WO2020248310A1 - 深部调驱用聚合物单分散纳-微球及制备方法 - Google Patents

深部调驱用聚合物单分散纳-微球及制备方法 Download PDF

Info

Publication number
WO2020248310A1
WO2020248310A1 PCT/CN2019/094595 CN2019094595W WO2020248310A1 WO 2020248310 A1 WO2020248310 A1 WO 2020248310A1 CN 2019094595 W CN2019094595 W CN 2019094595W WO 2020248310 A1 WO2020248310 A1 WO 2020248310A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
monodisperse nano
macromolecule
water
macromolecules
Prior art date
Application number
PCT/CN2019/094595
Other languages
English (en)
French (fr)
Inventor
刘锐
蒲万芬
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to US16/764,559 priority Critical patent/US11225597B2/en
Publication of WO2020248310A1 publication Critical patent/WO2020248310A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/10Complex coacervation, i.e. interaction of oppositely charged particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5086Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Definitions

  • the invention relates to polymer monodisperse nano-microspheres for deep profile control and flooding and a preparation method thereof, belonging to the fields of colloid and interface chemistry and oil field chemistry.
  • Control and flooding systems include foam, weak gel, gel dispersion gel, colloidal dispersion gel, pre-crosslinked particles and microspheres (Xiong C, Tang X. Technologies of water shut-off and profile control: An overview[J ]. Shiyou Kantan Yu Kaifa (Petroleum Exploration and Development), 2007, 34(1): 83-88). In the early 1980s, Okubo proposed the concept of “particle design”. Polymer microspheres are polymer particles with a spherical shape and a particle size ranging from tens of nanometers to hundreds of microns. Polymer microspheres have high permeability and Liquidity. Polymer microspheres on the surface of different functional groups can be applied in practice through controlled polymerization.
  • polymer microspheres have high designability, temperature and salt resistance, intelligent responsiveness and fluidity control performance. Deep profile control and flooding in reservoirs has broad application prospects.
  • Polymer microspheres mainly use small-sized emulsion droplets as microreactors, and are prepared by inverse emulsion polymerization (Lin Lili, Zheng Xiaoyu, Liu Kecheng, et al. Preparation of cross-linked polymer microspheres for deep control and flooding by dispersion polymerization[J] .Oilfield Chemistry, 2014, 3:011).
  • Some scholars have synthesized a kind of copolymer microspheres (PAMAS) that can swell in contact with water by using the inverse emulsion method and using emulsifiers.
  • PAMAS copolymer microspheres
  • microspheres have good mobility and greatly improve the harvest efficiency (Ma Guoyan, Shen Yiding, Gao Ruimin, etc. Research on the application performance of nano-micron acrylamide microsphere profile control agent[J]. Modern Engineering,2016,36(12):94-96).
  • microspheres have good adsorption properties when treating oil field wastewater, which proves the high efficiency of microspheres in adsorbing oil in wastewater (Dai Shanshan, Chen Zhencong, Huang Zhiyu.Synthesis of a cross-linked core-shell microsphere and its structure and properties[J].Applied Chemical Industry,2017,46(11):2094-2098).
  • Chen Hong and others successfully prepared methyl methyl ester (MMA)/styrene (St) copolymer microspheres by using microfluidic method and photoinitiator. This technology can control the content of emulsifier in the reaction, and then affect the water molecules in the oil.
  • Polymer microspheres are nano-micro-scale dispersions formed by ground polymerization and cross-linking.
  • initiators, cross-linking agents, a large amount of emulsifiers, oil phase or organic solvents are required, and the cost is high, and the preparation conditions are relatively harsh. . Therefore, how to realize the low-carbon, green, energy-saving, simple and efficient preparation of polymer microspheres and realize deep processing is a major challenge for microsphere control and flooding.
  • the purpose of the present invention is to provide polymer monodisperse nano-microspheres for deep profile control and flooding.
  • the monodisperse nano--microspheres have good percolation in porous media and excellent deep profile control and flooding capabilities, which can greatly improve the sweep efficiency and significantly improve the profile.
  • the recovery factor of water-bearing oilfields effectively drives the efficient development of water-flooding oil reservoirs. Its raw materials are cheap and easy to obtain, and it has broad industrial application prospects.
  • Another object of the present invention is to provide a method for preparing the polymer monodisperse nano-microspheres for deep control and flooding.
  • the method is reliable in principle, simple and easy to implement, efficient and fast, and does not require any initiator, crosslinking agent, emulsifier
  • the advantages of environmental protection, energy saving and emission reduction are obvious. It can realize the deep profile control and flooding of oil reservoirs.
  • the application prospect is very broad and the economic benefits are very prominent.
