WO2020244047A1 - 钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用 - Google Patents

钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020244047A1
WO2020244047A1 PCT/CN2019/098998 CN2019098998W WO2020244047A1 WO 2020244047 A1 WO2020244047 A1 WO 2020244047A1 CN 2019098998 W CN2019098998 W CN 2019098998W WO 2020244047 A1 WO2020244047 A1 WO 2020244047A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
composite luminescent
solution
cspbi
composite
Prior art date
Application number
PCT/CN2019/098998
Other languages
English (en)
French (fr)
Inventor
李飞
钟海政
王晶晶
Original Assignee
致晶科技(北京)有限公司
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致晶科技(北京)有限公司, 北京理工大学 filed Critical 致晶科技(北京)有限公司
Publication of WO2020244047A1 publication Critical patent/WO2020244047A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the application relates to a perovskite nano material, a composite luminescent material containing the same, and a preparation method and application thereof, belonging to the field of materials.
  • the structural formula of perovskite materials is generally ABX 3 , where A can be K + , Na + , Rb + , Cs + and small molecular organic cations, etc., and B can be Pb 2+ , Sn 2+ , Ti 4+ , Cr 3 +, Bi 3+ and other elements, X may be formed from O 2-, Cl - composition, S 2- anions -, Br -, I.
  • the perovskite structure material has many unique physical and chemical properties, such as light absorption, electrocatalysis, etc., and has a wide range of applications in the fields of chemistry and physics.
  • Halogen perovskite is a kind of perovskite structure compound where X is halogen (Cl, Br, I) anion, where A can be small molecule organic cation or inorganic metal cation, respectively called organic-inorganic hybrid halogen Perovskite and all-inorganic halogen perovskite.
  • the crystal structure of the halogen perovskite consists of 1 metal B atom and 6 X atoms forming an octahedral structure.
  • the A atom is embedded in the center of the cubic structure formed by 8 octahedrons sharing 1 X atom in pairs.
  • Halogen perovskite materials have unique opto-semiconductor characteristics, which have suitable band gap, high carrier mobility, strong defect tolerance, low shallow point defect rate, and low grain boundary recombination rate Recombination rate with the surface, and large light absorption coefficient due to sp anti-bond coupling. These unique optical and semiconductor properties make halogen perovskite materials an ideal choice for photoelectric conversion materials in solar cells.
  • Mitzi's research group first investigated the photoelectric properties of organic-inorganic hybrid perovskite materials, and found that it has good electron migration capabilities and has potential application value in solar cells.
  • perovskite quantum dots ABX 3 lead halide perovskite quantum dots
  • perovskite quantum dots have the characteristics of low cost, simple preparation process, and low material toxicity.
  • the luminescence performance of perovskite quantum dots is equivalent to or better than that of II-VI quantum dots: the emission spectrum covers the entire visible light wavelength (410-700nm), the fluorescence quantum yield is high (>90%), and the emission peak (half Peak width 20-50nm).
  • perovskite quantum dots due to the ionicity of the crystal structure of the perovskite material, the proton exchange reaction between ligands, the strong ion mobility of halogen ions, and the low crystal formation energy, the stability of perovskite quantum dots is poor.
  • the main external factors that can reduce the optical performance of perovskite quantum dots are H 2 O, O 2 , light and heat.
  • the ionic nature of the crystal structure makes the perovskite quantum dots easily degraded by polar solvents, especially H 2 O in the environment, and lose their optical properties.
  • the combination of O 2 and H 2 O accelerates the decomposition of perovskite quantum dots, and at the same time acts as a light quencher to reduce the optical properties of perovskite quantum dots.
  • Ultraviolet light causes the perovskite quantum dots to generate stimulated radiation.
  • the thermal effect generated by the non-radiative exciton recombination process accelerates the reaction process of H 2 O and O 2 with the perovskite quantum dots, and at the same time produces exciton thermal quenching, reducing Optical properties of perovskite quantum dots.
  • preparing polymer-coated perovskite quantum dot composite materials is an effective method to achieve high stability perovskite quantum dots. Yuhua Wang's research group mixed pre-synthesized CsPbX 3 quantum dots with polymer Ergo to prepare a CsPbX 3 /Ergo composite film. The film can extend the stability of CsPbI 3 quantum dots in air and water from 5h to more than 25h.
  • A.Paul Alivisatos combined the perovskite nanocrystals with different morphologies and encased them in polylauryl methacrylate (PLMA), polystyrene-ethylene-butylene-styrene (SEBS) and In polystyrene (PS), the stability of perovskite quantum dots has been greatly improved, and the composite film of perovskite nanowires maintains its polarization luminescence performance.
  • the research group of Dwight S. Seferos coated perovskite quantum dots into methyl methacrylate (MMA), and the stability of the perovskite quantum dot/MMA composite film can reach more than 30 days.
  • polymer composite films based on pre-synthesized perovskite quantum dots generally have the problem of low fluorescence quantum yield.
  • the fluorescence yield of the CsPbX 3 /Ergo composite film is only 43%, and the fluorescence quantum yield of the perovskite quantum dot/MMA composite film has dropped from 100% of the perovskite quantum dot solution to 56% of the composite material.
  • the separated and purified perovskite quantum dots will also affect their dispersion in the coating matrix.
  • the clustering of the quantum dots will cause the fluorescence quantum yield of the quantum dots to drop sharply, and the resulting composite material will have low light transmittance, which will affect the device. Performance.
  • researchers have developed a method for in-situ preparation of perovskite quantum dot/polymer composite luminescent films.
  • Yajie Dong’s research group prepared five different polymer matrix perovskite quantum dot/polymer composite films in situ using the swelling-de-swelling method.
  • the fluorescence quantum yield of the MAPbBr 3 /PS composite film is up to 48%. And can be placed in water for 60 days without decomposition.
  • Jiuyang Zhang's research group added polymer in the process of preparing CsPbBr 3 quantum dots by precipitation method, and prepared CsPbBr 3 /polymethyl methacrylate, CsPbBr 3 /polybutyl methacrylate and CsPbBr 3 /polystyrene composite in situ The material, the fluorescence quantum efficiency of CsPbBr 3 /polymethyl methacrylate is 62.4%.
  • the research on in-situ preparation of perovskite quantum dot/polymer composite luminescent film is mainly focused on green luminescent film.
  • the fluorescence quantum yield and stability of the red light-emitting perovskite quantum dot composite luminescent film are relatively low.
  • the red luminescent materials based on perovskite quantum dots are mainly CH 3 NH 3 PbI 3 (MAPbI 3 ), NH 2 CHNH 2 PbI 3 (FAPbI 3 ) and CsPbI 3 . Due to the presence of organic ions in MAPbI 3 and FAPbI 3 perovskite materials, their structural stability is low and cannot meet application requirements.
  • CsPbI 3 has four crystal structures, namely cubic phase ⁇ -CsPbI 3 , tetragonal phase ⁇ -CsPbI 3 , orthogonal phase ⁇ -CsPbI 3 and orthogonal phase ⁇ -CsPbI 3 .
  • ⁇ -CsPbI 3 has a suitable band gap and is considered to be a highly promising high-efficiency photoelectric conversion material. It is currently the most studied of the four phases of CsPbI 3 .
  • ⁇ -CsPbI 3 is a high-temperature phase, and its formation temperature is above 300°C.
  • ⁇ -CsPbI 3 changes to ⁇ -CsPbI 3 at 260°C.
  • ⁇ -CsPbI 3 is further converted to ⁇ -CsPbI 3 at 175°C.
  • ⁇ -CsPbI 3 transforms into low-temperature stable ⁇ -CsPbI 3 at 25°C.
  • the problem that ⁇ -CsPbI 3 cannot be stable at room temperature hinders its practical application.
  • ⁇ -CsPbI 3 cannot exist stably at room temperature.
  • the non-perovskite structure of ⁇ -CsPbI 3 does not have photoelectric properties.
  • the melting point of commonly used polymer materials is usually lower than 250°C.
  • the production conditions need to be prepared above the melting point of the polymer material. It will cause the polymer matrix to lose the size restriction effect on the perovskite nanoparticles generated in situ, and generate large-particle perovskite particles, resulting in a decrease in its luminescence performance. It is prepared below the melting point of the polymer material, but it cannot meet the production conditions of ⁇ -CsPbI 3 and ⁇ -CsPbI 3 .
  • a perovskite nanomaterial ⁇ -CsPbI 3 which has excellent luminescence performance.
  • the all-inorganic perovskite significantly improves the stability of the structure due to the replacement of volatile organic ions by inorganic Cs + .
  • the perovskite nano material is characterized in that the perovskite nano material comprises ⁇ -CsPbI 3 ;
  • the size of the perovskite nanomaterial in at least one dimension is 2-50 nm.
  • the ⁇ -CsPbI 3 is at least one of ⁇ -CsPbI 3 quantum dots, ⁇ -CsPbI 3 nanosheets, and ⁇ -CsPbI 3 nanowires.
  • the ⁇ -CsPbI 3 quantum dots are ⁇ -CsPbI 3 quantum dot particles
  • the average particle diameter of the ⁇ -CsPbI 3 quantum dot particles is 14 nm.
  • the luminescence peak of the perovskite nanomaterial is 600-700 nm.
  • the luminescence peak of the perovskite nanomaterial is 650-680 nm.
  • One of the purposes of this application is to propose a ⁇ -CsPbI 3 /polymer composite luminescent material and its preparation method, improve the existing synthesis method of perovskite quantum dots, and realize the synthesis of ⁇ -CsPbI 3 quantum dots in a polymer matrix Prepared in situ, the obtained composite material is a flexible film with high fluorescence quantum yield and good stability, which solves the problem that the previous red light CsPbI 3 perovskite quantum dots are difficult to be applied in optoelectronic devices such as backlight displays.
  • a composite luminescent material especially ⁇ -CsPbI 3 perovskite nanomaterial/polymer luminescent material.
  • the composite material has high fluorescence quantum yield, high stability, high transparency and production Advantages such as low cost.
  • the perovskite nanomaterial is selected from at least one of the above-mentioned perovskite nanomaterials.
  • the mass ratio of the perovskite nanomaterial to the matrix is 1:1-100.
  • the matrix is a polymer.
  • the polymer is selected from polyvinylidene fluoride, polyvinylidene fluoride and trifluoroethylene copolymer, polyacrylonitrile, polyvinyl acetate, cellulose acetate, cyanocellulose, polysulfone, aromatic polyamide , At least one of polyimide, polycarbonate, polystyrene, polymethyl methacrylate.
  • the composite luminescent material further includes an additive, and the additive is dispersed in the matrix;
  • the additive is selected from at least one of zinc bromide, zinc iodide, stannous bromide, stannous iodide, cadmium bromide, and cadmium iodide.
  • the mass ratio of the matrix to the additive is 1:0.001 to 0.5.
  • the composite luminescent material further includes a surface ligand, and the surface ligand is formed on the surface of the ⁇ -CsPbI 3 perovskite nanomaterial;
  • the surface ligand contains at least one of organic acid, organic acid halide, C 4 to C 24 organic amine, and C 4 to C 24 organic amine halide.
  • the organic acid includes a saturated or unsaturated alkyl acid with at least 3 carbon atoms;
  • the long-chain organic amine is an alkylamine amine or aromatic amine with 4-24 carbon atoms;
  • the halide of the organic acid or organic amine is the halide corresponding to the organic acid or organic amine.
  • the mass ratio of the perovskite nanomaterial to the surface ligand is 1:0.001 to 1.
  • the composite luminescent material is a composite luminescent film
  • the thickness of the composite light-emitting film is 0.001-5 mm.
  • the ⁇ -CsPbI 3 perovskite nanomaterial is ⁇ -CsPbI 3 perovskite quantum dots; the size of the ⁇ -CsPbI 3 quantum dots in at least one dimension is not greater than 20 nm.
  • the ⁇ -CsPbI 3 quantum dot has an inner core, the structural formula of the inner core is ⁇ -CsPbI 3 , wherein Pb and I form a coordinated octahedral structure, and Cs is filled in the orthogonal structure phase formed in the gap of the octahedral structure .
  • ⁇ -CsPbI 3 quantum dots with better luminescence performance can be obtained.
  • the matrix described in this application is composed of a polymer that contains polyvinylidene fluoride (PVDF), polyvinylidene fluoride and trifluoroethylene copolymer (P(VDF-TrFE)), polyacrylonitrile (PAN), poly Vinyl acetate (PVAc), cellulose acetate (CA), cyanocellulose (CNA), polysulfone (PSF), aromatic polyamide (PA), polyimide (PI), polycarbonate (PC), At least one of polystyrene (PS) and polymethyl methacrylate (PMMA).
  • PVDF polyvinylidene fluoride
  • P(VDF-TrFE) trifluoroethylene copolymer
  • PAN polyacrylonitrile
  • PVAc poly Vinyl acetate
  • CA cellulose acetate
  • CNA cyanocellulose
  • PSF polysulfone
  • PA aromatic polyamide
  • PI polyimide
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • additives are used in the synthesis process.
  • the additive is dispersed in the matrix; the additive contains at least one of zinc bromide, zinc iodide, stannous bromide, stannous iodide, cadmium bromide, and cadmium iodide.
  • the above-mentioned additives can be used to control the surface energy of the generated CsPbI 3 quantum dots, and the generated CsPbI 3 can be transformed from the ⁇ phase to the ⁇ phase.
  • ⁇ -CsPbI 3 is a low-temperature light-emitting phase, so it provides the composite material with higher room temperature stability, and the above-mentioned additives can further improve the electrical and mechanical properties of the composite light-emitting material.
  • the composite luminescent material further includes: a surface ligand formed in the core of the ⁇ -CsPbI 3 quantum dot On the surface, the surface ligand contains at least one of organic acids, long-chain organic amines and their halides. Therefore, organic hybrid groups can be provided for the ⁇ -CsPbI 3 quantum dots in the composite material, thereby eliminating the surface defects of the ⁇ -CsPbI 3 quantum, thereby improving the performance of the composite material.
  • the organic acids mentioned in this application include saturated alkyl acids with at least 3 carbon atoms, unsaturated alkyl acids and their halides; the long-chain organic amines are alkyl amines and aromatic amines with 4-24 carbon atoms And their halides.
  • the addition of organic ligands can eliminate the defects on the surface of the generated ⁇ -CsPbI 3 quantum dots, reduce non-radiative recombination, and enhance the fluorescence quantum yield of ⁇ -CsPbI 3 quantum dots.
  • the binding energies of organic ligands and different crystal faces of ⁇ -CsPbI 3 quantum dots are different, which can control the growth direction of ⁇ -CsPbI 3 , thereby achieving control of the morphology of the generated ⁇ -CsPbI 3 (quantum dots, nanosheets, Nanowires).
  • the preparation method proposed in this application is very simple, can be prepared in large quantities, and is suitable for industrial production.
  • the prepared ⁇ -CsPbI 3 quantum dot/polymer composite luminescent material not only has the high fluorescence quantum yield of CsPbI 3 quantum dots, but also has high luminous purity.
  • the wavelength can be adjusted with the particle size, etc., and it also has the characteristics of easy processing, high mechanical strength, and good flexibility of the polymer component.
  • the polymer matrix wraps the CsPbI 3 quantum dot particles and isolates the external environment such as oxygen, water vapor, etc., the fluorescence stability of the composite material is significantly enhanced, and it has a wide range of LED backlight displays and flexible displays. Market application prospects.
