CN114736679A - 一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体 - Google Patents

一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体 Download PDF

Info

Publication number
CN114736679A
CN114736679A CN202210448805.7A CN202210448805A CN114736679A CN 114736679 A CN114736679 A CN 114736679A CN 202210448805 A CN202210448805 A CN 202210448805A CN 114736679 A CN114736679 A CN 114736679A
Authority
CN
China
Prior art keywords
ball milling
cspbbr
cspb
blue
pmma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210448805.7A
Other languages
English (en)
Inventor
白又如
张腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202210448805.7A priority Critical patent/CN114736679A/zh
Publication of CN114736679A publication Critical patent/CN114736679A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体的制备方法,并与聚甲基丙烯酸甲酯(PMMA)复合,制备了高稳定性的全无机钙钛矿量子点和钙钛矿纳米晶体,属于光电材料领域。首先以PbBr2、CsBr粉末和油胺为原材料,在球磨的方法下制备了全无机双相CsPbBr3–CsPb2Br5纳米晶体,然后用甲苯作为洗剂,在超声、离心处理后得到均匀分散的量子点溶液。通过使用PMMA封装的方式,可获得较为稳定的双相CsPbBr3–CsPb2Br5量子点溶液。该发明原料来源广,制备过程简单,突破了纳米晶体单发射峰的限制,具有良好的前景和发展价值。