  • the present invention adopts the following technical solutions.
  • the present invention is based on supramolecular theory.
  • the linear water-soluble polymer of ethyl ether or propyl ether structure (referred to as type A macromolecule) is used as hydrogen acceptor, and the water-soluble polymer of polyhydroxyl or polyphenol-based structure (referred to as Class B macromolecules) are hydrogen donors.
  • the aqueous solutions of Class A macromolecules and Class B macromolecules have a strong supramolecular hydrogen bond effect momentarily during the mixing process. Driven by the strong hydrogen bonds, Class A macromolecules and Class B macromolecules undergo intermolecular assembly to rapidly build monodisperse nano-microsphere dispersions with controllable scale.
  • Polymer monodisperse nano-microspheres for deep profile control and flooding are composed of the following components by weight percentage:
  • Type B macromolecules 0.05 ⁇ 2.5%
  • the rest is mineralized water.
  • the type A macromolecule is a linear water-soluble polymer with an ethyl ether or propyl ether structure.
  • the type A macromolecules are polypropylene glycol, fatty alcohol polyoxyethylene ether, methallyl alcohol polyoxyethylene ether, and allyl alcohol polyoxyethylene ether.
  • the molecular structural formula of the polypropylene glycol is:
  • the type B macromolecules are water-soluble polymers with polyhydroxyl or polyphenol-based structures.
  • the type B macromolecules are carboxymethyl- ⁇ -cyclodextrin, tannin extract, and tea polyphenols.
  • the molecular structural formula of the tannin extract is:
  • the molecular structural formula of the tea polyphenols is:
  • the oxygen scavenger is thiourea.
  • the preparation method of the polymer monodisperse nano-microspheres for deep profile control and flooding includes the following steps in sequence:
  • the polymer monodisperse nano-microspheres for deep control and flooding are driven by the extremely strong supramolecular hydrogen bond effect during the mixing (contact) process of an aqueous solution of type A macromolecules and an aqueous solution of type B macromolecules.
  • the monodisperse nano-microspheres involve 4 types of macromolecules of type A, 3 types of type B macromolecules, type A macromolecules and type B macromolecules intermolecular assembly, so there are 12 types of monodisperse nano-microsphere molecules Structure, the present invention aims to give an exemplary structure.
  • R1 is —(CH 2 CH 2 CH 2 O) a H.
  • R3 is —(CH 2 CH 2 O) b (CH 2 ) d CH 3 .
  • the type A macromolecule is preferably 0.5%
  • the type B macromolecule is preferably 0.5%
  • the oxygen scavenger is preferably 0.01%
  • the rest is mineralized water.
  • the construction mechanism of monodisperse nano-microspheres is as follows: 1A and B macromolecules are water-soluble macromolecules, A macromolecules are hydrogen acceptors, B macromolecules are hydrogen donors, and A and B macromolecules are each other. Macromolecules coordinated by hydrogen bonds have a strong hydrogen bonding effect; 2A and B type macromolecules are in contact with each other in the aqueous solution, A and B have a strong supramolecular hydrogen bonding effect, and the hydrogen bond drives A and B types Macromolecules assemble and quickly form nano-microspheres; 3The size (particle size) of nano-microspheres is mainly controlled by the type and molecular weight of type A macromolecules and the type of type B macromolecules. Choose the type of type A macromolecules, The molecular weight and the type of B macromolecule can realize the dimensional control of monodisperse nano-microspheres.
  • the control and displacement mechanism of monodisperse nano-microspheres is as follows: the viscosity of monodisperse nano-microspheres is slightly higher than that of mineralized water. It has good seepage in porous media and preferentially enters high permeability areas. Under reservoir conditions (temperature, mineral It expands slowly under the low temperature), significantly improves the fluid absorption profile of the formation, realizes deep intelligent control and flooding, and greatly improves the oil recovery.
  • the present invention has the following beneficial effects:
  • Class B macromolecules are natural organic polymers with abundant sources, low prices, and environmental protection
  • a and B macromolecules are directly dissolved in mineralized water, and the dissolution time is less than 30min;
  • a and B macromolecular aqueous solutions form kinetic and thermodynamically stable monodisperse nano-microspheres at the moment of mixing (contact), without any initiator, emulsifier, crosslinking agent, stirring, heating device and reaction Equipment; the whole process has no by-products, it is efficient and fast, green and environmentally friendly, and has obvious advantages in energy saving and emission reduction;
  • Monodisperse nano-microspheres are suitable for oil reservoirs with a temperature of up to 120°C and a water salinity of up to 20 ⁇ 10 4 mg/L, covering a wide range of oil reservoirs, enabling deep control and flooding of oil reservoirs , Significantly extend the validity period and greatly improve the spread efficiency.