  • the precursor solution in step (1) further contains an organic solvent
  • the solvent is selected from at least one of N,N-dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, triethyl phosphate, N-methylpyrrolidone, and dimethylacetamide.
  • step (1) includes:
  • the nail solution includes a nail solvent
  • the B solution includes B solvent
  • the first solvent and the second solvent are independently selected from N,N-dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, triethyl phosphate, N-methylpyrrolidone, and dimethylacetamide At least one of.
  • the mass ratio of the substrate to the solvent is 1:1-100;
  • the molar ratio of PbI 2 and CsI is 1:0.1 ⁇ 3; the mass ratio of the B solvent and (PbI 2 +CsI) can be 1:0.001 ⁇ 1;
  • step (s13) the mass ratio of the A solution and the B solution is 1:0.02-5.
  • the mass ratio of the substrate to the solvent is 1:1, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1. :10, 1:12, 1:15, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90, 1:100 and any two The range value between ratios.
  • the molar ratio of PbI 2 and CsI in the second solution is 1:0.1, 1:0.4, 1:0.5, 1:0.6, 1:0.75, 1:0.9, 1:1, 1:1.1, 1: 1.5, 1:2, 1:3, and the range value between any two ratios.
  • the mass ratio of solvent B and (PbI 2 +CsI) is 1:0.001, 1:0.01, 1:0.03, 1:0.05, 1:0.1, 1:0.2, 1:0.8, 1:0.9, 1. :1 and the range value between any two ratios.
  • the mass ratio of solution A and solution B is 1:0.02, 1:0.1, 1:0.5, 1:0.6, 1:0.8, 1:1, 1:2, 1:3 , 1:5 and the range value between any two ratios.
  • the forma solution also contains an additive, and the additive is selected from at least one of zinc bromide, zinc iodide, stannous bromide, stannous iodide, cadmium bromide, and cadmium iodide.
  • the mass ratio of the matrix to the additive is 1:0.001 to 0.5.
  • the mass ratio of the matrix to the additive is 1:0.001, 1:0.003, 1:0.01, 1:0.015, 1:0.4, 1:0.5, and a range value between any two ratios. .
  • the B solution also contains surface ligands
  • the surface ligand contains at least one of organic acid, organic acid halide, C 4 to C 24 organic amine, and C 4 to C 24 organic amine halide.
  • the mass ratio of the sum of the mass of PbI 2 and CsI to the mass of the surface ligand is 1:0.001 to 1.
  • the ratio of the sum of the mass of PbI 2 and CsI to the mass of the surface ligand is 1:0.001, 1:0.02, 1:0.1, 1:1, and a range between any two ratios value.
  • step (1) includes:
  • the shaping in step (2) includes:
  • the precursor solution is transferred to a template and molded to obtain the composite luminescent material.
  • the transfer includes at least one of a spin coating method, a dipping and pulling method, an electrostatic spinning method, a solution sinking method, a spraying method, a scraping method, and a casting method.
  • the forming in step (2) includes drying
  • the drying conditions include: pressure 0.01-0.1MPa, temperature 80-180°C, time 0.1-48h.
  • the drying conditions further include: a pressure of 0.01-0.1Mpa.
  • the upper limit of the drying pressure is selected from 0.02Mpa, 0.03Mpa, 0.04Mpa, 0.05Mpa, 0.06Mpa, 0.07Mpa, 0.08Mpa, 0.09Mpa, or 0.1Mpa; the lower limit is selected from 0.01Mpa, 0.02Mpa, 0.03 Mpa, 0.04Mpa, 0.05Mpa, 0.06Mpa, 0.07Mpa, 0.08Mpa or 0.09Mpa.
  • the upper limit of the drying temperature is selected from 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C or 180°C; the lower limit is selected from 80°C, 90°C °C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C or 170°C.
  • the upper limit of the drying time is selected from 1h, 2h, 3h, 4h, 5h, 6h, 8h, 10h, 15h, 24h, 28h, 32h, 35h, 40h or 48h; the lower limit is selected from 0.1h, 0.5 h, 1h, 2h, 3h, 4h, 5h, 6h, 8h, 10h, 15h, 24h, 28h, 32h, 35h or 40h.
  • the method includes the following steps:
  • Organic solvents include N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), trimethyl phosphate (TMP), triethyl phosphate (TEP), N-methylpyrrolidone (NMP) , At least one of dimethylacetamide (DMAc).
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • TMP trimethyl phosphate
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • the matrix is composed of organic polymers, which can be polyvinylidene fluoride (PVDF), polyvinylidene fluoride and trifluoroethylene copolymer (P(VDF-TrFE)), polyacrylonitrile (PAN), polyvinyl acetate Ester (PVAc), cellulose acetate (CA), cyanocellulose (CNA), polysulfone (PSF), aromatic polyamide (PA), polyimide (PI), polycarbonate (PC), polyphenylene At least one of ethylene (PS) and polymethyl methacrylate (PMMA).
  • the mass ratio of matrix to organic solvent is 1:(1-50).
  • Polymer matrix ⁇ -CsPbI 3 quantum dot / polymer composite luminescent material serves three major aspects: first, the polymer matrix of the ⁇ -CsPbI 3 quantum during ⁇ -CsPbI 3 quantum dots generated in situ The size of the dot plays a limiting role. Due to the existence of the polymer matrix, the generated ⁇ -CsPbI 3 quantum dots are separated from each other and cannot continue to grow into large particles. Finally, the particle size of ⁇ -CsPbI 3 quantum dots is limited to less than 20 nm. Second, the polymer matrix limits the phase transition of ⁇ -CsPbI 3 quantum dots.
  • the CsPbI 3 quantum dot/polymer composite film When the ⁇ -CsPbI 3 quantum dot/polymer composite film is reduced from the preparation temperature to room temperature, the CsPbI 3 quantum dot has a tendency to spontaneously transform from the ⁇ phase to the ⁇ phase. However, the unit cell volume of CsPbI 3 will increase during the transition from ⁇ phase to ⁇ phase. At this time, the space given by the polymer to the ⁇ -CsPbI 3 quantum dots does not increase, which limits the conversion of ⁇ -CsPbI 3 quantum dots to ⁇ -CsPbI 3 , so that the CsPbI 3 in the polymer composite film remains in the ⁇ phase at room temperature.
  • the polymer matrix can isolate the contact between CsPbI 3 quantum dots and H 2 O and O 2 , so that CsPbI 3 quantum dots are not easily decomposed and lose optical activity, which enhances the stability of ⁇ -CsPbI 3 quantum dots/polymer composite film Sex.
  • Figure 1 is a schematic diagram of polymer-coated ⁇ -CsPbI 3 quantum dots.
  • additives can also be added to the nail solution.
  • the additive includes at least one of zinc bromide, zinc iodide, stannous bromide, stannous iodide, cadmium bromide, and cadmium iodide, and the mass ratio of the matrix to the additive can be 1: (0.001-0.5).
  • Adding additives can change the surface energy of the generated CsPbI 3 nanoparticles, so that the CsPbI 3 changes from ⁇ phase to ⁇ phase.
  • ⁇ -CsPbI 3 is a low-temperature luminescent phase, so it provides the composite material with higher room temperature stability.
  • the rate of nucleation additives can reduce ⁇ -CsPbI 3 quantum dots, so that ⁇ -CsPbI 3 quantum dot size produced more uniform, and thus obtain a narrower half-value width ⁇ -CsPbI 3 quantum dot / polymer composite thin film.
  • the additive acts as a fluxing agent during the formation of ⁇ -CsPbI 3 , which reduces the formation temperature of ⁇ -CsPbI 3 from 175°C to 80°C, reducing the processing difficulty of the polymer film.
  • a high-speed stirrer was used for dispersion in the preparation process of A solution. Thereby, the uniformity and dispersibility of the nail solution can be further improved, and the effect of the composite material can be improved.
  • a solution can be prepared by the following steps: the matrix and additives are dissolved in an organic solvent, the mass ratio of the matrix to the organic solvent is 1: (1-100), and the mass ratio of the matrix to the additive is 1: (0.0001 to 0.5) , Mechanical stirring and mixing for 12 hours, so that the matrix and additives are completely dissolved in the organic solvent to obtain a clear and transparent solution, and obtain a solution.
  • the organic solvent B includes at least one selected from DMF, DMSO, TMP, TEP, NMP, DMAc, and the organic solvent B is miscible with the organic solvent A. It should be noted that the term "miscible" specifically means that when the organic solvent A and the organic solvent B are mixed, the mixed solution does not appear to be layered.
  • the A solution and the B solution can be mixed to form a unified organic solvent system, that is, the PbI 2 and CsI, surface ligands, polymer matrix, additives and other raw materials dissolved in the A solution and the B solution
  • a unified organic solvent system that is, the PbI 2 and CsI, surface ligands, polymer matrix, additives and other raw materials dissolved in the A solution and the B solution
  • the molar ratio of PbI 2 and CsI can be 1:(0.1 ⁇ 3)
  • the mass ratio of organic solvent B to the mass sum of PbI 2 and CsI can be 1:(0.001 ⁇ 1).
  • organic ligands are added to the B solution.
  • the surface ligands are organic acids, long-chain organic amines or their halides.
  • organic acids may include saturated or unsaturated alkyl acids with at least 3 carbon atoms; long-chain organic amines may be alkylamine amines or aromatic amines with 4-24 carbon atoms; the organic
  • the halide of an acid or organic amine is a halide corresponding to the organic acid or organic amine.
  • the mass ratio of the sum of the mass of PbI 2 and CsI in the B solution to the mass of the organic surface ligand is 1: (0.001 to 1).
  • organic ligands can eliminate the defects on the surface of the generated ⁇ -CsPbI 3 quantum dots, reduce non-radiative recombination, and enhance the fluorescence quantum yield of ⁇ -CsPbI 3 quantum dots.
  • the binding energies of organic ligands and different crystal faces of ⁇ -CsPbI 3 quantum dots are different, which can control the growth direction of ⁇ -CsPbI 3 , thereby achieving control of the morphology of the generated ⁇ -CsPbI 3 (quantum dots, nanosheets, Nanowires).
  • the preparation process of B solution uses a high-speed stirrer for dispersion.
  • the B solution can be prepared by the following steps: mixing PbI 2 , CsI and organic ligands, controlling the molar ratio of PbI 2 and CsI to 1: (0.1 ⁇ 3), the sum of the masses of PbI 2 and CsI and the organic ligands The mass ratio is 1: (0.0001 ⁇ 1).
  • organic solvent B control the mass ratio of organic solvent B to the sum of PbI 2 and CsI to be 1: (0.001 ⁇ 1), and perform ultrasonic treatment after mixing. After ultrasonic treatment for 15 minutes, a transparent mixed solution is obtained. Filter the transparent mixed liquid of, and take the filtrate obtained by filtering as the B solution.
  • the A solution and the B solution are mixed to obtain a precursor solution.
  • the mass ratio of the A solution to the B solution is 1:(0.02-5), and the precursor solution is obtained by mechanical stirring for 2 hours.
  • the uniformly mixed precursor solution is transferred to the template by a suitable method to form composite materials of different shapes.
  • the template may be a mold or a substrate with a specific shape.
  • the specific conditions of the template those skilled in the art can design according to the specific requirements of the shape of the composite luminescent material in practical applications.
  • the method for transferring the precursor solution to the substrate or the mold may include spin coating, dipping and pulling, electrospinning, solution sinking, spraying, scraping, or casting. In this way, a composite luminescent material having a shape such as a thin film can be easily obtained.
  • the template with the precursor solution is dried to obtain the composite luminescent material.
  • the template to which the precursor solution is attached can be placed in a vacuum drying oven, and the organic solvent in the precursor solution can be removed under certain conditions, so that the volatilization conditions of the organic solvent system can be controlled to control the matrix
  • the crystallization, the arrangement of additives, and the nucleation and growth of ⁇ -CsPbI 3 quantum dot particles can improve the performance of composite materials.
  • the air pressure in the vacuum drying oven can be between 0.01 and 0.1MPa
  • the temperature can be between 80 and 180°C
  • the drying treatment can be performed for 0.1 to 48 hours to obtain ⁇ -CsPbI 3 quantum dot particles.
  • the thickness of the composite material can be 0.001 ⁇ 5mm. Under different drying temperatures, ⁇ -CsPbI 3 quantum dots with different particle size distributions can be obtained, and thus, the luminescence wavelength of the obtained ⁇ -CsPbI 3 quantum dot/polymer composite light-emitting film can be controlled to cover 600-700 nm.
  • a semiconductor device is provided.
  • the semiconductor device is characterized in that it contains at least one of the aforementioned perovskite nanomaterial, the aforementioned composite luminescent material, and the composite luminescent material prepared according to the aforementioned method for preparing the composite luminescent material.
  • the semiconductor device includes an electroluminescence device, a photoluminescence device, a solar cell, a display device, a sensor device, a piezoelectric device, and a nonlinear optical device.
  • a flexible device is provided.
  • the flexible device is characterized in that it contains at least one of the aforementioned perovskite nanomaterial, the aforementioned composite luminescent material, and the composite luminescent material prepared according to the aforementioned method for preparing the composite luminescent material.
  • the flexible device includes a substrate, a metal anode, a hole transport layer, a light emitting layer, an electron transport layer and a metal cathode;
  • the substrate contains at least one of the above-mentioned perovskite nano material, the above-mentioned composite luminescent material, and the above-mentioned composite luminescent material prepared according to the above-mentioned preparation method of the composite luminescent material.
  • a two-color composite luminescent material is provided.
  • the two-color composite light-emitting material is characterized in that it comprises a laminated green light-emitting film and a red light-emitting film;
  • the red light-emitting film contains at least one of the above-mentioned perovskite nano material, the above-mentioned composite luminescent material, and the above-mentioned composite luminescent material prepared according to the above-mentioned preparation method of the composite luminescent material.
  • the red light-emitting film is a polymethyl methacrylate/ ⁇ -CsPbI 3 quantum dot composite film.
  • the green light-emitting film is a polyvinylidene fluoride/CH 3 NH 3 PbBr 3 quantum dot composite film.
  • a backlight module is provided.
  • the backlight module is characterized by containing at least one of the above-mentioned two-color composite luminescent materials.
  • an LCD display is provided.
  • the LCD display is characterized by containing at least one of the above-mentioned two-color composite luminescent materials.
  • a photoluminescent device is provided.
  • the photoluminescence device is characterized in that it comprises a blue chip driving module, a blue chip heat dissipation module and a two-color composite luminescent material;
  • the two-color composite luminescent material is selected from at least one of the above-mentioned two-color composite luminescent materials.
  • the perovskite nanomaterial in this application significantly improves the structural stability of the all-inorganic perovskite due to the replacement of volatile organic ions by inorganic Cs + .
  • the ⁇ -CsPbI 3 quantum dot prepared in this application is a low-temperature luminescence stable phase, which will not affect the luminescence performance due to phase change in daily use, and has higher stability in use.
  • ⁇ -CsPbI 3 quantum dot/polymer composite luminescent material provided by this application has simple operation, low cost, and can be prepared in batches. It is suitable for industrial production and can obtain large-area ⁇ -CsPbI 3 quantum dots/polymer Composite luminescent film.
