WO2020244555A1 - 热交换器 - Google Patents

热交换器 Download PDF

Info

Publication number
WO2020244555A1
WO2020244555A1 PCT/CN2020/094196 CN2020094196W WO2020244555A1 WO 2020244555 A1 WO2020244555 A1 WO 2020244555A1 CN 2020094196 W CN2020094196 W CN 2020094196W WO 2020244555 A1 WO2020244555 A1 WO 2020244555A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchange
flow
flow channel
main board
Prior art date
Application number
PCT/CN2020/094196
Other languages
English (en)
French (fr)
Inventor
张伟伟
董军启
史鑫
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920823527.2U external-priority patent/CN210570125U/zh
Priority claimed from CN201910708951.7A external-priority patent/CN112304124A/zh
Priority claimed from CN201910708129.0A external-priority patent/CN112304123A/zh
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to US17/606,741 priority Critical patent/US20220214113A1/en
Priority to EP20817984.6A priority patent/EP3978855B1/en
Publication of WO2020244555A1 publication Critical patent/WO2020244555A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0207Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions the longitudinal or transversal partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits

Definitions

  • the present invention relates to the technical field of heat exchange, in particular to a heat exchanger.
  • Heat exchangers also called heat exchangers, are widely used in heat exchange systems (such as air conditioning systems).
  • the heat exchanger includes a heat exchange tube and a header.
  • the refrigerant enters the header, and then flows from the header to the heat exchanger tube to exchange heat with the outside world.
  • the header assembly includes an end cover, and a heat exchanger that uses CO 2 as the refrigerant. Due to the high system pressure, the pressure generated when the refrigerant enters the header from the end cover is large, so the pressure resistance performance of the header is relatively high. high.
  • the application provides a heat exchanger, which has better pressure resistance.
  • the first aspect of the present application provides a heat exchanger, including: a first header, a second header, a heat exchange tube, and an end cover, one end of the heat exchange tube is connected to the first header , The other end of the heat exchange tube is connected to the second header, the inner cavity of the heat exchange tube communicates with the inner cavity of the first header and the inner cavity of the second header, the first header And the second header both include two ports arranged in the length direction thereof;
  • the end cap is assembled and fixed to the port of the first header or the port of the second header;
  • the end cap includes a body and a first opening formed in the body;
  • the body includes a second cavity and a first A groove, the first groove is located between the first opening and the second cavity;
  • the first groove includes a first bottom wall close to the first opening, the first bottom wall is provided with a third opening, and the third opening communicates with the first opening and the second cavity, so
  • the second cavity is in communication with the inner cavity of the first header or the inner cavity of the second header, and the first opening is farther away from the inner cavity of the first header than the second cavity Cavity or the inner cavity of the second header, the first opening is used to flow in or out of refrigerant;
  • the flow area of the first groove is larger than the flow area of the third opening, so that after the refrigerant enters the first groove from the first opening through the third opening, the instantaneous pressure of the refrigerant can be reduced, so that the entry can be reduced
  • the impact of the refrigerant entering the header on the header reduces the pressure requirements of the header.
  • FIG. 1 is a schematic structural diagram of the heat exchanger according to Embodiment 1 of the present application.
  • FIG. 2 is an exploded view of the heat exchanger according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of the structure of the first header according to the first embodiment of the present application.
  • FIG. 4 is a schematic diagram of the middle rib of the first main board according to the first embodiment of the present application without holes or openings;
  • FIG. 5 is a schematic diagram of the opening or opening of the middle rib of the first main board according to the first embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the second main board according to Embodiment 1 of the present application.
  • FIG. 7 is a cross-sectional view of the second header according to Embodiment 1 of the present application.
  • Fig. 8 is an exploded view of the heat exchanger according to the second embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of the first header according to the second embodiment of the present application.
  • Fig. 10 is an exploded view of the heat exchanger according to the third embodiment of the present application.
  • FIG. 11 is a cross-sectional view of the second header according to the third embodiment of the present application.
  • Figure 12 is an exploded view of the heat exchanger according to the fourth embodiment of the present application.
  • FIG. 13 is a schematic diagram of the three-dimensional structure of the heat exchanger according to Embodiment 5 of the present application.
  • FIG. 14 is an exploded view of the heat exchanger according to Embodiment 5 of the present application.
  • FIG. 15 is an exploded view of the heat exchanger according to Embodiment 6 of the present application.
  • FIG. 16 is a schematic diagram of the three-dimensional structure of the heat exchanger according to Embodiment 7 of the present application.
  • Figure 17 is an exploded view of the heat exchanger according to the seventh embodiment of the present application.
  • FIG. 18 is an exploded view of the heat exchanger according to the eighth embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a heat exchanger provided in Example 9 of this application.
  • FIG. 20 is a working flow chart of the heat exchanger provided in the ninth embodiment of the application.
  • FIG. 21 is an exploded schematic diagram of the heat exchanger provided by Embodiment 9 of this application.
  • FIG. 22 is a schematic structural diagram of the first type of header provided in the ninth embodiment of this application.
  • FIG. 23 is a schematic structural diagram of a second type of header provided in Example 9 of this application.
  • FIG. 24 is a schematic structural diagram of a third type of header provided in the ninth embodiment of the application.
  • 25 is a schematic front view of the structure of the second main board in the third type of header provided in the ninth embodiment of the application;
  • 26 is a schematic front view of the structure of the first main board in the third type of header provided in the ninth embodiment of the application;
  • FIG. 27 is a schematic structural diagram of the second main board in the third type of header provided in the ninth embodiment of the application.
  • FIG. 28 is a schematic structural diagram of the first main board in the third type of header provided in the ninth embodiment of the application.
  • FIG. 29 is a schematic diagram of the structure of the middle end cover of the header provided by the ninth embodiment of the application.
  • FIG. 30 is a schematic front view of the middle end cover of the collecting pipe provided in the ninth embodiment of the application.
  • FIG. 31 is a schematic diagram of a transverse cross-section of the middle end cover of the collecting pipe provided by the ninth embodiment of the application.
  • FIG. 32 is a schematic diagram of the first header provided in the ninth embodiment of the application after being half-disconnected with the heat exchange tube;
  • Fig. 33 is a partial schematic diagram of Fig. 32;
  • Fig. 34 is an enlarged schematic diagram of A in Fig. 32;
  • 35 is a schematic cross-sectional view of the cooperation of the first header and the heat exchange tube provided by the ninth embodiment of the application;
  • FIG. 36 is a partial schematic diagram of the header provided in the ninth embodiment of the application.
  • FIG. 37 is a schematic front view of the structure of the fifth type of header provided in the ninth embodiment of the application.
  • FIG. 38 is a schematic diagram of the structure of the first main board in the fifth type of header provided in the ninth embodiment of the application.
  • FIG. 39 is a schematic structural diagram of the second main board in the fifth type of header provided in the ninth embodiment of the application.
  • FIG. 40 is a schematic structural diagram of the first main board in the sixth type of header provided in the ninth embodiment of the application.
  • FIG. 41 is a schematic structural diagram of the second main board in the sixth type of collector provided in the ninth embodiment of the application.
  • FIG. 42 is a schematic front view of the structure of a sixth type of header provided in the ninth embodiment of the application.
  • FIG. 43 is a schematic front view of the structure of the seventh collector provided in the ninth embodiment of the application.
  • This embodiment provides a heat exchanger, as shown in Figs. 1 and 2, the heat exchanger includes a first header 1, a second header 2 and multiple rows of heat exchange tubes arranged in sequence from top to bottom 3. Among them:
  • the first header 1 includes a first main board 11 and a second main board 12.
  • the second main board 12 is located below the first main board 11, and the first main board 11 and the second main board 12 are enclosed to form the first set Flow tube 1.
  • the first main board 11 and the second main board 12 may be two parts of one component, or may be a whole formed by splicing two separate components.
  • the second main board 12 and the first main board 11 Fix together by brazing.
  • the above-mentioned first main plate 11 includes at least one intermediate rib 111, which is supported by the second main plate 12 and can divide the first main plate 11 into a plurality of through slots 112.
  • the extension direction of the through slots 112 is the same as that of the first header 1
  • the longitudinal directions of the cavities are parallel, and each through slot 112 and the second main board 12 form a circulation cavity.
  • the adjacent circulation cavities are arranged side by side, and the parallel direction is perpendicular to the axial direction of the first header 1.
  • the cross-sectional shape of the through groove 112 may be semicircular, semi-elliptical, rectangular, etc., or other shapes that can form the through groove 112.
  • the volume of each through slot 112 can be the same or different.
  • At least one of the above-mentioned circulation cavities forms a first flow channel 10, and at least one of the above-mentioned circulation cavities forms a second flow channel 20.
  • the above-mentioned first flow channel 10 communicates with a first flow port 6, and the second flow channel 20 is connected to the second flow port 7.
  • the heat exchanger is used as a condenser, the high-temperature gaseous heat exchange medium can enter the first flow channel 10 from the first flow port 6, and circulate and exchange heat in the heat exchange tube 3, then pass through the second The flow channel 20 flows out of the second circulation port 7 (at this time, the heat exchange medium is in a liquid state or a gas-liquid mixed state).
  • the liquid heat exchange medium can enter the second flow passage 20 from the second flow port 7 and circulate and exchange heat in the heat exchange tube 3, and then flow out of the first flow port 6 through the first flow passage 10. At this time, the heat exchange medium is gaseous).
  • the total volume of the first flow passage 10 (that is, the sum of the volumes of all the first flow passages 10) is greater than the total volume of the second flow passage 20 (that is, the sum of the volumes of all the second flow passages 20).
  • the arrangement of this structure can make The heat exchange medium required for heat exchange has a high flow rate in the heat exchanger.
  • At least two first flow channels 10 are provided, at least one second flow channel 20 is provided, and at least two first flow channels 10 are all located on the same side of the second flow channel 20, and further It is convenient for the heat exchange medium to enter.
  • first flow passages 10 may be independent of each other and not connected, as shown in FIG. 4, at this time, the heat exchange medium flowing through the first flow port will be affected by the intermediate ribs between two adjacent first flow passages 10 111 diverges, and each enters the corresponding first flow channel 10.
  • the second main board 12 may have a U-shaped structure, and the first main board 11 is placed inside the U-shape of the second main board 12, that is, a structure in which the second main board 12 covers the first main board 11 is formed.
  • the second main board 12 and the first main board 11 are fixedly connected by welding. It is understandable that the above-mentioned second main board 12 may also have a plate-like structure. In this case, the first main board 11 is directly supported on the second main board 12, and the two are fixed by brazing.
  • a plurality of rows of first heat exchange tube holes 121 are opened on the second main board 12, and the first heat exchange tube holes 121 are used for penetrating the heat exchange tubes 3, and in the first heat exchange tube
  • the heat exchange tube 3 is brazed at the heat pipe hole 121 so that the heat exchange tube 3 is fixed to the second main board 12 and sealed at the joint.
  • the number of rows of the aforementioned first heat exchange tube holes 121 is the same as the number of rows of heat exchange tubes 3, and each first heat exchange tube hole 121 has a heat exchange tube 3 penetrating.
  • the heat exchange medium in the first flow channel 10 can flow into the heat exchange tube 3 or the heat exchange medium in the first flow channel 10 can flow into the heat exchange tube 3, and make the heat exchange tube 3
  • the heat exchange medium flows into the second flow channel 20 or the heat exchange medium in the second flow channel 20 flows into the heat exchange tube 3.
  • a flange 122 is provided on the periphery of the first heat exchange tube hole 121, and the flange 122 extends in a direction away from the first main board 11.
  • the flange 122 can increase the contact area with the heat exchange tube 3, so that The welding surface of the heat exchange tube 3 and the second main board 12 is larger, and the strength after welding is greater.
  • the flange may also extend in a direction close to the first main board 11.
  • the above-mentioned first heat exchange tube hole 121 may be a long hole, a circular hole or a rectangular hole, and its shape is determined by the shape of the heat exchange tube 3 to which it is assembled.
  • the first heat exchange tube hole 121 is an elongated hole.
  • the heat exchange tube 3 is a flat tube.
  • the height of the flange 122 is related to the thickness of the heat exchange tube 3, and its height is the thickness of the heat exchange tube 3 0.7-1.3 times of that.
  • the above-mentioned heat exchange tubes 3 are provided with several rows, and each first flow channel 10 and each second flow channel 20 are respectively provided with a row of heat exchange tubes 3 respectively.
  • the specific number of rows of the heat exchange tubes 3 and the formation of the first The sum of the numbers of the through grooves 112 of the first runner 10 and the second runner 20 is the same.
  • each first flow channel 10 and each second flow channel 20 are respectively provided with a row of heat exchange tubes 3, of course, multiple first flow channels 10 can also be provided with a row of heat exchange tubes.
  • first flow channels 10 can also be provided with a row of heat exchange tubes.
  • one first flow channel 10 can be provided with multiple rows of heat exchange tubes 3; or multiple second flow channels 20 can be provided with one row of heat exchange tubes 3, or one second flow channel 20 can be provided with multiple rows of heat exchange tubes.
  • the heat exchange tube 3 does not affect the flow of the heat exchange medium, which is not limited in this application.
  • the density of the heat exchange medium in the first flow channel 10 is less than the density in the second flow channel 20.
  • the same amount of heat exchange medium has a larger volume in the first flow channel 10 than in the second flow channel 20.
  • the total volume of the first flow channel 10 is greater than the total volume of the second flow channel 20, and the number of heat exchange tubes 3 connected to the first flow channel 10 is more than the number of heat exchange tubes 3 connected to the second flow channel 20.
  • the configuration of the structure can make the flow rate of the heat exchange medium required for heat exchange in the heat exchanger higher.
  • the heat exchanger further includes an end cover 8, wherein the first circulation port 6 and the second circulation port 7 are provided on the end cover 8.
  • first circulation port 6 may be provided as one, and in this case, the first circulation port 6 is connected to all the first flow channels 10.
  • the first circulation port 6 can also be provided with multiple, in this case, each first circulation port 6 is respectively connected with a first flow channel 10.
  • the second header 2 is connected to the heat exchange tube 3 at one end that is not connected to the first flow passage 10 and the second flow passage 20, that is, both ends of the heat exchange tube 3 are connected to the first header 1 respectively. And the second header 2.
  • the second collecting tube 2 of this embodiment includes a third main board 21 and a fourth main board 22 that are welded together.
  • the third main board 21 is located below the fourth main board 22.
  • the third main board 21 and the fourth main board 22 are both flat plate structures, and referring to FIG. 7, the top surface of the third main board 21 is flat, and the bottom surface of the fourth main board 22 is also flat. With the third main board 21 and the fourth main board 22 both having a flat plate structure, the structure of the second header 2 of this embodiment is more compact.
  • a groove 211 is formed on the third main board 21, and the groove 211 can be enclosed with the fourth main board 22 to form a third channel 30.
  • the above-mentioned groove 211 needs to satisfy all the heat exchange tubes 3.
  • the width of the groove 211 in this embodiment is greater than the maximum distance between the two outermost rows of heat exchange tubes 3.
  • the depth of the groove 211 is 1/3-1/2 of the thickness of the third main board 21.
  • the fourth main board 22 is provided with a plurality of rows of second heat exchange tube holes 221, each of the second heat exchange tube holes 221 is provided corresponding to one heat exchange tube 3, and one end of the plurality of rows of heat exchange tubes 3 Pass through the second heat exchange tube hole 221 and communicate with the third channel 30.
  • the above-mentioned second heat exchange tube hole 221 adopts a structure of outer flanging (specifically, flanging in a direction away from the third main board 21), which can increase the contact area with the heat exchange tube 3, thereby increasing the second heat exchange tube hole 221 The connection strength with the heat exchange tube 3.
  • the second heat exchange tube hole 221 and the heat exchange tube 3 are connected by brazing.
  • the length of the second heat exchange tube hole 221 is greater than the necking width of the heat exchange tube 3
  • the width of the second heat exchange tube hole 221 is greater than the thickness of the heat exchange tube 3
  • the second heat exchange tube hole 221 is flanged
  • the height is 0.7-1.3 times the thickness of the heat exchange tube 3.
  • the flanging of the second heat exchange tube hole 221 may also extend in a direction close to the third main board 21.
  • the second header 2 of this embodiment can also be directly provided with a groove 211 on the fourth main board 22.
  • the third main board 21 is only a flat plate structure, and the third channel 30 is formed between the two. .
  • the gaseous heat exchange medium enters through the first flow port 6, and then diverted to the first flow passage 10 with a relatively large total volume of the first header 1, at which time the heat exchange medium will enter and communicate with the first flow passage 10.
  • the heat exchange medium finally flows into the third channel 30 of the second header 2 through the heat exchange tube 3 connected with the first flow channel 10, and passes through
  • the third channel 30 flows into the heat exchange tube 3 communicating with the second flow channel 20, and then flows into the second flow channel 20 in the heat exchange tube 3 communicating with the second flow channel 20, and further interacts with other media in the process.
  • air exchanges heat
  • the heat exchange medium is in a liquid state or a gas-liquid mixed state
  • the heat exchange medium in liquid or gas-liquid mixed state enters the second flow passage 20 with a relatively small total volume of the first header 1 through the second flow port 7.
  • the heat exchange medium will enter the second flow passage. 20 is connected to the heat exchange tube 3 and exchanges heat with other media in the process.
  • the heat exchange medium flows into the second header 2 through the heat exchange tube 3 connected to the second flow channel 20 and passes through the third channel 30 It flows into the heat exchange tube 3 connected with the first flow channel 10, and then flows into the first flow channel 10 in the heat exchange tube 3 connected with the first flow channel 10, and further exchanges heat with other media (such as air) in the process, Finally, it flows out through the first circulation port 6 (the heat exchange medium is gaseous at this time) to complete the heat exchange process.
  • the gaseous heat exchange medium circulates in the first flow channel 10, and the liquid or gas-liquid mixed heat exchange medium circulates in the second flow channel 20. Due to the total volume of the first flow channel 10 Greater than the total volume of the second flow channel 20, the total volume of the flow channel of the heat exchange tube 3 connected to the first flow channel 10 is greater than the total volume of the flow channel of the heat exchange tube 3 connected to the second flow channel 20, the heat exchanger
  • the amount of heat exchange medium inside is constant, the gaseous heat exchange medium can flow in the circulation channel with a larger total volume, while the liquid or gas-liquid mixed heat exchange medium flows in the circulation channel with a smaller total volume.
  • the flow rate of the heat exchange medium required for heat exchange can be made higher, and the heat exchange performance can be improved.
  • the above-mentioned heat exchanger has higher structural strength and can be applied to high-pressure heat exchange media.
  • the first header 1 of this embodiment includes The first main board 11, the second main board 12, and the first intermediate board 13, wherein the structures of the first main board 11 and the second main board 12 are the same as those of the first main board 11 and the second main board 12 described in the first embodiment, the difference is
  • the middle rib 111 of the first main board 11 is supported on the first middle board 13.
  • the second main board 12 covers the first middle board 13 and the first main board 11, and the three are fixedly connected by brazing and formed The first flow channel 10 and the second flow channel 20.
  • the first intermediate plate 13 of this embodiment is provided with a plurality of rows of first strip holes 131, and the number of rows of the first strip holes 131 is the same as the sum of the number of the first flow passage 10 and the second flow passage 20 ,
  • the first strip-shaped holes 131 and the first heat exchange tube holes 121 are arranged in a one-to-one correspondence, that is, each row of the first strip-shaped holes 131 corresponds to a first flow channel 10 or a second flow channel 20.
  • a first flow channel 10 and a second flow channel 20 are formed between the through groove 112 of the first main board 11, the first strip hole 131 and the second main board 12.
  • the first heat exchange tube hole 121 of the second main board 12 corresponds to a first strip hole 131, and one end of the heat exchange tube 3 is sealed through the first heat exchange tube hole 121 and is accommodated in the first strip hole 131 .
  • the second header 2 of this embodiment includes It includes a third main board 21, a fourth main board 22, and a second intermediate board 23.
  • the structures of the third main board 21 and the fourth main board 22 are the same as those of the third main board 21 and the fourth main board 22 described in the first embodiment.
  • the fourth main board 22 and the second intermediate board 23 and the third main board 21 are fixedly connected by brazing to form a third channel 30.
  • the second intermediate plate 23 of this embodiment is provided with a plurality of rows of second strip holes 231, the number of rows of the second strip holes 231 is the same as the number of rows of the heat exchange tubes 3, and the second strip holes 231
  • the second heat exchange tube holes 221 are arranged in one-to-one correspondence, that is, each second strip hole 231 corresponds to one heat exchange tube 3.
  • the third channel 30 is formed between the groove 211 of the third main board 21, the second strip hole 231 and the fourth main board 22.
  • the second heat exchange tube hole 221 of the fourth main board 22 corresponds to a second strip hole 231, and the end of the heat exchange tube 3 that is not connected to the first header 1 is sealed through the second heat exchange tube hole 221 and accommodates In the second strip hole 231.
  • the other structures of this embodiment are the same as those of the first embodiment, and the operating principle of the heat exchanger of this embodiment is also the same as that of the first embodiment, so it will not be repeated.
  • the difference between this embodiment and the second embodiment is that the structure of the second header 2 of this embodiment is different.
  • the structure and implementation of the second header 2 of this embodiment The structure described in Example 3 is the same, that is, the second header 2 in this embodiment includes a second intermediate plate 23.
  • the other structures of this embodiment are the same as those of the second embodiment, and the operating principle of the heat exchanger of this embodiment is also the same as that of the second embodiment, so it will not be repeated.
