WO2020248431A1 - Procédé de préparation d'un panneau d'affichage et panneau d'affichage - Google Patents

Procédé de préparation d'un panneau d'affichage et panneau d'affichage Download PDF

Info

Publication number
WO2020248431A1
WO2020248431A1 PCT/CN2019/107403 CN2019107403W WO2020248431A1 WO 2020248431 A1 WO2020248431 A1 WO 2020248431A1 CN 2019107403 W CN2019107403 W CN 2019107403W WO 2020248431 A1 WO2020248431 A1 WO 2020248431A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
flexible substrate
graphene
manufacturing
panel according
Prior art date
Application number
PCT/CN2019/107403
Other languages
English (en)
Chinese (zh)
Inventor
王一佳
张明
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2020248431A1 publication Critical patent/WO2020248431A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technology, in particular to a method for manufacturing a display panel and a display panel.
  • Display panels such as Organic Light-Emitting Diode (OLED for short), have attracted great attention from academia and industry because of their huge development potential in solid-state lighting and flat panel displays.
  • Flexible OLED displays are a hot development direction in the display industry due to their low power consumption, high resolution, fast response, and flexibility. The thinner the thickness, the greater the market competitiveness.
  • flexible materials such as polyimide (PI) or polyethylene terephthalate (PET) are usually used as substrates, and thin-film crystal diodes (Thin Film transistor, TFT), OLED, thin film encapsulation (TFE), and then continue to prepare polarizers and encapsulation above.
  • the present invention addresses the problems of large thickness of the display panel in the prior art and poor heat dissipation effect, and proposes a method for manufacturing a display panel and a display panel.
  • the present invention provides a method for manufacturing a display panel, the method including:
  • At least a part of the flexible substrate is converted into a graphene flexible substrate having a graphene structure.
  • the peeling off the glass substrate on the flexible substrate includes:
  • the glass substrate on the flexible substrate is peeled off by laser cutting.
  • the converting at least a part of the flexible substrate into a graphene flexible substrate with a graphene structure includes:
  • At least a part of the flexible substrate is converted into a graphene flexible substrate with a graphene structure through a laser induction process.
  • the power of the laser in the laser induction process is between 0.5-3W.
  • the laser component for laser induction of the flexible substrate is carbon dioxide.
  • the material of the flexible substrate is a polymer precursor.
  • the polymer precursor is polyimide or polysulfone.
  • the method further includes: attaching a thermally conductive metal to the back of the graphene flexible substrate for heat dissipation.
  • thermally conductive metal is copper foil.
  • the method further includes: sequentially performing a module process above the packaging layer to protect the display panel.
  • the preparing an encapsulation layer on the flexible substrate includes:
  • a plurality of organic film layers and inorganic film layers are prepared on the flexible substrate.
  • the plurality of organic film layers and inorganic film layers are formed by overlapping inorganic/organic/inorganic multilayer films.
  • the graphene structure in the graphene flexible substrate is a vertical convex structure, so that heat is conducted through a vertical path.
  • the present application also provides a display panel, the display panel including:
  • a flexible substrate, at least a part of the flexible substrate is a graphene flexible substrate with a graphene structure
  • a light-emitting layer located above the array layer
  • the encapsulation layer is located above the light-emitting layer.
  • the display panel further includes a thermally conductive metal located under the graphene flexible substrate and bonded to the graphene flexible substrate.
  • thermally conductive metal is copper foil.
  • the encapsulation layer includes a plurality of organic film layers and inorganic film layers.
  • the material of the flexible substrate is a polymer precursor.
  • the polymer precursor is polyimide or polysulfone.
  • the graphene structure in the graphene flexible substrate is a vertical convex structure, so that heat can be conducted through a vertical path.
  • the present invention provides a method for preparing a display panel and a display panel.
  • the glass substrate in the lower substrate in the existing display panel is peeled off, and at least part of the flexible substrate in the lower substrate is changed into graphite with a graphene structure.
  • the ene flexible substrate quickly dissipates heat from the display panel through the good thermal conductivity of graphene.
  • the graphene flexible substrate replaces the original foam/graphite/copper foil three-in-one heat dissipation structure in the display panel, reducing the thickness of the display panel.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for manufacturing a display panel provided by the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a display panel prepared in step S2 provided by the present invention.
  • FIG. 3 is a flowchart of an embodiment of step S3 provided by the present invention.
  • step S3 is a schematic structural diagram of an embodiment of a display panel prepared in step S3 provided by the present invention.
  • FIG. 5 is a schematic structural view of an embodiment of a display panel after the glass substrate is peeled off according to the present invention
  • FIG. 6 is a schematic structural diagram of an embodiment of converting a flexible substrate provided by the present invention into a graphene substrate
  • FIG. 7 is a schematic diagram of the structure of an embodiment of the display panel after the module process is completed according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of a display panel provided by the present invention.
  • FIG. 1 is a schematic flow chart of an embodiment of the method for manufacturing a display panel provided by the present invention. .
  • the preparation method of the display panel includes:
  • An array layer, a light-emitting layer and an encapsulation layer are sequentially prepared on the flexible substrate.
  • the method for preparing a display panel provided by the present invention peels off the glass substrate in the lower substrate in the existing display panel, and at the same time converts at least a part of the flexible substrate in the lower substrate into a graphene flexible substrate with a graphene structure ,
  • the display panel is quickly dissipated through the good thermal conductivity of graphene, and the graphene flexible substrate replaces the original foam/graphite/copper foil three-in-one heat dissipation structure in the display panel, reducing the thickness of the display panel.