  • the preparation method of ⁇ -CsPbI 3 quantum dots/polymer composite luminescent material uses the gaps between polymer molecules to limit the growth dimension of ⁇ -CsPbI 3 quantum dots, saving raw materials, and the gaps between polymer molecules The size is easy to adjust.
  • the method provided in this application can prepare the ⁇ -CsPbI 3 quantum dot/polymer composite luminescent material filled with ⁇ -CsPbI 3 quantum dot particles of different particle diameters in a polymer matrix, with high luminous intensity and high fluorescence quantum yield. Up to 80-100%, the emission wavelength can be adjusted between 600nm-700nm.
  • the ⁇ -CsPbI 3 quantum dot/polymer composite luminescent material provided by this application has the characteristics of high mechanical strength and good flexibility, and has potential application value in flexible displays.
  • the ⁇ -CsPbI 3 quantum dot/polymer composite luminescent material provided by this application has a narrow half-peak width, high luminous color purity, high fluorescence quantum yield, and high light transmittance, which can meet the needs of practical applications. There are broad application prospects in the fields of LED display, laser, nonlinear optics and so on.
  • Figure 1 is a diagram of the crystal structure of ⁇ -CsPbI 3 ;
  • FIG. 2 is a schematic diagram of the structure of the ⁇ -CsPbI 3 quantum dot/polymer composite light-emitting film prepared in the present application;
  • Figure 3 is the XRD patterns of the samples obtained from the additive-free precursors of Comparative Examples 1, 2, and 3 at different preparation temperatures;
  • Figure 4 is an X-ray diffraction spectrum of the ⁇ -CsPbI 3 quantum dot/PMMA composite film prepared with additives in Example 4;
  • FIG. 9 is a schematic diagram of the structure of a flexible electroluminescent device according to this embodiment.
  • FIG. 10 is a schematic diagram of the structure of a two-color light-emitting composite film implemented according to the present application.
  • FIG. 11 is a schematic structural diagram of an LCD display device backlight module implemented according to the present application.
  • Fig. 12 is a schematic diagram of the structure of a photoluminescence device implemented according to the present application.
  • a Varian Cary 5 spectrophotometer was used for transmission spectrum analysis.
  • Example 2 The remaining steps are the same as in Example 1. The difference is that in A solution, the mass ratio of polymer to organic solvent is controlled to be 1:30. In the B solution, the mass ratio of the organic solvent: (PbI 2 + CsI) is controlled to be 1:1. The solution was mixed uniformly by mechanical stirring, and the solvent was removed in a vacuum drying oven and placed on a heating plate at 110°C for 30 minutes to obtain a CsPbI 3 quantum dot/PMMA composite film.
  • the XRD pattern named "prepared at 110°C without additives" in Figure 3 is the test result of the sample, and the XRD pattern shows that the sample is an ⁇ phase.
  • Example 2 The remaining steps are the same as in Example 2. The difference is that the vacuum drying oven removes the solvent and places it on a heating plate at 170°C for 30 minutes to obtain a CsPbI 3 quantum dot/PMMA composite film.
  • the XRD pattern named "prepared at 170°C without additives" in Fig. 3 is the test result of the sample, and the XRD pattern shows that the sample is ⁇ phase.
  • the organic solvent is dimethyl sulfoxide (DMSO)
  • the molar ratio of PbI 2 :CsI is controlled to be 1:0.75
  • the mass ratio of organic solvent: (PbI 2 +CsI) is controlled to be 1:0.001.
  • Example 2 The remaining steps are the same as in Example 1, except that the mass ratio of the organic solvent: (PbI 2 + CsI) is controlled to be 1:0.1.
  • the solution was mixed uniformly by mechanical stirring, and the solvent was removed in a vacuum drying oven and placed on a heating plate at 150°C for 10 minutes to obtain a ⁇ -CsPbI 3 quantum dot/PAN composite film.
  • Figure 5 shows the emission spectrum of the sample, with the emission peak at 606 nm.
  • the XRD test result of this sample is similar to Fig. 4, and the XRD pattern shows that the sample is ⁇ phase.
  • the remaining steps are the same as in Comparative Example 1, except that in the first solution, the polymer is polyvinylidene chloride (PVDF), the organic solvent is trimethyl phosphate (TMP), and the mass ratio of polymer: organic solvent is controlled as 1:15.
  • the organic solvent is trimethyl phosphate (TMP)
  • the mass ratio of organic solvent to (PbI 2 +CsI) is controlled to be 1:0.2
  • the molar ratio of PbI 2 to CsI is 1:0.1.
  • the mass ratio of A solution and B solution is 1:0.02.
  • the rest of the steps are the same as Comparative Example 1, except that the mass ratio of polymer polymethyl methacrylate (PMMA) and N,N-dimethylformamide in the first solution is 1:10, and the additive CdBr is added. 2. Control the mass ratio of polymer matrix and additives to 1:0.01, and mechanically stir and mix for no less than 6 hours to obtain a clear and transparent solution.
  • the organic solvent is N,N-dimethylformamide (DMF)
  • the mass ratio of organic solvent to (PbI 2 +CsI) is controlled to be 1:0.9
  • the molar ratio of PbI 2 to CsI is 1:3 .
  • the precursor solution control the mass ratio of solution A: solution B to 1:3, and mechanically stir for 18 hours to obtain a clear and transparent precursor solution.
  • the precursor solution was sinked and transferred to a glass petri dish.
  • the thickness of the precursor solution in the glass petri dish was controlled to be 3mm, the air pressure in the vacuum drying oven was 0.05MPa, and the temperature was 150°C and dried for 8 hours to obtain ⁇ -CsPbI 3 Quantum dot/PVDF composite film.
  • the XRD test result of this sample is similar to Fig. 4, and the XRD pattern shows that the sample is ⁇ phase.
  • Example 4 The rest of the steps are the same as in Example 4. The difference is that in the A solution, the mass ratio of polymer to organic solvent is controlled to be 1:4, the additive CdI 2 is added, and the mass ratio of polymer to additive CdI 2 is controlled to be 1:0.01 . Mechanical stirring is not less than 6h to obtain a clear and transparent solution.
  • B solution control the molar ratio of PbI 2 to CsI to 1:0.5, the mass ratio of solvent to (PbI 2 +CsI) to 1:0.01, and mechanical stirring for not less than 6 hours to obtain a clear and transparent solution.
  • the precursor solution was transferred to a transparent PET sheet by electrospinning, the thickness of the precursor solution on the transparent PET sheet was controlled to be 2mm, the pressure of the vacuum drying oven was 0.07MPa, the temperature was 40°C, and the organic solvent was removed by drying for 15 minutes. Then remove the solvent-removed glass sheet from the vacuum drying oven and place it on a heating plate at 80°C for 1 hour. CsPbI 3 quantum dots are generated in situ in the PMMA matrix to obtain a ⁇ -CsPbI 3 quantum dot/PMMA composite film.
  • the XRD test result of this sample is similar to Fig. 4, and the XRD pattern shows that the sample is ⁇ phase.
  • Example 5 The rest of the steps are the same as in Example 5, except that the polymer in the A solution is polysulfone (PSF), the additive is ZnBr 2 , and the mass ratio of polymer to additive is 1:0.003.
  • the mass ratio of organic solvent to (PbI 2 +CsI) is 1:0.03.
  • the polymer is polyvinylidene chloride (PVDF), and the organic solvent is N,N-dimethylformamide (DMF).
  • the mass ratio of control polymer: organic solvent is 1:15.
  • the organic solvent in the solvent B is N,N-dimethylformamide (DMF), the mass ratio of the organic solvent to (PbI 2 +CsI) is 1:0.1, and the molar ratio of PbI 2 :CsI is 1:0.6.
  • the mass ratio of solution A to solution B is controlled to be 1:0.1.
  • the remaining steps are the same as Comparative Example 1, except that the additive used in the A solution is SnBr 2 , and the mass ratio of the polymer matrix to SnBr 2 is 1:0.01.
  • the molar ratio of PbI 2 :CsI is controlled to be 1:0.4
  • the surface ligand is valeric acid
  • the mass ratio of (PbI 2 +CsI) to valeric acid is 1:0.001.
  • control the mass ratio of A solution to B solution to 1:2, and mechanical stirring shall not be less than 24h.
  • Example 9 The rest of the steps are the same as in Example 9. The difference is that the polymer in the solution A is polyvinylidene chloride (PVDF), the mass ratio of organic solvent to polyvinylidene chloride (PVDF) is 1:7, the additive is ZnI 2 , and the matrix The mass ratio with ZnI 2 is 1:0.015.
  • the molar ratio of PbI 2 to CsI in the second solution is 1:1.1, the surface ligand added is 3,5-dimethylaniline, and the mass ratio of (PbI 2 +CsI) to 3,5-dimethylaniline is 1 : 0.1. Control the mass ratio of solution A to solution B at 1:1.
  • the ⁇ -CsPbI 3 quantum dot/PVDF composite film attached to the transparent silica gel sheet was obtained.
  • the XRD test result of this sample is similar to Fig. 4, and the XRD pattern shows that the sample is ⁇ phase.
  • the rest of the steps are the same as Comparative Example 1, except that the mass ratio of the polymer matrix to the organic solvent in the solution is 1:10, the polymer is polycarbonate (PC), and the organic solvent is N,N-dimethylformamide (DMF).
  • the surface ligands added in the ethyl solvent are acetic acid and dodecylamine, the mass ratio of acetic acid to dodecylamine is 1:3, and the mass ratio of (PbI 2 +CsI) to surface ligand is 1:0.02.
  • the mass ratio of A solution to B solution in the precursor solution is 1:0.8. Control the heating temperature of the heating plate to 170°C and dry for 30 minutes to obtain a ⁇ -CsPbI 3 quantum dot/PC composite film.
  • Figure 8 shows the light transmission diagrams of two samples prepared by this method. It can be seen from the figure that the transmittance of the sample in the non-absorptive area is greater than 90%, and the reproducibility is good.
  • the XRD test result of this sample is similar to Fig. 4, and the XRD pattern shows that the sample is ⁇ phase.
  • the rest of the steps are the same as in Comparative Example 1, except that the polymer matrix in the first solution is polystyrene (PS), the mass ratio of matrix to organic solvent is 1:20, and the organic solvent is N,N-dimethylformamide. (DMF).
  • PS polystyrene
  • DMF N,N-dimethylformamide.
  • the surface ligand added in the B solution is octylamine bromide, and the mass ratio of (PbI 2 +CsI) to the surface ligand octylamine bromide is 1:0.6.
  • the mass ratio of A solution to B solution in the precursor solution is 1:0.6.
  • the precursor solution was transferred to the transparent quartz glass plate by spin coating, the thickness of the precursor solution on the transparent quartz glass plate was controlled to be 1 mm, the pressure in the vacuum drying box was 0.1 MPa, the temperature was 130 °C, and the drying was 72 hours to obtain ⁇ - CsPbI 3 quantum dot/PS composite material.
  • the XRD test result of this sample is similar to Fig. 4, and the XRD pattern shows that the sample is ⁇ phase.
  • the remaining steps are the same as Comparative Example 1, except that the mass ratio of the polymer to the organic solvent in the solution A is 1:10, the polymer is polyvinylidene chloride (PVDF), and the organic solvent is dimethylacetamide (DMAc) .
  • the second solution control the molar ratio of PbI 2 : CsI to 1:2, the organic solvent is dimethylacetamide (DMAc), and the mass ratio of organic solvent to (PbI 2 +CsI) is 1:1.5.
  • the body is caprylic acid, bromide 3,5-dimethylaniline and 3-vinylethylamine.
  • the mass ratio of caprylic acid, bromide 3,5-dimethylaniline and 3-vinylethylamine is 1:2:5 ,
  • the mass ratio of (PbI 2 +CsI) to organic ligand is 1:0.01.
  • the precursor solution was transferred to the ITO glass by spin coating, the thickness of the precursor solution on the ITO glass was controlled to 0.1mm, the air pressure in the vacuum drying oven was 0.02MPa, the temperature was 40°C, and the drying was performed for 15 minutes to remove the organic solvent.
  • the ITO glass sheet with the organic solvent removed was placed on a hot plate at 130° C. and baked for 45 minutes to obtain a nanosheet ⁇ -CsPbI 3 quantum dot/PVDF composite material.
  • the XRD test result of this sample is similar to Fig. 4, and the XRD pattern shows that the sample is ⁇ phase.
  • the semiconductor device in this application may be a flexible device.
  • the schematic structure diagram is shown in FIG. 9.
  • the above-mentioned composite luminescent material may be a thin film and directly used to form a flexible transparent substrate in an electroluminescent device; the flexible device may further have The light-emitting layer composed of electroluminescent material combines the photoluminescence properties of the ⁇ -CsPbI 3 quantum dot particles with the luminescence of electroluminescence, thereby further improving the luminescence performance of the flexible device.
  • the above-mentioned flexible device may further include a structure for realizing its device performance, such as a metal cathode, a metal anode, an electron transport layer, a hole transport layer, etc. as shown in FIG. 9. I will not repeat them here.
  • a high-color gamut white LED luminescent material is prepared, and the specific steps are as follows:
  • the mass ratio of polymer: organic solvent in the first solution is 1:5, the polymer is polyvinylidene fluoride (PVDF), and the organic solvent is N,N-dimethylformamide (DMF). Mechanically stirred for 12h to obtain a clear and transparent solution.
  • the molar ratio of PbBr 2 to CH 3 NH 3 Br in the second solution is 1:1, the mass ratio of organic solvent:PbBr 2 is 1:0.01, and the organic solvent is N,N-dimethylformamide (DMF). Mechanically stirred for 12h to obtain a clear and transparent solution.
  • the mass ratio of the first solution to the second solution is controlled to be 1:0.2, and mechanically stirred for 24 hours to obtain a uniformly mixed precursor solution.
  • the CH 3 NH 3 PbBr 3 quantum dot/PVDF green light emitting composite thin film material used in this embodiment is based on the publication number WO2016180364A1 and the invention titled "Perovskite/polymer composite luminescent material, preparation method and use” It is synthesized by the method disclosed in the patent and can also be provided by Beijing Institute of Technology.
  • Example 16 The rest of the steps are the same as in Example 16, except that the PET matrix side of the CH 3 NH 3 PbBr 3 quantum dot/PVDF composite film is glued with glue and dried to obtain a red and green dual-color emission composite material.
  • Example 3 Based on the CsPbI 3 quantum dot/PMMA composite material prepared in Example 3, a high-color gamut white LED luminescent material is prepared. The specific steps are:
  • the precursor solution prepared in step (1) of Example 16 was coated on one side of the prepared ⁇ -CsPbI 3 quantum dot/PMMA composite quantum dot film by spin coating, and then the CH 3 NH 3 PbBr attached 3 Quantum dot/PVDF composite film precursor solution ⁇ -CsPbI 3 Quantum dot/PMMA composite film is placed in a vacuum drying oven, the pressure of the vacuum drying oven is 0.1MPa, the temperature is 30 °C, and drying for 48 hours, to obtain red light and green A composite material that emits two light colors.
  • Example 19 The rest of the steps are the same as in Example 19, except that the CsPbI 3 quantum dot/PMMA composite quantum dot film is coated with a polycarbonate (PC) organic solution on one side, and the organic solvent of the solution is N,N-dimethyl
  • the mass ratio of formamide (DMF), organic solvent and polycarbonate (PC) is 1:0.8.