  • the structure of the first partition 4 is added to the first header 1 to realize a four-pass heat exchange structure.
  • the first flow passage 10 and the second flow passage 20 of the first header 1 of this embodiment each include a first end and a second end, and the first flow passage 10 has a first end and a second end.
  • One end is on the same side as the first end of the second runner 20 (the left side shown in Figure 13), and the second end of the first runner 10 and the second end of the second runner 20 are on the same side (as shown in Figure 13). Shown on the right).
  • first flow channel 10 is in communication with the first end of the second flow channel 20 (the connection can be achieved by opening or opening the middle rib 111 between the first flow channel 10 and the second flow channel 20 ), the first flow port 6 is connected to the second end of the first flow channel 10, and the second flow port 7 is connected to the second end of the second flow channel 20.
  • a first partition 4 is provided between the first end and the second end of the first flow channel 10, and between the first end and the second end of the second flow channel 20, wherein the first end of the first flow channel 10 and The first partition 4 between the second ends is used to partition the first flow passage 10, and the first partition 4 between the first end and the second end of the second flow passage 20 is used to partition the second flow passage 20
  • a set of partition holes (not shown in the figure) are opened in the width direction of the first main board 11, and the first partition 4 is inserted into each partition hole.
  • the first flow channel 10 and the second flow channel 20 are divided into the first section and the second section, which can realize the multi-process operation of the heat exchange medium. It should be noted that the first section close to the first flow port 6 and the second flow port 7 is not connected, and the second section far away from the first flow port 6 and the second flow port 7 is connected, so that the above four can be realized. Process heat exchange.
  • the above-mentioned third channel 30 includes two mutually independent circulation channels, one of which is in communication with all the heat exchange tubes 3 in communication with the first flow channel 10, and the other circulation channel is in communication with the heat exchange tubes 3 in communication with the second flow channel 20. That is, in this embodiment, referring to FIG. 14, two grooves 211 of the third main plate 21 of the second header 2 are opened, and each groove 211 is formed between the second main plate 12 A circulation channel.
  • two circulation channels are provided with a first end and a second end, wherein the first ends of the two circulation channels are on the same side, and the second ends of the two circulation channels are on the other side.
  • first end of the above-mentioned circulation channel and the first end of the first flow channel 10 and the first end of the second flow channel 20 are all located on the same side of the heat exchanger, and the second end of the circulation channel and the second end of the first flow channel 10 The end and the second end of the second flow channel 20 are both located on the other side of the heat exchanger.
  • the heat exchange medium enters the second section of the first flow channel 10 (between the first partition 4 and the first circulation port 6) through the first flow port 6. At this time, the heat exchange medium enters the first process, and the heat exchange medium Enter the heat exchange tube 3 connected to the second section of the first flow channel 10 and flow along the heat exchange tube 3.
  • the heat exchange medium exchanges heat with the heat exchange medium; the heat exchange medium enters along the heat exchange tube 3 The second section of the circulation channel corresponding to the heat exchange tube 3 in the third channel 30, and then flows to the first section of the circulation channel; then the heat exchange medium flows into the heat exchange tube 3 communicating with the first section At this time, it enters the second process, in which the heat exchange medium further exchanges heat with other media, and finally flows into the first section of the first flow channel 10.
  • the heat exchange medium flows into the first section of the second flow channel 20 through the first section of the first flow channel 10, and flows into the heat exchange tube 3 communicating with the first section of the second flow channel 20.
  • the heat exchange medium exchanges heat with other media again, which is the third process; at this time, the heat exchange medium flows into the first section of another circulation channel (that is, the circulation channel corresponding to the second flow channel 20) and flows into the The second section of the flow channel then enters the second section of the second flow channel 20 through the second section of the flow channel to communicate with the second section of the heat exchange tube 3, this time is the fourth process, the heat exchange medium flows with other The medium exchanges heat and finally flows into the second section of the second flow channel 20, and then flows out through the second flow port 7 connected to the second section of the second flow channel 20, completing a heat exchange process.
  • the heat exchanger of this embodiment is provided with the first partition 4, which can form a four-pass heat exchange mode, which further improves the heat exchange effect.
  • the first header 1 of this embodiment includes a first intermediate plate 13, as shown in FIG. 15. At this time, the first intermediate plate 13 is located on one side of the first partition 4 A first strip hole 131 is provided, and a third strip hole 132 is provided on the other side of the first partition 4, and the first strip hole 131 is located on the side of the first partition 4 close to the first circulation port 6.
  • the three strip holes 132 are arranged away from the first circulation port 6.
  • the above-mentioned third strip hole 132 can connect the first flow channel 10 and the second flow channel 20, so as to realize that the heat exchange medium enters the second flow channel 20 from the first flow channel 10.
  • the second header 2 of this embodiment may also include a second intermediate plate 23, and the structure and installation position of the second intermediate plate 23 are the same as those of the second intermediate plate 23 described in the third embodiment. No longer.
  • the structure of the second partition plate 5 is added to the two circulation channels of the second header 2 and the structure of the groove 211 is changed to realize the heat exchange of six processes.
  • the third channel 30 of the second header 2 of this embodiment includes a first circulation channel, a second circulation channel, and a third circulation channel. The two circulation channels are separated by the second partition 5, and the first circulation channel and the third circulation channel are also separated by the second partition 5, so that the three circulation channels are independent of each other.
  • the groove 211 may include a first groove 212, a second groove 213, and a third groove 214.
  • the second partition plate 5 is placed in the first groove 212 and the second groove 212.
  • the second partition 5, the fourth main board 22 and the above three grooves can form the first circulation channel, The second circulation channel and the third circulation channel.
  • the above-mentioned first circulation channel is respectively connected to the heat exchange tube 3 between the first end of the first flow channel 10 and the second partition plate 5, and the first end of the second flow path 20 and the second partition plate 5 Between the heat exchange tube 3.
  • the second flow passage described above is connected to the second end of the first flow passage 10 and the heat exchange tube 3 between the second partition plate 5, and the third flow passage is connected to the second end of the second flow passage 20 and the second partition plate. 5 between the heat exchange tube 3.
  • a corresponding partition hole (not shown in the figure) may be opened on the third main board 21, and the second partition 5 can be inserted into the partition hole to form three circulation channels.
  • the second partition 5 is arranged on the side of the first partition 4 away from the first flow opening 6, so that the first header 1 is located on the first side of the first partition 4 (
  • the length of the channel that is, the first end of the first flow channel 10 and the first end of the second flow channel 20) is greater than the length of the first flow channel.
  • the heat exchange medium enters the channel between the second end of the first flow channel 10 (the right side shown in FIG. 17) and the first partition 4 through the first flow port 6, and the heat exchange medium enters the channel between the first flow channel 10
  • the second end of the second end of the heat exchange tube 3 communicates with the first partition 4, and flows along this part of the heat exchange tube 3.
  • the heat exchange medium exchanges heat with other media (such as air), which is The first process;
  • the heat exchange medium enters the second circulation channel, and due to the action of the second partition plate 5, the heat exchange medium will flow into the heat exchange tube located between the first partition plate 4 and the second partition plate 5 and communicated with the first flow channel 10 In 3, heat exchange with other media again, this is the second process;
  • the heat exchange medium flows into the channel between the first end of the first flow passage 10 (the left side shown in FIG. 17) and the first partition 4, and then the heat exchange medium enters the first end of the first flow passage 10 and
  • the heat exchange tube 3 connected by the passage between the second partition plate 5 exchanges heat with other media again, which is the third process;
  • the heat exchange medium enters the first circulation channel, and then the heat exchange medium flows along the heat exchange tube 3 communicating between the first end of the second flow channel 20 and the second partition plate 5, and exchanges heat with other media. Is the fourth process;
  • the heat exchange medium flows into the passage between the first end of the second flow channel 20 (the left side shown in FIG. 17) and the first partition 4, and then the heat exchange medium flows into the first partition 4 and the second partition 4 In the heat exchange tube 3 between the partitions 5 and in communication with the second flow channel 20, the heat exchange medium exchanges heat with other media during this process, that is, the fifth process;
  • the heat exchange medium flows into the third circulation channel, and then the heat exchange medium enters the heat exchange tube connected to the channel between the second end of the second flow channel 20 (the right side shown in FIG. 17) and the first partition 4 3, and further exchange heat with other media, and finally enter into the channel between the second end of the second flow channel 20 (the right side shown in Figure 17) and the first partition 4, and pass through the second flow port 7 Flow out to complete a heat exchange process, this is the sixth process.
  • the heat exchange medium flows in from the second flow port 7 and flows out from the first flow port 6.
  • the flow direction of the heat exchange medium is the same as that of the heat exchange medium when the heat exchanger is used as a condenser. The flow direction is opposite, so I won't repeat it.
  • the above-mentioned heat exchanger of this embodiment can realize the heat exchange process of six processes, which further improves the heat exchange performance.
  • the first header 1 of this embodiment includes a first intermediate plate 13.
  • the structure of the first intermediate plate 13 is the same as that described in the second embodiment.
  • the structure of an intermediate plate 13 is the same.
  • the rest of the structure of the heat exchanger of this embodiment is the same as that of the seventh embodiment, and the operating principle of the heat exchanger of this embodiment is also the same as that of the fifth embodiment, so it will not be repeated.
  • the second header 2 of this embodiment may also include a second intermediate plate 23, and the structure and installation position of the second intermediate plate 23 are the same as those of the second intermediate plate 23 described in the third embodiment. No longer.
  • FIG. 19 is a schematic structural diagram of a heat exchanger provided in Example 9 of this application
  • FIG. 20 is a working flowchart of a heat exchanger provided in Example 9 of this application
  • FIG. 21 is a heat exchange provided in Example 9 of this application
  • the heat exchanger provided by the embodiment of the present application includes a heat exchange tube 3, a first header 1 and a second header 2.
  • the heat exchange tube 3 can be arranged in two rows (front row and rear row), one end of the heat exchange tube 3 is connected to the first header 1, and the other end of the heat exchange tube 3 is connected to the second header 2, and heat exchange
  • the inner cavity of the tube 3 communicates with the inner cavity of the first header 1 and the inner cavity of the second header 2.
  • the heat exchanger further includes fins 9 and a cover plate 10.
  • the above-mentioned fin 9 is at least partially attached to the heat exchange tube 3, and the cover plate 10 is provided outside the outermost fin 9.
  • the bonding of the fin 9 and the heat exchange tube 3 can improve the efficiency of heat exchange, and the cover plate 10 can protect the fin 9 and the heat exchange tube 3.
  • cover plate 10 may be an aluminum plate or the heat exchange tube 3, but the heat exchange tube as the cover plate 10 does not participate in heat exchange, and only functions to protect the fin 9 and the heat exchange tube 3.
  • FIG. 22 is a schematic structural diagram of the first type of header provided in the ninth embodiment of the application. As shown in FIG. 22, this embodiment also provides a type of header 100.
  • the above-mentioned first header 1 and/ Or the second header 2 may adopt the structure of the header 100 provided in this embodiment.
  • the collecting pipe 100 includes a first main board 11 and a second main board 12 that are sealed and connected.
  • first main board 11 and the second main board 12 may be fixedly connected by brazing to form a substantially figure-eight-shaped collecting tube 100.
  • the two can also be connected by riveting, gluing or other processes.
  • the first main board 11 includes a first rib 103 and at least two first curved sections 104. One end of the first rib 103 is connected to two adjacent first curved sections 104, and the other end of the first rib 103 is attached to and connected to the second
  • the main board 12 and the second main board 12 include at least one second curved section 105, and the second curved section 105 is arranged corresponding to the at least one first curved section 104.
  • the above-mentioned header increases the strength of the header by arranging the first rib 103, and the bonding area of the first main plate 11 and the second main plate 12 is increased by the attachment of the first rib 103 to the second main plate 12.
  • the bending section 104 and the second bending section 105 increase the strength of the first main plate 11 and the second main plate 12, so that the collecting pipe 100 can withstand the pressure stronger.
  • FIG. 23 is a schematic structural diagram of a second type of header provided in Example 9 of this application.
  • the second main board 12 includes a first straight section 107, the first straight section 107 is connected to the second curved section 105, and the second curved section 105 corresponds to the first curved section 104 It is provided that at least part of the first straight section 107 is attached to the first rib 103.
  • the welding area of the first main plate 11 and the second main plate 12 can be further increased, and the strength of the header 100 can be improved.
  • FIG. 24 is a schematic structural diagram of a third type of header provided in Example 9 of this application
  • FIG. 25 is a schematic front view of the structure of a second plate in a third type of header provided in Example 9 of this application
  • FIG. 26 This is a schematic front view of the structure of the first plate in the third type of header provided in the ninth embodiment of this application, as shown in FIGS. 24 to 26.
  • the first main plate 11 includes a first rib 103 and Two or more first curved sections 104
  • the second main board 12 includes a first straight section 107 and two or more second curved sections 105
  • the first straight section 107 connects two adjacent second curved sections 105
  • the second curved section 105 and the first curved section 104 are arranged in one-to-one correspondence, and the first straight section 107 is attached to the first rib 103.
  • the first straight section 107 may include a first mating surface 107a, and the end surface of the first rib 103 is attached to the first mating surface 107a.
  • a first cavity 130 is formed between the first main board 11 and the second main board 12, the first cavity 130 includes at least two cavities 130a, and the first rib 103 is located between two adjacent cavities 130a.
  • the first rib 103 may be a bar-shaped rib with a flat end surface, the first mating surface 107a is a flat surface, and the flat surface of the first rib 103 is attached to the flat surface of the first mating surface 107a. After closing, the welding area is increased.
  • the second main board 12 further includes a second straight section 108, the second straight section 108 is connected to the second curved section 105 or the first straight section 107, and the second straight section 108 includes a second straight section 108.
  • the first main board 11 also includes a second rib 109.
  • the second rib 109 can also be a strip-shaped rib, and its end surface can also be a flat end surface.
  • One end of the second rib 109 connects two adjacent first bending sections. 104. The end surface of the other end is attached to the second mating surface 108a.
  • the chamber 130a includes two or more sub-chambers, and the second rib 109 is located between two adjacent sub-chambers.
  • the second rib 109 is located in the cavity 130a.
  • the second rib 109 may be provided with a communicating groove 103a or a communicating hole, and two adjacent sub-chambers are connected; the second rib 109 may be partially provided There are connecting grooves or connecting holes, and the separation structure is used to make the connecting parts of the two adjacent sub-chambers independent of each other, and different processes can be formed.
  • the above arrangement of the second rib 109 can further enhance the strength of the header 100 so as to withstand the pressure of the refrigerant.
  • the second rib 109 may be arranged symmetrically with the first rib 103 as the center axis. Each second rib 109 divides the aforementioned chamber 130a into two sub-chambers.
  • the second rib 109 can also be arranged asymmetrically with respect to the first rib 103, which can further enhance the strength of the header 100. The following will take the four-process and three-process as examples.
  • the first rib 103 and/or the second rib 109 are provided with a third rib 110.
  • the third rib 110 is formed by the first rib 103 and/or the second rib 109 extending away from itself.
  • the first rib 103 is provided on the first main plate 11, and the third rib 110 is the first rib.
  • the end portion 103 away from the first main board 11 extends toward the second main board 12.
  • the third rib 110 may be a strip-shaped rib, or a triangular rib or other morphological structures; the third rib 110 may be arranged at any position of the end of the first rib 103, and/or arranged at the second rib Any position of the end of 109.
  • the first straight section 107 and/or the second straight section 108 is provided with a matching hole 108b (refer to FIG. 27), and the third rib 110 is fixed to the matching hole 108b.
  • the arrangement of the third rib 110 can further improve the strength of the header 100.
  • the part of the third rib 110 passing through the mating hole 108b can be further twisted and fixed, which improves the connection strength of the first main board 11 and the second main board 12.
  • the third rib 110 is provided on the second rib 109 as an example.
  • the second rib 109 is provided with a third rib 110 with a certain thickness and height.
  • the thickness of the third rib 110 is W1. It can be 1/4-1/2 of the thickness W2 of the second rib 109. In this way, after the third rib 110 is matched with the mating hole 108b, the width of the second rib 109 is large enough to play a certain limiting role. It is ensured that the connection between the third rib 110 and the mating hole 108b is reliable.
  • the height H of the third rib 110 can be 2-9mm. In this way, when the third rib 110 passes through the mating hole 108b, the exposed length is more convenient for clamping with tools for twisting.
  • the twisted third rib 110 The connection strength between the first main board 11 and the second main board 12 is further strengthened.
  • the third rib 110 is tightly connected with the mating hole 108b of the second main board 12 to fix and locate and connect the first main board 11 and the second main board 12, which improves the reliability of the connection between the first main board 11 and the second main board 12 Sex.
  • the third rib 110 may only be provided on the first rib 103, at this time the first straight section 107 is correspondingly provided with the matching hole 108b; it may also be provided only on the second rib 109, at this time the second straight section 108 is provided with a matching hole 108b; it can also be provided at the first rib 103 and the second rib 109 at the same time.
  • the first straight section 107 and the second straight section 108 are respectively provided with matching holes, as long as the first can be lifted
  • the reliability of the connection between the main board 11 and the second main board 12 is sufficient, and this application is not limited.
  • the third rib 110 may be continuously distributed on the first rib 103 and/or the second rib 109, or may be on the first rib 103 and/or the second ribs 109 are distributed at a certain size interval; the third ribs 110 may be evenly distributed or unevenly distributed; the third ribs 110 may be densely distributed or sparsely distributed; third The ribs 110 may be distributed on the first rib 103 and the second rib 109 in the same or different manner, as long as the connection reliability of the first main board 11 and the second main board 12 can be improved, which is not limited by this application.
  • FIG. 27 is a schematic diagram of the structure of the second plate in the third type of header provided by an embodiment of the application
  • FIG. 28 is a schematic diagram of the structure of the first plate in the third type of header provided by an embodiment of the application.
  • the second main board 12 is provided with a partition groove 124
  • the header 100 further includes a first partition 4 (refer to Figures 21 and 33).
  • the partition 4 is fixed to the partition groove 124.
  • the first rib 103 of the first main plate 11 is provided with a communicating groove 103a
  • the communicating groove 103a is on one side of the first partition 4
  • the adjacent chambers 130a are connected at the communicating groove 103a.
  • the chambers 130a are isolated from each other.
  • the chamber 130a can also be communicated by providing a communicating hole, and the present application is not limited to the aforementioned communicating groove 103a.
  • first partitions 4 There may be multiple sets of first partitions 4, and through the cooperation of multiple sets of first partitions 4 and partition grooves 124, the aforementioned chamber 130a can be divided into multiple sub-chambers along the length direction of the header 100.
  • the chamber can realize multi-process operation of refrigerant.
  • the first partition 4 can also be an integrated structure, and the whole is matched with the partition groove 124.
  • the integrated first partition 4 can also divide the chamber 130a into a plurality of sub-chambers along the length direction of the header 100. Multiple sub-chambers can realize multi-process operation of the refrigerant. The process of multi-process operation will be described in detail below.
  • the first main board 11 or the second main board 12 may also be provided with a accommodating groove 126.
  • the accommodating groove 126 may be obtained by punching, or may be integrally formed by means of casting or the like.
  • the shape and size of the receiving groove 126 match the shape and size of the necked portion 43 of the heat exchange tube 3.
  • the accommodating groove 126 may be, for example, a rectangular opening or a waist-shaped opening.
  • the heat exchange tube 3 is usually a flat tube. Refer to Figures 31 and 32, the flat tube heat exchange tube 3 There is a necked part 43 which extends into the above-mentioned receiving groove 126.
  • the accommodating groove 126 is provided on the second main board 12.
  • the second rib 109 on the first main board 11 can be provided with a gap for avoiding the end of the heat exchange tube 3.
  • the width of the notch matches the thickness of the necked portion 43 of the heat exchange tube 3, so that at least part of the necked portion 43 can be accommodated in the notch.
  • the depth of the protrusion needs to be such that the end of the necked portion 43 does not touch the inner wall of the gap and does not affect the flow of the refrigerant.
  • the second main board 12 may also be provided with a receiving groove, and the second main board 12 may be provided with a second rib 109 and a notch, which is not specifically limited here.
  • one notch accommodates the end of one heat exchange tube 3.
  • one notch can also accommodate the ends of two or more heat exchange tubes 3.
  • the width of the notch is greater than or equal to two. And the distance between two or more heat exchange tubes 3 and the sum of the thickness of all heat exchange tubes 3, as long as the end of the necked part 43 of all heat exchange tubes 3 will not touch the inner wall of the gap, and the refrigerant will not be affected. Just flow.
  • the heat exchange tube 3 after the heat exchange tube 3 extends into the accommodating groove 126, it can be fixed to the second main board 12 by brazing.