  • Figure 1 is a thermogravimetric decomposition diagram of monodisperse nano-microspheres.
  • Figure 2 is a microscopic view of the dried state of monodisperse nano-microspheres.
  • Figure 3 is a microscopic view of the hydration state of monodisperse nano-microspheres.
  • Figure 4 is a microscopic view of monodisperse nano-microspheres after aging.
  • Figure 5 shows the effect of monodisperse nano-microsphere control flooding.
  • the preparation of monodisperse nano-microspheres includes the following steps:
  • Example 1 Structural characterization of monodisperse nano-microspheres
  • thermogravimetric analyzer was used to characterize the structure of monodisperse nano-microspheres.
  • Figure 1 shows the thermogravimetric decomposition curve of 1&. It can be found that the thermogravimetric decomposition temperature of nano-microspheres constructed by the super strong hydrogen bond between A and B is significantly higher than that of type A and type B macromolecules. It proves that monodisperse nano-microspheres are not a simple physical mixture of type A macromolecules and type B macromolecules, but form a more thermodynamically stable structure through the super-strong hydrogen bonding effect.
  • deionized water No. 1# prepared salinity is 0.1 ⁇ 10 4 mg/L No. 2#, 5 ⁇ 10 4 mg/L No. 3#, 10 ⁇ 10 4 mg/L No. 4#, 20 ⁇ 10 4 mg/L No. 5# mineralized water (the concentration of Ca 2+ and Mg 2+ in 2# ⁇ 5# is 5% of the total salinity), stir for 30min; mix 99.49% of mineralized water (deionized water) Add 0.01% thiourea and stir for 5 min. Take two parts of deionized water number 1#-1, 1#-2, and two parts of mineralized water 2#-1, 2#-2, 3#-1, 3#-2, 4#- 1.
  • a transmission electron microscope was used to test the particle size of the dried nano-microspheres.
  • the dried nano-microspheres were in a monodisperse state with a particle size distribution of 200nm ⁇ 3.0 ⁇ m; 1* nano-microspheres are shown in Figure 2.
  • the particle size of the nano-microspheres is about 300nm.
  • the microscopic morphology and particle size of the (mineralized) hydrated nano-microspheres are analyzed by optical microscope.
  • the (mineralized) hydrated nano-microspheres are uniformly dispersed in the water phase without coalescence, (mineralized) )
  • the median particle size of the hydrated nano-microspheres is 500nm ⁇ 5.0 ⁇ m; the particle size test of the 5* nano-microspheres in the hydrated state is shown in Figure 3, and the median particle size is about 1.5 ⁇ m.
  • monodisperse nano-microspheres 2*, 3*, 4*, 5* prepared in Example 2 they were placed at 40°C, 80°C, 60°C, and 120°C, respectively, and aged for 90 days.
  • the monodisperse after aging was observed by optical microscope
  • the structure and morphology of nano-microspheres, monodisperse nano-microspheres still maintain a stable structure, showing long-term stability in the environment of reservoir temperature and salinity.
  • the micro morphology of 2* monodisperse nano-microspheres aged at 80°C for 90d is shown in Figure 4.
  • Monodisperse nano-microspheres expand during the aging process, the spherical structure is regular, and the median particle size is about 2.0 ⁇ m. Temperature and salt resistance.
  • the nano-microspheres were passed through 5 layers of 100-mesh sieve at an injection speed of 0.2ml/min using a displacement device. Since monodisperse nano-microspheres are stacked on the screen after overlapping, when the injection pressure reaches a certain value, due to the good elasticity of monodisperse nano-microspheres, when the injection pressure reaches a certain value, monodisperse nano-microspheres The ball begins to pass through the multi-layer screen, and the corresponding pressure at this time is called the steering pressure. The turning pressure of monodisperse nano-microspheres is shown in Table 1.
  • the turning pressure of monodisperse nano-microspheres is 100 ⁇ 200kPa, and the turning pressure is closely related to the particle size, indicating that different particle sizes can be selected according to the permeability and heterogeneity of the high permeability region of the reservoir in field applications Monodisperse nano-microspheres.
  • the monodisperse nano-microspheres repeatedly passed through 5 layers of 100 mesh screens three times, and the turning pressure was basically the same, indicating that the monodisperse nano-microspheres have super anti-shear performance, can effectively control the high permeability area, and promote the direction of liquid flow. , Enlarge the follow-up fluid sweep coefficient and improve the development effect.
  • Example 2 Take the 5*monodisperse nano-microspheres prepared in Example 2 for use; 1 artificial double-layer heterogeneous core (45 ⁇ 45 ⁇ 300mm long core, gas permeability of 100mD/500mD) , The average porosity is 21.6%, the original oil saturation is 60.3%; the salinity of the injected water is 20 ⁇ 10 4 mg/L, in which the concentration of Ca 2+ and Mg 2+ is 5% of the total salinity), the experiment temperature is 80°C , The crude oil viscosity is 50.2mPa ⁇ s, and the fixed displacement rate is 1.0mL/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