  • the precursor solution prepared in step (1) of Example 18 was coated on the side of the prepared ⁇ -CsPbI 3 quantum dot/PMMA composite polycarbonate (PC) barrier film by spin coating, and then attached
  • the ⁇ -CsPbI 3 quantum dot/PMMA composite film with CH 3 NH 3 PbBr 3 quantum dot/PVDF composite film precursor solution is placed in a vacuum drying oven with a pressure of 0.1 MPa, a temperature of 30 °C, and drying for 48 hours , To obtain a composite material emitting red light and green light.
  • the above composite luminescent material can also be applied to LCD display devices. Specifically, refer to Figures 11 and 12.
  • the ⁇ -CsPbI 3 quantum dot/polymer composite red light film is combined with the perovskite quantum dot/polymer composite green light film to prepare a two-color (red and green) light-emitting film.
  • a high-color gamut LCD backlight module with blue LED as the light source can be realized.
  • Example 3 Based on the ⁇ -CsPbI 3 quantum dot/PMMA composite material prepared in Example 3, a high-color gamut backlight source for liquid crystal displays (LCD) was prepared. Taking a 42-inch LCD as an example, the specific steps are:
  • the precursor solution was prepared according to the experimental program of Example 3, and the precursor solution was uniformly transferred to the substrate using a film scraper.
  • the substrate used here includes a glass plate or a light guide plate of an LCD backlight module, a diffusion film, and a prism On the film, control the thickness of the precursor solution to 0.1mm, place it in a vacuum drying oven, and dry it at 0.05MPa, 150°C for 6h, take out the high luminous efficiency ⁇ -CsPbI 3 quantum dot/PMMA red light emitting composite film .
  • the blue light source passes through the light guide plate and then passes through the red light-emitting layer and the green light-emitting layer, and finally forms a composite white light of red, green and blue.
  • the piezoelectric device is prepared based on the perovskite/polymer composite luminescent material.
  • the specific steps are as follows:
  • Example 5 Prepare the precursor solution according to the experimental program of Example 5, and then uniformly coat the precursor solution on the substrate.
  • the substrate used here includes ITO conductive glass or PET and PC flexible polymer coated with gold/silver on the surface. ⁇ Material substrate. Control the thickness of the precursor solution to 0.5mm, place it in a vacuum drying oven, and dry it at 0.05MPa, 150°C for 6h, and take out a high luminous efficiency ⁇ -CsPbI 3 quantum dot/PMMA red light emitting composite film.
  • a solar concentrator was prepared. Taking a 400 cm2 concentrator as an example, the specific steps are as follows:
  • Example 5 Prepare the precursor solution of the required quality according to the experimental plan of Example 5. Use a wiper to transfer the precursor solution evenly to a glass substrate of corresponding size. The thickness of the glass substrate is 2mm, and the length and width are both 20cm. . The thickness of the precursor solution was controlled to 0.2 mm, and then the glass plate containing the precursor solution was placed in a vacuum drying oven, dried at 0.05 MPa and 150° C. for 6 hours, and taken out for use.
  • the glass plate coated with ⁇ -CsPbI 3 quantum dots/PMMA composite material in step (1) is placed in a coating machine, and three sides of the glass plate are plated with aluminum, and the thickness of the plated aluminum film is 2 ⁇ m. Take out the aluminum-plated glass plate, and assemble the strip-shaped polycrystalline silicon solar panel to the side of the glass plate that is not aluminum-plated. Connect the solar panel circuit to prepare a solar concentrator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种钙钛矿纳米材料,所述钙钛矿纳米材料包括γ-CsPbI 3;所述钙钛矿纳米材料在至少一个维度上的尺寸为2~50nm。一种复合发光材料,包括基质和所述钙钛矿纳米材料。解决了钙钛矿量子点/聚合物复合发光材料中红光发射的薄膜稳定性差、量子产率低的问题。

Description

钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用 技术领域
本申请涉及一种钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用,属于材料领域。
背景技术
钙钛矿材料的结构式一般为ABX 3,其中A可以是K +、Na +、Rb +、Cs +以及小分子有机阳离子等,B可以是Pb 2+、Sn 2+、Ti 4+、Cr 3+、Bi 3+等多种元素,X可以由O 2-、Cl -、Br -、I -、S 2-等阴离子组成。钙钛矿结构的材料具备了很多独特的理化性质,比如吸光性、电催化性等等,在化学、物理领域有着广泛的应用。卤素钙钛矿是一类X为卤素(Cl、Br、I)阴离子的钙钛矿结构化合物,其中A可以是小分子有机阳离子,也可以是无机金属阳离子,分别称为有机-无机杂化卤素钙钛矿和全无机卤素钙钛矿。卤素钙钛矿的晶体结构由1个B金属原子和6个X原子构成1个八面体结构,A原子镶嵌在8个八面体两两共用1个X原子形成的立方体结构的中心。卤素钙钛矿材料具有独特的光电半导体特性,其具有合适的带隙、较高的载流子迁移率、很强的缺陷容忍性、较低的浅点缺陷率、较低的晶界复合率和表面复合率,以及由于s-p反键耦合产生的较大的光吸收系数。这些独特的光学和半导体特性使得卤素钙钛矿材料成为太阳能电池中光电转换材料的理想选择。上世纪九十年代,Mitzi的研究组首次对有机-无机杂化钙钛矿材料的光电性能进行了探究,发现其具有良好的电子迁移能力,在太阳能电池上具有潜在的应用价值。2009年,Kojima课题组首次制备出以CH 3HN 3PbX 3(X=Cl,Br,I)作为光敏材料的染料敏华太阳能电池,其光电转换效率达到了3.8%。将钙钛矿材料在光电领域的研究引入了快车道。目前,被美国国家可再生能源室(NREL)认证的钙钛矿光伏器件效率已经稳步增长到22.1%。
钙钛矿太阳能电池的研究热潮也带动了基于ABX 3铅卤钙钛矿量子点(后文写做钙钛矿量子点)发光材料的迅速发展。与正在产业化过程中的II-VI族量子点相比,钙钛矿量子点具有成本低廉、制备工艺简单、材料毒性低等特点。同时,钙钛矿量子点的发光性能与II-VI族量子点相当甚至更好:发射光谱覆盖整个可见光波长(410-700nm),荧光量子产率高(>90%),窄发射峰(半峰宽20-50nm)。但是由于钙钛矿材料晶体结构的离子性、配体间的质子交换反应、卤素离子较强的离子迁移能力以及较低的晶体形成能,导致钙钛矿量子点的稳定性较差。能够降低钙钛矿量子点光学性能的外界因素主要有H 2O、O 2、光和热。晶体结构的离子性使得钙钛矿量子点容易被极性溶剂特别是环境中的H 2O降解失去光学性能。O 2与H 2O配合,加速钙钛矿量子点的分解,同时作为光淬灭剂,降低钙钛矿量子点的光学性能。紫外光则使钙钛矿量子点产生受激辐射,激子非辐射复合过程产生的热效应加速了H 2O和O 2与钙钛矿量子点的反应过程,同时产生激子热淬灭,降低钙钛矿量子点的光学性能。
针对钙钛矿量子点稳定性差的问题,制备聚合物包覆的钙钛矿量子点复合材料是实现高稳定性钙钛矿量子点的有效方法。Yuhua Wang课题组将预先合成的CsPbX 3量子点与聚合物Ergo混合,制备出了CsPbX 3/Ergo复合薄膜。该薄膜可以将CsPbI 3量子点在空气和水中的稳定性从5h延长到25h以上。A.Paul Alivisatos课题组合成了不同形貌的钙钛矿纳米晶,并将它们分别包入聚月桂基甲基丙烯酸酯(PLMA),聚苯乙烯-乙烯-丁烯-苯乙烯(SEBS)以及聚苯乙烯(PS)中,使得钙钛矿量子点的稳定性得到了巨大的提升,并且钙钛矿纳米线的复合薄膜保持了其偏振发光性能。Dwight S.Seferos课题组将钙钛矿量子点包覆进甲基丙烯酸甲酯(MMA),该钙钛矿量子点/MMA复合薄膜的稳定性可达到30天以上。然而,基于预先合成的钙钛矿量子点的聚合物复合薄膜普遍存在荧光量子产率不高的问题。CsPbX 3/Ergo复合薄膜的荧光产率只有43%,钙钛矿量子点/MMA复合薄膜的荧光量子产率更是从钙钛矿量子点溶液的100%降到了复合材料的56%。这是由于钙钛矿量子点的合成需要繁琐的提纯步骤,如除去反应过程中的大量有机溶剂及长链配体,这个过程会对钙钛矿纳米材料的发光性能造成不利的影响。此外,经过分离提纯的钙钛矿量子点也会影响其在包覆基质中的分散,团聚会使量子点的荧光量子产率急剧下降,并且使得到的复合材料光透过率低,影响器件的性能。为了提高钙钛矿量子点的稳定性同时兼顾其优异的发光性能,研究者开发了原位制备钙钛矿量子点/聚合物复合发光薄膜的方法。Yajie Dong课题组使用溶胀-去溶胀的方法原位制备了五种不同聚合物基质的钙钛矿量子点/聚合物复合薄膜,其中MAPbBr 3/PS复合薄膜的荧光量子产率最高达到48%,且能够在水中放置60天而不发生分解。Jiuyang Zhang课题组在沉淀法制备CsPbBr 3量子点的过程中加入聚合物,原位制备了CsPbBr 3/聚甲基丙烯酸甲酯,CsPbBr 3/聚甲基丙烯酸丁酯和CsPbBr 3/聚苯乙烯复合材料,CsPbBr 3/聚甲基丙烯酸甲酯的荧光量子效率为62.4%。目前钙钛矿量子点/聚合物复合发光薄膜的原位制备研究主要集中在绿色发光薄膜,红光发射的钙钛矿量子点复合发光薄膜的荧光量子产率和稳定性都比较低,如目前基于钙钛矿量子点的红光发光材料主要是CH 3NH 3PbI 3(MAPbI 3),NH 2CHNH 2PbI 3(FAPbI 3)和CsPbI 3。MAPbI 3和FAPbI 3钙钛矿材料中由于有机离子 的存在,其结构稳定性低,不能满足应用要求。
现有技术中,CsPbI 3拥有四种晶体结构,分别是立方相α-CsPbI 3,四方相β-CsPbI 3,正交相γ-CsPbI 3和正交相δ-CsPbI 3。其中,α-CsPbI 3具有合适的带隙,被认为是一种极具前景的高效光电转换材料,是目前CsPbI 3四个物相中被研究最多的。然而α-CsPbI 3属于高温相,其生成温度为300℃以上。随着温度的降低,在260℃时α-CsPbI 3转变为β-CsPbI 3。β-CsPbI 3进一步在175℃转变为γ-CsPbI 3。最终,γ-CsPbI 3在25℃转变为低温稳定结构的δ-CsPbI 3。由于α-CsPbI 3在室温不能稳定存在的问题,阻碍了它的实际应用。相似地,β-CsPbI 3也不能在室温稳定存在。而非钙钛矿结构的δ-CsPbI 3不具备光电性能。在原位制备CsPbI 3/聚合物复合薄膜时,常用聚合物材料的熔点通常低于250℃,要得到α-CsPbI 3和β-CsPbI 3的生成条件需要在聚合物材料的融点以上制备,如此会使得聚合物基质失去对原位生成的钙钛矿纳米颗粒的尺寸限制作用,生成大颗粒的钙钛矿颗粒,造成其发光性能的下降。在聚合物材料的融点以下制备,又不能满足α-CsPbI 3和β-CsPbI 3的生成条件。
发明内容
根据本申请的一个方面,提供了一种钙钛矿纳米材料γ-CsPbI 3,具有优异的发光性能。
本申请中的钙钛矿纳米材料与有机无机杂化钙钛矿相比,全无机钙钛矿由于无机Cs +取代挥发性有机离子,显著提高了结构的稳定性。
所述钙钛矿纳米材料,其特征在于,所述钙钛矿纳米材料包括γ-CsPbI 3
所述钙钛矿纳米材料在至少一个维度上的尺寸为2~50nm。
可选地,所述γ-CsPbI 3为γ-CsPbI 3量子点、γ-CsPbI 3纳米片、γ-CsPbI 3纳米线中的至少一种。
可选地,所述γ-CsPbI 3量子点为γ-CsPbI 3量子点颗粒;
所述γ-CsPbI 3量子点颗粒的平均粒径为14nm。