  • Figure 29 is a schematic diagram of the structure of the end cap of the header provided by an embodiment of the application
  • Figure 30 is a schematic front view of the end cap of the header provided by the embodiment of the application
  • Figure 31 is a schematic view of the end cap of the header provided by the embodiment of the application Schematic diagram of the transverse cross-section of the end cap of the header.
  • the header 100 provided by this embodiment further includes a blocking cover 16 and an end cover 8.
  • the blocking cover 16 blocks at least one end of the first cavity 130, and the end cover 8 is arranged in the first cavity.
  • the cavity 130 is not provided with the other end of the blocking cover 16.
  • the end cover 8 has an inlet and/or an outlet, and the inlet and the outlet are respectively communicated with the first cavity 130.
  • the inlet is used for the inflow of refrigerant
  • the outlet is used for the outflow of refrigerant.
  • the end cover 8 is assembled with the first header 1 or the second header 2 to form a header assembly.
  • inlet and outlet can be provided on the same end cover at the same time, or the inlet and outlet can be respectively provided on two end covers, so as not to affect the flow of refrigerant in and out, which is not limited by this application.
  • the second main board 12 may be provided with a blocking cover groove 125, and the blocking cover 16 cooperates with the blocking cover groove 125 to function to seal one end of the collecting pipe 100.
  • the first header 1 of the heat exchanger has a blocking cover 16 at one end and an end cover 8 at the other end.
  • the second header 2 of the heat exchanger can be provided with plugs 16 at both ends.
  • the arrangement form of the blocking cover 16 and the end cover 8 can also be matched according to the actual process design, which is not further limited here.
  • Fig. 32 is a schematic diagram of the first header provided by an embodiment of the application after being half-cut and matched with the heat exchange tube.
  • Fig. 33 is a partial schematic view of Fig. 32
  • Fig. 34 is an enlarged schematic view of A of Fig. 32
  • Fig. 17 is The cross-sectional schematic diagram of the first header and the heat exchange tube provided by the embodiment of the present application.
  • the first header 1 of the heat exchanger provided by the embodiment of the present application includes a first end A1 and a second end A2.
  • the second header 2 includes a third end A3 and a fourth end A4.
  • the first end A1 and the third end A3 are on the same side, and the second end A2 and the fourth end A4 are on the same side.
  • the inlet and outlet They are all located at the first end A1, the second end A2, the third end A3, and the fourth end A4 are all provided with plugs.
  • the first header 1 is provided with a first partition 4, and the first header 1 is located at the first Part of the first rib 103 between the partition 4 and the second end A2 is provided with a communicating groove 103a, and a part of the first rib between the first partition 4 and the second end A2 is not provided with a communicating groove, and the second set
  • the first rib of the flow tube 2 is not provided with a communicating groove, and the four-process operation principle of the heat exchanger provided in the embodiment of the present application as an evaporator is as follows:
  • the refrigerant enters the sub-chamber 131c and the sub-chamber 131d between the first partition 4 and the first end A1 of the first header 1 through the inlet ( Figure 24).
  • the refrigerant enters the first process, and the refrigerant flows downward along the rear tube 42 communicating with the sub-chamber 131c and the sub-chamber 131d between the first partition 4 and the first end A1, and flows to the second set
  • the flow tube 2 is located in the sub-chamber 131c and the sub-chamber 131d between the first partition 4 and the third end A3.
  • the first partition 4 is not provided, and the distance between the first partition 4 and the third end A3 refers to between the projection of the first partition 4 on the third header 3 and the third end A3.
  • the refrigerant enters the sub-chamber 131c and the sub-chamber 131d of the second header 2 between the first partition 4 and the fourth end A4, and enters the second flow; it should be noted that the second header 2 is not
  • the first partition 4 is provided, and the distance between the first partition 4 and the third end A3 refers to between the projection of the first partition 4 on the third header 3 and the third end A3.
  • the refrigerant flows upward along the rear tube 42 communicating with the sub-chamber 131c and the sub-chamber 131d between the first partition 4 and the fourth end A4 and continues to evaporate and absorb heat;
  • the refrigerant flows to the sub-chamber 131c and the sub-chamber 131d of the first header 1 between the second end A2 and the first partition 4; due to the existence of the communicating groove 103a, the refrigerant flows from the first header 1
  • the sub-chamber 131c and the sub-chamber 131d located between the second end A2 and the first partition 4 flow into the first header 1 and the sub-chamber 131a and the sub-chamber located between the second end A2 and the first partition 4 Chamber 131b, then enters the third process, the refrigerant flows downward along the front pipe 41 that communicates with the sub-chamber 131a and the sub-chamber 131b between the second end A2 and the first partition 4, and flows to the second set The sub-chamber 131a and the sub-chamber 131b in the flow tube 2 between the fourth end A4 and the first partition 4;
  • the refrigerant flows into the sub-chamber 131a and the sub-chamber 131b of the second header 2 between the third end A3 and the first partition 4, and enters the fourth flow.
  • the refrigerant flows along with the second header 2
  • the front tube 41 communicating with the sub-chamber 131a and the sub-chamber 131b between the third end A3 and the first partition 4 flows upwards, and flows upward from the first end A1 and the first partition located at the first header 1
  • the communication outlet between the sub-chamber 131a and the sub-chamber 131b flows out.
  • the refrigerant enters the sub-chamber 131a and the sub-chamber 131b between the first end A1 and the first partition 4 of the first header 1 through the inlet, and enters the first flow.
  • the refrigerant flows along with the first partition 4
  • the front pipe 41 communicating with the sub-chamber 131a and the sub-chamber 131b between the first end A1 flows downward to the sub-chamber of the second header 2 between the first partition 4 and the third end A3
  • the refrigerant is cooled and liquefied; it should be noted that the second header 2 is not provided with the first partition 4, and the first partition 4 and the third end A3 refer to the first partition 4 Between the projection on the third header 3 and the third end A3.
  • the refrigerant flows to the sub-chamber 131a and the sub-chamber 131b of the second header 2 between the first partition 4 and the fourth end A4, and enters the second process; it should be noted that the second header 2
  • the first partition 4 is not provided, and the distance between the first partition 4 and the fourth end A4 refers to between the projection of the first partition 4 on the third header 3 and the fourth end A4.
  • the refrigerant flows upward along the front pipe 41 communicating with the sub-chamber 131a and the sub-chamber 131b between the first partition 4 and the fourth end A4, and flows to the first header 1 and the first partition 4 and the first The sub-chamber 131a and the sub-chamber 131b between the two ends A2.
  • the refrigerant flows from the sub-chamber 131a and the sub-chamber 131b between the first header 1 and the first partition 4 and the second end A2 to the first header 1 and the first partition 4 and the sub-chamber 131c and the sub-chamber 131d between the second end A2;
  • the refrigerant flows downward along the rear tube 42 communicating with the sub-chamber 131c and the sub-chamber 131d between the first header 1 and the first partition 4 and the second end A2. And liquefy by cooling;
  • the refrigerant flows into the sub-chamber 131c and the sub-chamber 131d located between the fourth end A4 and the first partition 4 in the second header 2, and enters the fourth flow.
  • the refrigerant flows along with the fourth end A4 and the fourth end A4.
  • the rear tube 42 where the sub-chamber 131c and the sub-chamber 131d between the partition 4 are connected flows upward from the first header to the sub-chamber 131c and the sub-chamber located between the first end A1 and the first partition 4
  • the communicating outlet of the chamber 131d flows out.
  • the end cover 8 includes a body 141 and a first opening 142 formed in the body 141.
  • the first opening 142 may be a circular opening or other shapes, and may be directly formed on the main body 141, or may be connected to the main body 141 with a pipe body.
  • the passage of the pipe body can form the first opening 142.
  • the body 141 further includes a second cavity 143 and a first groove 144.
  • the first groove 144 is located between the first opening 142 and the second cavity 143.
  • the first groove 144 includes a first bottom wall 145 close to the first opening 142.
  • the first bottom wall 145 includes a third opening 145a, the third opening 145a communicates with the first opening 142 and the second cavity 143, the second cavity 143 and the inner cavity of the first header 1 or the inner cavity of the second header 2
  • the first opening 142 is farther from the inner cavity of the first header 1 or the inner cavity of the second header 2 than the second cavity 143.
  • the flow area of the first groove 144 is larger than that of the third opening 145a. Flow area.
  • the flow area here refers to the volume of fluid passing through a certain flow section per unit time.
  • the flow area of the first groove 144 refers to the volume of fluid passing through the cross section of the first groove 144 per unit time.
  • the first opening 142 can be used as a refrigerant inlet of the end cover 8 or a refrigerant outlet, which is not limited here.
  • the first opening 142 is used as an inlet, when the refrigerant enters the first groove 144 from the first opening 142 through the third opening 145a, the flow area of the first groove 144 is larger than the flow area of the third opening 145a.
  • the impact of the refrigerant entering the first cavity 130 of the header 100 on the header 100 can be reduced, and the pressure requirement of the header 100 can be reduced.
  • the flow rate of the refrigerant can be made more uniform.
  • the width of the first groove 144 in the transverse direction along the first bottom wall 145 is greater than the width of the third opening 145 a in the transverse direction along the first bottom wall 145.
  • the first groove 144 may be a waist-shaped groove
  • the third opening 145a may be a round hole.
  • the long axis of the waist-shaped groove is larger than the hole diameter.
  • the short axis of the waist-shaped groove can be It is equal to the aperture of the circular hole.
  • the short axis size of the waist-shaped groove can also be larger or smaller than the aperture of the circular hole, as long as it does not affect the function of the third opening 145a to connect the first opening 142 and the second cavity 143.
  • the center of the third opening 145a coincides with the center of the first groove 144, and when the refrigerant flows out of the third opening 145a, it can be evenly divided to both sides, thereby achieving a uniform distribution effect.
  • the first groove portion 144 may also have other shapes, such as rectangular, circular, etc.
  • the third opening 145a may also be holes of other shapes, such as irregular holes or elliptical holes.
  • the body 141 further includes a first channel 145 b, and the first channel 145 b is formed by a third opening 145 a extending from the second cavity 143 to the first opening 142.
  • the first passage 145b is located between the first opening 142 and the first groove portion 144.
  • the first passage 145b communicates with the first opening 142 and the first groove portion 144, respectively.
  • the first passage 145b extends transversely along the first bottom wall 145. The width in the direction is smaller than the width of the first groove 144 in the direction along the lateral extension of the first bottom wall 145.
  • the inner diameter of the first channel 145b can be the same as the aperture of the third opening 145a, and the outside is used to input refrigerant
  • the pipeline is inserted into the first opening 142, and the inner diameter of the outer pipeline is equal to the inner diameter of the first passage 145b.
  • the refrigerant After the refrigerant enters, it passes through the first passage 145b to form a state of small flow, and then enters the first passage through the third opening 145a.
  • a groove 144 forms a split flow to further reduce the impact of the refrigerant on the header 100.
  • the body 141 is formed with a second opening 146.
  • the second opening 146 can be a circular opening or other shapes. It is directly formed on the body 141, or can be connected to the body 141. The passage of the body can form the second opening 146.
  • the body 141 further includes a second groove portion 147.
  • the second groove portion 147 includes a second bottom wall 148 close to the second opening 146.
  • the second bottom wall 148 includes a fourth opening 148a.
  • the fourth opening 148a communicates with the second opening 146 and the second opening 146.
  • the flow area of the second groove portion 147 is larger than the flow area of the fourth opening 148a.
  • the flow area here refers to the volume of fluid passing through a certain flow section per unit time.
  • the flow area of the second groove 147 refers to the volume of fluid passing through the cross section of the second groove 147 per unit time.
  • the second opening 146 can be used as a refrigerant inlet of the end cover 8 or a refrigerant outlet, which is not limited here.
  • a refrigerant outlet which is not limited here.
  • the second opening 146 is used as an inlet, when the refrigerant enters the second groove portion 147 from the second opening 146 through the fourth opening 148a, the flow area of the second groove portion 147 is larger than that of the fourth opening 148a.
  • the instantaneous pressure of the refrigerant can be reduced, so that the impact of the refrigerant entering the first cavity 130 of the header 100 on the header 100 can be reduced.
  • the flow rate of the refrigerant can be made more uniform.
  • the width of the second groove portion 147 in the transverse extension direction of the second bottom wall 148 is greater than the width of the fourth opening 148 a in the transverse extension direction of the second bottom wall 148.
  • the second groove 147 may be a waist-shaped groove
  • the fourth opening 148a may be a round hole.
  • the long axis of the waist-shaped groove is larger than the hole diameter.
  • the short axis of the waist-shaped groove can be It is equal to the aperture of the circular hole.
  • the short axis size of the waist-shaped groove can also be larger or smaller than the aperture of the circular hole, as long as it does not affect the function of the third opening to connect the first opening and the second cavity.
  • the center of the third opening coincides with the center of the first groove portion, and when the refrigerant flows out of the fourth opening 148a to the second groove portion 147, it can be evenly divided to both sides, thereby achieving a uniform distribution effect.
  • the second groove portion 147 may also have other shapes, such as a rectangle, a circle, etc.
  • the fourth opening 148a may also be a hole of another shape, such as a special-shaped hole or an elliptical hole.
  • the body 141 further includes a second channel 148b, and the second channel 148b is formed by the fourth opening 148a extending from the second cavity 143 to the second opening 146.
  • the second passage 148b is located between the second opening 146 and the second groove portion 147, and the second passage 148b communicates with the second opening 146 and the second groove portion 147, respectively, and the second passage 148b runs transversely along the second bottom wall 148.
  • the width in the extending direction is smaller than the width of the second groove portion 147 in the transverse extending direction along the second bottom wall 148.
  • the inner diameter of the second channel 148b can be the same as the aperture of the fourth opening 148a.
  • the second channel 148b is used as When the channel is input, the external pipeline for inputting refrigerant is inserted into the second opening 146.
  • the inner diameter of the outer pipeline is equal to the inner diameter of the second channel 148b. After the refrigerant enters, it passes through the second channel 148b to form a state with a smaller flow rate. , And then enter the second groove portion 147 through the fourth opening 148a to form a split flow, which further reduces the impact of the refrigerant on the header 100.
  • the refrigerant enters the second passage 148b from the second groove portion 147, which can also make the flow of the refrigerant more uniform.
  • first groove portion 144 and the second groove portion 147 may be symmetrically arranged on the center line of the end cover 8, which can make the distribution of the refrigerant more uniform.
  • first passage 145b and the second passage 148b, and the third opening 145a and the fourth opening 148a are also symmetrically arranged about the center line of the end cover 8, so that the distribution of the refrigerant is more uniform.
  • the collecting tube 100 includes a first main board 11 and a second main board 12 connected to each other; a first cavity 130 is formed between the first main board 11 and the second main board 12.
  • the first main board 11 and/or the second main board 12 are provided with a first rib 103; the first cavity 130 includes at least two cavities 130a, and the first rib 103 is disposed between adjacent cavities 130a.
  • the header 100 further includes an end cover 8 provided by any embodiment of the present application.
  • the end cover 8 is sealed at one end of the first cavity 130, and the first opening 142 communicates with a cavity 130a through the first groove 144.
  • the collecting pipe 100 may include an end cover 8 having only the first opening 142, or may include an end cover having both the first opening 142 and the second opening 146.
  • the end cover has both the first opening 142 and the second opening 146
  • the first rib 103 abuts against the body 141
  • the first rib 103 is located between the first opening 142 and the second opening 146, and is also located in the first groove 144
  • the first opening 142 and the second opening 146 are prevented from communicating with the second groove portion 147 at the end cover. Since the flow area of the first groove portion 144 is larger than the flow area of the third opening 145a in the above-mentioned end cover 8, the refrigerant flowing into the cavity 130a of the header 100 can further reduce the impact force.
  • the distance between the first partition 4 and the end cap 8 is less than the length of the portion of the first rib 103 that is not provided with the communicating groove 103a, thereby increasing the Sealing performance.
  • the length of the two parts can also be equal, which is not limited here.
  • the length of the portion of the first rib 103 where the communicating groove 103a is not provided may be greater than the length of the portion of the first rib 103 where the communicating groove 103a is provided.
  • the length of the portion of the first rib 103 where the communicating groove 103a is not provided can also be less than or equal to the length of the portion of the first rib 103 where the communicating groove 103a is opened, which is not limited here.
  • 36 is a partial schematic diagram of a header provided by an embodiment of this application.
  • the first main board 11 and/or the second main board 12 include second ribs 109
  • the chamber 130a includes more than two sub-chambers, and the second rib 109 is located between two adjacent sub-chambers.
  • the width of the first groove 144 is greater than the width of the second rib 109 directly opposite the first groove 144. After the refrigerant flows out of the first groove 144, most of the refrigerant will not hit the second rib 109 vertically, but can Both sides of the second rib 109 flow into the cavity 130a, thereby reducing the impact force on the second rib 109.
  • the end of the second rib 109 facing the end cover 8 is provided with a third groove 109b.
  • the third groove 109b can play a role of avoiding, further avoiding the refrigerant Direct impact on the second rib 109.
  • the refrigerant flows out of the cavity 130a, due to the arrangement of the third groove 109b, the refrigerant does not receive excessive resistance, and can smoothly flow into the second cavity 143 and then flow out from the outlet.
  • the third groove 109b can be a square groove as shown in FIG. 36, of course, it can also be a U-shaped groove or a V-shaped groove, or other special-shaped grooves, as long as it can play a role in avoiding the refrigerant. It is sufficient to directly impact the second rib 109, and this application is not limited.
  • the first main board 11 includes two or more first curved sections 104
  • the second main board 12 includes a first straight section 107 and two Two or more second curved sections 105
  • the first straight section 107 connects two adjacent second curved sections 105
  • the second curved section 105 is arranged corresponding to the first curved section 104, that is, the second curved section 105 and the first curved section 105
  • a curved section 104 can cooperate with each other, and together with the first rib 103 or the second rib 109, it forms the aforementioned sub-chamber.
  • the body 141 includes an upper body 141d and a lower body 141e; the upper body 141d includes a third curved section 141a corresponding to the first curved section 104; the lower body 141e includes a first straight section 107 and a second straight section 108 The third straight section 141b and the fourth curved section 141c corresponding to the second curved section 105, the third straight section 141b connects two adjacent fourth curved sections 141c; the fourth curved section 141c and the third curved section 141a corresponds to the setting.
  • the third straight section 141b of the end cover 8 can be attached to the first straight section 107 and the second straight section 108 , And the third bending section 141a can be attached to the first bending section 104, and the fourth bending section 141c can be attached to the second bending section 105.
  • the header 100 and the heat exchanger provided by the embodiments of the present application can improve the overall strength of the header 100 and can alleviate the impact of the refrigerant on the header 100.
  • FIG. 37 is a schematic front view of the structure of the fifth type of header provided by an embodiment of the application
  • FIG. 38 is a schematic view of the first plate in the fifth type of header provided by an embodiment of the application
  • FIG. 39 is The schematic diagram of the structure of the second plate in the fifth type of header provided by the application embodiment.
  • this embodiment provides a collecting pipe.
  • the difference from the above-mentioned embodiment is that in this embodiment, the first main board 11 and the second main board 12 are connected by a first fixing member 17.
  • the first rib 103 is provided with a first through hole 103b, and the first straight section 107 is provided with a second through hole 107b;
  • the collecting pipe includes a first fixing member 17, and the first fixing member 17 is fixed through the first A through hole 103b and a second through hole 107b.
  • the first fixing member 17 may be a rivet or other fasteners.
  • first main board 11 and the second main board 12 are the same as those in the foregoing embodiment, and will not be repeated here.
  • the header and heat exchanger provided by the embodiment of the present application connect the first main board 11 and the second main board 12 by providing a first fixing member, thereby improving the strength of the header.
  • FIG. 40 is a schematic diagram of the structure of the first plate in the sixth type of header provided by an embodiment of the application
  • FIG. 41 is a schematic diagram of the second plate in the sixth type of header provided by an embodiment of the application
  • FIG. 42 It is a schematic front view of the structure of the sixth type of header provided by the embodiment of this application.
  • this embodiment provides a collector.
  • the first main board 11 and the second main board 12 are connected by a first fixing member 17.
  • the second rib 109 is provided with a first through hole 103b
  • the second straight section 108 is provided with a second through hole 107b.
  • the collecting pipe 100 includes a first fixing member 17, and the first fixing member 17 may be a rivet or other fasteners.
  • the first fixing member 17 is fixed through the first through hole 103b and the second through hole 107b.
  • first main board 11 and the second main board 12 are the same as those in the foregoing embodiment, and will not be repeated here.
  • the header provided by the embodiment of the present application connects the first main board 11 and the second main board 12 by providing the first fixing member 17 to improve the strength of the header.
  • first rib 103 and the second rib 109 may be provided with a first through hole 103b, and the first straight section 107 and the second straight section 108 may be provided with a second through hole. 107b, the first fixing member 17 is fixedly penetrated through the first through hole 103b and the second through hole 107b.
  • a plurality of first fixing members 17 are provided to connect the first main board 11 and the second main board 12, which can further improve the strength of the header.
  • the first through holes 103b may be continuously distributed on the second ribs 109 as shown in FIG. 14, or may be distributed with a certain size interval on the first ribs 103, which is not further limited here.
  • FIG 43 is a schematic front view of the structure of the seventh type of header provided by the embodiment of the application.
  • the first through hole 103b may be provided on the first rib 111
  • the third through hole 103b may be provided on the second rib 109.
  • Tendon 110 to play a strengthening role may be provided.
  • the third rib 110 may be provided on the first rib 111
  • the first through hole 103b may be provided on the second rib 109.

