る部品内蔵基板1の製造方法は、貫通孔形成工程、金属片固定工程、部品設置工程、部品埋設工程、ビア形成工程、パターニング工程、及び表面実装工程を含む。
 図1は、本発明の第1実施形態に係る貫通孔形成工程を表す断面図である。まず、貫通孔形成工程では、部品内蔵基板1を製造するためのベースとなる第1部分基板10を準備し、第1部分基板10に貫通孔15を形成する。ここで、本実施形態における第1部分基板10は、第1導電層11、第1内層パターン12、第2内層パターン13、及び第1絶縁層14を含む。
 より具体的には、第1部分基板10は、一方の面に第1導電層11が設けられると共に、他方の面に第1内層パターン12が設けられ、これらの間に複数の第2内層パターン13が形成されている。第1導電層11、第1内層パターン12、及び第2内層パターン13は、パターニング処理が施されることにより回路パターンとなる金属層であり、第1絶縁層14により互いに絶縁されている。ただし、それぞれの金属層は、全体として回路が構成されるよう、図示しないビア等で部分的に接続されている。また、第1絶縁層14は、絶縁性を有する樹脂材料からなり、剛性を有するコア基材を含んでもよく、製造工程における加熱時に流動性を有するプリプレグを含んでもよい。
 そして、第1部分基板10は、貫通孔形成工程において、後の工程で設置される電子部品20に対応する位置、大きさ、形状の貫通孔15が形成される。本実施形態においては、円柱形状を有する貫通孔15が形成されるものとして説明する。電子部品20と貫通孔15との関係については詳細を後述する。
 尚、第1内層パターン12及び第2内層パターン13は、本発明において必須の構成部材ではない。また、第2内層パターン13の数についても部品内蔵基板1の仕様に応じて適宜変更することができる。そして、第1内層パターン12及び第2内層パターン13が形成される場合には、第1部分基板10が準備される段階でパターニング処理が施されている。更に、本実施形態においては、第1部分基板10の貫通孔15は、その内側面に銅によるめっき処理が施されているが、当該めっき処理についても必須ではない。
 図2は、本発明の第1実施形態に係る金属片固定工程を表す断面図である。金属片16は、導電性及び熱伝導性を有する金属からなり、例えば銅の塊である。すなわち、金属片16は、所謂銅インレイ、銅コイン、又は銅ピンと呼ばれる伝熱部材である。
 金属片固定工程においては、第1部分基板10に形成された上記の貫通孔15を埋めるように金属片16が固定される。
 ここで、金属片16は、第1部分基板10の貫通孔15に対して、例えば圧入法やカシメ法により固定することができる。より具体的には、圧入法は、貫通孔15の内径よりも僅かに大きく第1部分基板10の厚みと同じ高さを有する金属片16を、例えばプレス機で貫通孔15に押し込むことにより、貫通孔15を金属片16で埋めるように固定する方法である。また、カシメ法は、貫通孔15の内径よりも僅かに小さく第1部分基板10の厚みよりも高さが有る金属片16を貫通孔15に配置し、例えばプレス機で金属片16を押圧して変形させることにより、貫通孔15を金属片16で埋めるように固定する方法である。
 そして、本実施形態における金属片固定工程においては、圧入法やカシメ法のいずれの方法であっても、金属片16を貫通孔15の内側面との互いの応力により貫通孔15に固定するため、接着剤や半田等の材料を別途設ける必要がない。
 続いて、部品内蔵基板1に内蔵される電子部品20を上記の第1部分基板10に設置する部品設置工程について説明する。図3は、本発明の第1実施形態に係る部品設置工程を表す断面図である。
 ここで、本実施形態に係る電子部品20は、部品内蔵基板1の厚みよりも薄い板状であり、例えばインバータやコンバータ等に使用される所謂パワーMOSFETである。パワーMOSFETは、通常のMOSFETと比較して、スイッチング速度や変換効率が良好である反面、大電流を扱う部品であるため動作に伴う発熱への対処が課題となる。
 また、本実施形態に係る電子部品20は、第1面21において第1電極端子22が設けられ、第1面21と反対側の第2面23において2つの第2電極端子24が設けられている。より詳しくは、第1電極端子22は、パワーMOSFETのドレイン端子として電子部品20の第1面21の全体を構成している。また、2つの第2電極端子24は、それぞれパワーMOSFETのソース端子及びゲート端子として電子部品20の第2面23の一部を構成している。尚、電子部品20の各電極端子は、電子部品20の種類に応じて数量や配置、形状が異なってもよい。