可选地,所述钙钛矿纳米材料的发光峰在600~700nm。
可选地,所述钙钛矿纳米材料的发光峰在650~680nm。
本申请的目的之一是提出γ-CsPbI 3/聚合物复合发光材料及其制备方法,对已有的钙钛矿量子点合成方法进行改进,实现γ-CsPbI 3量子点在聚合物基质中的原位制备,所得复合材料为柔性薄膜,荧光量子产率高、稳定性好,解决以往红光CsPbI 3钙钛矿量子点难于在背光显示等光电子器件中应用的问题。
根据本申请的另一方面,提供一种复合发光材料,尤其是γ-CsPbI 3钙钛矿纳米材料/聚合物发光材料,该复合材料具有荧光量子产率高、稳定性高、透明度高以及生产成本低等优点。
所述复合发光材料,其特征在于,包括
基质和钙钛矿纳米材料;
所述钙钛矿纳米材料选自上述的钙钛矿纳米材料中的至少一种。
可选地,所述钙钛矿纳米材料与所述基质的质量比为1:1~100。
可选地,所述基质为聚合物。
可选地,所述聚合物选自聚偏氟乙烯、聚偏氟乙烯和三氟乙烯共聚物、聚丙烯腈、聚醋酸乙烯酯、醋酸纤维素、氰基纤维素、聚砜、芳香聚酰胺、聚酰亚胺、聚碳酸酯、聚苯乙烯、聚甲基丙烯酸甲酯中的至少一种。
可选地,所述复合发光材料还包括添加剂,所述添加剂分散在所述基质中;
所述添加剂选自溴化锌、碘化锌、溴化亚锡、碘化亚锡、溴化镉、碘化镉中的至少一种。
可选地,所述基质与添加剂的质量比为1:0.001~0.5。
可选地,所述复合发光材料还包括表面配体,所述表面配体形成在所述γ-CsPbI 3钙钛矿纳米材料的表面;
所述表面配体含有有机酸、有机酸卤代物、C 4~C 24有机胺、C 4~C 24有机胺的卤代物中的至少一种中的至少一种。
可选地,所述有机酸包括碳原子数至少为3的饱和烷基酸或不饱和烷基酸;所述长链有机胺为4-24个碳原子的烷基胺胺或芳香胺;
所述有机酸或者有机胺的卤化物为所述有机酸或者有机胺对应的卤化物。
可选地,所述钙钛矿纳米材料与所述表面配体的质量比为1:0.001~1。
可选地,所述复合发光材料为复合发光薄膜;
所述复合发光薄膜的厚度为0.001-5mm。
具体地,γ-CsPbI 3钙钛矿纳米材料为γ-CsPbI 3钙钛矿量子点;所述γ-CsPbI 3量子点在至少一个维度上的尺寸不 大于20nm。
所述γ-CsPbI 3量子点具有内核,所述内核的结构式为γ-CsPbI 3,其中Pb和I构成配位八面体结构,Cs填充在所述八面体结构的间隙中形成的正交结构相。γ-CsPbI 3的晶体结构示于图1,其键角α=β=γ=90°,键长
Figure PCTCN2019098998-appb-000001
Figure PCTCN2019098998-appb-000002
γ-CsPbI 3的晶体结构如图1所示。由此,可以获得具有较好发光性能的γ-CsPbI 3量子点。
本申请所述基质由聚合物构成,所述聚合物含有聚偏氟乙烯(PVDF)、聚偏氟乙烯和三氟乙烯共聚物(P(VDF-TrFE))、聚丙烯腈(PAN)、聚醋酸乙烯酯(PVAc)、醋酸纤维素(CA)、氰基纤维素(CNA)、聚砜(PSF)、芳香聚酰胺(PA)、聚酰亚胺(PI)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)的至少之一。
为了得到本申请所述γ-CsPbI 3量子点/聚合物复合发光材料中γ-CsPbI 3物相,在合成的过程中使用添加剂。所述添加剂分散在所述基质中;所述添加剂含有溴化锌、碘化锌、溴化亚锡、碘化亚锡、溴化镉、碘化镉的至少之一。由此,可以利用上述添加剂调控所生成CsPbI 3量子点的表面能,使生成的CsPbI 3由α相转变为γ相。γ-CsPbI 3为低温发光相,因此为该复合材料提供更高的室温稳定性,且上述添加剂能够进一步提高该复合发光材料的电学、力学等物化性能。
为了提高本发明所述γ-CsPbI 3量子点/聚合物复合发光材料的发光性能,该复合发光材料进一步包括:表面配体,所述表面配体形成在所述γ-CsPbI 3量子点内核的表面,所述表面配体含有有机酸、长链有机胺以及它们的卤化物中的至少之一。由此,可以为该复合材料中的γ-CsPbI 3量子点提供有机杂化基团,进而消除γ-CsPbI 3量子的表面缺陷,从而提高该复合材料的性能。
本申请所述有机酸包括碳原子数至少为3的饱和烷基酸、不饱和烷基酸以及它们的卤化物;所述长链有机胺为4-24个碳原子的烷基胺、芳香胺以及它们的卤化物。有机配体的加入能够消除生成的γ-CsPbI 3量子点表面的缺陷,使非辐射复合减少,增强γ-CsPbI 3量子点的荧光量子产率。此外,有机配体与γ-CsPbI 3量子点不同晶面的结合能不同,由此可以控制γ-CsPbI 3的生长方向,进而达到调控所生成γ-CsPbI 3形貌(量子点、纳米片、纳米线)的目的。
本申请提出的制备方法非常简单,可大批量制备,适用于工业生产,制备的γ-CsPbI 3量子点/聚合物复合发光材料不仅具有CsPbI 3量子点的高荧光量子产率,发光纯度高,波长可随颗粒尺寸调节等优点,还具有聚合物组分的易加工、力学强度高、柔性好等特点。同时由于聚合物基质包裹住了CsPbI 3量子点颗粒,隔绝了外界环境如氧气、水汽等的影响,使得该复合材料荧光稳定性显著增强,在宽色域LED背光源显示、柔性显示中有广阔的市场应用前景。
根据本申请的又一方面,提供一种上述的复合发光材料的制备方法。
所述的复合发光材料的制备方法,其特征在于,包括以下步骤:
(1)获得含有基质、钙钛矿前驱体的前驱体溶液;
(2)将所述前驱体溶液成型,得到所述复合发光材料。
可选地,步骤(1)中所述前驱体溶液中还含有有机溶剂;
所述溶剂选自N,N-二甲基甲酰胺、二甲基亚砜、三甲基磷酸酯、磷酸三乙酯、N-甲基吡咯烷酮、二甲基乙酰胺中的至少一种。
可选地,步骤(1)包括:
(s11)获得含有基质的甲溶液;
(s12)获得含有CsI、PbI 2的乙溶液;
(s13)将甲溶液和乙溶液混合,得到所述前驱体溶液。
可选地,所述甲溶液中包括甲溶剂;
所述乙溶液中包括乙溶剂;
所述甲溶剂和乙溶剂独立地选自N,N-二甲基甲酰胺、二甲基亚砜、三甲基磷酸酯、磷酸三乙酯、N-甲基吡咯烷酮、二甲基乙酰胺中的至少一种。
可选地,所述甲溶液中,基质与溶剂的质量比为1:1~100;
乙溶液中,PbI 2和CsI的摩尔比为1:0.1~3;乙溶剂和(PbI 2+CsI)的质量比可以为1:0.001~1;
步骤(s13)中,甲溶液和乙溶液的质量比为1:0.02~5。
可选地,所述甲溶液中,基质与溶剂的质量比为1:1、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:12、1:15、1:20、1:30、1:40、1:50、1:60、1:70、1:80、1:90、1:100及任意两个比值之间的范围值。
可选地,乙溶液中,PbI 2和CsI的摩尔比为1:0.1、1:0.4、1:0.5、1:0.6、1:0.75、1:0.9、1:1、1:1.1、1:1.5、1:2、1:3及任意两个比值之间的范围值。
可选地,乙溶剂和(PbI 2+CsI)的质量比为1:0.001、1:0.01、1:0.03、1:0.05、1:0.1、1:0.2、1:0.8、1:0.9、1:1及任意两个比值之间的范围值。
可选地,步骤(s13)中,甲溶液和乙溶液的质量比为1:0.02、1:0.1、1:0.5、1:0.6、1:0.8、1:1、1:2、1:3、1:5及任意两个比值之间的范围值。
可选地,
所述甲溶液中还含有添加剂、所述添加剂选自溴化锌、碘化锌、溴化亚锡、碘化亚锡、溴化镉、碘化镉中的至少一种。
可选地,所述甲溶液中,基质与添加剂的质量比为1:0.001~0.5。
可选地,所述甲溶液中,基质与添加剂的质量比为1:0.001、1:0.003、1:0.01、1:0.015、1:0.4、1:0.5及任意两个比值之间的范围值。
可选地,所述乙溶液中还含有表面配体;
所述表面配体含有有机酸、有机酸卤代物、C 4~C 24有机胺、C 4~C 24有机胺的卤代物中的至少一种中的至少一种。
可选地,所述乙溶液中,PbI 2与CsI的质量之和与表面配体的质量比为1:0.001~1。
可选地,所述乙溶液中,PbI 2与CsI的质量之和与表面配体的质量比为1:0.001、1:0.02、1:0.1、1:1及任意两个比值之间的范围值。
可选地,步骤(1)包括:
(s11)获得含有基质、添加剂的甲溶液;
(s12)获得含有CsI、PbI 2、表面配体、包覆剂的乙溶液;
(s13)将甲溶液和乙溶液混合,得到所述前驱体溶液。
可选地,步骤(2)中所述成型包括:
将所述前驱体溶液转移至模板上,成型,得到所述复合发光材料。
可选地,所述转移包括旋涂法、浸渍提拉法、静电纺丝法、溶液下沉法、喷涂法、刮膜法、浇铸法中的至少一种。
可选地,
步骤(2)中所述成型包括干燥;
所述干燥的条件包括:压力0.01~0.1MPa,温度80~180℃,时间0.1~48h。
可选地,所述干燥的条件还包括:压力0.01~0.1Mpa。
可选地,所述干燥的压力的上限选自0.02Mpa、0.03Mpa、0.04Mpa、0.05Mpa、0.06Mpa、0.07Mpa、0.08Mpa、0.09Mpa或0.1Mpa;下限选自0.01Mpa、0.02Mpa、0.03Mpa、0.04Mpa、0.05Mpa、0.06Mpa、0.07Mpa、0.08Mpa或0.09Mpa。
可选地,所述干燥的温度的上限选自90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃或180℃;下限选自80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃或170℃。
可选地,所述干燥的时间的上限选自1h、2h、3h、4h、5h、6h、8h、10h、15h、24h、28h、32h、35h、40h或48h;下限选自0.1h、0.5h、1h、2h、3h、4h、5h、6h、8h、10h、15h、24h、28h、32h、35h或40h。
作为一种实施方式,所述方法包括以下步骤:
(1)配制甲溶液
将聚合物基质溶解在有机溶剂中,以便获得甲溶液。有机溶剂包括N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、三甲基磷酸酯(TMP)、磷酸三乙酯(TEP)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)中的至少之一。基质是由有机聚合物构成的,聚合物可以为聚偏氟乙烯(PVDF)、聚偏氟乙烯和三氟乙烯共聚物(P(VDF-TrFE))、聚丙烯腈(PAN)、聚醋酸乙烯酯(PVAc)、醋酸纤维素(CA)、氰基纤维素(CNA)、聚砜(PSF)、芳香聚酰胺(PA)、聚酰亚胺(PI)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)的至少之一。基质与有机溶剂的质量比为1:(1-50)。
聚合物基质在γ-CsPbI 3量子点/聚合物复合发光材料中主要起三个方面的作用:第一,聚合物基质在γ-CsPbI 3量子点原位生成的过程中对γ-CsPbI 3量子点的尺寸起到限制的作用。由于聚合物基质的存在,生成的γ-CsPbI 3量子点之间被隔离开,不能继续生长成为大的颗粒。最终将γ-CsPbI 3量子点的颗粒尺寸限制在20nm以下。第二,聚合物基质对γ-CsPbI 3量子点的相变起到限制作用。当γ-CsPbI 3量子点/聚合物复合薄膜由制备温度降至室温时,CsPbI 3量子点有由γ相自发转变为δ相的趋势。但是在γ相转变为δ相的过程中,CsPbI 3的晶胞体积会增大。此时,聚合物给予γ-CsPbI 3量子点的空间并没有增加,限制了γ-CsPbI 3量子点转变为δ-CsPbI 3,使得室温时聚合物复合薄膜中的CsPbI 3仍为γ相。第三,聚合物基质能够隔绝CsPbI 3量子点与H 2O、O 2的接触,使CsPbI 3量子点不容易分解进而失去光学活性,增强了γ-CsPbI 3量子点/聚合物复合薄膜的稳定性。图1为聚合物包覆γ-CsPbI 3量子点的示意图。
为了进一步提高利用该方法获得的复合发光材料的性能,甲溶液中还可以加入添加剂。添加剂包括溴化锌、碘化锌、溴化亚锡、碘化亚锡、溴化镉、碘化镉的至少之一,基质与添加剂的质量比可以为1:(0.001-0.5)。
加入添加剂,能够改变所生成CsPbI 3纳米颗粒的表面能,使得CsPbI 3由α相转变为γ相。γ-CsPbI 3为低温发光相,因此为该复合材料提供更高的室温稳定性。其次,添加剂能够降低γ-CsPbI 3量子点的成核速率,使生成的γ-CsPbI 3量子点尺寸更加均匀,进而得到半峰宽更窄的γ-CsPbI 3量子点/聚合物复合薄膜。最后,添加剂在γ-CsPbI 3的生成过程中起到助熔剂的作用,使γ-CsPbI 3的生成温度由175℃降低至80℃,减少了聚合物薄膜的加工难度。
甲溶液的制备过程采用高速搅拌器进行分散。由此,可以进一步提高甲溶液的均匀性和分散性,进而可以提高复合材料的效果。甲溶液可以是通过下列步骤制备的:将基质和添加剂溶解于有机溶剂中,基质与有机溶剂的质量比为1:(1~100),基质与添加剂的质量比为1:(0.0001~0.5),机械搅拌混合12h,使基质和添加剂完全溶解在有机溶剂中,得到澄清透明的溶液,获得甲溶液。
(2)获得乙溶液
在该步骤中,将PbI 2和CsI溶解在有机溶剂中,获得乙溶液。乙有机溶剂包括选自DMF、DMSO、TMP、TEP、NMP、DMAc中的个少之一,且乙有机溶剂与甲有机溶剂混溶。需要说明的是,术语“混溶”特指当将甲有机溶剂与乙有机溶剂混合时,混合溶液不出现分层现象。由此,可以将使甲溶液以及乙溶液混合形成统一的有机溶剂体系,也即是说,甲溶液以及乙溶液中溶解的PbI 2和CsI、表面配体、聚合物基质、添加剂等原料组分在甲有机溶剂以及乙有机溶剂中的溶解度无显著差异,在宏观和微观结构上均没有出现相分离。其中,PbI 2和CsI的摩尔比可以为1:(0.1~3),乙有机溶剂与PbI 2和CsI质量和的质量比可以为1:(0.001~1)。
为了进一步提高利用该方法获得的复合发光材料的性能,乙溶液中加入了有机配体。表面配体为有机酸、长链有机胺或者它们的卤化物。具体的,有机酸可以包括碳原子数为至少为3的饱和烷基酸或不饱和烷基酸;长链有机胺可以为4~24个碳原子的烷基胺胺或芳香胺;所述有机酸或者有机胺的卤化物为所述有机酸或者有机胺对应的卤化物。前驱体溶液中,乙溶液中PbI 2与CsI的质量之和与有机表面配体的质量比为1:(0.001~1)。
有机配体的加入能够消除生成的γ-CsPbI 3量子点表面的缺陷,使非辐射复合减少,增强γ-CsPbI 3量子点的荧光量子产率。此外,有机配体与γ-CsPbI 3量子点不同晶面的结合能不同,由此可以控制γ-CsPbI 3的生长方向,进而达到调控所生成γ-CsPbI 3形貌(量子点、纳米片、纳米线)的目的。
乙溶液的制备过程采用高速搅拌器进行分散。由此,可以进一步提高乙溶液的均匀性和分散性,进而可以提高复合材料的效果。乙溶液可以是通过下列步骤制备的:将PbI 2、CsI和有机配体混合,控制PbI 2和CsI的摩尔比为1:(0.1~3),PbI 2与CsI的质量之和与有机配体的质量比为1:(0.0001~1)。再加入乙有机溶剂,控制乙有机溶剂与PbI 2和CsI质量和的质量比为1:(0.001~1),混合后进行超声处理,超声处理15分钟后,得到透明混合液,对经过超声处理的透明混合液进行过滤,取过滤得到的滤液作为乙溶液。
(3)形成前驱体溶液
根据本发明的实施例,在该步骤中,将甲溶液与乙溶液混合,获得前驱体溶液。具体的,甲溶液与乙溶液的质量比为1:(0.02~5),机械搅拌2h,获得前驱体溶液。
(4)转移
在该步骤中,将混合均匀的前驱体溶液通过合适的方法转移到模板上,以便形成不同形状的复合材料。其中,模板可以为具有特定形状的模具或者基底。关于模板的具体情况,本领域技术人员可以根据实际应用中对复合发光材料形状的具体要求进行设计。具体的,前驱体溶液转移到基底或模具上的方法可以包括旋涂法、浸渍提拉法、静电纺丝法、溶液下沉法、喷涂法、刮膜法或浇铸法。由此,可以简便地获得具有薄膜等形状的复合发光材料。
(5)干燥
在该步骤中,干燥具有前驱体溶液的所述模板,以便获得所述复合发光材料。具体的,可以将附着有前驱体溶液的模板放置在真空干燥箱中,在一定条件下脱去前驱体溶液中的有机溶剂,由此,可以控制该有机溶剂体系的挥发条件来控制所述基质的结晶、添加剂的排布、γ-CsPbI 3量子点颗粒的形核与生长,从而提高复合材料的性能。例如,根据本发明的具体实施例,真空干燥箱中的气压可以在0.01~0.1MPa之间,温度可以在80~180℃之间,干燥处理0.1~48h,得到基于γ-CsPbI 3量子点颗粒的复合材料厚度可以为0.001~5mm。在不同的干燥温度下,可以得到不同粒径分布的γ-CsPbI 3量子点,由此,可以控制所得γ-CsPbI 3量子点/聚合物复合发光薄膜的发光波长覆盖600~700nm。
