WO2017050024A1 - 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法 - Google Patents

一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法 Download PDF

Info

Publication number
WO2017050024A1
WO2017050024A1 PCT/CN2016/093191 CN2016093191W WO2017050024A1 WO 2017050024 A1 WO2017050024 A1 WO 2017050024A1 CN 2016093191 W CN2016093191 W CN 2016093191W WO 2017050024 A1 WO2017050024 A1 WO 2017050024A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic fine
foam
oil
fine particles
foam system
Prior art date
Application number
PCT/CN2016/093191
Other languages
English (en)
French (fr)
Inventor
李兆敏
吕其超
李宾飞
李秉霖
李松岩
鹿腾
孙乾
徐亚杰
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US15/519,540 priority Critical patent/US9777210B2/en
Publication of WO2017050024A1 publication Critical patent/WO2017050024A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/594Compositions used in combination with injected gas, e.g. CO2 orcarbonated gas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/518Foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/528Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/536Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • C09K8/703Foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/74Eroding chemicals, e.g. acids combined with additives added for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/94Foams

Definitions

  • the invention relates to a novel inorganic fine particle reinforced foam system for oil and gas field and a preparation method thereof, and belongs to the technical field of oil and gas field development engineering.
  • Foam fluids have been used in oil and gas field development for more than 50 years, but there are still some problems in the process of foam application process improvement.
  • the stability of the bubble is a major bottleneck restricting the development of the bubble.
  • Foam is a thermodynamically unstable system that will eventually vanish and disappear.
  • the instability of the foam in the formation is mainly manifested in three forms, one is the aggregation of bubbles in the foam; the second is the precipitation of liquid in the foam; the third is the rupture of the foam.
  • the first one is to increase the viscosity of the base liquid, reduce the liquid separation rate of the foam, and prolong the foam stabilization mode of the gas-liquid separation time.
  • the main means is to add vegetable gum, synthetic polymer, protein, etc. to the foam and cross-linking. Frozen colloid.
  • the disadvantage of this method is that the vegetable glue and the polymer necessarily contain insoluble residues and unbroken components, which will block the pore throat structure in the formation and cause damage to the formation, affecting the productivity of the oil and gas wells.
  • the Chinese patent document CN101805600A (application number: 201010150239.9) discloses a jelly fracturing fluid suitable for a coalbed methane reservoir, which has a mass fraction of 0.3% to 0.5% of nonionic polyacrylamide and 0.014% to 0.04% of oxygen.
  • Zirconium chloride (ZrOCl 2 ) is used as a crosslinking agent, 0.01% to 0.12% hydrochloric acid is used as a pH adjuster, 0.06% to 0.12% of a breaker and the balance water is used.
  • the breaker is made of ammonium persulfate and sodium sulfite.
  • the redox system consisting of a mass ratio of (1.0 to 3.0):1 enables the gel to break under low temperature conditions.
  • the frozen rubber fracturing fluid proposed in the patent document has adjustable freezing time and gel breaking time, and has the characteristics of low temperature crosslinking speed, high viscosity, low fluid loss, complete gel breaking, no residue of broken glue, and easy returning. Can effectively increase the production capacity of coalbed methane.
  • the coal layer will adsorb a large amount of polymer molecules and cause formation damage, and due to the uncontrollability of the construction process, the crosslinked polymer solution and the breaker may not be fully mixed, which may cause uneven gelation and further property. Strata damage.
  • the second way to enhance the stability of the foam is to increase the mechanical strength of the foam liquid film, enhance the ability of the liquid film to resist impact and disturbance, and reduce the foam stability of the foam.
  • the main means of achieving this is to add a particulate foam stabilizer to the foam.
  • the Chinese patent document CN102746841 A (Application No.: 201210223060.0) discloses a composite foam system for adding an additive to an oil and gas field and a preparation method thereof.
  • the components of the composite foam system are as follows: anionic surfactant 0.3-0.5 parts, modified silica nanoparticles 1 to 1.5 parts, counter ion salts 0.03 to 2.3 parts, and water 100 parts. Mix the above components according to the ratio and use magnetic Stir the stirring device and let it stand.
  • the present invention provides a novel inorganic fine particle reinforced foam system for oil and gas fields and a preparation method thereof.
  • Foam quality refers to the volume of gas in the foam as a percentage of the total volume of the foam.
  • the Waring Blender method one of the commonly used agitation foaming methods, stirs the foam base liquid at a certain speed in a high speed agitator to produce a foam.
  • a novel inorganic fine particle reinforced foam system for oil and gas fields including a gas phase and a liquid phase;
  • the gas phase is nitrogen, carbon dioxide or air
  • the mass percentage of the raw material components in the liquid phase is as follows:
  • the raw material component foaming agent and the novel inorganic fine particles in the liquid phase can be dissolved in tap water, river water or formation water.
  • the foaming agent is a compounding system composed of oil tea saponin and sodium lauroyl glutamate in a mass ratio (5 to 6):1.