 そして、部品設置工程においては、電子部品20は、第1部分基板10の他方の面、すなわち第1内層パターン12が形成された面において、金属片16と第1電極端子22とが接するように金属片16に設置される。
 また、電子部品20の第1電極端子22と金属片16との接触面に、例えば導電性接着剤や半田等のペースト状材料からなる導電性ペースト30を塗布するのが好適である。これにより、電子部品20と金属片16との間に部分的に僅かな隙間が存在する場合であっても、導電性ペースト30で当該隙間を埋めることができ、第1電極端子22と金属片16との電気的な接続状態を良好に保つことができるほか、電子部品20が発する熱を金属片16へ効率的に伝えることができる。
 このとき、導電性ペースト30は、電子部品20と金属片16とを乖離させる1つの層を形成するのではなく、あくまでも電子部品20と金属片16との間に局所的に生じ得る僅かな隙間を埋めるものである。このため、導電性ペースト30は、電子部品20と金属片16との間において最大でも数10μm以下の幅に抑えられる。このため、導電性ペースト30が例えば銅(熱伝導率:約400W/m・K)よりも熱伝導率が低い半田(主成分であるSnの熱伝導率:約50W/m・K)からなる場合であっても、電子部品20から金属片16への熱伝導が抑制される影響を最小限に留めることができる。
 また、金属片16は、電子部品20の放熱経路を構成することから、当該放熱経路の断面積が大きいことが好ましい。本実施形態における金属片16は、電子部品20における第1面21の全体が接するように、その大きさを含めた形状が設定されている。より具体的には、円柱形状を有する本実施形態の金属片16は、第1部分基板10の貫通孔15と共に、電子部品20よりも水平方向の寸法が大きくなるよう形成されている。つまり、貫通孔15及び金属片16は、部品内蔵基板1を平面視した場合に、金属片16の輪郭が電子部品20の輪郭を囲むように、その位置、大きさ、形状が設定されている。
 電子部品20が第1部分基板10に設置されると、次に、電子部品20を埋設するように第2部分基板40を形成する部品埋設工程が行われる。図4は、本発明の第1実施形態に係る部品埋設工程を表す断面図である。
 より具体的には、部品埋設工程においては、電子部品20を第2絶縁層41で埋設しつつ第2絶縁層41の表面に第2導電層42を設けて第2部分基板40を形成する。このとき、第2絶縁層41は、熱可塑性樹脂又は熱硬化性樹脂を用いた積層成型で構成することができる。また、第2絶縁層41は、補強材としてのガラスクロスを含むプリプレグであってもよく、又はガラスクロスを含まない樹脂シートであってもよく、更には電子部品20を避ける位置に図示しない回路パターンを別途含んでもよい。
 第2絶縁層41が形成されると、電子部品20の第2電極端子24に導通ビア50を形成するビア形成工程が行われる。図5は、本発明の第1実施形態に係るビア形成工程を表す断面図である。
 ビア形成工程においては、第2部分基板40の第2導電層42から電子部品20の第2電極端子24に向けて、両者を導通する導通ビア50が形成される。例えば、第2電極端子24の直上における第2導電層42の位置から第2電極端子24へレーザ加工により穴を開け、当該穴に銅めっきを充填することにより、第2導電層42と第2電極端子24とを導通させる導通ビア50を形成することができる。
 導通ビア50が形成されると、第1部分基板10の第1導電層11、及び第2部分基板40の第2導電層42をパターニングするパターニング工程が行われる。図6は、本発明の第1実施形態に係るパターニング工程を表す断面図である。
 パターニング工程においては、部品内蔵基板1の両面における外層回路を形成するため、第1導電層11及び第2導電層42において回路が形成されない部分の金属層がエッチング処理により取り除かれる。ここで、パターニング後の第1導電層11及び第2導電層42の絶縁すべき部分においては、ソルダーレジストにより被覆されてもよい。
 そして、パターニング工程を経た第1導電層11及び第2導電層42に対して、表面実装部品60~62及びヒートシンク70を実装する表面実装工程が行われる。図7は、本発明の第1実施形態に係る表面実装工程を表す断面図である。
