WO2020246663A1 - Matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur et procédé de préparation associé - Google Patents

Matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur et procédé de préparation associé Download PDF

Info

Publication number
WO2020246663A1
WO2020246663A1 PCT/KR2019/013804 KR2019013804W WO2020246663A1 WO 2020246663 A1 WO2020246663 A1 WO 2020246663A1 KR 2019013804 W KR2019013804 W KR 2019013804W WO 2020246663 A1 WO2020246663 A1 WO 2020246663A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
oligosiloxane
siloxane
resistant
Prior art date
Application number
PCT/KR2019/013804
Other languages
English (en)
Korean (ko)
Inventor
강동준
임현균
강민정
박효열
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2020246663A1 publication Critical patent/WO2020246663A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • Conventional heat-resistant materials include fluorine-based organic polymer-based heat-resistant coating materials and inorganic polysilazane-based heat-resistant coating materials.
  • the high heat-resistant nanohybrid siloxane insulating material in the present invention means that the residual inorganic content is high, where the residual inorganic content can be measured as the mass of the inorganic matter remaining when the high heat-resistant nanohybrid siloxane insulating material is burned at 750°C. have.
  • oligosiloxane has a siloxane-based siloxane structure with excellent thermal stability that can withstand high temperatures as its main structure, and has at least one of an alkyl group, an aryl group, and an organic group at the side chains and terminals. It says to include.
  • alkyl group any of methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, isopentyl group, hexyl group, dimethyl group, and trimethyl group
  • the aryl group may be any one or more of a phenyl group, a diphenyl group, and a triphenyl group
  • the organic group may be any one or more of a vinyl group, a methacrylic group, and a hydrogen group.
  • the thermal condensation method is not formed by curing through crosslinking between organic substances, but is formed in a form in which only inorganic powder of siloxane is dried or cured, and an organic silane precursor having an alkyl group or an aryl group is hydrolyzed and condensed using an acid aqueous solution. It is a method of reacting to produce an alkyl or aryl oligosiloxane.
  • thermosetting method is a method of producing a thermosetting oligosiloxane by hydrolysis and condensation reaction in an acid atmosphere using an organosilane precursor having an organic group capable of thermosetting.
  • the surface-treated nanosilica particles of the present invention are mixed with oligosiloxane to improve adhesion, crack resistance, and heat resistance.
  • the organic monomer or organic oligomer of the present invention has a carbonized chain structure and includes a thermosetting organic group at the side chain and the terminal.
  • organic monomers or organic oligomers may be included in an amount of 0.1 to 10 parts by weight in the high heat-resistant nanohybrid siloxane insulating material. If it is less than 0.1 parts by weight, it is difficult to control crack resistance and heat resistance, and if it exceeds 10 parts by weight, the heat resistance is very Since it was confirmed that a phenomenon of deterioration is caused, it is preferable to control crack resistance and heat resistance by using species having different molecular weights together. In the case of an organic monomer or an organic oligomer, it is most preferably added in an amount of 5 parts by weight.
  • the heat condensation reaction accelerator it may be added in the step (S10) of preparing an oligosiloxane or may be added in the step (S20) of preparing a high heat-resistant insulating resin, and the order of addition is not limited.