  • the total proportion of mullite (Al 6 Si 2 O 13 ) and quartz (SiO 2 ) is ⁇ 75 wt%;
  • the surface of the novel inorganic fine particles is hydrophilic, and the surface has a wetting angle to water of 20° to 50°.
  • the novel inorganic fine particles can be well dispersed in tap water, river water or formation water.
  • the surface of the novel inorganic fine particles is positively charged.
  • the concentration ratio of the novel inorganic fine particles to the foaming agent is (2 to 4):1.
  • the foaming agent and the novel inorganic fine particles can have a good synergistic effect, and the macroscopic performance shows that the foam produced has a large foaming volume and a long half life; the microscopic behavior is that the fine particles are adsorbed in the gas-liquid interface of the foam.
  • an effective particle wrap is formed to slow the bubble and the liquid film to break.
  • the amount of the foaming agent and the novel inorganic fine particles can also be reduced.
  • the foam quality of the reinforced foam system ranges from 50% to 90%, further preferably from 60% to 80%;
  • the foam quality of the reinforced foam system ranges from 57% to 90%, further preferably from 64 to 80%;
  • the foam quality of the reinforced foam system ranges from 61% to 87%, further preferably from 67 to 79%.
  • the gas phase is nitrogen.
  • the foam produced when the gas phase is nitrogen is the most stable, and the half-life of the liquid separation and the half-life of the foam volume at the high temperature and high pressure are the longest.
  • the invention also provides a preparation method of novel inorganic fine particle reinforced foam for two oil and gas fields, one is used as a foam preparation method for laboratory evaluation, and the other is a foam ground preparation method for oil and gas field on-site construction.
  • the foaming agent is added to the water according to the ratio, stirred for 1 to 3 minutes, then the new inorganic fine particles are added, and stirred for 5 to 10 minutes to obtain a foam base liquid;
  • the foam base liquid is mixed with the gas phase and directly injected into the well to complete the preparation and application of the foam system; the foam base liquid and the gas phase can be in the column and Mixed foaming in the formation;
  • the foam base liquid is pumped into the foam generator and mixed with the gas phase to foam.
  • the reinforced foam system is injected into the well in the form of a foam.
  • the foam generator is known from the prior art and can be found in the foam generator disclosed in the Chinese patent document CN 2743529 Y.
  • the reinforced foam system of the present invention can be effectively operated in a high pressure range (0 to 100 MPa) and a high temperature range (0 to 200 ° C).
  • the reinforced foam system of the present invention forms a particle layer in which fine particles are wrapped with bubbles, the skeleton structure of the foam is particularly stable, and the liquid film exhibits rigidity. Therefore, the foam has the ability to carry sand, and the sealing effect is good. Low loss, strong oil displacement and other advantages.
  • the application of the reinforced foam system of the present invention is not only beneficial to the efficient development of oil and gas resources, but also can be turned into waste to utilize new inorganic fine particles to reduce the pollution of the new inorganic fine particles to the air environment.
  • the reinforced foam system of the present invention has low raw material cost, simple configuration process and low operation cost, but has good effect on oil and gas production and high economic benefit.
  • the new inorganic fine particles used in the examples were taken from the Shengli Power Plant of Shengli Petroleum Administration.
  • the wetting angle of the surface of the particles to distilled water was 43.2°, the surface of the particles was positively charged, and the elements of O, Si and Al in the new inorganic fine particles were occupied.
  • the mass ratios were 42.3 wt%, 23.2 wt%, and 21.5 wt%, respectively.
  • a novel inorganic fine particle reinforced foam system for oil and gas fields including a gas phase and a liquid phase; the gas phase is nitrogen, and the mass percentage of the raw material components in the liquid phase is as follows:
  • the foaming agent is a compound system composed of oil tea saponin and sodium lauroyl glutamate in a mass ratio of 6:1; the novel inorganic fine particles are fine particles having a particle diameter of ⁇ 2.5 ⁇ m captured and captured in the atmosphere. .
  • the preparation method is as follows:
  • the foaming agent was added to 100 mL of water according to the ratio, stirred to prepare a foaming agent solution, and then the new inorganic fine particles were added, and stirred on a magnetic stirrer for 15 minutes to obtain a foam base liquid.
  • the 100 mL foam base liquid was stirred and foamed by the Waring Blender method, the stirring speed was 7000 rpm, and the stirring time was 5 min, that is, the foam system was strengthened.
  • the reinforced foam system was poured into a 1000 mL measuring cylinder, and the initial volume of the foam was recorded at 370 mL under normal temperature and normal pressure and the time for liquid precipitation of 50 mL in the foam was 42.0 min, showing good foaming and foam stability.
  • a new type of inorganic fine particle reinforced foam system for oil and gas fields including gas phase and liquid phase, gas phase is air, and the mass percentage of raw material components in liquid phase is as follows:
  • the foaming agent is a compound system composed of oil tea saponin and sodium lauroyl glutamate in a mass ratio of 6:1; the novel inorganic fine particles are fine particles having a particle diameter of ⁇ 2.5 ⁇ m captured and captured in the atmosphere. .