深部调驱用聚合物单分散纳-微球,由以下组分按重量百分比组成:A类大分子0.05~2.5%,B类大分子0.05~2.5%,除氧剂0.002~0.05%,其余为矿化水;所述A类大分子为乙基醚或者丙基醚结构的直链水溶性聚合物;所述B类大分子为多羟基或者多酚基结构的水溶性聚合物。A类大分子和B类大分子的水溶液在混合过程中瞬间发生极强的超分子氢键效应,在极强氢键的驱动下,A类大分子与B类大分子发生分子间组装,迅速构建尺度可控的单分散纳-微球性分散胶。所述单分散纳-微球在多孔介质中渗流良好、深部调驱能力优异,其制备方法简单易行,高效快捷,绿色环保,不需要任何引发剂、交联剂、乳化剂、油相及辅助装置,具有广阔的工业化应用前景。

Description

深部调驱用聚合物单分散纳-微球及制备方法 技术领域
本发明涉及深部调驱用聚合物单分散纳-微球及制备方法,属胶体与界面化学和油田化学领域。
背景技术
经过天然能量开采后,绝大部分油藏进入水驱阶段,可以说注水开发是当前和未来很长一段时间油田开发的主体技术。注水开发过程中,受地层非均质性的影响,剖面和平面矛盾突出,注入水沿高渗条带推进,水驱波及程度低,稳产难度大。为此,在注入井中注入化学体系对储层进行调驱,促使液流转向是扩大注入水波及系数、提高原油采收率的关键。
常用的调驱体系有泡沫、弱凝胶、冻胶分散胶、胶态分散胶、预交联颗粒和微球(Xiong C,Tang X.Technologies of water shut-off and profile control:An overview[J].Shiyou Kantan Yu Kaifa(Petroleum Exploration and Development),2007,34(1):83-88)。20世纪80年代初,Okubo提出“粒子设计”的概念,聚合物微球是具有圆球形且粒径在数十纳到数百微米范围的聚合物粒子,聚合物微球具有高的渗透性和可流动性。不同功能性基团表面的聚合物微球能够通过可控的聚合在实际中应用体现,故聚合物微球具有高度可设计性、耐温抗盐性、智能响应性和流度调控性能,在油藏深部调驱具有广阔的应用前景。聚合物微球主要用小尺寸的乳液滴为微反应器,采用反相乳液聚合法制备(林莉莉,郑晓宇,刘可成,等.分散聚合法制备深部调驱用交联聚合物微球[J].油田化学,2014,3:011)。也有学者用反相乳液法利用乳化剂合成了一种可以遇水膨胀的共聚物微球(PAMAS),该微球的移动效果好,大大提升了采收效率(马国艳,沈一丁,高瑞民,等.纳微米级丙烯酰胺微球调剖剂的应用性能研究[J].现代化工,2016,36(12):94-96)。
聚合物微球调剖堵水的应用技术是最近几年来来发展起来的一种新型技术,杨长春等人利用聚合物微球对油藏进行深部的调剖堵水(杨长春,岳湘安,周代余,等.耐温耐盐聚合物微球性能评价[J].油田化学,2016,33(02):254-260)。戴姗姗等人用反相乳液法制作出了交联核壳微球,该微球在处理油田废水时有良好的吸附性,证明了微球吸附废水中油的高效性(戴姗姗,陈镇聪,黄志宇.一种交联核壳微球的合成及其结构与性能的研究[J].应用化工,2017,46(11):2094-2098)。陈红等人用微流控法与光引发剂成功制备了甲甲酯(MMA)/苯乙烯(St)共聚微球,该技术可以通过控制反应中乳化剂的含量,进而影响水分子在油相中的传质, 最终达到对微球的微观控制(陈红,徐菊美,赵世成,等.微流控法制备PLGA微球及其性能研究[J].现代化工,2018,38(01):129-132)。王媛媛等人用微流控法制作微球,通过调节连续相/分散相的流速以及表面活性剂的比例,有效控制微球的微观大小、孔结构,同时改变环境的温度、pH也能对微球的体积大小产生影响(王媛媛,邱益生,马敬红,等.微流控法制备P(NIPA-co-MAA)水凝胶微球及其性能表征[J].东华大学学报(自然科学版),2018,44(01):93-99)。Choi等采用表面点击活性可控自由基聚合法制备了两亲聚合物分子链改性的纳米二氧化硅纳球,该纳球在多孔介质中有良好的运移性能和非均质性调控性能,有效提高水驱后原油的采收率(Choi S K,Son H A,Kim H T,et al.Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles[J].Energy&Fuels,2017,31(8):7777-7782)。
聚合物微球是地面聚合-交联形成的纳-微尺度分散体,除聚合单体外,需要引发剂、交联剂和大量乳化剂、油相或有机溶剂,成本高,制备条件比较苛刻。因此,如何实现聚合物微球低碳、绿色、节能、简单、高效的制备,并实现深部处理是微球调驱面临的重大挑战。
发明内容
本发明的目的在于提供深部调驱用聚合物单分散纳-微球,所述单分散纳-微球在多孔介质中渗流良好、深部调驱能力优异,可大幅度提高波及效率,显著提高高含水油田的采收率,有效驱动水驱油藏的高效开发,其原材料价廉易得,具有广阔的工业化应用前景。
本发明的另一目的还在于提供所述深部调驱用聚合物单分散纳-微球的制备方法,该方法原理可靠,简单易行,高效快捷,不需要任何引发剂、交联剂、乳化剂、油相及辅助装置,绿色环保,节能减排优势十分明显,能够实现油藏的深部调驱,应用前景非常广阔,经济效益十分突出。
为达到以上技术目的,本发明采用以下技术方案。
本发明基于超分子理论,以乙基醚或者丙基醚结构的直链水溶性聚合物(简称A类大分子)为氢受体,以多羟基或者多酚基结构的水溶性聚合物(简称B类大分子)为氢供体,A类大分子和B类大分子的水溶液在混合过程中瞬间发生极强的超分子氢键效应,在极强氢键的驱动下,A类大分子与B类大分子发生分子间组装,迅速构建尺度可控的单分散纳-微球性分散胶。