  • FIG. 2 it is a schematic structural diagram of an embodiment of a display panel prepared in step S2 provided by the present invention, in which a flexible substrate 210 is prepared above the glass substrate 110.
  • the flexible substrate is formed on the glass substrate.
  • the material of the flexible substrate is a type of polymer precursor.
  • the polymer precursor may be an organic substance such as polyimide or polysulfone.
  • the method for preparing the flexible substrate may adopt an organic coating method to prepare the flexible substrate.
  • step S3 an array layer, a light emitting layer, and an encapsulation layer are sequentially prepared on the flexible substrate.
  • Can include:
  • preparing the array layer 310 on the flexible substrate may include preparing a buffer layer, a TFT layer, a planarization layer, an anode, and a pixel definition layer on the flexible substrate.
  • preparing the light-emitting layer 320 on the array layer may include preparing a hole injection/transport layer, a light-emitting layer, an electron transport/injection layer, and a cathode on the array layer.
  • preparing the encapsulation layer 330 on the light-emitting layer 320 may include preparing a plurality of organic film layers and inorganic film layers on the light-emitting layer to encapsulate the display panel.
  • the plurality of organic film layers and inorganic film layers may be formed by overlapping inorganic/organic/inorganic multilayer films.
  • the specific method for preparing the array layer 310, the light emitting layer 320 and the encapsulation layer 330 can refer to the prior art, which is not limited here.
  • FIG. 4 it is a schematic structural diagram of an embodiment of a display panel prepared in step S3 provided by the present invention, in which the array layer 310, the light emitting layer 320 and the encapsulation layer 330 are sequentially prepared on the flexible substrate 210.
  • the glass substrate on the flexible substrate of the glass in step S4 may include: laser-stripping the glass substrate to separate the glass substrate from the flexible substrate.
  • step S5 transforming the flexible substrate into a graphene flexible substrate having a graphene structure includes:
  • Laser induction is performed on the flexible substrate 210 after laser ablation, so as to convert at least a portion of the flexible substrate 210 after laser ablation into a graphene flexible substrate having a graphene structure.
  • the original glass substrate 110 is peeled off.
  • the flexible substrate 210 is laser-induced, so that a part of the flexible substrate 210 is laser-induced Under the action of, it transforms into a graphene flexible substrate with a graphene structure.
  • laser induction is performed on the flexible substrate 210 after laser lift-off, and the entire flexible substrate 210 can also be transformed into a graphene flexible substrate with a graphene structure.
  • the laser component of the laser-induced laser-stripped flexible substrate may be carbon dioxide, and the laser-induced process needs to be performed in an atmospheric environment or an argon environment.
  • the laser-induced laser power is between 0.5-3W.
  • the laser-induced laser power can be 0.5W, 1W, 3W, etc.
  • the flexible substrate 210 is transformed into a flexible substrate 220 with a graphene structure, and the graphene structure is a vertical convex structure, so that the heat generated by the display panel can be reduced. Diffusing out along the vertical convex structure shortens the heat dissipation path, so that heat can be dissipated faster, and the heat dissipation effect is improved.
  • the manufacturing method of the display panel may further include: sequentially performing a module process on the packaging layer to protect the display panel.
  • FIG. 7 it is a schematic diagram of the structure of an embodiment of the display panel after the module process is completed according to the present invention.
  • the sequential module process on the packaging layer may include: preparing an optical glue 410 on the packaging layer 330; preparing a touch module 420 on the optical glue 410; preparing a polarizer 430 on the touch module 420 ; Prepare a cover plate 440 on the polarizer 430.
  • the method for manufacturing the display panel may further include: laminating the metal layer 510 on the back of the graphene flexible substrate formed after laser induction to perform faster heat dissipation.
  • the metal layer may be a copper foil. Since metal copper has good heat dissipation characteristics, it can better dissipate heat to the display panel.
  • the present invention also provides a display panel. As shown in FIG. 8, it is a schematic structural diagram of an embodiment of the display panel provided by the present invention.
  • the display panel may include:
  • the array layer 320 is located above the graphene flexible substrate 220;
  • the light-emitting layer 330 is located above the array layer 320;
  • the encapsulation layer 340 is located above the light-emitting layer 330.
  • the display panel provided by the present invention peels off the glass substrate in the lower substrate in the existing display panel, and at the same time transforms at least a part of the flexible substrate in the lower substrate into a graphene flexible substrate with a graphene structure.
  • the good thermal conductivity of ene quickly dissipates the heat of the display panel, and the graphene flexible substrate replaces the original foam/graphite/copper foil three-in-one heat dissipation structure in the display panel, reducing the thickness of the display panel.
  • the array layer 310 may include: a buffer layer, a TFT layer, a planarization layer, an anode, and a pixel definition layer.
  • the light-emitting layer 320 may include: a hole injection/transport layer, a light-emitting layer, an electron transport/injection layer, and a cathode.
  • the encapsulation layer 330 may include a plurality of organic film layers and inorganic film layers to encapsulate the display panel.
  • the plurality of organic film layers and inorganic film layers may be formed by overlapping inorganic/organic/inorganic multilayer films.
  • the display panel may further include: an optical glue 410, a touch module 420, a polarizer 430, and a cover plate 440 which are sequentially prepared above the encapsulation layer 330.
  • the display panel may further include a metal layer 510 located on the lower surface of the graphene flexible substrate 310 and attached to the back of the graphene flexible substrate 310.
  • the heat conduction of metal dissipates the heat.
  • the metal layer may be a copper foil. Since metal copper has good heat dissipation characteristics, it can better dissipate heat to the display panel.
  • a display panel including the above-mentioned manufacturing method of the display panel.
  • the working principle of the display panel provided in this embodiment is consistent with the working principle of the foregoing embodiment of the manufacturing method of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