  • the preparation method is as follows:
  • the foaming agent was added to 100 mL of water according to the ratio, stirred to prepare a foaming agent solution, and then the new inorganic fine particles were added, and stirred on a magnetic stirrer for 15 minutes to obtain a foam base liquid.
  • the 100 mL foam base liquid was stirred and foamed by the Waring Blender method, the stirring speed was 7000 rpm, and the stirring time was 5 min, that is, the foam system was strengthened.
  • the foam was poured into a 1000 mL measuring cylinder, and the initial volume of the foam was recorded at 390 mL under normal temperature and normal pressure, and the time taken for the liquid to precipitate 50 mL in the foam was 36.0 min, showing good foaming and foam stability.
  • a novel inorganic fine particle reinforced foam system for oil and gas fields including a gas phase and a liquid phase, and a gas phase is carbon dioxide.
  • the mass percentage of the raw material components in the liquid phase is as follows:
  • the foaming agent is a compound system composed of oil tea saponin and sodium lauroyl glutamate in a mass ratio of 6:1; the novel inorganic fine particles are fine particles having a particle diameter of ⁇ 2.5 ⁇ m captured and captured in the atmosphere. .
  • the preparation method is as follows:
  • the surfactant in the foaming agent is sequentially added to 100 mL of water according to the ratio, and the mixture is stirred into a foaming agent solution, and then A new type of inorganic fine particles was added and stirred on a magnetic stirrer for 15 minutes to obtain a foam base liquid.
  • the 100 mL foam base liquid was stirred and foamed by the Waring Blender method, the stirring speed was 7000 rpm, and the stirring time was 5 min, that is, the foam system was strengthened.
  • the foam was poured into a 1000 mL measuring cylinder, and the initial volume of the foam was recorded at 375 mL under normal temperature and normal pressure and the time taken for the liquid to precipitate 50 mL in the foam was 28.0 min, showing good foaming and foam stability.
  • a novel inorganic fine particle reinforced foam system for oil and gas fields including a gas phase and a liquid phase; the gas phase is nitrogen, and the mass percentage of the raw material components in the liquid phase is as follows:
  • the foaming agent is a compound system composed of oil tea saponin and sodium lauroyl glutamate in a mass ratio of 5:1; the novel inorganic fine particles are fine particles having a particle diameter of ⁇ 2.5 ⁇ m captured in the atmosphere. .
  • the preparation method of the reinforced foam system applied to sand washing, well washing, acidification, liquid discharging and squirting is as follows:
  • the foaming agent was added to the water according to the ratio, stirred for 3 min, then the new inorganic fine particles were added, and stirred for 7 min to obtain a foam base liquid;
  • the foam base liquid is pumped into the foam generator and mixed with nitrogen to foam.
  • the foam quality of the resulting reinforced foam system ranges from 80%.
  • a new type of inorganic fine particle reinforced foam system for oil and gas fields including gas phase and liquid phase, gas phase is air, and the mass percentage of raw material components in liquid phase is as follows:
  • the foaming agent is a compound system composed of oil tea saponin and sodium lauroyl glutamate in a mass ratio of 5.5:1; the novel inorganic fine particles are fine particles having a particle diameter of ⁇ 2.5 ⁇ m captured and captured in the atmosphere. .
  • the method for preparing the reinforced foam system for oil displacement, fracturing, profile control, and water shutoff is as follows:
  • the foaming agent was added to the water according to the ratio, stirred for 3 min, then the new inorganic fine particles were added, and stirred for 7 min to obtain a foam base liquid;
  • the foam base liquid is mixed with air and directly injected into the well to complete the preparation and application of the foam system; the foam base liquid and air can be mixed and foamed in the column and the ground layer; the foam quality range of the obtained reinforced foam system is 64%. .
  • a novel inorganic fine particle reinforced foam system for oil and gas fields including a gas phase and a liquid phase, and a gas phase is carbon dioxide.
  • the mass percentage of the raw material components in the liquid phase is as follows:
  • the foaming agent is a compound system composed of oil tea saponin and sodium lauroyl glutamate in a mass ratio of 5.5:1; the novel inorganic fine particles are fine particles having a particle diameter of ⁇ 2.5 ⁇ m captured and captured in the atmosphere. .
  • the method for preparing the reinforced foam system for oil displacement, fracturing, profile control, and water shutoff is as follows:
  • the foaming agent was added to the water according to the ratio, stirred for 3 min, then the new inorganic fine particles were added, and stirred for 7 min to obtain a foam base liquid;
  • the foam base liquid is mixed with air and directly injected into the well to complete the preparation and application of the foam system; the foam base liquid and air can be mixed and foamed in the column and the ground layer; the foam quality of the obtained reinforced foam system is 70%. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Sealing Material Composition (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种油气田用无机微细颗粒强化泡沫体系及其制备方法,该强化泡沫体系包括气相和液相,其中气相是氮气、二氧化碳或空气,液相中原料组分的质量百分比如下:0.2~0.8wt%的起泡剂,0.5~2.0wt%的无机微细颗粒,余量为水,无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。这种强化泡沫体系不仅有利于油、气资源的高效开发,而且可以变废为宝利用无机微细颗粒,降低无机微细颗粒对空气环境带来的污染,原材料成本低,配制工艺简单,操作成本低,对于油、气增产效果好,具有较高的经济效益。