Abstract

一种热交换器,端盖(8)组装固定于第一集流管(1)长度方向的端口或第二集流管(2)长度方向的端口,端盖(8)包括本体(141)和形成于本体的第一开口(142);本体(141)包括第二腔(143)和第一槽部(144);第一槽部(144)包括靠近第一开口(142)的第一底壁(145),第一底壁(145)设有第三开口(145a),第三开口(145a)连通第一开口(142)与第二腔(143),所述第一开口(142)相比所述第二腔(143)远离所述第一集流管(1)的内腔或所述第二集流管(2)的内腔,所述第一开口(142)用于流入或者流出冷媒;第一槽部(144)的过流面积大于第三开口(145a)的过流面积。可以降低进入到集流管内的冷媒对集流管造成的冲击,从而降低了集流管的耐压需求。

Description

热交换器 技术领域
本发明涉及换热技术领域,尤其涉及一种热交换器。
背景技术
热交换器,也称换热器,被广泛应用于换热系统(比如空调系统)。热交换器包括换热管和集流管,冷媒进入到集流管,再从集流管流入到换热管与外界进行换热。
集流管组件包括端盖,采用CO 2等作为冷媒的热交换器,由于系统压力高,冷媒从端盖进入到集流管时产生的压力大,因此对集流管的耐压性能要求较高。
申请内容
本申请提供了一种热交换器,热交换器的耐压性能较好。
本申请的第一方面提供了一种热交换器,包括:第一集流管、第二集流管、换热管及端盖,所述换热管的一端连接所述第一集流管,所述换热管的另一端连接所述第二集流管,所述换热管内腔连通所述第一集流管内腔和所述第二集流管内腔,所述第一集流管和第二集流管均包括设置于其长度方向的两个端口;
所述端盖组装固定于第一集流管的端口或第二集流管的端口;所述端盖包括本体和形成于所述本体的第一开口;所述本体包括第二腔和第一槽部,所述第一槽部位于第一开口和第二腔之间;
所述第一槽部包括靠近所述第一开口的第一底壁,所述第一底壁设有第三开口,所述第三开口连通所述第一开口与所述第二腔,所述第二腔与所述第一集流管的内腔或所述第二集流管的内腔连通,所述第一开口相比所述第二腔远离所述第一集流管的内腔或所述第二集流管的内腔,所述第一开口用于流入或者流出冷媒;
所述第一槽部的过流面积大于所述第三开口的过流面积,使冷媒在从第一开口经过第三开口进入第一槽后,能够降低冷媒的瞬间压力,这样,可以降低进入到集流管内的冷媒对集流管造成的冲击,从而降低了集流管的耐压需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1是本申请实施例一所述的热交换器的结构示意图;
图2是本申请实施例一所述的热交换器的爆炸图;
图3是本申请实施例一所述的第一集流管的结构示意图;
图4是本申请实施例一所述的第一主板的中间筋未开孔或开口的示意图;
图5是本申请实施例一所述的第一主板的中间筋开孔或开口的示意图;
图6是本申请实施例一所述的第二主板的结构示意图;
图7是本申请实施例一所述的第二集流管的剖视图;
图8是本申请实施例二所述的热交换器的爆炸图;
图9是本申请实施例二所述的第一集流管的结构示意图;
图10是本申请实施例三所述的热交换器的爆炸图;
图11是本申请实施例三所述的第二集流管的剖视图;
图12是本申请实施例四所述的热交换器的爆炸图;
图13是本申请实施例五所述的热交换器的立体结构示意图;
图14是本申请实施例五所述的热交换器的爆炸图;
图15是本申请实施例六所述的热交换器的爆炸图;
图16是本申请实施例七所述的热交换器的立体结构示意图;
图17是本申请实施例七所述的热交换器的爆炸图;
图18是本申请实施例八所述的热交换器的爆炸图;
图19为本申请实施例九所提供的热交换器的结构示意图;
图20为本申请实施例九所提供的热交换器的工作流程图;
图21为本申请实施例九所提供的热交换器的分解示意图;
图22为本申请实施例九所提供的第一种集流管的结构示意图;
图23为本申请实施例九所提供的第二种集流管的结构示意图;
图24为本申请实施例九所提供的第三种集流管的结构示意图;
图25为本申请实施例九所提供的第三种集流管中第二主板的结构主视示意图;
图26为本申请实施例九所提供的第三种集流管中第一主板的结构主视示意图;
图27为本申请实施例九所提供的第三种集流管中第二主板的结构示意图;
图28为本申请实施例九所提供的第三种集流管中第一主板的结构示意图;
图29为本申请实施例九所提供的集流管中端盖的结构示意图;
图30为本申请实施例九所提供的集流管中端盖的主视示意图;
图31为本申请实施例九所提供的集流管中端盖的横向剖面示意图;
图32为本申请实施例九所提供的第一集流管半剖开后与换热管配合的示意图;
图33为图32的局部示意图;
图34为图32的A处放大示意图;
图35为本申请实施例九所提供的第一集流管与换热管配合的剖面示意图;
图36为本申请实施例九所提供的集流管的局部示意图;
图37为本申请实施例九所提供的第五种集流管的结构主视示意图;
图38为本申请实施例九所提供的第五种集流管中第一主板的结构示意图;
图39为本申请实施例九所提供的第五种集流管中第二主板的结构示意图;
图40为本申请实施例九所提供的第六种集流管中第一主板的结构示意图;
图41为本申请实施例九所提供的第六种集流管中第二主板的结构示意图;
图42为本申请实施例九所提供的第六种集流管的结构主视示意图;
图43为本申请实施例九所提供的第七种集流管的结构主视示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚, 下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本实施例提供一种热交换器,如图1和图2所示,该热交换器包括由上至下依次设置的第一集流管1、第二集流管2以及多排换热管3,其中:
可参照图3,上述第一集流管1包括第一主板11和第二主板12,第二主板12位于第一主板11的下方,第一主板11与第二主板12合围形成上述第一集流管1。可以理解的是,第一主板11和第二主板12可以是一个部件的两个部分,也可以是两个单独的部件拼接成的一个整体,可选地,第二主板12与第一主板11通过钎焊固定在一起。
上述第一主板11包括至少一个中间筋111,该中间筋111支撑于第二主板12,并能够将第一主板11分隔成若干通槽112,通槽112的延伸方向与第一集流管1的长度方向平行,其中每个通槽112与第二主板12形成一个流通腔,相邻的流通腔并列设置,且并列的方向垂直于第一集流管1的轴向。本实施例中,上述通槽112的截面形状可以是半圆形、半椭圆形、矩形等形状,还可以是其它能够形成通槽112形状。且每个通槽112的容积大小可以相同,也可以不同。
至少一个上述流通腔形成第一流道10,至少一个上述流通腔形成第二流道20,需要说明的是,本实施例中,上述第一流道10连通有第一流通口6,第二流道20连通有第二流通口7,热交换器作为冷凝器时,高温气态换热介质能够从第一流通口6进入第一流道10,并在换热管3内流通换热后,经第二流道20流出第二流通口7(此时换热介质为液态或气液混合态)。热交换器作为蒸发器时,液态换热介质能够从第二流通口7进入第二流道20,并在换热管3内流通换热后,经第一流道10流出第一流通口6(此时换热介质为气态)。上述第一流道10的总容积(即所有第一流道10的容积之和)大于第二流道20的总容积(即所有第二流道20的容积之和),该结构的设置,能够使得换热所需的换热介质在热交换器中的流动速率较高。
本实施例中,可选地,上述第一流道10至少设置有两个,第二流道20至少设置有一个,且至少两个第一流道10全部位于第二流道20的同一侧,进而便于换热介质进入。
进一步地,上述至少两个第一流道10之间可以相互独立不连通,如图4所示,此时第一流通口流通换热介质会被相邻两个第一流道10之间的中间筋111分流,并各自进入对应的第一流道10内。
也可以在相邻两个第一流道10之间的中间筋111开设孔或开口113(如图5所示的开口113),使得相邻两个第一流道10连通,此时第一流通口换热介质会先被相邻两个第一流道10之间的中间筋111分流,随后进入到各自对应的第一流道10内的换热介质会通过中间筋111开设的孔或开口113流入相邻的第一流道10内。
可参照图6,上述第二主板12可以成U字形结构,上述第一主板11置于第二主板12的U字形内部,即形成第二主板12包覆第一主板11的结构,随后通过钎焊将第二主板12和第一主板11固定连接。可以理解的,上述第二主板12也可以是板状结构,此时第一主板11直接支撑在第二主板12上,并且通过钎焊将两者固定。
如图6所示,在上述第二主板12上开设有若干排第一换热管孔121,该第一换热管孔121用于供换热管3的穿入,并在该第一换热管孔121处对换热管3进行钎焊,使得换热管3与第二主板12固定且于连接处密封。本实施例中,上述第一换热 管孔121的排数与换热管3的排数相同,且每个第一换热管孔121均有一个换热管3穿入。通过该第一换热管孔121,能够使得第一流道10内的换热介质流入换热管3或使得第一流道10内的换热介质流入换热管3,以及使得换热管3内的换热介质流入第二流道20或第二流道20内的换热介质流入换热管3。本实施例中,在第一换热管孔121的周边设置有翻边122,翻边122沿远离第一主板11的方向延伸,该翻边122能够增加与换热管3的接触面积,使得换热管3与第二主板12的焊接面更大,焊接后的强度更大。在其他实施例中,翻边还可以沿靠近第一主板11的方向延伸。
可选地,上述第一换热管孔121可以是长型孔,也可以是圆形孔或矩形孔,其形状由于其装配的换热管3的形状决定。本实施例中,第一换热管孔121为长型孔,相应的,换热管3为扁管,上述翻边122的高度与换热管3厚度相关,其高度为换热管3厚度的0.7-1.3倍。
本实施例中,上述换热管3设置有若干排,每个第一流道10和每个第二流道20分别对应设置一排换热管3,换热管3的具体排数与形成第一流道10和第二流道20的通槽112的个数的总和相同。可选地,第一流道10设置有两个,第二流道20设置有一个,即换热管3设置有三排。
这里,需要理解的是,本实施例中每个第一流道10和每个第二流道20分别对应设置一排换热管3,当然,也可以多个第一流道10对应设置一排换热管3,也可以一个第一流道10对应设置多排换热管3;或者也可以多个第二流道20对应设置一排换热管3,也可以一个第二流道20对应设置多排换热管3,不影响换热介质的流动即可,本申请不予限制。
本实施例中,换热介质在第一流道10中的密度小于第二流道20中的密度,相同量的换热介质,在第一流道10中的体积大于在第二流道20中的体积,上述第一流道10的总容积大于第二流道20的总容积,且第一流道10连通的换热管3的数量多于第二流道20连通的换热管3的数量,该结构的设置,能够使得换热所需的换热介质在热交换器中的流动速率较高。
如图1所示,热交换器还包括端盖8,其中第一流通口6和第二流通口7设置于端盖8上。
可以理解的是,上述第一流通口6可以设置为一个,此时该第一流通口6连通所有的第一流道10。该第一流通口6还可以设置多个,此时每个第一流通口6分别连通一个第一流道10。
本实施例中,上述第二集流管2与换热管3未连接第一流道10和第二流道20的一端连通,即换热管3的两端分别连接于第一集流管1和第二集流管2。
如图2以及图7所示,本实施例的第二集流管2包括焊接于一体的第三主板21和第四主板22,第三主板21位于第四主板22的下方,该第三主板21和第四主板22均为平板结构,且参照图7,上述第三主板21的顶面为平面,第四主板22的底面也为平面。通过均为平板结构的第三主板21和第四主板22,使得本实施例的第二集流管2的结构更加紧凑。
在第三主板21上开设有凹槽211,该凹槽211能够与第四主板22合围形成第三通道30。具体的,上述凹槽211需满足容纳所有换热管3,本实施例凹槽211的宽度大于最外侧的两排换热管3之间的最大距离。上述凹槽211的深度为第三主板21厚度的1/3-1/2。
本实施例中,上述第四主板22上设有若干排第二换热管孔221,每个第二换热管孔221均对应一个换热管3设置,上述若干排换热管3的一端穿过该第二换热管孔221,且与第三通道30连通。上述第二换热管孔221采用外翻边(具体是向远离第三主板21的方向翻边)的结构,能够增大与换热管3的接触面积,进而增加第二 换热管孔221与换热管3的连接强度。本实施例中,上述第二换热管孔221与换热管3之间采用钎焊连接起来。本实施例中,上述第二换热管孔221的长度大于换热管3缩口宽度,第二换热管孔221的宽度大于换热管3厚度,第二换热管孔221翻边的高度为换热管3厚度的0.7-1.3倍。在其他实施例中,第二换热管孔221的翻边也可以靠近第三主板21的方向延伸。
可以理解的,本实施例的第二集流管2,也可以是直接在第四主板22上开设凹槽211,第三主板21仅为一个平板结构,两者之间形成上述第三通道30。
本实施例的上述热交换器作为冷凝器时的运行原理如下:
首先,气态的换热介质通过第一流通口6进入,随后分流至第一集流管1的总容积相对较大的第一流道10内,此时换热介质会进入与第一流道10连通的换热管3内,并在此过程中与其他介质换热,最终换热介质经与第一流道10连通的换热管3流入第二集流管2的第三通道30内,并经第三通道30流入与第二流道20连通的换热管3内,随后在与第二流道20连通的换热管3内流入第二流道20,并在此过程中进一步与其他介质(例如空气)换热,最终经第二流通口7流出(此时换热介质为液态或气液混合状态),完成换热过程。
本实施例的上述热交换器作为蒸发器时的运行原理如下:
首先液态或者气液混合状态的换热介质通过第二流通口7进入第一集流管1的总容积相对较小的第二流道20内,此时换热介质会进入与第二流道20连通的换热管3内,并在此过程中与其他介质换热,换热介质经与第二流道20连通的换热管3流入第二集流管2,并经第三通道30流入与第一流道10连通的换热管3内,随后在与第一流道10连通的换热管3内流入第一流道10,并在此过程中进一步与其他介质(例如空气)换热,最终经第一流通口6流出(此时换热介质为气态),完成换热过程。
本实施例的上述热交换器,第一流道10内流通的为气态换热介质,第二流道20内流通的为液态或气液混合态的换热介质,由于第一流道10的总容积大于第二流道20的总容积,连通于第一流道10的换热管3的流通通道的总容积大于连通于第二流道20的换热管3的流通通道的总容积,热交换器内的换热介质的量一定时,能够使得气态换热介质在总容积较大的流通通道内流动,而液态或气液混合态的换热介质在总容积较小的流通通道内流动,进而能够使得换热所需的换热介质的流动速率较高,换热性能得到提高。而且上述热交换器的结构强度更高,能够适用于高压力换热介质。
实施例二
本实施例与实施例一的区别在于本实施例的第一集流管1的结构有所不同,具体的,如图8和图9所示,本实施例的第一集流管1包括包括第一主板11、第二主板12以及第一中间板13,其中第一主板11以及第二主板12的结构与实施例一所述的第一主板11以及第二主板12的结构相同,区别在于,本实施例的第一主板11的中间筋111是支撑于第一中间板13上,第二主板12包覆第一中间板13以及第一主板11,三者通过钎焊固定连接,并形成第一流道10和第二流道20。
具体的,本实施例的第一中间板13上开设有若干排第一条形孔131,该第一条形孔131的排数与第一流道10和第二流道20的数量之和相同,第一条形孔131与第一换热管孔121一一对应设置,即每排第一条形孔131均对应一个第一流道10或第二流道20。上述第一主板11的通槽112、第一条形孔131以及第二主板12之间形成第一流道10和第二流道20。通过在第一主板11和第二主板12之间设置第一中间主板13,且三者之间钎焊固定连接,增加了第一集流管1整体结构的强度。
上述第二主板12的第一换热管孔121均对应一个第一条形孔131,上述换热管3的一端密封穿过第一换热管孔121且容纳于第一条形孔131内。
本实施例的其它结构与实施例一的所述结构均相同,且本实施例的热交换器的运行原理与实施例一的也相同,故不再赘述。
实施例三
本实施例与实施例一的区别在于,本实施例的第二集流管2的结构有所不同,具体的,如图10和图11所示,本实施例的第二集流管2包括包括第三主板21、第四主板22以及第二中间板23,其中第三主板21以及第四主板22的结构与实施例一所述的第三主板21以及第四主板22的结构相同,区别在于,本实施例的第四主板22与第二中间板23以及第三主板21,三者之间通过钎焊固定连接,并形成第三通道30。
具体的,本实施例的第二中间板23上开设有若干排第二条形孔231,该第二条形孔231的排数与换热管3的排数相同,第二条形孔231与第二换热管孔221一一对应设置,即每个第二条形孔231均对应一个换热管3。上述第三主板21的凹槽211、第二条形孔231以及第四主板22之间形成第三通道30。通过在第三主板21和第四主板22之间设置第二中间板23,且三者之间钎焊固定连接,增加了第二集流管2整体结构的强度。