  • an organic solvent it may be contained in an amount of 50 to 70 parts by weight, and if it is less than 50 parts by weight, the miscibility with other components cannot be properly achieved, and if it exceeds 70 parts by weight, it is significant compared to the case where a less amount is added. Since there is no effect, the organic solvent is preferably included in the range of 50 to 70 parts by weight.
  • Example 1 is a method using an alkyl or aryl oligosiloxane through a thermal condensation method.
  • an alkyl or aryl oligosiloxane was prepared using an aqueous hydrochloric acid solution (T, TD, TQ species).
  • T, TD, TQ species aqueous hydrochloric acid solution
  • the molecular weight was controlled by controlling reaction variables including catalyst concentration and reaction time.
  • Example 1-2 16 parts by weight of methyl-ethyl oligosiloxane, 10 parts by weight of methyl-propyl oligosiloxane, 0.5 parts by weight of surface leveling agent, 1.5 parts by weight of heat condensation accelerator, 2 parts by weight of adhesion promoter, 20 parts by weight of butyl cellosolve Parts and 40 parts by weight of xylene, but unlike Example 1-1, a high heat-resistant nanohybrid siloxane insulating material containing 10 parts by weight of fumed nano-silica particles was prepared.
  • Example 1-5 5 parts by weight of methyl-ethyl oligosiloxane, 5 parts by weight of methyl-propyl oligosiloxane, 5 parts by weight of methyl-phenyl oligosiloxane, 5 parts by weight of methyl oligosiloxane, 5 parts by weight of propyl-TEOS oligosiloxane, Colloidal nanosilica 6 parts by weight, fumed nano silica 5 parts by weight, surface leveling agent 0.5 parts by weight, heat condensation reaction accelerator 1.5 parts by weight, adhesion promoter 2 parts by weight, butyl cellosolve 20 parts by weight and xylene 40 parts by weight A heat-resistant nanohybrid siloxane insulating material was prepared.
  • Example 1-1 Example 1-2 Example 1-3 Example 1-4 Example 1-5 Hardness ⁇ ⁇ ⁇ ⁇ ⁇ Residual inorganic content (%) 70 or more 70 or more 70 or more 65 or more 67 or more Transmittance(%) 91 91 91 91 91 91 Adhesion (B) 5 5 5 5 5 5 crack ⁇ ⁇ ⁇ ⁇ ⁇ Moisture content (%) 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less Pencil hardness H H HB or less H H H
  • Example 2-4 13 parts by weight of methyl-vinyl oligosiloxane, 13 parts by weight of ethyl-vinyl oligosiloxane, 5 parts by weight of propyl-vinyl oligosiloxane, 5 parts by weight of colloidal nanosilica, 0.5 parts by weight of surface leveling agent, thermal condensation
  • a highly heat-resistant nanohybrid siloxane insulating material consisting of 1.5 parts by weight of a reaction accelerator, 2 parts by weight of an adhesion promoter, 20 parts by weight of butyl cellosolve, and 40 parts by weight of xylene was prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur et un procédé de préparation associé et, plus spécifiquement : un matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur ayant une résistance à la chaleur élevée et ayant également des caractéristiques d'isolation de base par le mélange de nanoparticules de silice traitées en surface et d'un oligosiloxane comprenant une structure de siloxane. L'invention concerne en outre un procédé de préparation associé. Les objets techniques de la présente invention sont : un matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur comprenant des nanoparticules de silice traitées en surface et un oligosiloxane, qui comprend une structure siloxane ayant au moins un groupe parmi un groupe alkyle, un groupe aryle et un groupe organique ; et un procédé de préparation associé.
PCT/KR2019/013804 2019-06-07 2019-10-21 Matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur et procédé de préparation associé WO2020246663A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190067178A KR20200140509A (ko) 2019-06-07 2019-06-07 고내열 나노하이브리드 실록산 절연소재 및 이의 제조방법
KR10-2019-0067178 2019-06-07