Description

一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法 技术领域
本发明涉及一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法,属于油气田开发工程技术领域。
背景技术
泡沫流体在国内外油气田开发领域得到了广泛应用,被评价为高效能、环保、低成本、低伤害的智能流体。泡沫流体的应用贯穿油气田开发的整个过程,从钻井工程上用到的钻井液、完井液、压裂液,再到采油工程中用到的驱油剂、调剖剂、堵水剂、酸化剂等,乃至修井作业中用的冲砂液、洗井液等,泡沫流体均可以采纳使用,并且针对很多低渗、低压、低饱和度地层具有不可替代的优良效果。大量的油气田生产应用证明,泡沫流体的应用不仅可以提高油气产量,而且可保护油气储层并降低生产成本。
泡沫流体应用于油气田开发已经有50多年的历史,然而在泡沫应用工艺完善过程中仍面临一些问题。其中泡沫的稳定性问题是制约泡沫发展的重大瓶颈。泡沫是热力学不稳定体系,最终会破灭消失。泡沫在地层中的不稳定性主要体现为三种形式,一是泡沫中气泡的聚并;二是泡沫中液体的析出;三是泡沫的破裂。
近些年来在油气田开发领域,增强泡沫的稳定性的方式主要分为两种。第一种是通过增加基液的粘度,降低泡沫的析液速度,延长气液分离时间的稳泡方式,主要的实现手段是向泡沫中添加植物胶、人工合成聚合物、蛋白等以及交联冻胶体。然而这种方式的缺点在于植物胶、聚合物中必然含有不溶性残渣及未破胶成分,这会堵塞地层中的孔喉结构造成地层的伤害,影响油、气井的产能。如中国专利文件CN101805600A(申请号:201010150239.9)公开了一种适合煤层气储层的冻胶压裂液,由质量分数为0.3%~0.5%的非离子聚丙烯酰胺、0.014%~0.04%的氧氯化锆(ZrOCl2)作交联剂、0.01%~0.12%的盐酸作pH调节剂、0.06%~0.12%的破胶剂和余量水组成,破胶剂是由过硫酸铵和亚硫酸钠按质量比为(1.0~3.0)∶1所组成的氧化还原体系,能使冻胶在低温条件破胶。该专利文件所提出的冻胶压裂液成冻时间和破胶时间可调,具有低温交联速度快、粘度大、低滤失、破胶彻底且破胶液无残渣、易返排的特点,能有效地提高煤层气产能。然而在实际生产过程中煤层会大量吸附聚合物分子进而造成地层伤害,而且由于施工过程的不可控性,交联聚合物溶液和破胶剂不可能充分混合,这会造成破胶不均匀进一步地产生地层伤害。
第二种增强泡沫稳定性的手段是通过提高泡沫液膜的机械强度,增强液膜抵抗冲击、扰动的能力,减少泡沫破裂的稳泡方式。主要实现手段是向泡沫中添加颗粒稳泡剂。如中国专利文件CN102746841 A(申请号:201210223060.0)公开了一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法。复合泡沫体系质量份组分如下:阴离子表面活性剂0.3~0.5份,改性二氧化硅纳米颗粒1~1.5份,反离子盐0.03~2.3份,水100份。将以上组分按配比混合,用磁 力搅拌器搅拌、静置。用Waring Blender法快速搅拌形成稳定性好的泡沫。利用该复合泡沫体系产生的泡沫,比普通表面活性剂稳定的泡沫半衰期长,但是又比加入稳泡剂产生泡沫的起泡体积大。该复合泡沫体系具有配方与制备工艺简单,耐盐和耐温性好,能适应地下复杂的油藏条件,不会对地层产生污染,并且能够有效封堵大孔道,提高波及效率,在油田开发应用中,尤其是泡沫驱替具有很好的应用前景。然而该复合泡沫体系中二氧化硅纳米颗粒用量较高,而二氧化硅纳米颗粒造价高昂,现阶段将二氧化硅纳米颗粒投放到油气开发工程的经济可行性不强。
发明内容
针对现有技术的不足,本发明提供一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法。
术语说明:
泡沫质量,指泡沫中气体体积占泡沫总体积的百分比。
Waring Blender方法,常用的搅拌起泡法之一,在高速搅拌器中以一定转速搅拌泡沫基液一段时间产生泡沫。
本发明技术方案如下:
一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相;
所述的气相是氮气、二氧化碳或空气;
所述的液相中原料组分的质量百分比如下:
0.2~0.8wt%的起泡剂,0.5~2.0wt%的新型无机微细颗粒,余量为水;所述的新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。液相中的原料组分起泡剂和新型无机微细颗粒均可以溶解在自来水、河水或地层水中。
根据本发明,优选的,所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比(5~6):1组成的复配体系。
根据本发明,优选的,所述的新型无机微细颗粒中,莫来石(Al6Si2O13)和石英(SiO2)两种物质总共所占比例≥75wt%;
优选的,所述的新型无机微细颗粒表面具有亲水性,表面对水的润湿角为20°~50°。所述的新型无机微细颗粒可以良好的分散在自来水、河水或地层水中。
优选的,所述的新型无机微细颗粒的表面带正电荷。
根据本发明,优选的,所述的新型无机微细颗粒与起泡剂的浓度比例为(2~4):1。该浓度比例下起泡剂与新型无机微细颗粒可以发生良好的协同效应,宏观表现为产生的泡沫具有较大的起泡体积和较长的半衰期;微观表现为微细颗粒吸附在泡沫中气液界面上,气泡表面形成一层有效的颗粒包裹,起到减缓气泡间聚并及液膜破裂的目的。该浓度比例下,还可以降低起泡剂与新型无机微细颗粒的使用量。
根据本发明,优选的,当气相为氮气时,强化泡沫体系的泡沫质量范围为50%~90%,进一步优选60%~80%;
当气相为空气时,强化泡沫体系的泡沫质量范围为57%~90%,进一步优选64~80%;
当气相为二氧化碳时,强化泡沫体系的泡沫质量范围为61%~87%,进一步优选67~79%。
根据本发明,优选的,所述的气相为氮气。气相为氮气时产生的泡沫最为稳定,表现为高温、高压下泡沫的析液半衰期和泡沫体积半衰期最长。
本发明还提供两种油气田用新型无机微细颗粒强化泡沫的制备方法,一种做为实验室评价用泡沫制备方法,一种为油气田现场施工用泡沫地面制备方法。
本发明的实验室评价用泡沫制备方法,步骤如下:
按配比将起泡剂加入到水中,搅拌配置成起泡剂溶液,然后加入新型无机微细颗粒,搅拌10~20min,得泡沫基液;
采用Waring Blender方法对泡沫基液进行搅拌起泡,搅拌速度为6000~8000转/min,搅拌时间为3~10min,即得。搅拌完成后将泡沫倒入1000mL量筒中,在常温常压下记录泡沫的初始体积和泡沫中液体析出50mL所用的时间,可验证泡沫的稳定性。
本发明的油气田现场施工用泡沫地面制备方法,步骤如下:
按配比将起泡剂加入到水中,搅拌1~3min,然后加入新型无机微细颗粒,搅拌5~10min,得泡沫基液;
当强化泡沫体系应用于驱油、压裂、调剖、堵水时,将泡沫基液与气相混合后直接注入井下,即完成泡沫体系的制备与应用;泡沫基液与气相可在管柱及地层中混合发泡;
当强化泡沫体系应用于冲砂、洗井、酸化、排液、诱喷时,将泡沫基液泵入泡沫发生器中,与气相混合发泡,即得。应用时,将强化泡沫体系以泡沫的形式注入井下。所述的泡沫发生器为现有技术,可参见中国专利文件CN 2743529 Y中公布的泡沫发生器。
本发明的有益效果:
(1)本发明所述的强化泡沫体系可用于驱油、压裂、调剖、堵水、冲砂、洗井、酸化、排液、诱喷等工艺,具有低地层伤害、高性能的特点。