上述第四主板22的第二换热管孔221均对应一个第二条形孔231,上述换热管3未连接第一集流管1的一端密封穿过第二换热管孔221且容纳于第二条形孔231内。本实施例的其它结构与实施例一的所述结构均相同,且本实施例的热交换器的运行原理与实施例一的也相同,故不再赘述。
实施例四
本实施例与实施例二的区别在于,本实施例的第二集流管2的结构有所不同,具体的,如图12所示,本实施例的第二集流管2的结构与实施例三所述的结构相同,即本实施例的第二集流管2包括第二中间板23。具体的,本实施例的其它结构与实施例二的所述结构均相同,且本实施例的热交换器的运行原理与实施例二的也相同,故不再赘述。
实施例五
本实施例在实施例一的基础上,在第一集流管1上增加了第一隔板4的结构,以实现四流程换热的结构。具体的,如图13和图14所示,本实施例的第一集流管1的第一流道10和第二流道20均包括第一端和第二端,其中第一流道10的第一端与第二流道20的第一端位于同一侧(图13所示的左侧),第一流道10的第二端与第二流道20的第二端位于同一侧(图13所示的右侧)。且上述第一流道10的第一端与第二流道20的第一端连通(可采用在第一流道10和第二流道20之间的中间筋111上开孔或开口的方式实现连通),第一流通口6连通于第一流道10的第二端,第二流通口7连通于第二流道20的第二端。
上述第一流道10的第一端和第二端之间、第二流道20的第一端和第二端之间均设有第一隔板4,其中第一流道10的第一端和第二端之间的第一隔板4用于将第一流道10隔断,第二流道20的第一端和第二端之间的第一隔板4用于将第二流道20隔断;在第一主板11的宽度方向开设一组隔板孔(图中未示出),在每个隔板孔上插接第一隔板4,通过第一隔板4的设置,可以将上述第一流道10和第二流道20均分成第一段和第二段,能够实现换热介质的多流程运行。需要说明的是,靠近 第一流通口6和第二流通口7的第一段不相连通,远离第一流通口6和第二流通口7的第二段相连通,由此能够实现上述四流程换热。
上述第三通道30包括两个相互独立的流通通道,其中一个流通通道与所有第一流道10连通的换热管3连通,另一个流通通道与第二流道20连通的换热管3连通。也就是说,在本实施例中,可参照图14,上述第二集流管2的第三主板21的凹槽211开设有两个,每个凹槽211与第二主板12之间均形成一个流通通道。本实施例中,将两个流通通道设置第一端和第二端,其中两个流通通道的第一端位于同一侧,两个流通通道的第二端位于另一侧。且上述流通通道的第一端与第一流道10的第一端以及第二流道20的第一端均位于热交换器的同一侧,流通通道的第二端与第一流道10的第二端以及第二流道20的第二端均位于热交换器的另一侧。
本实施例的上述热交换器作为冷凝器时的运行原理如下:
首先,换热介质通过第一流通口6进入第一流道10的第二段(位于第一隔板4和第一流通口6之间),此时换热介质进入第一流程,换热介质进入与第一流道10的第二段连通的换热管3,并沿换热管3流动,此时其他介质(例如空气)与换热介质换热;换热介质沿着换热管3进入第三通道30中与该换热管3对应的流通通道的第二段,并随后流至该流通通道的第一段;随后换热介质进入与该第一段连通的换热管3内流动,此时进入第二流程,第二流程中换热介质进一步与其他介质换热,并最终流入第一流道10的第一段内。
之后,换热介质经第一流道10的第一段流入第二流道20的第一段,并流入与第二流道20的第一段连通的换热管3内,流动的过程中,换热介质再次与其他介质换热,此为第三流程;此时,换热介质流入到另一个流通通道(即与第二流道20对应的流通通道)的第一段,并流入至该流通通道的第二段,随后经该流通通道的第二段进入第二流道20的第二段连通的换热管3,此时即为第四流程,换热介质流动的过程中与其他介质换热,并最终流入第二流道20的第二段,随后经与第二流道20第二段连通的第二流通口7流出,完成一次换热过程。
本实施例的热交换器通过设置第一隔板4,其能够形成四流程换热方式,进一步提高了换热效果。
实施例六
本实施例与实施例五的区别在于,本实施例的第一集流管1包括第一中间板13,如图15所示,此时第一中间板13位于第一隔板4的一侧设置第一条形孔131,位于第一隔板4的另一侧设置第三条形孔132,上述第一条形孔131位于第一隔板4靠近第一流通口6的一侧,第三条形孔132远离第一流通口6设置。上述第三条形孔132能够将第一流道10和第二流道20连通起来,进而实现换热介质从第一流道10进入到第二流道20。
当然,可以理解的,本实施例的第二集流管2还可以包括第二中间板23,该第二中间板23的结构以及安装位置与实施例三所述的第二中间板23相同,不再赘述。
本实施例的热交换器的其余结构与实施例五均相同,且本实施例的热交换器的运行原理与实施例五的也相同,故不再赘述。
实施例七
本实施例在实施例五的基础上,在第二集流管2的两个流通通道上增加了第二隔板5的结构,且更改了凹槽211的结构,以实现六流程的换热。具体的,如图16和图17所示,本实施例的第二集流管2的第三通道30包括第一流通通道、第二流通 通道以及第三流通通道,其中第一流通通道与第二流通通道之间由第二隔板5分隔,第一流通通道与第三流通通道之间也由第二隔板5分隔,以使得三个流通通道之间相互独立。
本实施例中,如图17所示,凹槽211可以包括第一凹槽212、第二凹槽213以及第三凹槽214,上述第二隔板5置于第一凹槽212和第二凹槽213之间,同时也置于第一凹槽212和第三凹槽214之间,通过第二隔板5、第四主板22以及上述三个凹槽,能够形成上述第一流通通道、第二流通通道和第三流通通道。
本实施例中,上述第一流通通道分别连通于第一流道10的第一端和第二隔板5之间的换热管3以及第二流道20的第一端和第二隔板5之间的换热管3。
上述第二流通通道连通于第一流道10的第二端和第二隔板5之间的换热管3,第三流通通道连通于第二流道20的第二端和和第二隔板5之间的换热管3。
本实施例中,可以在第三主板21上开设对应的隔板孔(图中未示出),上述第二隔板5能够插接在隔板孔内,以形成三个流通通道。
本实施例中,在水平方向上,上述第二隔板5设置于第一隔板4远离第一流通口6的一侧,使得第一集流管1位于第一隔板4第一侧(图16所示的右侧)的通道(也就是第一流道10的第一端以及第二流道20的第一端)的长度大于第一流通通道的长度。通过上述结构,能够实现热交换器的六流程的换热结构。
本实施例的其余结构与实施例五均相同,故在此不再赘述。
下面对本实施例的上述热交换器作为冷凝器时的运行原理加以说明:
首先,换热介质通过第一流通口6进入第一流道10的第二端(图17所示的右侧)与第一隔板4之间的通道中,换热介质进入与第一流道10的第二端与第一隔板4之间的通道连通的换热管3内,并沿此部分换热管3流动,此时换热介质与其他介质(例如空气)进行换热,此为第一流程;
换热介质进入第二流通通道中,并且由于第二隔板5的作用,换热介质会流入位于第一隔板4和第二隔板5之间且与第一流道10连通的换热管3中,再次与其他介质换热,此为第二流程;
随后换热介质流入与第一流道10的第一端(图17所示的左侧)与第一隔板4之间的通道内,接着换热介质进入与第一流道10的第一端与第二隔板5之间的通道连通的换热管3内,再次与其他介质换热,此为第三流程;
换热介质进入第一流通通道内,之后换热介质沿位于第二流道20的第一端与第二隔板5之间的通道连通的换热管3流动,与其他介质换热,此为第四流程;
换热介质流入到第二流道20的第一端(图17所示的左侧)与第一隔板4之间的通道内,之后换热介质流入与位于第一隔板4和第二隔板5之间且与第二流道20连通的换热管3内,在此过程中换热介质与其他介质换热,即第五流程;
换热介质流入第三流通通道内,之后换热介质进入到第二流道20的第二端(图17所示的右侧)与第一隔板4之间的通道所连通的换热管3内,并进一步与其他介质换热,最终进入到第二流道20的第二端(图17所示的右侧)与第一隔板4之间的通道内,并通过第二流通口7流出,完成一次换热过程,此为第六流程。
本实施例的热交换器作为蒸发器时,换热介质从第二流通口7流入,从第一流通口6流出,换热介质的流动方向与热交换器作为冷凝器时的换热介质的流动方向相反,故不再赘述。
本实施例的上述热交换器,能够实现六流程的换热过程,进一步提高了换热性能。
实施例八
本实施例与实施例七的区别在于,本实施例的第一集流管1包括第一中间板13,如图18所示,该第一中间板13的结构与实施例二所述的第一中间板13的结构相同。本实施例的热交换器的其余结构与实施例七均相同,且本实施例的热交换器的运行原理与实施例五的也相同,故不再赘述。
当然,可以理解的,本实施例的第二集流管2还可以包括第二中间板23,该第二中间板23的结构以及安装位置与实施例三所述的第二中间板23相同,不再赘述。
实施例九
图19为本申请实施例九所提供的热交换器的结构示意图,图20为本申请实施例九所提供的热交换器的工作流程图,图21为本申请实施例九所提供的热交换器的分解示意图。如图19至图21所示,本申请实施例提供的热交换器包括换热管3、第一集流管1和第二集流管2。可选的,换热管3可以设置为两排(前排和后排),换热管3一端连接第一集流管1,换热管3另一端连接第二集流管2,换热管3的内腔连通第一集流管1的内腔和第二集流管2的内腔。
可选的,该热交换器还包括翅片9和盖板10。上述翅片9至少部分贴合于换热管3,盖板10设置于最外侧的翅片9外。翅片9与换热管3的贴合能够提高热交换的效率,盖板10能够对翅片9和换热管3起到保护作用。
这里需要理解的是,盖板10可以为铝板,也可以为换热管3,但作为盖板10的换热管不参与换热,仅起保护翅片9和换热管3的作用。
图22为本申请实施例九所提供的第一种集流管的结构示意图,如图22所示,本实施例还提供了一种集流管100,上述的第一集流管1和/或第二集流管2可以采用本实施例所提供的集流管100的结构。
该集流管100包括密封连接的第一主板11和第二主板12。
于本实施例中,第一主板11和第二主板12可以通过钎焊的方式固定连接,形成大致呈8字型的集流管100。当然,二者也可以铆接、胶粘或其他工艺连接。
第一主板11包括第一筋103和至少两个第一弯曲段104,第一筋103的一端连接相邻两个第一弯曲段104,第一筋103的另一端贴合且连接于第二主板12,第二主板12包括至少一个第二弯曲段105,第二弯曲段105与至少一个第一弯曲段104对应设置。
上述集流管通过设置第一筋103提高了集流管的强度,通过设置第一筋103与第二主板12的贴合增加了第一主板11和第二主板12的焊接面积,设置第一弯曲段104和第二弯曲段105提升了第一主板11和第二主板12的强度,从而使集流管100对压力的承受能力较强。
图23为本申请实施例九所提供的第二种集流管的结构示意图。如图23所示,在本实施例中,第二主板12包括第一平直段107,第一平直段107与第二弯曲段105连接,第二弯曲段105与第一弯曲段104对应设置,至少部分第一平直段107贴合于第一筋103。通过设置至少部分第一平直段107与第一筋103贴合能够进一步增加第一主板11和第二主板12的焊接面积,提高了集流管100的强度。
图24为本申请实施例九所提供的第三种集流管的结构示意图,图25为本申请实施例九所提供的第三种集流管中第二板的结构主视示意图,图26为本申请实施例九所 提供的第三种集流管中第一板的结构主视示意图,如图24至图26所示,在本实施例中,第一主板11包括第一筋103和两个及以上的第一弯曲段104,第二主板12包括第一平直段107和两个及以上的第二弯曲段105,第一平直段107连接相邻两个第二弯曲段105,第二弯曲段105与第一弯曲段104一一对应设置,第一平直段107贴合于第一筋103。通过设置第二弯曲段105与第一弯曲段104一一对应设置能够进一步提高了集流管的强度,提高了集流管100的强度。
在本实施例中,参照图25,第一平直段107可以包括第一配合面107a,第一筋103的端面与第一配合面107a贴合。参照图24,第一主板11和第二主板12之间形成第一腔130,第一腔130包括至少两个腔室130a,第一筋103位于相邻的两个腔室130a之间。
在本实施例中,上述第一筋103可以是条形筋,具有平坦的端面,第一配合面107a为平坦表面,第一筋103上该平坦的表面与第一配合面107a的平坦表面贴合后,增大了焊接面积。
作为一种可能的实现方式,第二主板12还包括第二平直段108,第二平直段108与第二弯曲段105或第一平直段107相连,第二平直段108包括第二配合面108a。第一主板11还包括第二筋109,可选的,第二筋109也可以是条形筋,其端面也可以是平坦的端面,第二筋109的一端连接相邻两个第一弯曲段104,另一端的端面与第二配合面108a贴合。
腔室130a包括两个及以上的子腔室,第二筋109位于相邻的两个子腔室之间。
可以理解的是,第二筋109位于腔室130a中,可选的,第二筋109可以设有连通槽103a或连通孔,相邻的两个子腔室相连通;第二筋109可以部分设有连通槽或连通孔,配合分隔结构,使相邻的两个子腔室部分区域连通部分区域相互独立,可以形成不同的流程。
上述第二筋109的设置能够起到进一步增强集流管100的强度的作用,以便承受冷媒的压力。可选的,第二筋109可以以第一筋103为中心轴对称设置。每个第二筋109将上述腔室130a分为两个子腔室。当然,第二筋109也可以相对于第一筋103为非对称设置,均可达到进一步增强集流管100强度的作用。下文将会以四流程和三流程为例进行说明。
作为一种可能的实现方式,如图26所示,第一筋103和/或第二筋109设置有第三筋110。这里需要理解的是,第三筋110为第一筋103和/或第二筋109朝远离自身的方向延伸形成,例如第一筋103设于第一主板11,第三筋110为第一筋103远离第一主板11的端部朝第二主板12的方向延伸形成。
可选的,第三筋110可以是条形筋,也可以是三角形筋或其他形态结构;第三筋110可以设置于第一筋103的端部的任意位置,和/或设置于第二筋109的端部的任意位置。第一平直段107和/或第二平直段108设置配合孔108b(参照图27),第三筋110与配合孔108b固定。第三筋110的设置能够进一步提高集流管100的强度。可选的,第三筋110在与配合孔108b配合后,第三筋110穿过配合孔108b的部分可以进一步扭转固定,提升了第一主板11和第二主板12的连接强度。
本实施例以第三筋110设置于第二筋109为例,如图23和图25所示,第二筋109 上设置有一定厚度和高度的第三筋110,第三筋110的厚度W1可以是第二筋109厚度W2的1/4-1/2,这样,在第三筋110与配合孔108b配合后,第二筋109的宽度足够大,能够起到一定的限位作用,以保证第三筋110与配合孔108b的连接可靠。第三筋110的高度H可以是2-9mm,这样,当第三筋110从配合孔108b穿出后,露出的长度更能方便使用工具来夹持以进行扭转,扭转后的第三筋110进一步加强了第一主板11和第二主板12的连接强度。
通过第三筋110与第二主板12的配合孔108b紧密连接,起到固定及定位且连接第一主板11和第二主板12的作用,提高了第一主板11和第二主板12的连接可靠性。
可以理解的是,第三筋110可以只设置在第一筋103,此时第一平直段107对应设置有配合孔108b;也可以只设置在第二筋109,此时第二平直段108对应设置有配合孔108b;也可以同时设置在第一筋103和第二筋109,此时第一平直段107和第二平直段108各自对应设置有配合孔,只要能提升第一主板11和第二主板12的连接可靠性即可,本申请不予限制。
可以理解的是,参照图33,沿第一筋103或第二筋109的长度方向,第三筋110可以在第一筋103和/或第二筋109上连续分布,也可以在第一筋103和/或第二筋109上隔开一定的尺寸间隔分布;第三筋110可以均匀分布,也可以不均匀分布;第三筋110可以较为密集的分布,也可以较为稀疏的分布;第三筋110可以在第一筋103和第二筋109上分布方式一样,也可以不一样,只要能提升第一主板11和第二主板12的连接可靠性即可,本申请不予限制。
图27为本申请实施例所提供的第三种集流管中第二板的结构示意图,图28为本申请实施例所提供的第三种集流管中第一板的结构示意图。如图27、图28所示,作为一种可能的实现方式,第二主板12设置有隔板槽124,集流管100还包括第一隔板4(参照图21、图33),第一隔板4固定于隔板槽124。参照图28,第一主板11的第一筋103设置有连通槽103a,连通槽103a在第一隔板4的一侧,相邻的腔室130a在连通槽103a处连通,在第一隔板4的另一侧,腔室130a相互隔离。本领域技术人员可以理解,也可以通过设置连通孔将腔室130a连通,本申请并不限于上述连通槽103a。