L'invention concerne un procédé de préparation d'un panneau d'affichage et un panneau d'affichage. Le procédé comprend les étapes consistant à : décaper un substrat de verre (110) dans un substrat inférieur d'un panneau d'affichage existant ; et convertir au moins une partie d'un substrat flexible (210) dans le substrat inférieur en un substrat flexible de graphène (220) à structure de graphène. Un panneau d'affichage peut être soumis à une dissipation thermique rapide au moyen des bonnes performances de conduction de chaleur du graphène, et la structure de dissipation de chaleur trois-en-un de la feuille d'origine de cuivre/graphite/mousse est remplacée par un substrat flexible en graphène, de telle sorte que l'épaisseur du panneau d'affichage est réduite.
PCT/CN2019/107403 2019-06-14 2019-09-24 Procédé de préparation d'un panneau d'affichage et panneau d'affichage WO2020248431A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910513113.4A CN110246880B (zh) 2019-06-14 2019-06-14 显示面板的制备方法及显示面板
CN201910513113.4 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020248431A1 true WO2020248431A1 (fr) 2020-12-17

Family

ID=67886995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107403 WO2020248431A1 (fr) 2019-06-14 2019-09-24 Procédé de préparation d'un panneau d'affichage et panneau d'affichage

Country Status (2)