(2)本发明所述的强化泡沫体系可以在高压力范围(0~100MPa),高温度范围(0~200℃)内有效作业。
(3)本发明所述的强化泡沫体系形成了微细颗粒包裹气泡的颗粒层,泡沫的骨架结构特别稳定,且液膜呈现刚性的特点,因此,泡沫具有携砂能力,封堵效果好,滤失量低,驱油能力强等优势。
(4)本发明所述强化泡沫体系的应用不仅有利于油、气资源的高效开发,而且可以变废为宝利用新型无机微细颗粒,降低新型无机微细颗粒对空气环境带来的污染。
(5)本发明所述的强化泡沫体系原材料成本低,配置工艺简单,操作成本低,但其对于油、气增产效果好,具有较高的经济效益。
具体实施方式
以下结合具体实施例来对本发明作进一步说明,但本发明所要求保护的范围并不局限于实例所涉及的范围。
实施例中使用的新型无机微细颗粒取自胜利石油管理局胜利发电厂,颗粒表面对蒸馏水的润湿角为43.2°,颗粒表面带正电,新型无机微细颗粒中O、Si、Al元素所占质量比分别为42.3wt%、23.2wt%、21.5wt%。
实施例1、
一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相;气相是氮气,液相中原料组分的质量百分比如下:
0.5wt%的起泡剂,1.0wt%的新型无机微细颗粒,余量为水;
所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比6:1组成的复配体系;所述新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。
制备方法如下:
按配比将起泡剂加入到100mL水中,搅拌配置成起泡剂溶液,然后加入新型无机微细颗粒,在磁力搅拌器上搅拌15min,即可得到泡沫基液。采用Waring Blender方法对100mL泡沫基液进行搅拌起泡,搅拌速度为7000转/min,搅拌时间为5min,即得强化泡沫体系。搅拌完成后将强化泡沫体系倒入1000mL量筒中,在常温常压下记录泡沫的初始体积为370mL和泡沫中液体析出50mL所用的时间为42.0min,表现出良好的起泡性和稳泡性。
实施例2、
一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相,气相是空气,液相中原料组分的质量百分比如下:
0.5wt%的起泡剂,1.0wt%的新型无机微细颗粒,余量为水;
所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比6:1组成的复配体系;所述新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。
制备方法如下:
按配比将起泡剂加入到100mL水中,搅拌配置成起泡剂溶液,然后加入新型无机微细颗粒,在磁力搅拌器上搅拌15min,即可得到泡沫基液。采用Waring Blender方法对100mL泡沫基液进行搅拌起泡,搅拌速度为7000转/min,搅拌时间为5min,即得强化泡沫体系。搅拌完成后将泡沫倒入1000mL量筒中,在常温常压下记录泡沫的初始体积为390mL和泡沫中液体析出50mL所用的时间为36.0min,表现出良好的起泡性和稳泡性。
实施例3、
一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相,气相是二氧化碳。液相中原料组分的质量百分比如下:
0.5wt%的起泡剂,1.0wt%的新型无机微细颗粒,余量为水;
所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比6:1组成的复配体系;所述新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。
制备方法如下:
按配比依次将起泡剂中的表面活性剂加入到100mL水中,搅拌配置成起泡剂溶液,然后 加入新型无机微细颗粒,在磁力搅拌器上搅拌15min,即可得到泡沫基液。采用Waring Blender方法对100mL泡沫基液进行搅拌起泡,搅拌速度为7000转/min,搅拌时间为5min,即得强化泡沫体系。搅拌完成后将泡沫倒入1000mL量筒中,在常温常压下记录泡沫的初始体积为375mL和泡沫中液体析出50mL所用的时间为28.0min,表现出良好的起泡性和稳泡性。
实验例
将实施例1-3所得的强化泡沫体系与不加入新型无机微细颗粒的泡沫体系作对比,实验数据如表1所示:
表1.强化泡沫体系与单纯表活剂泡沫体系参数对比
Figure PCTCN2016093191-appb-000001
由表1可知,加入新型无机微细颗粒制得的强化泡沫体系形成的泡沫比未加入新型无机微细颗粒的泡沫体系形成的泡沫稳定。
实施例4、
一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相;气相是氮气,液相中原料组分的质量百分比如下:
0.2wt%的起泡剂,0.8wt%的新型无机微细颗粒,余量为水;
所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比5:1组成的复配体系;所述新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。
应用于冲砂、洗井、酸化、排液、诱喷时的强化泡沫体系制备方法,步骤如下:
按配比将起泡剂加入到水中,搅拌3min,然后加入新型无机微细颗粒,搅拌7min,得泡沫基液;
将泡沫基液泵入泡沫发生器中,与氮气混合发泡,即得。制得的强化泡沫体系的泡沫质量范围为80%。
实施例5、
一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相,气相是空气,液相中原料组分的质量百分比如下:
0.8wt%的起泡剂,2.0wt%的新型无机微细颗粒,余量为水;
所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比5.5:1组成的复配体系;所述新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。
应用于驱油、压裂、调剖、堵水时的强化泡沫体系制备方法,步骤如下:
按配比将起泡剂加入到水中,搅拌3min,然后加入新型无机微细颗粒,搅拌7min,得泡沫基液;
将泡沫基液与空气混合后直接注入井下,即完成泡沫体系的制备与应用;泡沫基液与空气可在管柱及地层中混合发泡;制得的强化泡沫体系的泡沫质量范围为64%。
实施例6、
一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相,气相是二氧化碳。液相中原料组分的质量百分比如下:
0.5wt%的起泡剂,1.5wt%的新型无机微细颗粒,余量为水;
所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比5.5:1组成的复配体系;所述新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。
应用于驱油、压裂、调剖、堵水时的强化泡沫体系制备方法,步骤如下:
按配比将起泡剂加入到水中,搅拌3min,然后加入新型无机微细颗粒,搅拌7min,得泡沫基液;
将泡沫基液与空气混合后直接注入井下,即完成泡沫体系的制备与应用;泡沫基液与空气可在管柱及地层中混合发泡;制得的强化泡沫体系的泡沫质量范围为70%。