第一隔板4可以有多组,通过多组第一隔板4与隔板槽124的配合,可以将上述腔室130a沿集流管100的长度方向分为多个子腔室,多个子腔室能够实现冷媒的多流程运行。第一隔板4也可以是一体式的结构,整体与隔板槽124配合,整体式的第一隔板4也能将腔室130a沿集流管100的长度方向分为多个子腔室,多个子腔室能够实现冷媒的多流程运行,下文将会具体描述多流程运行的过程。
如图27所示,在第一主板11或第二主板12上还可以设置有容置槽126,可选的,该容置槽126可以通过冲床冲压获得,也可以通过铸造等方式一体成型。容置槽126的形状和大小和换热管3的缩口部43的形状大小相匹配。具体而言,容置槽126可以是例如具有矩形形状的开口,也可以是腰形形状的开口,换热管3通常为扁管,可参照图31和图32,扁管状的换热管3具有缩口部43,缩口部43伸入至上述容置槽126内。
如图27所示,在本实施例中,容置槽126设置于第二主板12,对应地,第一主板11上的第二筋109可以开设用于避让换热管3端部的缺口,该缺口的宽度与换热管 3的缩口部43的厚度匹配,使缩口部43的至少部分能够容置于缺口。当换热管3的缩口部43的至少部分伸入至缺口中时,伸入的深度需满足缩口部43的端部不会抵碰到缺口的内壁,不影响冷媒流动即可。可以理解的是,也可以在第二主板12设置容置槽,在第二主板12设置第二筋109和缺口,在此不作具体限定。
在本实施例中,一个缺口容纳一个换热管3的端部,当然,也可以一个缺口容纳两个及两个以上的换热管3的端部,此时缺口的宽度大于或者等于两个及两个以上的换热管3之间的间距及全部换热管3的厚度之和,只要满足所有换热管3缩口部43的端部不会抵碰到缺口的内壁,不影响冷媒流动即可。
本实施例中,可以设置换热管3伸入容置槽126后,再与第二主板12通过钎焊固定。
图29为本申请实施例所提供的集流管中端盖的结构示意图,图30为本申请实施例所提供的集流管中端盖的主视示意图,图31为本申请实施例所提供的集流管中端盖的横向剖面示意图。
参照图21、图29至图31,本实施例所提供的集流管100还包括堵盖16和端盖8,堵盖16至少封堵第一腔130的一端,端盖8设置于第一腔130未设置堵盖16的另一端。端盖8具有进口和/或出口,进口和出口分别与第一腔130连通。进口用于冷媒的流入,出口用于冷媒的流出。端盖8与第一集流管1或第二集流管2组装在一起形成集流管组件。
可以理解的是,进口和出口可以同时设置于同一个端盖上,也可以进口和出口分别设置于两个端盖上,不影响冷媒的进出流动即可,本申请不予限制。
参照图27,在第二主板12上可以设置堵盖槽125,堵盖16与堵盖槽125配合,起到密封集流管100一侧端部的作用。本实施例中,热交换器的第一集流管1,一端设置堵盖16,另一端设置端盖8。热交换器的第二集流管2,两端可均设置堵盖16。当然,堵盖16和端盖8的设置形式还可以根据实际的流程设计来进行匹配,在此不作进一步限定。
图32为本申请实施例所提供的第一集流管半剖开后与换热管配合的示意图,图33为图32的局部示意图,图34为图32的A处放大示意图,图17为本申请实施例所提供的第一集流管与换热管配合的剖面示意图。
以四流程为例,结合图19、图20、图27、图28和图35,本申请实施例所提供的热交换器的第一集流管1包括第一端A1和第二端A2,第二集流管2包括第三端A3和第四端A4,第一端A1和第三端A3位于同一侧,第二端A2与第四端A4位于同一侧,本实施例中进口和出口均位于第一端A1,第二端A2、第三端A3、第四端A4均设有堵盖,第一集流管1设有第一隔板4,第一集流管1位于第一隔板4与第二端A2之间的部分第一筋103上设有连通槽103a,位于第一隔板4与第二端A2之间的部分第一筋不设有连通槽,第二集流管2的第一筋不设有连通槽,本申请实施例所提供的热交换器作为蒸发器时的四流程运行原理如下:
首先,冷媒通过进口进入到第一集流管1的位于第一隔板4与第一端A1之间的子腔室131c和子腔室131d(如图24),此时,如图20和图21所示,冷媒进入第一流程,冷媒沿着与第一隔板4与第一端A1之间的子腔室131c和子腔室131d连通的 后排管42向下流动,流至第二集流管2位于第一隔板4与第三端A3之间的的子腔室131c和子腔室131d,空气与冷媒进行换热,冷媒蒸发吸热;需要说明的是,第二集流管2未设置第一隔板4,第一隔板4与第三端A3之间指的是,第一隔板4在第三集流管3上的投影与第三端A3之间。
然后冷媒进入第二集流管2位于第一隔板4与第四端A4之间的子腔室131c和子腔室131d,并进入第二流程;需要说明的是,第二集流管2未设置第一隔板4,第一隔板4与第三端A3之间指的是,第一隔板4在第三集流管3上的投影与第三端A3之间。冷媒沿着与第一隔板4与第四端A4之间的子腔室131c和子腔室131d连通的后排管42向上流动并继续蒸发吸热;
接下来,冷媒流至第一集流管1位于第二端A2和第一隔板4之间的子腔室131c和子腔室131d;由于连通槽103a的存在,冷媒从第一集流管1位于第二端A2和第一隔板4之间的子腔室131c和子腔室131d流入到第一集流管1位于第二端A2和第一隔板4之间的子腔室131a和子腔室131b,然后进入第三流程,冷媒沿着与第二端A2和第一隔板4之间的子腔室131a和子腔室131b连通的前排管41向下流动,流至位于第二集流管2中与第四端A4和第一隔板4之间的子腔室131a和子腔室131b;
随后,冷媒流入到第二集流管2位于第三端A3和第一隔板4之间的子腔室131a和子腔室131b,进入第四流程,冷媒沿着与第二集流管2中与第三端A3和第一隔板4之间的子腔室131a和子腔室131b连通的前排管41向上流动,并从与第一集流管1位于第一端A1和第一隔板4之间的子腔室131a和子腔室131b连通的出口流出。
本申请实施例所提供的热交换器作为冷凝器时的四流程运行原理如下:
首先,冷媒通过进口进入第一集流管1的位于第一端A1和第一隔板4之间的子腔室131a和子腔室131b,进入第一流程,冷媒沿着与第一隔板4与第一端A1之间的子腔室131a和子腔室131b相通的前排管41向下流动,流至第二集流管2位于第一隔板4与第三端A3之间的子腔室131a和子腔室131b,冷媒降温液化;需要说明的是,第二集流管2未设置第一隔板4,第一隔板4与第三端A3之间指的是,第一隔板4在第三集流管3上的投影与第三端A3之间。
然后冷媒流至第二集流管2位于第一隔板4与第四端A4之间的子腔室131a和子腔室131b,并进入第二流程;需要说明的是,第二集流管2未设置第一隔板4,第一隔板4与第四端A4之间指的是,第一隔板4在第三集流管3上的投影与第四端A4之间。冷媒沿着与第一隔板4与第四端A4之间的子腔室131a和子腔室131b相通的前排管41向上流动,流动至第一集流管1与第一隔板4与第二端A2之间的子腔室131a和子腔室131b。由于连通槽103a的存在,冷媒由第一集流管1与第一隔板4与第二端A2之间的子腔室131a和子腔室131b流入到第一集流管1与第一隔板4与第二端A2之间的子腔室131c和子腔室131d;
接下来,进入第三流程,冷媒沿着与第一集流管1与第一隔板4与第二端A2之间的子腔室131c和子腔室131d相通的后排管42向下流动,并降温液化;
最后,冷媒流到位于第二集流管2中第四端A4与第一隔板4之间的子腔室131c和子腔室131d,进入第四流程,冷媒沿着与第四端A4与第一隔板4之间的子腔室131c和子腔室131d相通的后排管42向上流动,从第一集流管位于第一端A1和第一隔板4 之间的子腔室131c和子腔室131d连通的出口流出。
本实施例中,如图29至图31所示,端盖8包括本体141和形成于本体141的第一开口142。
第一开口142可以是圆形开口,也可以是其他形状,直接形成于本体141,也可以在本体141上连接管体,管体的通道即能形成该第一开口142。
本体141还包括第二腔143和第一槽部144,第一槽部144位于第一开口142和第二腔143之间,第一槽部144包括靠近第一开口142的第一底壁145,第一底壁145包括第三开口145a,第三开口145a连通第一开口142与第二腔143,第二腔143与第一集流管1的内腔或第二集流管2的内腔连通,第一开口142相比第二腔143远离第一集流管1的内腔或第二集流管2的内腔,第一槽部144的过流面积大于第三开口145a的过流面积。这里的过流面积,指的是单位时间内通过某一过流断面的流体体积。举例而言,本实施例中,第一槽部144的过流面积指的是单位时间内通过第一槽部144的横断面的流体体积。
第一开口142可以作为端盖8的冷媒进口,也可以作为冷媒出口,在此不作限定。当第一开口142作为进口时,冷媒从第一开口142经过第三开口145a进入到第一槽部144时,由于第一槽部144的过流面积大于第三开口145a的过流面积,这样在冷媒进入的过程中,可以降低进入到集流管100的第一腔130内的冷媒对集流管100造成的冲击,可以降低集流管100的耐压需求。
当第一开口142作为出口时,冷媒从第一槽部144进入到第四开口145a时,也能使冷媒的流量更加均匀。
作为一种可能的实现方式,第一槽部144在沿着第一底壁145横向延伸方向的宽度大于第三开口145a在沿着第一底壁145横向延伸方向的宽度。本实施例中,第一槽部144可以是腰形槽,第三开口145a可以是圆孔,腰形槽的长轴尺寸大于圆孔的孔径,可选的,腰形槽的短轴尺寸可以等于圆孔的孔径,当然,腰形槽的短轴尺寸也可以大于或者小于圆孔的孔径,只要不影响第三开口145a连通第一开口142和第二腔143的作用即可。可选的,第三开口145a的中心与第一槽部144的中心重合,冷媒从第三开口145a中流出时,能够均匀的向两侧分流,从而达到均匀分流的效果。当然,第一槽部144也可以是其他形状,例如矩形、圆形等,第三开口145a也可以是其他形状的孔,例如异形孔或椭圆形孔等。
作为一种可能的实现方式,本体141还包括第一通道145b,第一通道145b为第三开口145a沿第二腔143向第一开口142的方向延伸形成。第一通道145b位于第一开口142和第一槽部144之间,第一通道145b分别与第一开口142和第一槽部144连通,第一通道145b在沿着第一底壁145横向延伸方向的宽度小于第一槽部144在沿着第一底壁145横向延伸方向的宽度。
以第一开口为圆形,第一通道145b为圆形通道,外部管路为圆管为例,该第一通道145b的内径可以与第三开口145a的孔径大小相同,外部用于输入冷媒的管路插入至第一开口142,外部管路的内径与该第一通道145b的内径相等,冷媒进入后,经过第一通道145b先形成流量较小的状态,再经过第三开口145a进入到第一槽部144,形成分流,进一步降低了冷媒对集流管100的冲击。
在上述实施例的基础上,本体141形成有第二开口146,第二开口146可以是圆形开口,也可以是其他形状,直接形成于本体141,也可以在本体141上连接管体,管体的通道即能形成该第二开口146。
本体141还包括第二槽部147,第二槽部147包括靠近第二开口146的第二底壁148,第二底壁148包括第四开口148a,第四开口148a连通第二开口146与第二腔143,第二槽部147的过流面积大于第四开口148a的过流面积。这里的过流面积,指的是单位时间内通过某一过流断面的流体体积。举例而言,本实施例中,第二槽部147的过流面积指的是单位时间内通过第二槽部147的横断面的流体体积。
该第二开口146可以作为端盖8的冷媒进口,也可以作为冷媒出口,在此不作限定。当第二开口146作为进口时,冷媒从第二开口146经过第四开口148a进入到第二槽部147时,由于第二槽部147的过流面积大于第四开口148a的过流面积,这样在冷媒进入的过程中,能够降低冷媒的瞬间压力,这样,可以降低进入到集流管100的第一腔130内的冷媒对集流管100造成的冲击。
当第二开口146作为出口时,冷媒从第二槽部147进入到第四开口148a时,也能使冷媒的流量更加均匀。
作为一种可能的实现方式,第二槽部147在沿着第二底壁148横向延伸方向的宽度大于第四开口148a在沿着第二底壁148横向延伸方向的宽度。本实施例中,第二槽部147可以是腰形槽,第四开口148a可以是圆孔,腰形槽的长轴尺寸大于圆孔的孔径,可选的,腰形槽的短轴尺寸可以等于圆孔的孔径,当然,腰形槽的短轴尺寸也可以大于或者小于圆孔的孔径,只要不影响第三开口连通第一开口和第二腔的作用即可。可选的,第三开口的中心与第一槽部的中心重合,冷媒从第四开口148a中流出至第二槽部147时,能够均匀地向两侧分流,从而达到均匀分流的效果。当然,第二槽部147也可以是其他形状,例如矩形、圆形等,第四开口148a也可以是其他形状的孔,例如异形孔或椭圆形孔等。
作为一种可能的实现方式,本体141还包括第二通道148b,第二通道148b为第四开口148a沿第二腔143向第二开口146的方向延伸形成。第二通道148b位于第二开口146和第二槽部147之间,且第二通道148b分别与第二开口146和第二槽部147连通,第二通道148b在沿着第二底壁148横向延伸方向的宽度小于第二槽部147在沿着第二底壁148横向延伸方向的宽度。
以第二开口为圆形,第二通道为圆形通道,外部管路为圆管为例,该第二通道148b的内径可以与第四开口148a的孔径大小相同,当第二通道148b用作输入通道时,外部用于输入冷媒的管路插入至第二开口146,外部管路的内径与该第二通道148b的内径相等,冷媒进入后,经过第二通道148b先形成流量较小的状态,再经过第四开口148a进入到第二槽部147,形成分流,进一步降低了冷媒对集流管100的冲击。
当第二通道148b用作输出通道时,冷媒从第二槽部147进入到第二通道148b,也能使冷媒的流量更加均匀。
作为一种可能的实现方式,上述的第一槽部144与第二槽部147可以是以端盖8的中心线对称设置,这样能够使冷媒的分布更加均匀。同样地,第一通道145b与第二通道148b,第三开口145a与第四开口148a也以端盖8的中心线对称设置,以使冷媒 的分布更加均匀。
本实施例中,集流管100包括相连接的第一主板11和第二主板12;第一主板11和第二主板12之间形成第一腔130。第一主板11和/或第二主板12设置有第一筋103;第一腔130包括至少两个腔室130a,第一筋103设置于相邻的腔室130a之间。
该集流管100还包括本申请任意实施例提供的端盖8,端盖8封堵于第一腔130的一端,且第一开口142经过第一槽部144与一个腔室130a相通。
可以理解的是,集流管100可以包括一个仅具有第一开口142的端盖8,也可以包括同时具有第一开口142和第二开口146的端盖。当端盖同时具有第一开口142和第二开口146时,第一筋103抵接于本体141,第一筋103位于第一开口142和第二开口146之间,也位于第一槽部144和第二槽部147之间,防止第一开口142和第二开口146在端盖处连通。由于上述端盖8中,第一槽部144的过流面积大于第三开口145a的过流面积,这样使冷媒在流入集流管100的腔室130a的过程能进一步减缓冲击力。
如图28和图33所示,在本实施例中,第一隔板4到端盖8的距离小于第一筋103未开设连通槽103a部分的长度,以此提高第一隔板4处的密封性能。当然,这两部分的长度也可以相等,在此不作限定。在本实施例中,第一筋103未开设连通槽103a部分的长度尺寸可以大于第一筋103上开设连通槽103a部分的长度尺寸,当然,第一筋103未开设连通槽103a部分的长度尺寸也可以小于或者等于第一筋103上开设连通槽103a部分的长度尺寸,在此不作限定。图36为本申请实施例所提供的集流管的局部示意图,参照图34和图36所示,作为一种可能的实现方式,第一主板11和/或第二主板12包括第二筋109,腔室130a包括两个以上子腔室,第二筋109位于相邻的两个子腔室之间。
第一槽部144的宽度大于第一槽部144正对的第二筋109的宽度,冷媒从第一槽部144流出后,大部分冷媒不会垂直撞击到第二筋109,而是能够从第二筋109的两侧流入腔室130a,从而降低对第二筋109的撞击力。
作为一种可能的实现方式,第二筋109朝向端盖8的一端设置有第三槽109b,冷媒从第一槽部144流出后,第三槽109b能够起到避让的作用,进一步避免冷媒会直接冲击第二筋109的问题。
同样地,冷媒从腔室130a流出时,由于第三槽109b的设置,冷媒不会受到过大的阻力,也能顺利地流入到第二腔143,再从出口流出。
可以理解的是,第三槽109b可以如图36所示为方形槽,当然,也可以为U形槽或V形槽,也可以为其它异形槽,只要能起到避让的作用,避免冷媒会直接冲击第二筋109即可,本申请不予限制。
作为一种可能的实现方式,如图24至图26、图29至图31,第一主板11包括两个及以上的第一弯曲段104,第二主板12包括第一平直段107和两个及以上的第二弯曲段105,第一平直段107连接相邻两个第二弯曲段105,第二弯曲段105与第一弯曲段104对应设置,即,第二弯曲段105与第一弯曲段104能够相互配合,并与第一筋103或第二筋109共同围成上述子腔室。