Country Link
CN (1) CN110246880B (fr)
WO (1) WO2020248431A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246880B (zh) * 2019-06-14 2022-01-25 武汉华星光电半导体显示技术有限公司 显示面板的制备方法及显示面板
CN111029380A (zh) * 2019-12-06 2020-04-17 武汉华星光电半导体显示技术有限公司 显示装置
CN111194461B (zh) * 2019-12-19 2021-11-23 重庆康佳光电技术研究院有限公司 一种显示面板及其制备方法、显示器
CN114300635A (zh) * 2021-12-27 2022-04-08 深圳市华星光电半导体显示技术有限公司 显示装置及其制备方法
CN114627768B (zh) * 2022-04-06 2024-03-15 深圳市华星光电半导体显示技术有限公司 柔性oled显示模组及制作方法、终端设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204144262U (zh) * 2014-10-29 2015-02-04 昆山工研院新型平板显示技术中心有限公司 一种散热性良好的柔性显示器
CN204315558U (zh) * 2015-01-05 2015-05-06 昆山工研院新型平板显示技术中心有限公司 具有散热性能的显示装置
CN106098939A (zh) * 2016-08-26 2016-11-09 武汉华星光电技术有限公司 激光无损剥离柔性基板的方法
CN106232520A (zh) * 2014-02-17 2016-12-14 威廉马歇莱思大学 激光诱导的石墨烯材料和它们在电子装置中的用途
CN106356472A (zh) * 2016-10-18 2017-01-25 武汉华星光电技术有限公司 Oled器件制作方法及oled器件
CN206740283U (zh) * 2017-04-21 2017-12-12 清华大学深圳研究生院 压力敏感层、压阻式压力传感器及压阻式压力传感阵列
CN107739027A (zh) * 2017-10-27 2018-02-27 清华大学深圳研究生院 一种连续制备多孔石墨烯薄膜的方法及装置
US20180199441A1 (en) * 2017-01-10 2018-07-12 Bgt Materials Limited Method of manufacturing polymer printed circuit board
CN109817674A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 一种背板及其显示面板
CN110246880A (zh) * 2019-06-14 2019-09-17 武汉华星光电半导体显示技术有限公司 显示面板的制备方法及显示面板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232520A (zh) * 2014-02-17 2016-12-14 威廉马歇莱思大学 激光诱导的石墨烯材料和它们在电子装置中的用途
CN204144262U (zh) * 2014-10-29 2015-02-04 昆山工研院新型平板显示技术中心有限公司 一种散热性良好的柔性显示器
CN204315558U (zh) * 2015-01-05 2015-05-06 昆山工研院新型平板显示技术中心有限公司 具有散热性能的显示装置
CN106098939A (zh) * 2016-08-26 2016-11-09 武汉华星光电技术有限公司 激光无损剥离柔性基板的方法
CN106356472A (zh) * 2016-10-18 2017-01-25 武汉华星光电技术有限公司 Oled器件制作方法及oled器件
US20180199441A1 (en) * 2017-01-10 2018-07-12 Bgt Materials Limited Method of manufacturing polymer printed circuit board
CN206740283U (zh) * 2017-04-21 2017-12-12 清华大学深圳研究生院 压力敏感层、压阻式压力传感器及压阻式压力传感阵列
CN107739027A (zh) * 2017-10-27 2018-02-27 清华大学深圳研究生院 一种连续制备多孔石墨烯薄膜的方法及装置
CN109817674A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 一种背板及其显示面板
CN110246880A (zh) * 2019-06-14 2019-09-17 武汉华星光电半导体显示技术有限公司 显示面板的制备方法及显示面板

Also Published As

Publication number Publication date
CN110246880A (zh) 2019-09-17
CN110246880B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2020248431A1 (fr) Procédé de préparation d'un panneau d'affichage et panneau d'affichage
US10103358B2 (en) OLED substrate and producing method thereof, panel, and display apparatus
RU2671935C1 (ru) Матричная подложка и способ ее производства, гибкая панель отображения и устройство отображения
CN104465479B (zh) 柔性显示基板母板及柔性显示基板的制备方法
US9508933B2 (en) Organic light-emitting diode (OLED) device, manufacturing method thereof and display device
US20210408174A1 (en) Display substrates, display panels, and display devices
US20200075882A1 (en) Display substrate and method for preparing the same, and display device
WO2020155384A1 (fr) Structure empilée de modules à oled flexibles et son procédé de préparation
US20180138257A1 (en) Display device and method of manufacturing the same
WO2019100410A1 (fr) Procédé de préparation d'un panneau d'affichage à delo souple
WO2018152894A1 (fr) Affichage à diode électroluminescente et son procédé de fabrication
CN104409663A (zh) 封装方法、封装结构及显示装置
WO2021035835A1 (fr) Procédé de fabrication de panneau d'affichage oled souple, et panneau d'affichage oled souple
US20140097417A1 (en) Flexible display and method for manufacturing the same
JP2021504786A (ja) タッチディスプレイパネル、フレキシブルディスプレイ装置、及びタッチディスプレイパネルを製造する方法
WO2019080160A1 (fr) Procédé de préparation de substrat flexible et substrat flexible
WO2019037652A1 (fr) Panneau d'affichage et son procédé de fabrication
WO2020124805A1 (fr) Écran d'affichage et appareil d'affichage
WO2019014994A1 (fr) Film durci et procédé de préparation associé, et dispositif d'affichage amoled flexible
WO2020232945A1 (fr) Écran d'affichage et dispositif électronique
US20210360827A1 (en) Heat dissipation structure for display panel, and manufacturing method and application thereof
JP2015158672A (ja) アクティブマトリクス有機発光ダイオードパネル及びその実装方法
US20200183206A1 (en) Display device and manufacturing method thereof
WO2019237506A1 (fr) Substrat de diode électroluminescente organique et procédé de préparation associé
WO2020191859A1 (fr) Panneau d'affichage à diodes électroluminescentes organiques, module d'affichage, et dispositif électronique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932485

Country of ref document: EP

Kind code of ref document: A1