根据本申请的又一方面,提供一种半导体器件。
所述半导体器件,其特征在于,含有上述的钙钛矿纳米材料、上述的复合发光材料、根据上述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
可选地,所述半导体器件包括电致发光器件、光致发光器件、太阳能电池、显示器件、传感器件、压电器件、非线性光学器件。
根据本申请的又一方面,提供一种柔性器件。
所述柔性器件,其特征在于,含有上述的钙钛矿纳米材料、上述的复合发光材料、根据上述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
可选地,所述柔性器件包括基底、金属阳极、空穴传输层、发光层、电子传输层和金属阴极;
所述基底含有上述的钙钛矿纳米材料、上述的复合发光材料、根据上述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
根据本申请的又一方面,提供一种双色复合发光材料。
所述双色复合发光材料,其特征在于,包括层叠的绿色发光薄膜和红色发光薄膜;
所述红色发光薄膜含有上述的钙钛矿纳米材料、上述的复合发光材料、根据上述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
可选地,所述红色发光薄膜为聚甲基丙烯酸甲酯/γ-CsPbI 3量子点复合薄膜。
可选地,所述绿色发光薄膜为聚偏氟乙烯/CH 3NH 3PbBr 3量子点复合薄膜。
根据本申请的又一方面,提供一种背光模组。
所述背光模组,其特征在于,含有上述的双色复合发光材料中的至少一种。
根据本申请的又一方面,提供一种LCD显示器。
所述LCD显示器,其特征在于,含有上述的双色复合发光材料中的至少一种。
根据本申请的又一方面,提供一种光致发光器件。
所述光致发光器件,其特征在于,包括蓝光芯片驱动模组、蓝光芯片散热模组和双色复合发光材料;
所述双色复合发光材料选自上述的双色复合发光材料中的至少一种。
本申请能产生的有益效果包括:
1)本申请中钙钛矿纳米材料,与有机无机杂化钙钛矿相比,全无机钙钛矿由于无机Cs +取代挥发性有机离子,显著提高了结构的稳定性。
2)本申请中所制备的γ-CsPbI 3量子点为低温发光稳定相,在日常使用中不会发生相变而影响发光性能,具有更高的使用稳定性。
3)本申请提供的γ-CsPbI 3量子点/聚合物复合发光材料制备方法,操作简便,成本低廉,可批量制备,适用于工业生产,可以获得大面积的γ-CsPbI 3量子点/聚合物复合发光薄膜。
4)本申请提供的γ-CsPbI 3量子点/聚合物复合发光材料的制备方法,利用聚合物分子间的空隙限制γ-CsPbI 3量子点的生长维度,节省原料,且聚合物分子间的空隙大小容易调节。
5)本申请提供的方法可以制备出不同粒径的γ-CsPbI 3量子点颗粒填充在聚合物基质中的γ-CsPbI 3量子点/聚合物复合发光材料,发光强度高,荧光量子产率可达80-100%,发光波长可以在600nm-700nm之间调节。
6)本申请提供的制备的γ-CsPbI 3量子点/聚合物复合发光材料,由于聚合物基质包裹着γ-CsPbI 3量子点颗粒,隔绝了氧气、水汽等的影响,γ-CsPbI 3量子点对外界环境不敏感,稳定性显著增强,并且耐化学腐蚀。
7)本申请提供的γ-CsPbI 3量子点/聚合物复合发光材料,具有力学强度高、柔韧性好的特点,在柔性显示器中有潜在的应用价值。
8)本申请提供的的γ-CsPbI 3量子点/聚合物复合发光材料半峰宽窄,发光色纯度高,荧光量子产率高,透光率高等特点,可以满足实际应用的需求,在宽色域LED显示、激光、非线性光学等领域有广泛的应用前景。
附图说明
图1是γ-CsPbI 3晶体结构图;
图2是本申请制备的γ-CsPbI 3量子点/聚合物复合发光薄膜的结构示意图;
图3是对比例1、2、3无添加剂前驱体在不同制备温度下得到样品的XRD图;
图4是实施例4含添加剂制备的γ-CsPbI 3量子点/PMMA复合薄膜的X射线衍射谱图;
图5实施例5含添加剂制备的γ-CsPbI 3量子点/PMMA复合薄膜的荧光发射光谱图;
图6实施例6含添加剂制备的γ-CsPbI 3量子点/PMMA复合薄膜的荧光发射光谱图;
图7实施例14含添加剂制备的γ-CsPbI 3量子点/PMMA复合薄膜的荧光发射光谱图;
图8实施例15含添加剂所制备的γ-CsPbI 3量子点/聚合物复合发光薄膜的透过光谱;
图9是根据本实施例的柔性电致发光器件结构示意图
图10是根据本申请实施的双色发光复合薄膜结构示意图;
图11根据本申请实施的LCD显示器件背光模组的结构示意图;
图12是根据本申请实施的光致发光器件结构示意图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请的实施例中分析方法如下:
利用PANalytical X’Pert3粉末衍射仪进行XRD分析。
利用Varian Cary 5分光光度计进行透过光谱分析。
利用FLSP920荧光光谱仪进行荧光发射光谱分析。
对比例1
(1)将聚合物溶解于有机溶剂中,控制聚合物:有机溶剂=1:3,机械搅拌不小于6h,使聚合物完全溶解于有机溶剂中得到澄清透明的溶液,此溶液为甲溶液。所述聚合物为聚甲基丙烯酸甲酯(PMMA);所述有机溶剂为N,N-二甲基甲酰胺(DMF)。
(2)将PbI 2粉末与CsI粉末混合,控制摩尔比为:PbI 2:CsI=1:1.5,再加入有机溶剂,控制质量比为:有机溶剂:(PbI 2+CsI)=1:0.05,再加入有机配体溴化辛胺,(PbI 2+CsI)与溴化辛胺的质量比为1:0.02。混合后机械搅拌6h,得到澄清透明的溶液,此溶液为乙溶液。该步骤中所述有机溶剂为N,N-二甲基甲酰胺(DMF)。
(3)将步骤(1)中所述的甲溶液与步骤(2)中所述的乙溶液混合,控制质量比为:甲溶液:乙溶液=1:0.5,机械搅拌24h,得到均匀混合的前驱体溶液。
(4)将上述步骤(3)中所述的前驱体溶液通过旋涂法转移到透明玻璃片上,使前驱体溶液分布均匀。通过控制旋涂装置的转速为1500转/分钟旋涂30秒,使前驱体溶液再透明玻璃片上的厚度约为0.05mm。然后把涂覆有前驱体溶液的透明玻璃片置于真空干燥箱中,真空干燥箱的气压为0.1MPa,温度为30℃,放置10min,除去有机溶剂。再将去除溶剂的玻璃片从真空干燥箱中取出,放置在80℃的加热板上30min,CsPbI 3量子点在PMMA基质中原位生成,得到CsPbI 3量子点/PMMA复合薄膜。图3中名称为“无添加剂80℃制备”的XRD图为该样品测试结果,XRD图显示该样品含有很多杂质。
对比例2
其余步骤同实施例1。所不同的是,在甲溶液中,控制聚合物与有机溶剂的质量比为1:30。在乙溶液中,控制有机溶剂:(PbI 2+CsI)的质量比=1:1。机械搅拌将溶液混合均匀,真空干燥箱去除溶剂后放置在110℃的加热板上30min,获得CsPbI 3量子点/PMMA复合薄膜。图3中名称为“无添加剂110℃制备”的XRD图为该样品测试结果,XRD图显示该样品为α相。
对比例3
其余步骤同实施例2。所不同的是,真空干燥箱去除溶剂后放置在170℃的加热板上30min,获得CsPbI 3量子点/PMMA复合薄膜。图3中名称为“无添加剂170℃制备”的XRD图为该样品测试结果,XRD图显示该样品为α相。
实施例1
其余步骤同对比例1,所不同的是,在甲溶液中,聚合物为聚丙烯氰(PAN),有机溶剂为二甲基亚砜(DMSO),聚合物:有机溶剂质量比为1:6,加入添加剂ZnI 2,控制质量比为聚合物:ZnI 2=1:0.5,机械搅拌不小于6h得到澄清透明的溶液。在乙溶液中,有机溶剂为二甲基亚砜(DMSO),控制PbI 2:CsI的摩尔比为1:0.75,控制有机溶剂:(PbI 2+CsI)的质量比为1:0.001。在前驱体溶液中,控制甲溶液:乙溶液的质量比为1:1。将前驱体溶液通过浸渍提拉法转移到透明玻璃片上,控制前驱体溶液再透明玻璃片上的厚度为0.2mm,真空干燥箱中的气压在0.01MPa,温度为30℃,真空干燥1h。再将去除溶剂的玻璃片从真空干燥箱中取出,放置在130℃的加热板上20min,CsPbI 3量子点在PAN基质中原位生成,得到CsPbI 3量子点/PAN复合薄膜。图4为该样品XRD测试结果,XRD图显示该样品为γ相。
实施例2
其余步骤同实施例1,所不同的是,控制有机溶剂:(PbI 2+CsI)的质量比为1:0.1。机械搅拌将溶液混合均匀,真空干燥箱去除溶剂后放置在150℃的加热板上10min,获得γ-CsPbI 3量子点/PAN复合薄膜。图5为该样品的发射光谱图,发光峰位于606nm。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例3
其余步骤同对比例1,所不同的是,在甲溶液中,聚合物为聚偏氯乙烯(PVDF),有机溶剂为三甲基磷酸酯(TMP),控制聚合物:有机溶剂的质量比为1:15。在乙溶液中,有机溶剂为三甲基磷酸酯(TMP),控制有机溶剂与(PbI 2+CsI)的质量比为1:0.2,PbI 2与CsI的摩尔比为1:0.1。将甲溶液与乙溶液以质量比1:0.02。将前驱体溶液通过溶液下沉法转移到玻璃培养皿中,控制前驱体溶液再玻璃培养皿中的厚度为5mm,真空干燥箱中气压为0.05MPa,温度为110℃,干燥10h得到γ-CsPbI 3量子点/PVDF复合薄膜。图6为该样品的发射光谱图,发光峰位于655nm。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例4
其余步骤同对比例1,所不同的是,在甲溶液中,聚合物聚甲基丙烯酸甲酯(PMMA)与N,N-二甲基甲酰胺的质量比为1:10,再加入添加剂CdBr 2,控制聚合物基质与添加剂的质量比为1:0.01,机械搅拌混合不小于6h,得到澄清透明的溶液。在乙溶液中,有机溶剂为N,N-二甲基甲酰胺(DMF),控制有机溶剂与(PbI 2+CsI)的质量比为1:0.9,PbI 2与CsI的摩尔比为1:3。在前驱体溶液中,控制甲溶液:乙溶液的质量比为1:3,机械搅拌18h,得到澄清透明的前驱体溶液。将前驱体溶液下沉转移到玻璃培养皿中,控制前驱体溶液在玻璃培养皿中的厚度为3mm,真空干燥箱中的气压为0.05MPa,温度在150℃,干燥8h,得到γ-CsPbI 3量子点/PVDF复合薄膜。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例5
其余步骤同实施例4,所不同的是,在甲溶液中,控制聚合物与有机溶剂的质量比为1:4,加入添加剂CdI 2,控制聚合物与添加剂CdI 2的质量比为1:0.01。机械搅拌不小于6h,得到澄清透明的溶液。在乙溶液中,控制PbI 2 与CsI的摩尔比为1:0.5,溶剂与(PbI 2+CsI)的质量比为1:0.01,机械搅拌不小于6h,得到澄清透明的溶液。在前驱体溶液中,控制甲溶液与乙溶液的质量比为1:0.1,机械搅拌12h。将前驱体溶液通过静电纺丝法转移到透明的PET片上,控制前驱体溶液在透明PET片上的厚度为2mm,真空干燥箱的气压在0.07MPa,温度在40℃,干燥15min去除有机溶剂。再将去除溶剂的玻璃片从真空干燥箱中取出,放置在80℃的加热板上1h,CsPbI 3量子点在PMMA基质中原位生成,得到γ-CsPbI 3量子点/PMMA复合薄膜。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例6
其余步骤同实施例5,所不同的是在甲溶液中聚合物为聚砜(PSF),添加剂为ZnBr 2,聚合物与添加剂的质量比为1:0.003。在乙溶液中,有机溶剂与(PbI 2+CsI)的质量比为1:0.03。转移前驱体溶液时,控制前驱体溶液在透明PET片上的厚度为0.5mm。获得附在透明PET片上的γ-CsPbI 3量子点/PSF复合薄膜。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例7
其余步骤同对比例1,所不同的是,在甲溶剂中,聚合物为聚偏氯乙烯(PVDF),有机溶剂为N,N-二甲基甲酰胺(DMF)。控制聚合物:有机溶剂的质量比为1:15。乙溶剂中有机溶剂为N,N-二甲基甲酰胺(DMF),有机溶剂与(PbI 2+CsI)的质量比为1:0.1,PbI 2:CsI的摩尔比为1:0.6。在前驱体溶液中,控制甲溶液与乙溶液的质量比为1:0.1。将前驱体溶液通过喷涂法转移到透明聚碳酸酯(PC)片上,控制前驱体溶液在透明聚碳酸酯(PC)片上的厚度为1mm,真空干燥箱的气压为0.02MPa,温度20℃,干燥30min去除溶剂。再将去除溶剂的玻璃片从真空干燥箱中取出,放置在100℃的加热板上1h,得到附着在透明聚碳酸酯(PC)片上的γ-CsPbI 3量子点/PVDF复合薄膜。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例8
其余步骤同对比例1,所不同的是,在甲溶液中聚合物与有机溶剂的质量比为1:7,所述聚合物为质量比为1:1的聚甲基丙烯酸甲酯(PMMA)与聚丙烯腈(PAN)的混合物。再加入添加剂SnI 2,基质与添加剂的质量比为1:0.4,机械搅拌不小于6h,得到澄清透明的溶液。乙溶液中,溶剂与(PbI 2+CsI)的质量比为1:0.8,再加入碘化辛胺作为配体,(PbI 2+CsI)与碘化辛胺的质量比为1:0.1,机械搅拌不小于6h,得到澄清透明的溶液。控制甲溶液与乙溶液的质量比为1:2,机械搅拌18h,得到混合均匀的前驱体溶液。将前驱体溶液通过喷涂法转移到透明聚碳酸酯(PC)片上,实现均匀分布,控制前驱体溶液在透明聚碳酸酯(PC)片上的厚度为0.004mm,然后把涂覆有前驱体溶液的透明聚碳酸酯(PC)片置于真空干燥箱中,真空干燥箱中的气压在0.1MPa,温度为80℃,干燥20min去除有机溶剂,得到附着在透明聚碳酸酯(PC)片上的γ-CsPbI 3量子点/PMMA/PAN复合薄膜。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例9
其余步骤同对比例1,所不同的是在甲溶液中使用的添加剂是SnBr 2,聚合物基质与SnBr 2的质量比为1:0.01。在乙溶液中,控制PbI 2:CsI的摩尔比为1:0.4,表面配体为戊酸,(PbI 2+CsI)与戊酸的质量比为1:0.001。在前驱体溶液中,控制甲溶液与乙溶液的质量比为1:2,机械搅拌不小于24h。将前驱体溶液通过浇筑法转移到透明硅胶片上,控制前驱体溶液在透明硅胶片上的厚度为1mm,真空干燥箱中的气压为0.03MPa,温度为100℃,干燥48h,得到附着在透明硅胶片上的γ-CsPbI 3量子点/PMMA复合薄膜。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例10
其余步骤同实施例9,所不同的是在甲溶液中聚合物为聚偏氯乙烯(PVDF),有机溶剂与聚偏氯乙烯(PVDF)的质量比为1:7,添加剂为ZnI 2,基质与ZnI 2的质量比为1:0.015。乙溶液中PbI 2与CsI的摩尔比为1:1.1,添加的表面配体为3,5-二甲基苯胺,(PbI 2+CsI)与3,5-二甲基苯胺的质量比为1:0.1。控制甲溶液与乙溶液的质量比为1:1。得到附着在透明硅胶片上的γ-CsPbI 3量子点/PVDF复合薄膜。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例11
其余步骤同对比例1,所不同的是在甲溶液中加入添加剂SnI 2,基质PMMA与SnI 2的质量比为1:0.4。乙溶液中PbI 2与CsI的摩尔量比为1:0.9,再加入表面配体碘化十二胺,(PbI 2+CsI)与碘化十二胺的质量比为1:1。涂覆后所放置热台的温度为180℃,加热时间40min,得到γ-CsPbI 3量子点/PMMA复合薄膜。图7为该样品的发射光谱图,发光峰位于677nm。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例12
其余步骤同对比例1,所不同的是甲溶液中聚合物基质与有机溶剂的质量比为1:10,聚合物为聚碳酸酯(PC),有机溶剂为N,N-二甲基甲酰胺(DMF)。乙溶剂中添加的表面配体为乙酸和十二胺,乙酸与十二胺的质量比为1:3,(PbI 2+CsI)与表面配体的质量比为1:0.02,。前驱体溶液中甲溶液与乙溶液的质量比为1:0.8。控制加热板的加热温度为170℃,烘干30min,得到γ-CsPbI 3量子点/PC复合薄膜。图8为该方法制备的两个样品的光透过图。从图中可以看出样品在非吸收区域的透过率大于90%,并且重现性好。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例13