本体141包括上部本体141d和下部本体141e;上部本体141d包括与第一弯曲段 104对应设置的第三弯曲段141a;下部本体141e包括与第一平直段107和第二平直段108对应设置的第三平直段141b和与第二弯曲段105对应设置的第四弯曲段141c,第三平直段141b连接相邻两个第四弯曲段141c;第四弯曲段141c与第三弯曲段141a对应设置。
于本实施例中,端盖8与第一主板11、第二主板12配合时,上述端盖8的第三平直段141b能够与第一平直段107和第二平直段108贴合,而第三弯曲段141a能够与第一弯曲段104贴合,第四弯曲段141c能够与第二弯曲段105贴合。
本申请实施例提供的集流管100及热交换器能够提高集流管100的整体强度,并能缓解冷媒对集流管100的冲击力。
图37为本申请实施例所提供的第五种集流管的结构主视示意图,图38为本申请实施例所提供的第五种集流管中第一板的结构示意图,图39为本申请实施例所提供的第五种集流管中第二板的结构示意图。
参考37至图39,本实施例提供了一种集流管,与上述实施例的区别在于,本实施例中,第一主板11和第二主板12通过第一固定件17连接。
可选的,第一筋103设置有第一通孔103b,第一平直段107设置有第二通孔107b;集流管包括第一固定件17,第一固定件17固定穿设于第一通孔103b和第二通孔107b。可选的,第一固定件17可以是铆钉,也可以是其他紧固件。
本实施例中,第一主板11和第二主板12的其余结构与上述实施例均相同,在此不再赘述。
本申请实施例提供的集流管及热交换器通过设置第一固定件将第一主板11和第二主板12连接,提高了集流管的强度。
图40为本申请实施例所提供的第六种集流管中第一板的结构示意图,图41为本申请实施例所提供的第六种集流管中第二板的结构示意图,图42为本申请实施例所提供的第六种集流管的结构主视示意图。
参考图40至图42,本实施例提供了一种集流管,与上述实施例的区别在于,本实施例中,第一主板11和第二主板12通过第一固定件17连接。具体而言,第二筋109设置有第一通孔103b,第二平直段108设置有第二通孔107b。
集流管100包括第一固定件17,第一固定件17可以是铆钉,也可以是其他紧固件。第一固定件17固定穿设于第一通孔103b和第二通孔107b。
本实施例中,第一主板11和第二主板12的其余结构与上述实施例均相同,在此不再赘述。
本申请实施例提供的集流管通过设置第一固定件17将第一主板11和第二主板12连接,提高了集流管的强度。
可以理解的是,在其他实施例中,也可以是第一筋103和第二筋109设置有第一通孔103b,第一平直段107和第二平直段108设置有第二通孔107b,第一固定件17固定穿设于第一通孔103b和第二通孔107b。本实施例提供的集流管通过设置多个第一固定件17将第一主板11和第二主板12连接,可进一步提高了集流管的强度。
参照图33所示,第一通孔103b可以是如图14所示的第二筋109上连续分布,也可以如第一筋103上隔开一定的尺寸间隔分布,在此不作进一步限定。
图43为本申请实施例所提供的第七种集流管的结构主视示意图,在上述结构中,可以在第一筋111上设置第一通孔103b,在第二筋109上设置第三筋110,以起到加强的作用。当然,也可以在第一筋111上设置第三筋110,在第二筋109上设置第一通孔103b。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种热交换器,其特征在于,包括:第一集流管(1)、第二集流管(2)、换热管(3)及端盖(8),所述换热管(3)的一端连接所述第一集流管(1),所述换热管(3)的另一端连接所述第二集流管(2),所述换热管(3)内腔连通所述第一集流管(1)内腔和所述第二集流管(2)内腔,所述第一集流管(1)和第二集流管(2)均包括设置于其长度方向的两个端口;
    所述端盖(8)组装固定于第一集流管(1)的端口或第二集流管(2)的端口;所述端盖(8)包括本体(141)和形成于所述本体(141)的第一开口(142);
    所述本体(141)包括第二腔(143)和第一槽部(144),所述第一槽部(144)位于第一开口(142)和第二腔(143)之间;
    所述第一槽部(144)包括靠近所述第一开口(142)的第一底壁(145),所述第一底壁(145)设有第三开口(145a),所述第三开口(145a)连通所述第一开口(142)与所述第二腔(143),所述第二腔(143)与所述第一集流管(1)的内腔或所述第二集流管(2)的内腔连通,所述第一开口(142)相比所述第二腔(143)远离所述第一集流管(1)的内腔或所述第二集流管(2)的内腔,所述第一开口(142)用于流入或者流出冷媒;
    所述第一槽部(144)的过流面积大于所述第三开口(145a)的过流面积。
  2. 根据权利要求1所述的热交换器,其特征在于,所述本体(141)还包括第一通道(145b),所述第一通道(145b)为所述第三开口(145a)沿所述第二腔(143)向所述第一开口(142)的方向延伸形成;
    所述第一通道(145b)位于所述第一开口(142)和所述第一槽部(144)之间,所述第一通道(145b)分别与所述第一开口(142)和所述第一槽部(144)连通;
    第三开口(145a)在沿着所述第一底壁(145)横向延伸方向的宽度和所述第一通道(145b)在沿着所述第一底壁(145)横向延伸方向的宽度均小于所述第一槽部(144)在沿着所述第一底壁(145)横向延伸方向的宽度。
  3. 根据权利要求2所述的热交换器,其特征在于,所述本体(141)形成有第二开口(146),所述本体(141)还包括第二槽部(147);
    所述第二槽部(147)包括靠近所述第二开口(146)的第二底壁(148),所述第二底壁(148)包括第四开口(148a),所述第四开口(148a)连通所述第二开口(146)与所述第二腔(143);
    所述第二槽部(147)的过流面积大于所述第四开口(148a)的过流面积。
  4. 根据权利要求3所述的热交换器,其特征在于,所述本体(141)还包括第二通道(148b),所述第二通道(148b)为所述第四开口(148a)沿所述第二腔(143)向所述第二开口(146)的方向延伸形成;
    所述第二通道(148b)位于所述第二开口(146)和所述第二槽部(147)之间,且所述第二通道(148b)分别与所述第二开口(146)和所述第二槽部(147)连通;
    所述第四开口(148a)在沿着所述第二底壁(148)横向延伸方向的宽度和所述第二通道(148b)在沿着所述第二底壁(148)横向延伸方向的宽度均小于所述第二槽部(147)在沿着所述第二底壁(148)横向延伸方向的宽度。
  5. 根据权利要求1-4任一项所述的热交换器,其特征在于,所述第一集流管(1)包括相连接的第一主板(11)和第二主板(12);所述第一主板(11)和所述第二主板(12)之间形成第一腔(130);
    所述第一腔(130)包括第一流道(10)和第二流道(20),所述第一流道(10)和第二流道(20)并列设置,且并列方向垂直于所述第一集流管(1)轴向,所述第一流道(10)的总容积大于所述第二流道(20)的总容积;
    所述换热管(3)为若干排,所述第一流道(10)连通至少一排所述换热管(3),所述第二流道(20)连通至少另一排所述换热管(3)。
  6. 根据权利要求5所述的热交换器,其特征在于,所述第一主板(11)包括中间筋(111),所述中间筋(111)将所述第一主板(11)分隔为多个通槽(112),所述多个通槽(112)与所述第二主板(12)之间形成所述第一流道(10)和所述第二流道(20)。
  7. 根据权利要求6所述的热交换器,其特征在于,所述热交换器还包括第一中间板(13),所述第一中间板(13)位于所述第一主板(11)与所述第二主板(12)之间,所述中间筋(111)贴合于所述第一中间板(13),所述第一中间板(13)开设有若干排第一条形孔(131)。
  8. 根据权利要求7所述的热交换器,其特征在于,所述第二主板(12)设有若干排第一换热管孔(121),每个所述第一换热管孔(121)对应一个所述第一条形孔(131),所述换热管(3)的一端穿过所述第一换热管孔(121)且容纳于所述第一条形孔(131)。
  9. 根据权利要求6所述的热交换器,其特征在于,所述第一流道(10)至少设有两个,所述第二流道(20)至少设有一个,单个第一流道(10)的过流面积与单个第二流道(20)的过流面积相同,多个并列设置的所述第一流道(10)设于所述第二流道(20)的同一侧,相邻两个所述第一流道(10)之间的中间筋(111)开设有孔或开口(113),以使相邻两个所述第一流道(10)之间连通。
  10. 根据权利要求5所述的热交换器,其特征在于,所述第二集流管(2)包括第三主板(21)和第四主板(22);所述第三主板(21)开设有凹槽(211),所述凹槽(211)与所述第四主板(22)合围形成第三通道(30)。
  11. 根据权利要求10所述的热交换器,其特征在于,所述第一流道(10)和所述第二流道(20)均包括第一端和第二端,所述第一流道(10)的第一端与所述第二流道(20)的第一端位于同一侧,所述第一流道(10)的第二端与所述第二流道(20)的第二端位于同一侧;
    所述第一流道(10)的第一端和第二端之间、所述第二流道(20)的第一端和第二端之间均设有第一隔板(4),所述第一流道(10)的第一端和第二端之间的所述第一隔板(4)用于将所述第一流道(10)隔断,所述第二流道(20)的第一端和第二端之间的所述第一隔板(4)用于将所述第二流道(20)隔断;
    所述第一流道(10)的第一端与所述第二流道(20)的第一端连通,所述第一流道(10)的第二端连通有供介质流通的第一流通口(6),所述第二流道(20)的第二端连通有供介质流通的第二流通口(7);
    所述第三通道(30)包括两个相互独立的流通通道,其中一个所述流通通道与所 有所述第一流道(10)连通的所述换热管(3)连通,另一个所述流通通道与所述第二流道(20)连通的所述换热管(3)连通。
  12. 根据权利要求10所述的热交换器,其特征在于,所述第一流道(10)和所述第二流道(20)均包括第一端和第二端,所述第一流道(10)的第一端与所述第二流道(20)的第一端位于同一侧,所述第一流道(10)的第二端与所述第二流道(20)的第二端位于同一侧;
    所述第一流道(10)的第一端和第二端之间、所述第二流道(20)的第一端和第二端之间均设有第一隔板(4),所述第一流道(10)的第一端和第二端之间的所述第一隔板(4)用于将所述第一流道(10)隔断,所述第二流道(20)的第一端和第二端之间的所述第一隔板(4)用于将所述第二流道(20)隔断;
    所述第一流道(10)的第二端连通有供介质流通的第一流通口(6),所述第二流道(20)的第二端连通有供介质流通的第二流通口(7);
    所述第三通道(30)包括第一流通通道、第二流通通道以及第三流通通道,所述第一流通通道与所述第二流通通道之间、所述第一流通通道与所述第三流通通道之间均由第二隔板(5)分隔,所述第二隔板(5)位于所述第一隔板(4)远离所述第一流通口(6)的一侧,所述第二流通通道和所述第三流通通道之间不连通;
    所述第一流通通道分别连通于所述第一流道(10)的第一端和第二隔板(5)之间的换热管(3)以及所述第二流道(20)的第一端和和第二隔板(5)之间的换热管(3);所述第二流通通道连通于所述第一流道(10)的第二端和第二隔板(5)之间的换热管(3);
    所述第三流通通道连通于所述第二流道(20)的第二端和第二隔板(5)之间的换热管(3)。
  13. 根据权利要求1-4任一项所述的热交换器,其特征在于,所述第一集流管(1)和/或所述第二集流管(2)包括相连接的第一主板(11)和第二主板(12);所述第一主板(11)和所述第二主板(12)密封连接;
    所述第一主板(11)包括第一筋(103)和至少两个第一弯曲段(104),所述第一筋(103)的一端连接相邻两个第一弯曲段(104),所述第一筋(103)的另一端贴合且连接于所述第二主板(12),所述第二主板(12)包括至少一个第二弯曲段(105),所述第二弯曲段(105)与至少一个所述第一弯曲段(104)对应设置。
  14. 根据权利要求13所述的热交换器,其特征在于,
    所述第二主板(12)包括第一平直段(107),所述第一平直段(107)与所述第二弯曲段(105)连接,所述第二弯曲段(105)与所述第一弯曲段(104)对应设置,至少部分所述第一平直段(107)贴合于所述第一筋(103)。
  15. 根据权利要求13所述的热交换器,其特征在于,
    所述第二主板(12)包括第一平直段(107)和至少两个第二弯曲段(105),所述第一平直段(107)连接相邻两个第二弯曲段(105),所述第二弯曲段(105)与所述第一弯曲段(104)对应设置,所述第一平直段(107)贴合于所述第一筋(103);
    所述第一平直段(107)包括第一配合面(107a),所述第一筋(103)的端面与所述第一配合面(107a)贴合;
    所述第一主板(11)和所述第二主板(12)之间形成第一腔(130),所述第一腔(130)包括至少两个腔室(130a),所述第一筋(103)位于相邻的两个腔室(130a)之间。
  16. 根据权利要求15所述的热交换器,其特征在于,所述第二主板(12)还包括第二平直段(108),所述第二平直段(108)与所述第二弯曲段(105)或第一平直段(107)相连,所述第二平直段(108)包括第二配合面(108a);
    所述第一主板(11)还包括第二筋(109),所述第二筋(109)的一端连接相邻两个第一弯曲段(104),另一端的端面与所述第二配合面(108a)贴合;
    所述腔室(130a)包括两个及以上的子腔室,所述第二筋(109)位于相邻的两个子腔室之间。
  17. 根据权利要求16所述的热交换器,其特征在于,所述第一筋(103)和/或第二筋(109)设置第三筋(110),所述第一平直段(107)和/或第二平直段(108)设置配合孔(108b),所述第三筋(110)至少有部分容纳于所述配合孔(108b),所述第三筋(110)与所述配合孔(108b)固定;
    或,
    所述第一筋(103)和/或第二筋(109)设置有第一通孔(103b),所述第一平直段(107)和/或第二平直段(108)设置有第二通孔(107b),所述第一集流管和/或所述第二集流管包括第一固定件(17),所述第一固定件(17)固定穿设于所述第一通孔(103b)和所述第二通孔(107b)。
  18. 根据权利要求16所述的热交换器,其特征在于,所述第一主板(11)和/或所述第二主板(12)设置有隔板槽(124);
    所述第一集流管还包括第一隔板(4);
    所述第一隔板(4)固定于所述隔板槽(124);
    所述第一筋(103)设置有连通槽(103a);
    在所述第一隔板(4)的一侧,所述腔室(130a)在所述连通槽(103a)处连通;在所述第一隔板(4)的另一侧,所述腔室(130a)相互隔离。
  19. 根据权利要求16所述的热交换器,其特征在于,所述第一筋(103)和第二筋(109)两者中的一个设置第三筋(110),另一个设置有第一通孔(103b);对应的,所述第一平直段(107)和第二平直段(108)两者中的一个设置配合孔(108b),另一个设置有第二通孔(107b);
    所述第一集流管或所述第二集流管包括第一固定件(17),所述第一固定件(17)固定穿设于所述第一通孔(103b)和所述第二通孔(107b),所述第三筋(110)与所述配合孔(108b)固定。
  20. 根据权利要求15所述的热交换器,其特征在于,所述热交换器还包括堵盖(16),所述堵盖(16)至少封堵所述第一腔(130)的一端,所述端盖(8)设置于所述第一腔(130)未设置所述堵盖(16)的另一端;所述端盖(8)具有进口和出口;所述进口和所述出口分别与所述第一腔(130)连通。
PCT/CN2020/094196 2019-06-03 2020-06-03 热交换器 WO2020244555A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/606,741 US20220214113A1 (en) 2019-06-03 2020-06-03 Heat exchanger
EP20817984.6A EP3978855B1 (en) 2019-06-03 2020-06-03 Heat exchanger