 表面実装工程においては、部品内蔵基板1の外層回路に設けられる複数の部品が第1導電層11及び第2導電層42のそれぞれに実装される。本実施形態においては、電子部品20の第1電極端子22、及び2つの第2電極端子24がそれぞれ導通される部品を表面実装部品60~62として示している。
 ここで、表面実装部品60~62は、その種類に応じて様々な形状を取り得るが、本実施形態においては、いずれも部品本体の両端部を電極が覆う形状を有するものとして例示している。そして、図7に示す部品内蔵基板1においては、表面実装部品60及び61は、それぞれの電極を導通ビア50に接するように配設され、例えば半田を用いた公知のリフロー工程により実装される。さらに、図7に示す部品内蔵基板1においては、表面実装部品62は、金属片16と導通する第1導電層11の回路上に、同じく半田を用いた公知のリフロー工程により実装される。
 また、部品内蔵基板1の第1導電層11が形成された面においては、金属片16を覆うようにヒートシンク70が設けられる。ヒートシンク70は、第1導電層11における金属片16の表面を含む位置において熱伝導性を有する接着剤により取り付けることができる。このとき、金属片16とヒートシンク70と間を絶縁する必要がある場合には、絶縁性を有する接着剤が採用される。そして、上記の一連の製造工程により、図7に示す部品内蔵基板1が完成する。
 以上のように、本発明に係る部品内蔵基板1は、内蔵される電子部品20の両面にそれぞれ設けられた第1電極端子22及び第2電極端子24のそれぞれが、部品内蔵基板1の外層パターンとしての第1導電層11及び第2導電層42に対して導通されることで導電路が確保されることになる。このとき、電子部品20は、両面のそれぞれに導電路が形成されているにも拘らず、第1面21から金属片16を介して第1導電層11に至る放熱経路も併せて形成されていることになるため、金属片16の断面積に応じた効率的な放熱が可能になる。従って、本発明に係る部品内蔵基板1によれば、両面に電極端子が形成された電子部品20を内蔵する場合であっても、放熱特性を向上させることができる。
 ここで、金属片固定工程において、仮に第1部分基板10の貫通孔15に対して金属片16を半田で固定するときには、半田の溶融開始温度等を適切に設定しない限り、先の工程及び後の工程において部品内蔵基板1の他の部分に使用される半田が例えばリフロー処理の加熱により溶融し、半田による接続部分の導電性を低下させてしまう虞が生じる。これに対し、本発明に係る部品内蔵基板1によれば、例えばプレス機により金属片と貫通孔とが互いの応力により固定されている。このため、部品内蔵基板1は、接着剤や半田等の材料を別途設ける必要がなく、当該材料の使用に伴うコスト上昇と導電性及び熱伝導性の低下とを防止することができる他、半田の溶融開始温度等を設定せずとも貫通孔15に金属片16を固定することができる。
 また、本発明に係る部品内蔵基板1は、電子部品20における第1面21の全体が金属片16に接するように、金属片16の形状が設定されている。このため、電子部品20における第1面21の全体が金属片16を介した放熱経路として構成され、発熱量が比較的多い電子部品20に対しても効率的に放熱することができる。また、本発明に係る部品内蔵基板1によれば、薄型化されることにより部品内蔵基板1の反りに対して脆弱な電子部品20を内蔵する場合であっても、金属片16により曲がり応力に対して補強され、電子部品20のクラックなどを防止できる他、部品内蔵基板の反りが抑制されるため導通ビアが剥離する虞を低減することができる。
 更に、本発明に係る部品内蔵基板1は、電子部品20の第1電極端子22と金属片16との接触面に導電性ペースト30が塗布されることにより、第1電極端子22と金属片16との電気的及び熱的な接続状態を良好に保つことができる。
 そして、本発明に係る部品内蔵基板1は、電子部品20の第2電極端子24と導通する表面実装部品60、61が導通ビア50に接するように配設されているため、両者の間の配線長が導通ビア50の高さだけに抑えられ、配線抵抗やリアクタンス成分の影響を軽減して電気性能を向上させることができる。
<第2実施形態>
 次に、本発明の第2実施形態について説明する。第2実施形態に係る部品内蔵基板2は、上記した第1実施形態の部品内蔵基板1における第1導電層11の構成が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