深部调驱用聚合物单分散纳-微球,由以下组分按重量百分比组成:
A类大分子   0.05~2.5%;
B类大分子   0.05~2.5%;
除氧剂   0.002~0.05%;
其余为矿化水。
所述A类大分子为乙基醚或者丙基醚结构的直链水溶性聚合物。
所述A类大分子为聚丙二醇、脂肪醇聚氧乙烯醚、甲基烯丙醇聚氧乙烯醚、烯丙醇聚氧乙烯醚。
所述的聚丙二醇的分子结构式为:
Figure PCTCN2019094595-appb-000001
其中,x为聚合度
所述的脂肪醇聚氧乙烯醚、甲基烯丙醇聚氧乙烯醚、烯丙醇聚氧乙烯醚的分子结构式为:
Figure PCTCN2019094595-appb-000002
其中R为烷基链—(CH 2) n CH 3(脂肪醇聚氧乙烯醚)、—CH=CHCH 3(甲基烯丙醇聚氧乙烯醚)或者—CH=CH 2(烯丙醇聚氧乙烯醚);n为聚合度。
所述B类大分子为多羟基或者多酚基结构的水溶性聚合物。
所述B类大分子为羧甲基-β-环糊精、栲胶、茶多酚。
所述的羧甲基-β-环糊精的分子结构式为:
Figure PCTCN2019094595-appb-000003
所述的栲胶的分子结构式为:
Figure PCTCN2019094595-appb-000004
所述的茶多酚的分子结构式为:
Figure PCTCN2019094595-appb-000005
所述的除氧剂为硫脲。
所述深部调驱用聚合物单分散纳-微球的制备方法,依次包括以下步骤:
(1)将矿化水加入一定量的除氧剂搅拌溶解10~20min,然后均分成两份;
(2)一份矿化水加入一定质量浓度的A类大分子,室温搅拌溶解10~30min;
(3)一份矿化水加入一定质量浓度的B类大分子,室温搅拌溶解10~30min;
(4)将A类大分子溶液和B类大分子溶液混合,两类水溶性聚合物通过氢键驱动构建,
得到单分散纳-微球。
所述深部调驱用聚合物单分散纳-微球,是由A类大分子水溶液和B类大分子水溶液在混合(接触)的过程中,受极强超分子氢键效应的驱动,发生分子间的组装构建的单分散纳-微尺度的球形分散胶。所述单分散纳-微球涉及4类A类大分子,3类B类大分子,A类大分子和B类大分子发生分子间的组装,因此有12种单分散纳-微球的分子结构,本发明旨在给出示范结构。
①聚丙二醇与茶多酚构建的单分散纳-微球的结构为:
Figure PCTCN2019094595-appb-000006
其中,R1为—(CH 2CH 2CH 2O) a H。
②烯丙醇聚氧乙烯醚与羧甲基-β-环糊精构建的单分散纳-微球的结构为:
Figure PCTCN2019094595-appb-000007
其中,R2为—(CH 2CH 2O) b(CH 2) dCH=CH 2
③脂肪醇聚氧乙烯醚与栲胶构建的单分散纳-微球的结构为:
Figure PCTCN2019094595-appb-000008
其中,R3为—(CH 2CH 2O) b(CH 2) dCH 3
上述物质均为市售。
所述单分散纳-微球,以重量百分比计,所述A类大分子优选为0.5%,所述B类大分子优选为0.5%,所述除氧剂优选为0.01%,其余为矿化水。
单分散纳-微球的构建机理为:①A、B类大分子是水溶性大分子,A类大分子为氢受体,B类大分子为氢供体,A、B类大分子是互为氢键配位的大分子,有极强的氢键效应;②A、B类大分子在水溶液相互接触的过程中,A与B发生极强的超分子氢键效应,氢键驱动A、B类大分子发生组装,迅速形成纳-微球;③纳-微球的尺度(粒径)主要受A类大分子的类型和分子量及B类大分子的类型控制,选择A类大分子的类型、分子量及B类大分子的类型即可实现单分散纳-微球的尺度控制。
单分散纳-微球的调驱机理为:单分散纳-微球的黏度比矿化水黏度略高,在多孔介质中渗流良好,并优先进入高渗区域,在油藏条件(温度、矿化度)下缓慢膨胀,显著改善地层的吸液剖面,实现深部智能调驱,大幅度提高原油的采收率。
与现有技术相比,本发明具有以下有益效果:
(1)A类大分子价格低廉,原材料丰富;
(2)B类大分子为天然有机高分子,来源丰富,价格低廉,绿色环保;
(3)A、B类大分子,直接用矿化水溶解,并且溶解时间小于30min;
(4)A、B类大分子水溶液在混合(接触)的瞬间形成动力学和热力学稳定的单分散纳-微球,不需要任何引发剂、乳化剂和交联剂及搅拌、加热装置和反应设备;整个过程没有任何副产物生成,高效快捷,绿色环保,节能减排优势十分明显;
(5)单分散纳-微球的粒径可控性强、简单易行;
(6)单分散纳-微球适用于温度最高达120℃,水矿化度最高达20×10 4mg/L的油藏,覆盖油藏的范围十分宽广,能够实现油藏的深部调驱,显著延长有效期和大幅度提高波及效率。
附图说明
图1为单分散纳-微球的热重分解图。
图2为单分散纳-微球干化状态的微观图。
图3为单分散纳-微球水化状态的微观图。
图4为单分散纳-微球老化后的微观图。
图5为单分散纳-微球调驱效果图。
具体实施方式
下面根据附图和实例进一步说明本发明,以便于本技术领域的技术人员理解本发明。但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,均在保护之列。
单分散纳-微球的制备,包括如下步骤:
按重量百分比计,配制矿化度为0~20×10 4mg/L的矿化水(去离子水),搅拌10~60min,将99.49%的矿化水(去离子水)加入0.01%的硫脲,搅拌5~10min;把所配制的矿化水分为两份,一份加入0.5%的A类大分子,另外一份加入0.5%的B类高分子,搅拌10min~30min,确保A、B类大分子充分溶解,将A、B类大分子溶液混合即得到单分散纳-微球。
实施例1单分散纳-微球的结构表征
取两份质量相同的去离子水编号1#-1、1#-2,2#-1、2#-2,3#-1、3#-2,4#-1、4#-2,在1#-1中加入0.5%脂肪醇聚氧乙烯醚、1#-2中加入0.5%栲胶,在2#-1中加入0.5%聚丙二醇、2#-2中加入0.5%茶多酚,在3#-1中加入0.5%甲基烯丙醇聚氧乙烯醚、3#-2中加入0.5%羧甲基-β-环糊精,在4#-1中加入0.5%烯丙醇聚氧乙烯醚、4#-2中加入0.5%栲胶,搅拌15min;将1#-1、2#-1、3#-1、4#-1溶液分别与1#-2、2#-2、3#-2、4#-2、溶液混合,构建单分散纳-微球编号1&、2&、3&、4&。用热重分析仪表征单分散纳-微球的结构。图1为1&的热重分解曲线,可以发现A与B在超强氢键驱动构建的纳-微球的热重分解温度显著高于A类大分子和B类大分子的热重分解温度,证明单分散纳-微球不是A类大分子和B类大分子的简单物理混合,而是通过超强氢键效应形成了热力学更稳定的结构。
实施例2单分散纳-微球的微观图
制备去离子水编号1#,配制矿化度为0.1×10 4mg/L编号2#,5×10 4mg/L编号3#,10×10 4mg/L编号4#,20×10 4mg/L编号5#的矿化水(2#~5#中Ca 2+、Mg 2+浓度为总矿化度的5%),搅拌30min;将99.49%的矿化水(去离子水)加入0.01%的硫脲,搅拌5min。取两份质量的去离子水编号1#-1、1#-2,以及两份质量的矿化水2#-1、2#-2,3#-1、3#-2,4#-1、4#-2,5-1#、5-2#,在1#-1中加入0.5%脂肪醇聚氧乙烯醚、1#-2中加入0.5%栲胶,在2#-1中加入0.5%聚丙二醇、2#-2中加入0.5%茶多酚,在3#-1中加入0.5%甲基烯丙醇聚氧乙烯醚、3#-2中加入0.5%羧甲基-β-环糊精,在4#-1中加入0.5%烯丙醇聚氧乙烯醚、4#-2中加入0.5%栲胶,在5#-1中加入0.5%脂肪醇聚氧乙烯醚、5#-2中加入0.5%栲胶,搅拌20min;将1#-1、2#-1、3#-1、4#-1、5#-1溶液分别与1#-2、2#-2、3#-2、4#-2、5#-2溶液混合,构建单分散纳-微球编号1*、2*、3*、4*、5*。采用透射电子显微镜对干化状态的纳-微球进行粒径测试,干化纳-微球呈单分散状态、粒径分布200nm~3.0μm;1*的纳-微球如图2所示,纳-微球粒径 为300nm左右。采用光学显微镜对(矿化)水化状态的纳-微球进行微观形貌和粒径分析,(矿化)水化状态纳-微球均匀分散在水相中、无聚结,(矿化)水化状态的纳-微球中值粒径500nm~5.0μm;水化状态的5*纳-微球进行粒径测试如图3所示,中值粒径1.5μm左右。
实施例3单分散纳-微球的长期稳定性能
按照实施例2中制备的单分散纳-微球2*、3*、4*、5*,分别放置在40℃、80℃、60℃、120℃,老化90d,光学显微镜观察老化后单分散纳-微球的结构形貌,单分散纳-微球仍然保持稳定结构,在油藏温度和矿化度环境表现出长期稳定性能。2*的单分散纳-微球在80℃老化90d的微观形貌如图4所示,单分散纳-微球在老化的过程中膨胀,球形结构规整,中值粒径2.0μm左右,体现耐温抗盐性能。
实施例4单分散纳-微球的液流转向性能
按照实施例2中制备的单分散纳-微球2*、3*、4*、5*,采用驱替装置以0.2ml/min的注入速度使纳-微球通过5层100目的筛网,由于单分散纳-微球经过重叠后在筛网上堆积,当注入压力达到某一定值时,由于单分散纳-微球具有良好的弹性,当注入压力达到某一定值时,单分散纳-微球开始通过多层筛网,此时对应的压力称为转向压力。单分散纳-微球的转向压力如表1所示。单分散纳-微球转向压力在100~200kPa,其转向压力与粒径密切相关,表明在矿场应用中可根据油藏的高渗流区域渗透率大小和非均质性选择对应的不同粒径的单分散纳-微球。另外,单分散纳-微球重复三次通过5层100目的筛网,转向压力基本一致,表明单分散纳-微球具备超强的抗剪切性能,能有效调控高渗透区域,促使液流转向,扩大后续流体波及系数,提高开发效果。
表1单分散纳-微球的转向压力
Figure PCTCN2019094595-appb-000009
实施例5单分散纳-微球提高原油采收率潜力
取实施例2中配制的5*单分散纳-微球待用;人造双层非均质岩心1根(45×45×300mm长岩心,气测渗透率为100mD/500mD的双层非均质,平均孔隙度21.6%,原始含油饱和度60.3%;注入水矿化度20×10 4mg/L,其中Ca 2+、Mg 2+浓度为总矿化度的5%),实验温度80℃,原油黏度50.2mPa·s,固定驱替速度1.0mL/min。在水驱阶段,受到不利的水油流度比特别是非均质性的影响,水驱的采出程度低,含水率98%的原油采收率35.3%。在此基础上,注入 压力0.3PV的5*单分散纳-微球,注入压力逐渐上升,重新出油,表明单分散纳-微球吸附及其在运移过程中对高渗区域孔喉的智能封堵和调控,增加高渗区域的渗流阻力,促使后续流体注入低渗透区域,调控吸液剖面,扩大流体的波及系数,实现高、低渗透区域的均衡驱替。水驱至含水率98%,单分散纳-微球显著提高原油采收率超过25%,累积采收率61%左右,提高采收率效果见图5。