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201920823527.2U CN210570125U (zh) 2019-06-03 2019-06-03 一种换热器
CN201920823527.2 2019-06-03
CN201910708951.7A CN112304124A (zh) 2019-08-01 2019-08-01 集流管及热交换器
CN201910708951.7 2019-08-01
CN201910708129.0 2019-08-01
CN201910708129.0A CN112304123A (zh) 2019-08-01 2019-08-01 端盖、集流管及热交换器

Publications (1)

Publication Number Publication Date
WO2020244555A1 true WO2020244555A1 (zh) 2020-12-10

Family

ID=73653076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094196 WO2020244555A1 (zh) 2019-06-03 2020-06-03 热交换器

Country Status (3)

Country Link
US (1) US20220214113A1 (zh)
EP (1) EP3978855B1 (zh)
WO (1) WO2020244555A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833920A1 (fr) * 2001-12-20 2003-06-27 Valeo Thermique Moteur Sa Face avant de vehicule automobile comportant un reservoir de fluide
EP1420223B1 (en) * 2002-11-15 2005-01-12 DENSO THERMAL SYSTEMS S.p.A. A radiator for motor vehicles with piping integrated on a manifold tank
CN1692265A (zh) * 2002-12-31 2005-11-02 穆丹韩国有限会社 蒸发器
CN101158525A (zh) * 2007-09-11 2008-04-09 东莞高宝铝材制品厂有限公司 一种一体成型翅片式铝合金复合材料无缝微孔散热片的冷凝器和散热网
JP4340937B2 (ja) * 1999-09-08 2009-10-07 株式会社ティラド クロスフロー型ラジエータ
WO2012041441A2 (fr) * 2010-09-30 2012-04-05 Valeo Systems Thermiques Echangeur de chaleur pour vehicule automobile.
CN104567110A (zh) * 2014-12-09 2015-04-29 苏州纵贯线换热器有限公司 一种用于微通道换热器集流管的端盖
CN204313694U (zh) * 2014-11-28 2015-05-06 江阴市中迪空冷设备有限公司 可卸盖帽式管箱
CN204329411U (zh) * 2014-12-09 2015-05-13 苏州纵贯线换热器有限公司 一种用于微通道换热器集流管的端盖
CN204388688U (zh) * 2014-12-29 2015-06-10 杭州三花微通道换热器有限公司 用于换热器的集流管组件
CN106066128A (zh) * 2015-04-20 2016-11-02 博格华纳排放系统西班牙有限责任公司 热交换装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723810B1 (ko) * 2001-04-10 2007-05-31 한라공조주식회사 열교환기
JP2005147427A (ja) * 2003-11-11 2005-06-09 Sanden Corp 積層型熱交換器
DE112005000230T5 (de) * 2004-03-17 2007-04-26 Showa Denko K.K. Wärmetauscher-Sammelbehälter und Wärmetauscher beinhaltend das Gleiche
CN208595829U (zh) * 2018-05-17 2019-03-12 杭州三花研究院有限公司 一种换热器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340937B2 (ja) * 1999-09-08 2009-10-07 株式会社ティラド クロスフロー型ラジエータ
FR2833920A1 (fr) * 2001-12-20 2003-06-27 Valeo Thermique Moteur Sa Face avant de vehicule automobile comportant un reservoir de fluide
EP1420223B1 (en) * 2002-11-15 2005-01-12 DENSO THERMAL SYSTEMS S.p.A. A radiator for motor vehicles with piping integrated on a manifold tank
CN1692265A (zh) * 2002-12-31 2005-11-02 穆丹韩国有限会社 蒸发器
CN101158525A (zh) * 2007-09-11 2008-04-09 东莞高宝铝材制品厂有限公司 一种一体成型翅片式铝合金复合材料无缝微孔散热片的冷凝器和散热网
WO2012041441A2 (fr) * 2010-09-30 2012-04-05 Valeo Systems Thermiques Echangeur de chaleur pour vehicule automobile.
CN204313694U (zh) * 2014-11-28 2015-05-06 江阴市中迪空冷设备有限公司 可卸盖帽式管箱
CN104567110A (zh) * 2014-12-09 2015-04-29 苏州纵贯线换热器有限公司 一种用于微通道换热器集流管的端盖
CN204329411U (zh) * 2014-12-09 2015-05-13 苏州纵贯线换热器有限公司 一种用于微通道换热器集流管的端盖
CN204388688U (zh) * 2014-12-29 2015-06-10 杭州三花微通道换热器有限公司 用于换热器的集流管组件
CN106066128A (zh) * 2015-04-20 2016-11-02 博格华纳排放系统西班牙有限责任公司 热交换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978855A4 *

Also Published As

Publication number Publication date
US20220214113A1 (en) 2022-07-07
EP3978855B1 (en) 2024-05-01
EP3978855A4 (en) 2023-06-07
EP3978855A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
CN102980328B (zh) 板式换热器
KR102622735B1 (ko) 열교환기
EP3045855B1 (en) Heat exchanger and air conditioner
US11624565B2 (en) Header box and heat exchanger
JP2008151396A (ja) 熱交換器及び蒸気圧縮式冷凍サイクル
CN103837025A (zh) 微通道换热器
WO2017097133A1 (zh) 一种换热器
WO2015027783A1 (zh) 微通道换热器及其制造方法
US20200132378A1 (en) Heat exchanger
KR101473873B1 (ko) 열교환기
WO2020244555A1 (zh) 热交换器
CN205300365U (zh) 用于换热器的集流管和换热器
JPH05264126A (ja) 冷媒分流器
CN111256392A (zh) 一种换热器
CN210741194U (zh) 一种板式换热器
CN112304123A (zh) 端盖、集流管及热交换器
WO2019219076A1 (zh) 换热器
CN205300363U (zh) 换热器
CN216159701U (zh) 换热器
CN210570125U (zh) 一种换热器
CN214620164U (zh) 一种空调器
CN216769858U (zh) 一种新型过冷结构的冷凝器
JP3095540B2 (ja) 積層型熱交換器
JPH09184667A (ja) 熱交換器
CN211823271U (zh) 微通道换热器及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020817984

Country of ref document: EP

Effective date: 20220103