 図8は、本発明の第2実施形態に係る部品内蔵基板2の断面図である。第2実施形態に係る部品内蔵基板2は、第1実施形態において説明したパターニング工程(図6)より前に、第1導電層11の表面に対して銅によるメッキ加工を施すことにより、第1導電層11の厚みを増加させている。
 これにより、部品内蔵基板2は、図8において破線楕円DEで示すように、金属片16とヒートシンク70と間に第1導電層11の一部が形成され、金属片16と第1導電層11との電気伝導性が向上する。これにより、電子部品20から金属片16及び第1導電層11を介して表面実装部品62へ至る導電路は、電子部品20が比較的大きな電流を扱う部品であったとしても、導電性が良好で充分な断面積を確保することができる。
<第3実施形態>
 次に、本発明の第3実施形態について説明する。第3実施形態に係る部品内蔵基板3は、上記した第1実施形態の部品内蔵基板1における第2部分基板40と表面実装部品60、61との間に第3部分基板80が形成されている点で第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
 図9は、本発明の第3実施形態に係る部品内蔵基板3の断面図である。第3実施形態に係る部品内蔵基板3は、第1実施形態において説明したパターニング工程(図6)と表面実装工程(図7)との間のタイミングにおいて、第3部分基板80が追加される。
 第3部分基板80は、第2部分基板40の第2導電層42に対して第3絶縁層81、及び第3導電層82を積層することで、第2部分基板40と同様の材料及び工程により形成することができる。そして、第3導電層82を部品内蔵基板3の外層回路として、表面実装部品60及び61を実装する。
 このとき、図9に示すように、表面実装部品60と電子部品20とを導通させる2つの導通ビア50のように、互いの位置をずらして配置することができるため、表面実装部品60の配置を含む回路構成の自由度を向上させることができる。また、表面実装部品61と電子部品20とを導通させる2つの導通ビア50のように、互いの位置を合わせて直線上に配置することにより、第3部分基板80の追加で導電層を増加させながらも、表面実装部品61と電子部品20との配線長の増加を最小限に抑制することができる。
<第4実施形態>
 次に、本発明の第4実施形態について説明する。第4実施形態に係る部品内蔵基板4は、上記した第1実施形態の部品内蔵基板1における電子部品20及び金属片16の形状が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
 図10は、本発明の第4実施形態に係る部品設置工程を表す断面図である。第4実施形態に係る部品内蔵基板4の電子部品20´は、第1面21の表面から突出するように第1電極端子22´が設けられ、第2面23の表面から突出するように2つの第2電極端子24´が設けられている。
 第4実施形態に係る金属片16´は、電子部品20´が設置される表面において、第1電極端子22´に嵌合する凹部16aが形成されている。凹部16aは、上記した金属片固定工程において形成される。すなわち、金属片16´は、例えば圧入法が採用される場合には予め凹部16aが形成された金属片16´を第1部分基板10の貫通孔15に押し込むことにより形成され、カシメ法が採用される場合には電子部品20´の第1面21と略同一形状のプレス治具により押圧されて形成される。
 ここで、電子部品20´を金属片16´に設置する際には、上記した第1実施形態における部品設置工程と同様に、両者の接触面に導電性ペースト30を塗布してもよい。
 図11は、本発明の第4実施形態に係る部品内蔵基板4の断面図である。図11に示されるように、電子部品20´の第1電極端子22´が第1面21から突出する形状であったとしても、金属片16´に凹部16aを設けることにより、電子部品20´の第1面21の全体が第1電極端子22´を含めて金属片16´に接することになる。従って、部品内蔵基板4によれば、電子部品20´と金属片16´との導電性及び熱伝導性を良好に保つことができる。
  1 部品内蔵基板
 10 第1部分基板
 11 第1導電層
 15 貫通孔
 16 金属片
 20 電子部品
 21 第1面
 22 第1電極端子
 23 第2面
 24 第2電極端子
 40 第2部分基板
 41 第2絶縁層
 42 第2導電層
 50 導通ビア