Claims (5)

  1. 深部调驱用聚合物单分散纳-微球,由以下组分按重量百分比组成:
    A类大分子              0.05~2.5%;
    B类大分子              0.05~2.5%;
    除氧剂                 0.002~0.05%;
    其余为矿化水;
    所述A类大分子为乙基醚或者丙基醚结构的直链水溶性聚合物;
    所述B类大分子为多羟基或者多酚基结构的水溶性聚合物。
  2. 如权利要求1所述的深部调驱用聚合物单分散纳-微球,其特征在于,所述A类大分子为聚丙二醇、脂肪醇聚氧乙烯醚、甲基烯丙醇聚氧乙烯醚或烯丙醇聚氧乙烯醚。
  3. 如权利要求1所述的深部调驱用聚合物单分散纳-微球,其特征在于,所述B类大分子为羧甲基-β-环糊精、栲胶或茶多酚。
  4. 如权利要求1所述的深部调驱用聚合物单分散纳-微球,其特征在于,所述除氧剂为硫脲。
  5. 如权利要求1、2、3或4所述的深部调驱用聚合物单分散纳-微球的制备方法,依次包括以下步骤:
    (1)将矿化水加入一定量的除氧剂搅拌溶解10~20min,然后均分成两份;
    (2)一份矿化水加入一定质量浓度的A类大分子,室温搅拌溶解10~30min;
    (3)一份矿化水加入一定质量浓度的B类大分子,室温搅拌溶解10~30min;
    (4)将A类大分子溶液和B类大分子溶液混合,两类水溶性聚合物通过氢键驱动构建,得到单分散纳-微球。
PCT/CN2019/094595 2019-06-14 2019-07-03 深部调驱用聚合物单分散纳-微球及制备方法 WO2020248310A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/764,559 US11225597B2 (en) 2019-06-14 2019-07-03 Polymer-monodispersed nano-microspheres for deep profile control and flooding, and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910515021.X 2019-06-14
CN201910515021.XA CN110144199B (zh) 2019-06-14 2019-06-14 深部调驱用聚合物单分散纳-微球及制备方法

Publications (1)

Publication Number Publication Date
WO2020248310A1 true WO2020248310A1 (zh) 2020-12-17

Family

ID=67591363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094595 WO2020248310A1 (zh) 2019-06-14 2019-07-03 深部调驱用聚合物单分散纳-微球及制备方法

Country Status (3)