其余步骤同对比例1,所不同的是甲溶液中的聚合物基质为聚苯乙烯(PS),基质与有机溶剂的质量比为1:20,有机溶剂为N,N-二甲基甲酰胺(DMF)。乙溶液中加入的表面配体为溴化辛胺,(PbI 2+CsI)与表面配体溴化辛胺的质量比为1:0.6。前驱体溶液中甲溶液与乙溶液的质量比为1:0.6。将前驱体溶液通过旋涂法转移到透明石英玻璃片上,控制前驱体溶液在透明石英玻璃片上的厚度为1mm,真空干燥箱中的气压为0.1MPa,温度为130℃,干燥72h,得到γ-CsPbI 3量子点/PS复合材料。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例14
其余步骤同对比例1,所不同的是甲溶液中控制聚合物与有机溶剂的质量比为1:10,聚合物为聚偏氯乙烯(PVDF),有机溶剂为二甲基乙酰胺(DMAc)。在乙溶液中,控制PbI 2:CsI的摩尔量比为1:2,有机溶剂为二甲基乙酰胺(DMAc),有机溶剂与(PbI 2+CsI)的质量比为1:1.5,有机配体为辛酸、溴化3,5-二甲基苯胺和3-乙烯基乙胺,辛酸、溴化3,5-二甲基苯胺与3-乙烯基乙胺的质量比为1:2:5,(PbI 2+CsI)与有机配体的质量比为1:0.01。将前驱体溶液通过旋涂法转移到ITO玻璃上,控制前驱体溶液在ITO玻璃上的厚度为0.1mm,真空干燥箱中的气压在0.02MPa,温度为40℃,干燥15min,去除有机溶剂。将去除有机溶剂的ITO玻璃片放置在130℃的加热板上烘烤45min,得到纳米片γ-CsPbI 3量子点/PVDF复合材料。该样品XRD测试结果与图4相似,XRD图显示该样品为γ相。
实施例15
本申请中的半导体器件可以为柔性器件,结构示意图如图9所示,上述复合发光材料可以为薄膜,并直接用于形成电致发光器件中的柔性透明基底;该柔性器件中还可以进一步具有电致发光材料构成的发光层,将γ-CsPbI 3量子点颗粒的光致发光性质和电致发光的发光结合在一起,从而可以进一步提高该柔性器件的发光性能。本领域技术人员能够理解的是,上述柔性器件中还可以进一步包括用以实现其器件性能的结构,如图9中所示出的金属阴极、金属阳极、电子传输层、空穴传输层等,在此不再赘述。
实施例16
以实施例2所制备的γ-CsPbI 3量子点/PMMA复合材料为基础,制备高色域的白光LED发光材料,具体步骤为:
(1)CH 3NH 3PbBr 3量子点/PVDF绿光发射复合薄膜材料的制备
第一溶液中聚合物:有机溶剂的质量比=1:5,聚合物为聚偏氟乙烯(PVDF),有机溶剂为N,N-二甲基甲酰胺(DMF)。机械搅拌12h,得到澄清透明的溶液。第二溶液中PbBr 2与CH 3NH 3Br的摩尔比为1:1,有机溶剂:PbBr 2的质量比为1:0.01,有机溶剂为N,N-二甲基甲酰胺(DMF)。机械搅拌12h,得到澄清透明的溶液。控制第一溶液与第二溶液的质量比为1:0.2,机械搅拌24h,得到混合均匀的前驱体溶液。
(2)将上述步骤(1)中所述的前驱体溶液通过旋涂的方法转移到透明的PET薄膜上,控制前驱体溶液在透明 PET薄膜上的厚度为0.5mm,然后把附着有前驱体溶液的PET透明薄膜置于真空干燥箱中,真空干燥箱气压为0.1MPa,温度为30℃,干燥48h,得到CH 3NH 3PbBr 3量子点/PVDF绿光发射复合薄膜。
(3)将制备好的CH 3NH 3PbBr 3量子点/PVDF绿光发射复合薄膜与实施例3中所制备的CsPbI 3量子点/PMMA复合薄膜进行组合,应用到白光LED器件结构中,得到高色域的白光LED器件。
本实施例中使用的CH 3NH 3PbBr 3量子点/PVDF绿光发射复合薄膜材料,根据公开号为WO2016180364A1,发明名称为“钙钛矿/聚合物复合发光材料、制备方法及用途”的发明专利公开的方法合成得到,也可以由北京理工大学提供。
实施例17
以实施例3所制备的γ-CsPbI 3量子点/PMMA复合材料为基础,制备高色域的白光LED发光材料,具体步骤为:
在制备好的γ-CsPbI 3量子点/PMMA复合材料CsPbI 3量子点薄膜一侧涂覆有机胶水,与实施例16中步骤(2)中制备好的CH 3NH 3PbBr 3量子点/PVDF复合薄膜CH 3NH 3PbBr 3量子点薄膜一侧贴合,在50℃烘干1h,使胶水固化,得到红光和绿光双光色发射的复合材料。
实施例18
其余步骤同实施例16,所不同的是CH 3NH 3PbBr 3量子点/PVDF复合薄膜的PET基体一侧与胶水粘贴,烘干后得到红光和绿光双光色发射的复合材料。
实施例19
以实施例3所制备的CsPbI 3量子点/PMMA复合材料为基础,制备高色域的白光LED发光材料,具体步骤为:
将实施例16步骤(1)中制备的前驱体溶液通过旋涂的方法涂覆在制备好的γ-CsPbI 3量子点/PMMA复合材料量子点膜一侧,然后把附着有CH 3NH 3PbBr 3量子点/PVDF复合薄膜前驱体溶液的γ-CsPbI 3量子点/PMMA复合材料薄膜置于真空干燥箱中,真空干燥箱气压为0.1MPa,温度为30℃,干燥48h,得到红光和绿光双光色发射的复合材料。
实施例20
其余步骤同实施例19,所不同的是在CsPbI 3量子点/PMMA复合材料量子点膜一侧涂覆聚碳酸酯(PC)有机溶液,所述溶液的有机溶剂为N,N-二甲基甲酰胺(DMF),有机溶剂与聚碳酸酯(PC)的质量比为1:0.8。将涂覆聚碳酸酯(PC)有机溶液的γ-CsPbI 3量子点/PMMA复合材料置于真空干燥箱中,真空干燥箱气压为0.1MPa,温度为30℃,干燥48h,得到具有聚碳酸酯(PC)薄膜阻隔的γ-CsPbI 3量子点/PMMA复合材料量子点膜。再将实施例18步骤(1)中制备的前驱体溶液通过旋涂的方法涂覆在制备好的γ-CsPbI 3量子点/PMMA复合材料聚碳酸酯(PC)阻隔膜一侧,然后把附着有CH 3NH 3PbBr 3量子点/PVDF复合薄膜前驱体溶液的γ-CsPbI 3量子点/PMMA复合材料薄膜置于真空干燥箱中,真空干燥箱气压为0.1MPa,温度为30℃,干燥48h,得到红光和绿光双光色发射的复合材料。
实施例21
上述复合发光材料还可以应用于LCD显示器件。具体的,参考图11和12。首先,将γ-CsPbI 3量子点/聚合物复合红光薄膜与钙钛矿量子点/聚合物复合绿光薄膜结合,制备出双色(红光和绿光)发光薄膜。再将该双色发光薄膜插入到LCD背光模组的多层膜结构之间,也可以直接将上述复合发光材料涂膜到LCD背光模组中的导光板、扩散膜或棱镜膜的上表面或下表面上,从而可以实现蓝光LED作为光源的高色域LCD背光模组。
实施例22
以实施例3所制备的γ-CsPbI 3量子点/PMMA复合材料为基础,制备液晶显示器(LCD)用高色域的背光源,以42英寸的LCD为例,具体步骤为:
(1)42英寸CsPbI 3量子点/PMMA复合发光薄膜的制备
按照实施例3的实验方案配制所需质量的前驱体溶液,用刮膜机将所述的前驱体溶液均匀转移到对应尺寸的玻璃基板上,控制前驱体溶液的厚度为0.2mm,然后将韩有前驱体溶液的玻璃板置于真空干燥箱中,在0.05MPa、 150℃下烘干6h,取出待用。然后利用膜转移技术将制备的γ-CsPbI 3量子点/PMMA复合发光薄膜转移到LCD背光模组中的导光板、扩散膜或者棱镜膜上,为了缩减工艺,也可以直接将上述前驱体溶液通过刮膜机转移到LCD背光模组的导光板、扩散膜或者棱镜膜上,再通过相同的条件进行干燥,形成一体的发光层。
(2)42英寸CsPbI 3量子点/PMMA发光层的制备
按照实施例3的实验方案配制前驱体溶液,用刮膜机将所述的前驱体溶液均匀转移到基底上,此处使用的基底包括玻璃板或LCD背光模组的导光板、扩散膜、棱镜膜上,控制前驱体溶液的厚度为0.1mm,置于真空干燥箱中,在0.05MPa、150℃下烘干6h,取出得到高发光效率的γ-CsPbI 3量子点/PMMA红光发射复合薄膜。
(3)LCD背光模组的组装
将步骤(1)和(2)中得到的发光膜插入到LCD背光模组中,可以将LCD背光模组的光源替换为蓝光光源。蓝光光源经过导光板后再通过红色发光层和绿色发光层,最后形成红绿蓝三基色复合的白光。
实施例23
本实施例以钙钛矿/聚合物复合发光材料为基础,制备压电器件,具体步骤为:
(1)按照实施例5的实验方案配制前驱体溶液,然后将所述的前驱体溶液均匀涂覆到基底上,此处使用的基底包括ITO导电玻璃或者表面镀金/银的PET、PC柔性聚合物基底。控制前驱体溶液的厚度为0.5mm,置于真空干燥箱中,在0.05MPa、150℃下烘干6h,取出得到高发光效率的γ-CsPbI 3量子点/PMMA红光发射复合薄膜。
(2)在制备的CsPbI 3量子点/PMMA红光发射复合薄膜表面上镀金电极或者银电极,然后在电极上方涂覆一层保护层,得到简易压电器件原型,通过导线将基于复合薄膜的压电器件的两极接到示波器上。
(3)在制备的基于复合薄膜的压电器件上施加周期性的作用力,可以在示波器上看到周期性的脉冲压电信号。
实施例24
以实施例3所制备的γ-CsPbI 3量子点/PMMA复合材料为基础,制备太阳能聚光器,以400平方厘米的聚光器为例,具体步骤为:
(1)400平方厘米γ-CsPbI 3量子点/PMMA复合发光薄膜的制备
按照实施例5的实验方案配制所需质量的前驱体溶液,用刮膜机将所述的前驱体溶液均匀转移到对应尺寸的玻璃基板上,玻璃基板的厚度为2mm,长、宽均为20cm。控制前驱体溶液的厚度为0.2mm,然后将含有前驱体溶液的玻璃板置于真空干燥箱中,在0.05MPa、150℃下烘干6h,取出待用。
(2)聚光器的制备
将步骤(1)中涂覆有γ-CsPbI 3量子点/PMMA复合材料的玻璃板放置于镀膜机中,给玻璃板的三个侧面镀铝,所镀铝膜的厚度为2μm。取出镀完铝的玻璃板,将条状多晶硅太阳能电池板组装到玻璃板未镀铝的侧面。接通太阳能电池板线路,制备出太阳能聚光器。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (34)

  1. 一种钙钛矿纳米材料,其特征在于,所述钙钛矿纳米材料包括γ-CsPbI 3
    所述钙钛矿纳米材料在至少一个维度上的尺寸为2~50nm。
  2. 根据权利要求1所述的钙钛矿材料,其特征在于,所述γ-CsPbI 3为γ-CsPbI 3量子点、γ-CsPbI 3纳米片、γ-CsPbI 3纳米线中的至少一种。
  3. 根据权利要求2所述的钙钛矿纳米材料,其特征在于,所述γ-CsPbI 3量子点为γ-CsPbI 3量子点颗粒;
    所述γ-CsPbI 3量子点颗粒的平均粒径为14nm。
  4. 根据权利要1所述的钙钛矿纳米材料,其特征在于,所述钙钛矿纳米材料的发光峰在600~700nm。
  5. 一种复合发光材料,其特征在于,包括
    基质和钙钛矿纳米材料;
    所述钙钛矿纳米材料选自权利要求1至4任一项所述的钙钛矿纳米材料中的至少一种。
  6. 根据权利要求5所述的复合发光材料,其特征在于,所述钙钛矿纳米材料与所述基质的质量比为1:1~100。
  7. 根据权利要求5所述的复合发光材料,其特征在于,所述基质为聚合物。
  8. 根据权利要求7所述的复合发光材料,其特征在于,所述聚合物选自聚偏氟乙烯、聚偏氟乙烯和三氟乙烯共聚物、聚丙烯腈、聚醋酸乙烯酯、醋酸纤维素、氰基纤维素、聚砜、芳香聚酰胺、聚酰亚胺、聚碳酸酯、聚苯乙烯、聚甲基丙烯酸甲酯中的至少一种。
  9. 根据权利要求5所述的复合发光材料,其特征在于,所述复合发光材料还包括添加剂,所述添加剂分散在所述基质中;
    所述添加剂选自溴化锌、碘化锌、溴化亚锡、碘化亚锡、溴化镉、碘化镉中的至少一种。
  10. 根据权利要求5所述的复合发光材料,其特征在于,所述基质与添加剂的质量比为1:0.001~0.5。
  11. 根据权利要求5所述的复合发光材料,其特征在于,所述复合发光材料还包括表面配体,所述表面配体形成在γ-CsPbI 3的表面;
    所述表面配体含有有机酸、有机酸的卤代物、C 4~C 24有机胺、C 4~C 24有机胺的卤代物中的至少一种。
  12. 根据权利要求11所述的复合发光材料,其特征在于,所述钙钛矿纳米材料与所述表面配体的质量比为1:0.001~1。
  13. 根据权利要求5所述的复合发光材料,其特征在于,所述复合发光材料为复合发光薄膜;
    所述复合发光薄膜的厚度为0.001-5mm。
  14. 权利要求5至13任一项所述的复合发光材料的制备方法,其特征在于,包括以下步骤:
    (1)获得含有基质、钙钛矿前驱体的前驱体溶液;
    (2)将所述前驱体溶液成型,得到所述复合发光材料。
  15. 根据权利要求14所述的复合发光材料的制备方法,其特征在于,步骤(1)中所述前驱体溶液中还含有有机溶剂;
    所述有机溶剂选自N,N-二甲基甲酰胺、二甲基亚砜、三甲基磷酸酯、磷酸三乙酯、N-甲基吡咯烷酮、二甲基乙酰胺中的至少一种。
  16. 根据权利要求14所述的复合发光材料的制备方法,其特征在于,
    步骤(1)包括:
    (s11)获得含有基质的甲溶液;
    (s12)获得含有CsI、PbI 2的乙溶液;
    (s13)将甲溶液和乙溶液混合,得到所述前驱体溶液。
  17. 根据权利要求16所述的复合发光材料的制备方法,其特征在于,所述甲溶液中包括甲溶剂;
    所述乙溶液中包括乙溶剂;
    所述甲溶剂和所述乙溶剂独立地选自N,N-二甲基甲酰胺、二甲基亚砜、三甲基磷酸酯、磷酸三乙酯、N-甲基吡咯烷酮、二甲基乙酰胺中的至少一种。
  18. 根据权利要求16所述的复合发光材料的制备方法,其特征在于,所述甲溶液中,所述基质与所述甲溶剂的质量比为1:1~30;
    乙溶液中,PbI 2和CsI的摩尔比为1:0.1~3;乙溶剂和钙钛矿前驱体的质量比可以为1:0.001~1;
    所述钙钛矿前驱体的质量以PbI 2和CsI的质量和计算;
    步骤(s13)中,所述甲溶液和所述乙溶液的质量比为1:0.02~5。
  19. 根据权利要求16所述的复合发光材料的制备方法,其特征在于,
    所述甲溶液中还含有添加剂;
    所述甲溶液中,所述基质与所述添加剂的质量比为1:0.001~0.5。
  20. 根据权利要求16所述的复合发光材料的制备方法,其特征在于,所述乙溶液中还含有表面配体;
    所述表面配体含有有机酸、有机酸的卤代物、C 4~C 24有机胺、C 4~C 24有机胺的卤代物中的至少一种。
  21. 根据权利要求20所述的复合发光材料的制备方法,其特征在于,所述乙溶液中,PbI 2与CsI的质量之和与表面配体的质量比为1:0.001~1。
  22. 根据权利要求14所述的复合发光材料的制备方法,其特征在于,步骤(2)中所述成型包括:
    将所述前驱体溶液转移至模板上,成型,得到所述复合发光材料。
  23. 根据权利要求14所述的复合发光材料的制备方法,其特征在于,步骤(2)中所述成型包括干燥;
    所述干燥的条件包括:温度80~180℃,时间0.1~48h。
  24. 根据权利要求14所述的复合发光材料的制备方法,其特征在于,
    所述干燥的条件还包括:压力0.01~0.1Mpa。
  25. 一种半导体器件,其特征在于,含有权利要求1至4任一项所述的钙钛矿纳米材料、权利要求5至13任一项所述的复合发光材料、根据权利要求14至24任一项所述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
  26. 根据权利要求25所述的半导体器件,其特征在于,所述半导体器件包括电致发光器件、光致发光器件、太阳能电池、显示器件、传感器件、压电器件、非线性光学器件。
  27. 一种柔性器件,其特征在于,含有权利要求1至4任一项所述的钙钛矿纳米材料、权利要求5至13任一 项所述的复合发光材料、根据权利要求14至24任一项所述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
  28. 根据权利要求26所述的柔性器件,其特征在于,所述柔性器件包括基底、金属阳极、空穴传输层、发光层、电子传输层和金属阴极;
    所述基底含有权利要求1至4任一项所述的钙钛矿纳米材料、权利要求5至13任一项所述的复合发光材料、根据权利要求14至24任一项所述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
  29. 一种双色复合发光材料,其特征在于,包括层叠的绿色发光薄膜和红色发光薄膜;
    所述红色发光薄膜含有权利要求1至4任一项所述的钙钛矿纳米材料、权利要求5至13任一项所述的复合发光材料、根据权利要求14至24任一项所述的复合发光材料的制备方法制备的复合发光材料中的至少一种。