Claims (10)

  1.  貫通孔が形成された第1部分基板と、
     前記貫通孔に固定された金属片と、
     前記金属片と接する第1電極端子が第1面に設けられ、前記第1面と反対側の第2面に第2電極端子が設けられた電子部品と、
     前記電子部品を埋設する絶縁層を含む第2部分基板と、を備える部品内蔵基板。
  2.  前記金属片は、前記貫通孔の内側面との互いの応力により前記貫通孔に固定されている、請求項1に記載の部品内蔵基板。
  3.  前記金属片は、前記電子部品における前記第1面の全体が接する形状である、請求項1又は2に記載の部品内蔵基板。
  4.  前記電子部品の前記第1電極端子と前記金属片との接触面に導電性ペーストが塗布されている、請求項1乃至3のいずれかに記載の部品内蔵基板。
  5.  前記絶縁層を貫通して前記電子部品の前記第2電極端子に接続される導通ビアを含み、 前記導通ビアに接するように表面実装部品が配設されている、請求項1乃至4のいずれかに記載の部品内蔵基板。
  6.  第1面に第1電極端子が設けられ、前記第1面と反対側の第2面に第2電極端子が設けられた電子部品を内蔵する部品内蔵基板の製造方法であって、
     第1部分基板に貫通孔を形成する貫通孔形成工程と、
     金属片を前記貫通孔に固定する金属片固定工程と、
     前記金属片と前記第1電極端子とが接するように前記電子部品を設置する部品設置工程と、
     前記電子部品を絶縁層で埋設する第2部分基板を形成する部品埋設工程と、を含む、部品内蔵基板の製造方法。
  7.  前記金属片固定工程においては、前記貫通孔の内側面と前記金属片との互いの応力により前記金属片を前記貫通孔に固定する、請求項6に記載の部品内蔵基板の製造方法。
  8.  前記金属片固定工程においては、前記電子部品における前記第1面の全体が前記金属片に接するように前記金属片の形状が設定される、請求項6又は7に記載の部品内蔵基板の製造方法。
  9.  前記部品設置工程においては、前記電子部品の前記第1電極端子と前記金属片との接触面に導電性ペーストを塗布する、請求項6乃至8のいずれかに記載の部品内蔵基板の製造方法。
  10.  前記絶縁層を貫通して前記電子部品の前記第2電極端子に接続される導通ビアを形成し、前記導通ビアに接するように表面実装部品を配設する表面実装工程を含む、請求項6乃至9のいずれかに記載の部品内蔵基板の製造方法。
PCT/JP2019/023596 2019-06-14 2019-06-14 部品内蔵基板、及び部品内蔵基板の製造方法 WO2020250405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980097514.4A CN114008769A (zh) 2019-06-14 2019-06-14 部件内置基板及部件内置基板的制造方法
JP2019569846A JP6716045B1 (ja) 2019-06-14 2019-06-14 部品内蔵基板、及び部品内蔵基板の製造方法
PCT/JP2019/023596 WO2020250405A1 (ja) 2019-06-14 2019-06-14 部品内蔵基板、及び部品内蔵基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023596 WO2020250405A1 (ja) 2019-06-14 2019-06-14 部品内蔵基板、及び部品内蔵基板の製造方法