Publications (1)

Publication Number Publication Date
WO2020246663A1 true WO2020246663A1 (fr) 2020-12-10

Family

ID=73652035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013804 WO2020246663A1 (fr) 2019-06-07 2019-10-21 Matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur et procédé de préparation associé

Country Status (2)

Country Link
KR (1) KR20200140509A (fr)
WO (1) WO2020246663A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444820B1 (ko) * 2013-05-21 2014-09-30 한국전기연구원 유연 에너지소자의 절연 및 부식방지용 하이브리드 패키징 소재 제조방법
KR20150010051A (ko) * 2013-07-17 2015-01-28 한국전기연구원 고차단성 투명 하이브리드 패키징 막
KR20160014971A (ko) * 2014-07-30 2016-02-12 한국전기연구원 고투명, 내열성 및 절연성을 갖는 하이브리드 코팅소재의 제조방법
KR20180026259A (ko) * 2016-09-02 2018-03-12 한국전기연구원 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법
KR101906815B1 (ko) * 2017-07-28 2018-10-11 한국전기연구원 무용매 타입의 열경화성 유무기 하이브리드 절연소재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444820B1 (ko) * 2013-05-21 2014-09-30 한국전기연구원 유연 에너지소자의 절연 및 부식방지용 하이브리드 패키징 소재 제조방법
KR20150010051A (ko) * 2013-07-17 2015-01-28 한국전기연구원 고차단성 투명 하이브리드 패키징 막
KR20160014971A (ko) * 2014-07-30 2016-02-12 한국전기연구원 고투명, 내열성 및 절연성을 갖는 하이브리드 코팅소재의 제조방법
KR20180026259A (ko) * 2016-09-02 2018-03-12 한국전기연구원 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법
KR101906815B1 (ko) * 2017-07-28 2018-10-11 한국전기연구원 무용매 타입의 열경화성 유무기 하이브리드 절연소재

Also Published As

Publication number Publication date
KR20200140509A (ko) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2014038760A1 (fr) Composition de revêtement antireflet comprenant un composé siloxane et film antireflet l'utilisant
JPS61113661A (ja) ラツカー、および防食被覆生成方法
WO2014069808A1 (fr) Composition de revêtement anti-réfléchissant comprenant un composé siloxane, et film anti-réfléchissant dont l'énergie de surface est réglée en l'utilisant
EP2198434B1 (fr) Système d'isolation électrique à surface modifiée, ayant une résistance au cheminement et à l'érosion améliorée
WO2013137604A1 (fr) Procédé de fabrication de matériau d'emballage hybride
WO2019124865A1 (fr) Composition de type solution pour le traitement de surface d'une tôle d'acier et tôle d'acier traitée en surface à l'aide de celle-ci
KR101933400B1 (ko) 실리카 무기질 방염성 코팅 조성물
KR101370024B1 (ko) 유무기 복합 하이브리드수지 및 이를 이용한 난연조성물
WO2020246663A1 (fr) Matériau isolant à base de siloxane nanohybride hautement résistant à la chaleur et procédé de préparation associé
WO2015093825A1 (fr) Composite céramique à forte capacité de dissipation de chaleur, son procédé de fabrication et son utilisation
CN112194981A (zh) 一种低温反应型耐高温涂料及其制备方法
WO2019022545A1 (fr) Matériau isolant hybride organique/inorganique thermodurcissable dépourvu de solvant
CN116239964A (zh) 一种隔热膜及其制备方法
WO2019083136A1 (fr) Produit nanohybride durci autoréparant à base de polyurée/sol-gel de silice, et son procédé de préparation
KR102045325B1 (ko) 광학용 투명 필름에 적용 가능한 uv 속경화형 조성물 및 제조방법
KR101321981B1 (ko) 용매제어형 실리카-에폭시 하이브리드 패키징 소재 제조방법
KR20200029236A (ko) 불연도료용 수지 혼합물, 이를 포함한 불연도료 및 그 제조방법
KR20200137364A (ko) 인계무기계 산화물 아세테이트 섬유 난연성 조성물
KR101900000B1 (ko) 고경도 및 고투명성을 갖는 박막필름 및 이의 제조방법
KR102480868B1 (ko) 내크랙성이 개선된 내열성 도료 조성물 및 이를 이용한 코팅체의 제조 방법
KR101941460B1 (ko) 멜라민 관능기가 도입된 에폭시실릴 인산에스테르 유무기 복합 하이브리드 수지 및 이를 이용한 불연 도료 조성물
CN112175451B (zh) 一种基于丁苯橡胶的三防漆及其制备方法和使用方法
JP3959569B2 (ja) 樹脂組成物、その製造方法および成形物
CN110607103B (zh) 防涂鸦透明阻燃涂料及其制备方法
KR102269181B1 (ko) 무용매 타입의 광경화성 유무기 하이브리드 절연소재 제조용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932192

Country of ref document: EP

Kind code of ref document: A1