Country Link
US (1) US11225597B2 (zh)
CN (1) CN110144199B (zh)
WO (1) WO2020248310A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116478326A (zh) * 2023-04-23 2023-07-25 厦门大学 一种聚丙烯酸酯微球及其应用
CN116943558A (zh) * 2023-07-21 2023-10-27 大庆亿莱检验检测技术服务有限公司 一种复合纳米驱油剂的制备工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437689B (zh) * 2022-01-21 2023-05-16 中海石油(中国)有限公司 一种封堵油藏大孔道的高强度双网络微纳米颗粒复合凝胶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2148968A1 (en) * 1995-05-09 1996-11-10 George B. Gleadall Application of microspheres to in situ separation of water and oil
CN1278545A (zh) * 2000-03-24 2001-01-03 大庆油田有限责任公司采油工艺研究所 一种可流动深度调剖剂
CN101619118A (zh) * 2009-05-26 2010-01-06 中国石油大学(华东) 水驱开发油藏深部调驱用聚合物微球及制备方法
CN102286274A (zh) * 2011-05-27 2011-12-21 中国海洋石油总公司 一种交联聚合物微球-聚合物复合深部调驱剂及其使用方法
CN102533233A (zh) * 2012-01-04 2012-07-04 中国石油天然气股份有限公司 耐高温高矿化度的堵水调剖剂及其配制方法与应用
CN106467733A (zh) * 2015-08-18 2017-03-01 中国海洋石油总公司 两性交联聚合物微球-疏水缔合聚合物调驱剂及其应用
CN106634910A (zh) * 2016-12-15 2017-05-10 陕西庆华石油建设有限公司 一种调剖剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7703521B2 (en) * 2008-02-19 2010-04-27 Schlumberger Technology Corporation Polymeric microspheres as degradable fluid loss additives in oilfield applications
CN102432736B (zh) * 2011-09-05 2013-12-25 薛巍 一种单分散分子印迹聚合物纳米微球的制备方法
SG11201402569SA (en) * 2012-01-05 2014-06-27 Univ Nanyang Tech Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres
CN103897121B (zh) * 2014-04-08 2017-11-28 西南石油大学 AM/AA/N‑β‑CD聚合物‑离子液[bquin]BF4复合粘土稳定剂及其合成方法
EP3825384A1 (en) * 2015-07-13 2021-05-26 Saudi Arabian Oil Company Well treatment method using stabilized nanoparticle compositions comprising ions
WO2017015185A1 (en) * 2015-07-17 2017-01-26 Schlumberger Technology Corporation High temperature and high pressure cement retarder composition and use thereof
CN108329420B (zh) * 2017-01-17 2020-09-04 中国石油化工股份有限公司 低张力聚合物微球调驱剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2148968A1 (en) * 1995-05-09 1996-11-10 George B. Gleadall Application of microspheres to in situ separation of water and oil
CN1278545A (zh) * 2000-03-24 2001-01-03 大庆油田有限责任公司采油工艺研究所 一种可流动深度调剖剂
CN101619118A (zh) * 2009-05-26 2010-01-06 中国石油大学(华东) 水驱开发油藏深部调驱用聚合物微球及制备方法
CN102286274A (zh) * 2011-05-27 2011-12-21 中国海洋石油总公司 一种交联聚合物微球-聚合物复合深部调驱剂及其使用方法
CN102533233A (zh) * 2012-01-04 2012-07-04 中国石油天然气股份有限公司 耐高温高矿化度的堵水调剖剂及其配制方法与应用
CN106467733A (zh) * 2015-08-18 2017-03-01 中国海洋石油总公司 两性交联聚合物微球-疏水缔合聚合物调驱剂及其应用
CN106634910A (zh) * 2016-12-15 2017-05-10 陕西庆华石油建设有限公司 一种调剖剂及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116478326A (zh) * 2023-04-23 2023-07-25 厦门大学 一种聚丙烯酸酯微球及其应用
CN116943558A (zh) * 2023-07-21 2023-10-27 大庆亿莱检验检测技术服务有限公司 一种复合纳米驱油剂的制备工艺
CN116943558B (zh) * 2023-07-21 2024-02-02 大庆亿莱检验检测技术服务有限公司 一种复合纳米驱油剂的制备工艺

Also Published As

Publication number Publication date
US11225597B2 (en) 2022-01-18
CN110144199B (zh) 2021-03-16
US20210189220A1 (en) 2021-06-24
CN110144199A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2020248310A1 (zh) 深部调驱用聚合物单分散纳-微球及制备方法
CN110242265B (zh) 原位纳-微球提高原油采收率的矿场应用方法
CN108424760B (zh) 一种适用于致密油储层的co2敏感的压裂-排驱体系及其制备方法与应用方法
CN100434447C (zh) 纳微米水溶性微凝胶驱油材料及其制备方法
CN104762071B (zh) 一种水基钻井液用页岩微纳米颗粒封堵剂的制备方法
CN102603966B (zh) 用于油田调驱的交联聚合物微球及其制备方法
Chen et al. Investigation on matching relationship and plugging mechanism of self-adaptive micro-gel (SMG) as a profile control and oil displacement agent
CN102399345B (zh) 含有核壳结构凝胶微球的乳液深部调驱剂的制备方法及乳液深部调驱剂
Pu et al. CO2-responsive preformed gel particles with interpenetrating networks for controlling CO2 breakthrough in tight reservoirs
Liu et al. Novel chemical flooding system based on dispersed particle gel coupling in-depth profile control and high efficient oil displacement
CN102485830A (zh) 一种核壳型无机/有机聚合物复合微球调剖驱油剂
CN104449631A (zh) 强气润湿性纳米二氧化硅解水锁剂、其制备方法及岩石表面润湿反转的方法
WO2017050024A1 (zh) 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法
CN102295918B (zh) 一种天然羧酸盐-聚合物微球二元复合调驱体系及其制备与应用
CN109666097A (zh) 疏水缔合聚合物凝胶微球调剖剂及其制备方法
CN105085799A (zh) 一种缓膨型纳米弹性微球深部调剖驱油剂的制备方法及其应用
CN109899044A (zh) 一种调驱洗交替注入提高原油采收率的方法
WO2015074588A1 (zh) 锆冻胶分散体复合驱油体系及其制备方法
CN111909306B (zh) 双水相pam/amps纳米微球乳胶及制备方法和应用
CN105131173A (zh) 一种缓膨胀聚合物微球深部调驱剂及制备方法
CN112851856A (zh) 一种耐盐型聚合物微球封堵剂及其制备方法
Zhou et al. Experiment on the profile control effect of different strength gel systems in heterogeneous reservoir
Ji et al. A novel CO2-resistant dispersed particle gel for gas channeling control in low-permeability reservoirs
Jin et al. Migration and plugging characteristics of polymer microsphere and EOR potential in produced-water reinjection of offshore heavy oil reservoirs
Lei et al. Preparation and performance evaluation of a branched functional polymer for heavy oil recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933080

Country of ref document: EP

Kind code of ref document: A1