  30. 根据权利要求29所述的双色复合发光材料,其特征在于,所述红色发光薄膜为聚甲基丙烯酸甲酯/γ-CsPbI 3量子点复合薄膜。
  31. 根据权利要求29所述的双色复合发光材料,其特征在于,所述绿色发光薄膜为聚偏氟乙烯/CH 3NH 3PbBr 3量子点复合薄膜。
  32. 一种背光模组,其特征在于,含有权利要求29至31任一项所述的双色复合发光材料中的至少一种。
  33. 一种LCD显示器,其特征在于,含有权利要求29至31任一项所述的双色复合发光材料中的至少一种。
  34. 一种光致发光器件,其特征在于,包括蓝光芯片驱动模组、蓝光芯片散热模组和双色复合发光材料;
    所述双色复合发光材料选自利要求29至31任一项所述的双色复合发光材料中的至少一种。
PCT/CN2019/098998 2019-06-04 2019-08-02 钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用 WO2020244047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910480982 2019-06-04
CN201910480982.1 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020244047A1 true WO2020244047A1 (zh) 2020-12-10

Family

ID=73576247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098998 WO2020244047A1 (zh) 2019-06-04 2019-08-02 钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112029494B (zh)
WO (1) WO2020244047A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061313A (zh) * 2021-03-31 2021-07-02 华中科技大学 一种柔性钙钛矿闪烁体厚膜及其制备方法
CN114437720A (zh) * 2022-01-10 2022-05-06 西安建筑科技大学 一种无溶剂无配体球磨法制备高稳定性CsPbBr3量子点的方法
CN114702949A (zh) * 2022-04-06 2022-07-05 中国矿业大学 一种钙钛矿量子点-高分子复合薄膜及其制备方法
CN114736679A (zh) * 2022-04-27 2022-07-12 中国石油大学(华东) 一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体
CN114891504A (zh) * 2022-05-12 2022-08-12 兰州大学 锶掺杂钙钛矿量子点/介孔二氧化硅复合材料及其制备
CN115181300A (zh) * 2022-07-11 2022-10-14 陕西师范大学 一种金属基分子钙钛矿/聚合物复合薄膜及其制备方法和应用
CN115850980A (zh) * 2022-11-22 2023-03-28 厦门华厦学院 一种温度传感材料及其制备方法和应用
CN116004226A (zh) * 2021-10-21 2023-04-25 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 复合钙钛矿量子点材料、钙钛矿量子点组合物及其制备方法和应用
TWI803049B (zh) * 2021-11-11 2023-05-21 國立雲林科技大學 奈米結構修飾之有機元件製造方法及其結構

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683808B (zh) * 2021-07-29 2022-05-24 华南理工大学 金属卤化物钙钛矿-聚碳酸酯复合荧光薄膜及其制法和用途
CN115991887A (zh) * 2021-10-19 2023-04-21 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种光转换薄膜及其制备方法和显示器件
CN114530754B (zh) * 2022-01-17 2023-11-03 太原理工大学 一种高散热钙钛矿纳米片激光器及其制备方法
CN114561206B (zh) * 2022-02-17 2023-10-13 南方科技大学 一种荧光复合材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987613A (zh) * 2018-07-06 2018-12-11 致晶科技(北京)有限公司 钙钛矿量子点阵列的制备方法
CN108977199A (zh) * 2018-08-06 2018-12-11 东北师范大学 钙钛矿量子点-聚合物复合膜及其制备方法
US20190093010A1 (en) * 2016-04-22 2019-03-28 The Trustees Of Princeton University Organic-inorganic hybrid perovskite nanocrystals and methods of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190093010A1 (en) * 2016-04-22 2019-03-28 The Trustees Of Princeton University Organic-inorganic hybrid perovskite nanocrystals and methods of making the same
CN108987613A (zh) * 2018-07-06 2018-12-11 致晶科技(北京)有限公司 钙钛矿量子点阵列的制备方法
CN108977199A (zh) * 2018-08-06 2018-12-11 东北师范大学 钙钛矿量子点-聚合物复合膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOYA ZHAO, JIN SHI-FENG, HUANG SHENG, LIU NING, MA JING-YUAN, XUE DING-JIANG, HAN QIWEI, DING JIE, GE QIAN-QING, FENG YAQING, HU J: "Thermodynamically Stable Orthorhombic γ-CsPbI3 Thin Films for High-Performance Photovoltaics", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 140, no. 37, 28 August 2018 (2018-08-28), pages 11716 - 11725, XP055764611, ISSN: 0002-7863, DOI: 10.1021/jacs.8b06050 *
PASCAL BECKER, MÁRQUEZ JOSÉ A., JUST JUSTUS, AL‐ASHOURI AMRAN, HAGES CHARLES, HEMPEL HANNES, JOŠT MARKO, ALBRECHT STEVE, FRAHM RON: "Low Temperature Synthesis of Stable γ-CsPbI3 Perovskite Layers for Solar Cells Obtained by High Throughput Experimentation", ADVANCED ENERGY MATERIALS, vol. 9, no. 22, 26 April 2019 (2019-04-26), pages 1 - 8, XP055764614, ISSN: 1614-6832, DOI: 10.1002/aenm.201900555 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061313A (zh) * 2021-03-31 2021-07-02 华中科技大学 一种柔性钙钛矿闪烁体厚膜及其制备方法
CN116004226B (zh) * 2021-10-21 2023-12-15 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 复合钙钛矿量子点材料、钙钛矿量子点组合物及其制备方法和应用
CN116004226A (zh) * 2021-10-21 2023-04-25 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 复合钙钛矿量子点材料、钙钛矿量子点组合物及其制备方法和应用
TWI803049B (zh) * 2021-11-11 2023-05-21 國立雲林科技大學 奈米結構修飾之有機元件製造方法及其結構
CN114437720A (zh) * 2022-01-10 2022-05-06 西安建筑科技大学 一种无溶剂无配体球磨法制备高稳定性CsPbBr3量子点的方法
CN114437720B (zh) * 2022-01-10 2023-10-31 西安建筑科技大学 一种无溶剂无配体球磨法制备高稳定性CsPbBr3量子点的方法
CN114702949A (zh) * 2022-04-06 2022-07-05 中国矿业大学 一种钙钛矿量子点-高分子复合薄膜及其制备方法
CN114702949B (zh) * 2022-04-06 2024-02-27 中国矿业大学 一种钙钛矿量子点-高分子复合薄膜及其制备方法
CN114736679A (zh) * 2022-04-27 2022-07-12 中国石油大学(华东) 一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体
CN114891504A (zh) * 2022-05-12 2022-08-12 兰州大学 锶掺杂钙钛矿量子点/介孔二氧化硅复合材料及其制备
CN115181300A (zh) * 2022-07-11 2022-10-14 陕西师范大学 一种金属基分子钙钛矿/聚合物复合薄膜及其制备方法和应用
CN115181300B (zh) * 2022-07-11 2024-03-22 陕西师范大学 一种金属基分子钙钛矿/聚合物复合薄膜及其制备方法和应用
CN115850980A (zh) * 2022-11-22 2023-03-28 厦门华厦学院 一种温度传感材料及其制备方法和应用
CN115850980B (zh) * 2022-11-22 2024-04-05 厦门华厦学院 一种温度传感材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112029494A (zh) 2020-12-04
CN112029494B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2020244047A1 (zh) 钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用
WO2020244046A1 (zh) 一种复合发光材料、其制备方法及其应用
JP6919915B2 (ja) ペロブスカイト/ポリマー複合発光材料、製造方法及び用途
Li et al. Perovskite quantum dots for light-emitting devices
Zhou et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells
Wang et al. Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes
Yu et al. A MAPbBr 3: poly (ethylene oxide) composite perovskite quantum dot emission layer: enhanced film stability, coverage and device performance
TW201930549A (zh) 鈣鈦礦量子點、其製備方法以及包含其之量子點膜
Yang et al. Blue emitting CsPbBr 3 perovskite quantum dot inks obtained from sustained release tablets
Shi et al. Zn-derived ligand engineering towards stable and bright CsPbI 3 nanocrystals for white emitting
Li et al. Hexamethyldisilazane-triggered room temperature synthesis of hydrophobic perovskite nanocrystals with enhanced stability for light-emitting diodes
Yang et al. Short-chain ligand assisted synthesis of CH3NH3PbX3 (X= Cl, Br, I) perovskite quantum dots and improved morphology of CH3NH3PbBr3 thin films
Yang et al. In situ tetrafluoroborate-modified MAPbBr 3 nanocrystals showing high photoluminescence, stability and self-assembly behavior
Fang et al. Controllable growth of two-dimensional perovskite microstructures
Bi et al. Highly Stable and Moisture-Immune Monocomponent White Perovskite Phosphor by Trifluoromethyl (-CF3) Regulation
Sun et al. Pure bromide-based inorganic perovskite sky-blue light-emitting diodes through phase control by the NiO x anode interface
CN115637426A (zh) 一种化学浴沉积介孔二氧化锡薄膜的方法
CN109994655A (zh) 复合量子点、量子点固态膜及其应用
CN110776000A (zh) 一种全无机钙钛矿纳米晶及其制备方法和在半导体器件上的应用
Zang et al. All-inorganic perovskite quantum dots: Ligand modification, surface treatment and other strategies for enhanced stability and durability
CN117684274A (zh) 一种低维钙钛矿单晶材料及其制备方法和应用
Zhang et al. One-Step Extrusion Preparation for Low-Cost Multicolored Carbon Dot Fluorescent Films
JP2024075070A (ja) ペロブスカイトナノ結晶の製造方法、ペロブスカイトナノ結晶および光電変換デバイス
Song et al. Metal Halide Perovskite-Based Phosphors and Their Applications in LEDs
CN116623271A (zh) 一种mPhDMADPbI4二维钙钛矿单晶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931826

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19931826

Country of ref document: EP

Kind code of ref document: A1