Publications (1)

Publication Number Publication Date
WO2020250405A1 true WO2020250405A1 (ja) 2020-12-17

Family

ID=71131661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023596 WO2020250405A1 (ja) 2019-06-14 2019-06-14 部品内蔵基板、及び部品内蔵基板の製造方法

Country Status (3)

Country Link
JP (1) JP6716045B1 (ja)
CN (1) CN114008769A (ja)
WO (1) WO2020250405A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185522A1 (ja) * 2021-03-05 2022-09-09 株式会社メイコー 部品内蔵基板、及びその製造方法
WO2023179842A1 (en) * 2022-03-21 2023-09-28 Hitachi Energy Switzerland Ag Power submodule, power module and method for producing a power module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009300A1 (ja) * 2020-07-07 2022-01-13 株式会社メイコー 絶縁性放熱ブロック付き基板及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060523A (ja) * 2001-08-09 2003-02-28 Tdk Corp 無線通信モジュール
JP2011009715A (ja) * 2009-05-25 2011-01-13 Denso Corp 半導体装置
US20140070397A1 (en) * 2012-09-13 2014-03-13 Lakshminarayan Viswanathan High power semiconductor package subsystems
WO2014199456A1 (ja) * 2013-06-12 2014-12-18 株式会社メイコー 放熱基板の製造方法
WO2017086095A1 (ja) * 2015-11-17 2017-05-26 株式会社村田製作所 多層基板及び電子機器
US20180190563A1 (en) * 2017-01-03 2018-07-05 Stmicroelectronics S.R.L. Semiconductor device, corresponding circuit and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060523A (ja) * 2001-08-09 2003-02-28 Tdk Corp 無線通信モジュール
JP2011009715A (ja) * 2009-05-25 2011-01-13 Denso Corp 半導体装置
US20140070397A1 (en) * 2012-09-13 2014-03-13 Lakshminarayan Viswanathan High power semiconductor package subsystems
WO2014199456A1 (ja) * 2013-06-12 2014-12-18 株式会社メイコー 放熱基板の製造方法
WO2017086095A1 (ja) * 2015-11-17 2017-05-26 株式会社村田製作所 多層基板及び電子機器
US20180190563A1 (en) * 2017-01-03 2018-07-05 Stmicroelectronics S.R.L. Semiconductor device, corresponding circuit and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185522A1 (ja) * 2021-03-05 2022-09-09 株式会社メイコー 部品内蔵基板、及びその製造方法
JP7161629B1 (ja) * 2021-03-05 2022-10-26 株式会社メイコー 部品内蔵基板、及びその製造方法
WO2023179842A1 (en) * 2022-03-21 2023-09-28 Hitachi Energy Switzerland Ag Power submodule, power module and method for producing a power module

Also Published As

Publication number Publication date
CN114008769A (zh) 2022-02-01
JP6716045B1 (ja) 2020-07-01
JPWO2020250405A1 (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
US20130027896A1 (en) Electronic component embedded printed circuit board and method of manufacturing the same
JP4344753B2 (ja) 回路基板への電子部品実装方法
WO2020250405A1 (ja) 部品内蔵基板、及び部品内蔵基板の製造方法
JP2008103615A (ja) 電子部品搭載多層配線基板及びその製造方法
KR100898451B1 (ko) 회로 기판 제조 방법 및 통신 기기
JP5163806B2 (ja) 部品内蔵モジュールの製造方法及び部品内蔵モジュール
US9345125B2 (en) Wiring substrate
CN111132476A (zh) 双面线路散热基板的制备方法
JP5397012B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP2004055967A (ja) 電子部品内蔵基板の製造方法
US9924590B2 (en) Printed board and electronic apparatus
JP5369875B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP2007305636A (ja) 部品実装モジュール
JP2012209590A (ja) 電子部品搭載多層配線基板及びその製造方法
JP7018967B2 (ja) 放熱基板、及びその製造方法
JP7161629B1 (ja) 部品内蔵基板、及びその製造方法
JP5601413B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP2011091116A (ja) 電子部品搭載用基板の製造方法及び電子部品搭載用基板
JP2011166029A (ja) 配線基板、それを用いた電子装置、及び配線基板の製造方法
JP6839099B2 (ja) 部品内蔵基板及び部品内蔵基板の製造方法
JP6342157B2 (ja) 電気回路基板及び電気回路基板の製造方法
JP2005051012A (ja) 高放熱型プラスチックパッケージ及びその製造方法
JP4364231B2 (ja) 高放熱型プラスチックパッケージ
JP2011199002A (ja) プリント基板及びその製造方法
JP2010034174A (ja) 配線板の製造方法、多面付け配線板素材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019569846

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932324

Country of ref document: EP

Kind code of ref document: A1