Claims (10)

  1. 一种油气田用新型无机微细颗粒强化泡沫体系,包括气相和液相,其特征在于,
    所述的气相是氮气、二氧化碳或空气;
    所述的液相中原料组分的质量百分比如下:
    0.2~0.8wt%的起泡剂,0.5~2.0wt%的新型无机微细颗粒,余量为水;所述的新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物。
  2. 根据权利要求1所述的油气田用新型无机微细颗粒强化泡沫体系,其特征在于,所述的起泡剂为油茶皂甙和月桂酰基谷氨酸钠按质量比(5~6):1组成的复配体系。
  3. 根据权利要求1所述的油气田用新型无机微细颗粒强化泡沫体系,其特征在于,所述的新型无机微细颗粒中,莫来石(Al6Si2O13)和石英(SiO2)两种物质总共所占比例≥75wt%。
  4. 根据权利要求1所述的油气田用新型无机微细颗粒强化泡沫体系,其特征在于,所述的新型无机微细颗粒表面具有亲水性,表面对水的润湿角为20°~50°。
  5. 根据权利要求1所述的油气田用新型无机微细颗粒强化泡沫体系,其特征在于,所述的新型无机微细颗粒的表面带正电荷。
  6. 根据权利要求1所述的油气田用新型无机微细颗粒强化泡沫体系,其特征在于,所述的新型无机微细颗粒与起泡剂的浓度比例为(2~4):1。
  7. 根据权利要求1所述的油气田用新型无机微细颗粒强化泡沫体系,其特征在于,当气相为氮气时,强化泡沫体系的泡沫质量范围为50%~90%,进一步优选60%~80%;
    当气相为空气时,强化泡沫体系的泡沫质量范围为57%~90%,进一步优选64~80%;
    当气相为二氧化碳时,强化泡沫体系的泡沫质量范围为61%~87%,进一步优选67~79%。
  8. 根据权利要求1所述的油气田用新型无机微细颗粒强化泡沫体系,其特征在于,所述的气相为氮气。
  9. 一种权利要求1-8任一项所述的强化泡沫体系的制备方法,步骤如下:
    按配比将起泡剂加入到水中,搅拌配置成起泡剂溶液,然后加入新型无机微细颗粒,搅拌10~20min,得泡沫基液;
    采用Waring Blender方法对泡沫基液进行搅拌起泡,搅拌速度为6000~8000转/min,搅拌时间为3~10min,即得。
  10. 一种权利要求1-8任一项所述的强化泡沫体系的制备方法,步骤如下:
    按配比将起泡剂加入到水中,搅拌1~3min,然后加入新型无机微细颗粒,搅拌5~10min,得泡沫基液;
    当强化泡沫体系应用于驱油、压裂、调剖、堵水时,将泡沫基液与气相混合后直接注入井下,即完成泡沫体系的制备与应用;
    当强化泡沫体系应用于冲砂、洗井、酸化、排液、诱喷时,将泡沫基液泵入泡沫发生器中,与气相混合发泡,即得。
PCT/CN2016/093191 2015-09-21 2016-08-04 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法 WO2017050024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/519,540 US9777210B2 (en) 2015-09-21 2016-08-04 Inorganic fine particle reinforced foam system for oil-gas field and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510600689.6A CN105238380B (zh) 2015-09-21 2015-09-21 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法
CN201510600689.6 2015-09-21

Publications (1)

Publication Number Publication Date
WO2017050024A1 true WO2017050024A1 (zh) 2017-03-30

Family

ID=55036210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093191 WO2017050024A1 (zh) 2015-09-21 2016-08-04 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法

Country Status (3)

Country Link
US (1) US9777210B2 (zh)
CN (1) CN105238380B (zh)
WO (1) WO2017050024A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238380B (zh) * 2015-09-21 2016-10-05 中国石油大学(华东) 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法
CN106497534B (zh) * 2016-08-31 2019-06-28 西南石油大学 一种由纳米纤维素构建的强化泡沫体系
PL422987A1 (pl) * 2017-09-27 2019-04-08 Instytut Nafty I Gazu - Państwowy Instytut Badawczy Spieniony płyn szczelinujący
CN107841302B (zh) * 2017-10-19 2018-09-28 中国石油大学(华东) 一种改性纳米石墨颗粒三相泡沫调驱体系及其制备方法
CN109517592B (zh) 2018-11-19 2019-12-10 中国石油大学(北京) 一种油气田用超高特征值三相烟道气泡沫及其制备方法
CN109999684B (zh) 2019-04-22 2021-07-13 中国石油大学(华东) 一种二氧化碳流度控制装置及方法
CN109943307B (zh) 2019-04-26 2020-04-03 中国石油大学(华东) 在稠油热采过程中用于调剖封堵的泡沫溶液及其制备方法和泡沫体系以及调剖封堵的方法
CN111019622A (zh) * 2019-12-23 2020-04-17 中国石油大学(华东) 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用
CN111234799A (zh) * 2020-03-06 2020-06-05 中国石油天然气股份有限公司 一种高携砂性能的二氧化碳泡沫压裂液及其制备方法
CN113444509B (zh) * 2020-03-27 2022-08-05 中国石油天然气股份有限公司 一种超临界二氧化碳泡沫体系及其制备方法与起泡液
CN111255392A (zh) * 2020-03-31 2020-06-09 中国石油集团渤海钻探工程有限公司 一种连续油管冲砂液
CN111484838B (zh) * 2020-06-24 2020-10-27 中国石油大学(华东) 一种碳酸盐岩缝洞型油藏复合调堵剂及其制备方法
CN112227986B (zh) * 2020-10-20 2022-12-27 克拉玛依新科澳石油天然气技术股份有限公司 高漏失井钻塞冲砂液及使用方法和应用
CN112048290B (zh) * 2020-10-21 2023-02-28 陕西延长石油(集团)有限责任公司 一种用于低渗油气田高矿化度地层水的酸性纳米起泡剂及其制备方法和应用
CN114316937A (zh) * 2022-01-06 2022-04-12 杨江 排水采气纳米复合绿色环保泡排剂及其应用
CN114961639B (zh) * 2022-07-28 2022-10-14 新疆新易通石油科技有限公司 一种稠油油藏蒸汽驱堵疏结合开发方法
CN115960598B (zh) * 2023-03-17 2023-06-09 中国石油大学(华东) 微纳米粉煤灰颗粒强化泡沫体系的应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031103A (zh) * 2010-11-18 2011-04-27 陕西延长石油(集团)有限责任公司研究院 一种co2清洁泡沫压裂液体系
CN102399548A (zh) * 2010-09-15 2012-04-04 中国石油天然气股份有限公司 一种复合泡沫驱油用起泡剂
CN102746841A (zh) * 2012-06-29 2012-10-24 中国石油大学(华东) 一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法
CN103694983A (zh) * 2014-01-06 2014-04-02 中国石油大学(华东) 一种泡沫驱油用粘土稳泡复合剂及其制备方法与应用
US20140251607A1 (en) * 2011-09-27 2014-09-11 Dow Global Technologies Llc Nonionic surfactants for enhanced crude oil recovery
CN105238380A (zh) * 2015-09-21 2016-01-13 中国石油大学(华东) 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975301B2 (en) * 2005-12-12 2015-03-10 Eth Zurich Ultrastable particle-stabilized foams and emulsions
CN101580705B (zh) * 2009-06-12 2012-03-21 中国石油大学(华东) 一种用于普通稠油油藏的低气液比泡沫起泡剂及其注入方法
US20110315384A1 (en) * 2010-06-25 2011-12-29 Emilio Miquilena Gelled foam compositions and methods
US20150021022A1 (en) * 2013-07-17 2015-01-22 Schlumberger Technology Corporation Energized slurries and methods
US20150369029A1 (en) * 2014-06-24 2015-12-24 Schlumberger Technology Corporation Compound cluster placement in fractures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399548A (zh) * 2010-09-15 2012-04-04 中国石油天然气股份有限公司 一种复合泡沫驱油用起泡剂
CN102031103A (zh) * 2010-11-18 2011-04-27 陕西延长石油(集团)有限责任公司研究院 一种co2清洁泡沫压裂液体系
US20140251607A1 (en) * 2011-09-27 2014-09-11 Dow Global Technologies Llc Nonionic surfactants for enhanced crude oil recovery
CN102746841A (zh) * 2012-06-29 2012-10-24 中国石油大学(华东) 一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法
CN103694983A (zh) * 2014-01-06 2014-04-02 中国石油大学(华东) 一种泡沫驱油用粘土稳泡复合剂及其制备方法与应用
CN105238380A (zh) * 2015-09-21 2016-01-13 中国石油大学(华东) 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, QIAN ET AL.: "Synergetic Effect on Foam Stabilized by Nano-Si02/SDS System and Oil Displacement Experiment", JOURNAL OF PETROCHEMICAL UNIVERSITIES, vol. 27, no. 6, 31 December 2014 (2014-12-31), pages 36 - 41 and 49, ISSN: 1006-396X *

Also Published As

Publication number Publication date
CN105238380A (zh) 2016-01-13
CN105238380B (zh) 2016-10-05
US9777210B2 (en) 2017-10-03
US20170240800A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
WO2017050024A1 (zh) 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法
US11618847B2 (en) Methods for preparing and applying a nano emulsifier
CN104449631B (zh) 强气润湿性纳米二氧化硅解水锁剂、其制备方法及岩石表面润湿反转的方法
US10793763B2 (en) Ultra-dry three-phase flue gas foam for oil-gas fields and preparation method thereof
WO2017113773A1 (zh) 一种疏水缔合聚合物及其制备方法
CN112375557B (zh) 一种压裂用醇溶性滑溜水体系及其制备方法与应用
CN106188403A (zh) 一种高温高盐油藏防co2气窜堵剂及其制备方法
CN107686723A (zh) 一种co2响应就地凝胶封窜溶胶及其制备方法与应用
Lakatos et al. New alternatives in conformance control: Nanosilica and liquid polymer aided silicate technology
CN103666439A (zh) 一种海水基速溶压裂液及其配制方法
CN102120929A (zh) 一种气井控水剂的制备方法
CN103468237A (zh) 清洁压裂液及其制备方法
Qu et al. Synthesis of α-starch based nanogel particles and its application for long-term stabilizing foam in high-salinity, high-temperature and crude oil environment
Zhao et al. The development of a smart gel for CO2 mobility control in heterogeneity reservoir
CN107794031B (zh) 一种适用于低压贫含水煤层气井的氮气泡沫压裂液体系
Zhang et al. Preparation of a functional fracturing fluid with temperature-and salt-resistance, and low damage using a double crosslinking network
Rahman et al. Surfactant and nanoparticle synergy: Towards improved foam stability
Li et al. A novel profile modification HPF-Co gel satisfied with fractured low permeability reservoirs in high temperature and high salinity
CN116083066B (zh) 二维纳米颗粒的复合驱组合物及二维纳米颗粒的制备方法
AU2021102298A4 (en) Micro-foam fracturing fluid, preparation method and use thereof
CN105038747A (zh) 一种化学反应改性沥青调剖堵水剂及其制备方法与用途
CN113563863A (zh) 一种气固液三相压裂液体系及其使用方法
RU2586356C1 (ru) Состав и способ повышения нефтеотдачи нефтяных пластов
Wang et al. Displacement characteristics of worm-like micelle CO2 foam and treatment of produced liquid
Chen et al. CO2-low interfacial tension viscoelastic fluid synergistic flooding in tight reservoirs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15519540

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847906

Country of ref document: EP

Kind code of ref document: A1