Description

一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3– CsPb2Br5纳米晶体
技术领域
本发明属于发光显示材料领域,具体涉及一种基于球磨法制备的具有蓝绿光双峰的双相 CsPbBr3–CsPb2Br5纳米晶体的制备方法。
背景技术
胶体钙钛矿纳米晶体(NCs),尤其是全无机卤化铯铅(CsPbX3,X=Cl,Br,I)NCs,由于其窄带发射、可调谐带隙和高光致发光量子产率(QYs)等优点使其在固态照明和显示领域具有巨大的应用潜力,被认为是照明和显示应用最有希望的候选材料。然而,阴离子交换总是发生在不同的卤化物离子之间;因此,在钙钛矿NCs中很难直接实现多色发射和白光发射。从而限制了其实际光电应用。
此外,环境中氧气、水分、热量和光照的存在可能会极大地影响未受保护的PQD的稳定性,导致发光效率降低,甚至完全猝灭。在这方面,已经做出了许多努力来解决这个问题,主要集中在以下几个方面:1)结构调整;2)表面工程;3)矩阵封装;和4)设备封装。尽管已经在制定各种策略以实现高稳定的PQD方面做出了巨大努力,但在基础研究和工业要求之间仍然存在差距。有研究表明,通过将预制PQD与介孔硅(MP)、交联聚苯乙烯(PS) 珠或超疏水多孔有机聚合物框架(SHFW)混合,基于CsPbBr3 PQDs的复合材料的制备,具有更好的水分稳定性。然而,通过上述方法生产的PQD需要繁琐的预合成步骤,例如纯化和去除反应中使用的大量有机溶剂和长链配体,这可能会对钙钛矿纳米材料的发光性能产生不利影响。此外,PQD的分离和纯化对其在涂层基体中的分散性产生很大影响,导致PQD颗粒团聚。这显著降低了复合材料的PLQY和光学透射率,恶化了相关WLEDs设备的性能特征。因此,找到一种简便、合理的封装方法来抵抗环境中氧气、水分、热量和光照对材料发光性能的影响也是目前研究的重中之重。
为解决以上提出的问题,我们创新地以球磨法为制备方法,一方面可以减少制备过程中的水热损耗,缩短制备时间;另一方面制备出了具有双峰(蓝色峰460nm,绿色峰510nm) 的发光材料。该复合材料原料来源广,制备方法简单,稳定性高,可大规模制备,对发光二极管(LED)、太阳能电池、激光器和其他光电子应用具有重要意义。在未来的照明显示和防伪方面有着广泛的应用前景。
发明内容
本发明提供了一种具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体的制备方法,并通过与聚甲基丙烯酸甲酯(PMMA)复合,经过常温搅拌处理制备成具有蓝绿光双峰发射的全无机钙钛矿量子点,在光电子应用领域具有重要意义。在制造白色LED方面具有潜在的应用前景。
制备蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体的详细过程如下:
(1)按照摩尔比为1:1的比例称取PbBr2和CsBr粉末0.5mol,与球磨球一起加入球磨罐中,密封好后放入球磨仪,在700r/h的转速下球磨30min,得到混合均匀的粉末。
(2)步骤(1)结束后,取出球磨罐,向罐中加入0.5ml油胺,密封好放入球磨仪,以700r/h 的转速球磨30min,得到被油胺充分包覆的粉末。
(3)步骤(2)结束后,取出球磨罐,向罐中加入8ml甲苯充分冲洗罐中产物,并收集在干净的玻璃瓶中。
(4)将装有产物甲苯溶液的玻璃瓶超声三次,单次10min,使产物均匀地分散在甲苯溶液中。 (5)将超声后的溶液转移至离心管中,离心10min,得到带有明显青色荧光的上清液和黄色的下层沉淀。
(6)将步骤(5)中上清液收集,并将离心管口用皮筋封上卫生纸,放入真空干燥箱,以60℃的温度烘干12h。
(7)将步骤(6)中收集的上清液按照任意比例加入PMMA的二氯甲烷溶液(PMMA:二氯甲烷=1:1),获得被PMMA封装的耐氧气、水分、热量和光照的,稳定的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5量子点溶液。
(8)将步骤(6)所得干燥后的产物转入玛瑙研钵,充分研磨约15分钟,得到具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体。
由上述过程所制备的全无机钙钛矿量子点及纳米晶体相较于热注入法等方法制备的材料,有明显不同的双峰发光。而经过聚甲基丙烯酸甲酯(PMMA)材料封装后,量子点在空气气氛、光照、高温条件下的稳定性进一步提升。PLQY在60天内保持在初始值的90%以上,并在100℃高温下表现出良好的热稳定性。现阶段有研究表明,与使用单相CsPbBr3 NCs作为发光体的器件相比,基于双相CsPbBr3–CsPb2Br5 NC薄膜的PELED器件会表现出更高的EQE和更长的工作寿命,从而增强了性能。
本发明提出的球磨法制备,以低水热损耗的制备方法,节省时间与原料,得到具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体。通过以聚甲基丙烯酸甲酯(PMMA)材料封装,有效提高了材料的热稳定性和发光稳定性。得到性能优异的双发光峰材料。
附图说明
图1为双相CsPbBr3–CsPb2Br5纳米晶体在不同球磨球尺寸、数量下球磨得到的材料的上清液在日光下(a)和365nm紫外灯(b)照射下的照片。
图2为双相CsPbBr3–CsPb2Br5纳米晶体在不同球磨球尺寸、数量下球磨得到的材料的荧光光谱。
图3色坐标图,在色度图上确定一个点,可以精确表示发光颜色。图中黑点标注部分即本发明材料的实际颜色及其色坐标。
图4为双相CsPbBr3–CsPb2Br5纳米晶体在不同球磨球尺寸、数量下球磨得到的材料的 XRD图谱。其衍射图形与正交CsPbBr3的衍射图基本一致,在11.8°处出现了一个额外的峰,对应于四方CsPb2Br5的(002)面衍射。
图5为双相CsPbBr3–CsPb2Br5纳米晶体的典型TEM图像(a)和高分辨率TEM图像(b),展示了四方CsPb2Br5和正交CsPbBr3的晶体结构。
图6为由PMMA封装的双相CsPbBr3–CsPb2Br5量子点涂片在空气气氛下的稳定性测试 (60天内)。
具体实施方式
下面结合附图和实施例来详细描述本发明。
按照摩尔比为1:1的比例称取PbBr2和CsBr粉末0.5mol,与球磨球一起加入球磨罐中,密封好后放入球磨仪,在700r/h的转速下球磨30min,得到混合均匀的粉末。结束后,取出球磨罐,向罐中加入0.5ml油胺,密封好放入球磨仪,以700r/h的转速球磨30min,得到被油胺充分包覆的粉末。之后,取出球磨罐,向罐中加入8ml甲苯充分冲洗罐中产物,并收集在干净的玻璃瓶中。对比图1(a)和图1(b)可见,经过不同数量和尺寸球磨出的材料,在日光和365nm紫外灯照射下颜色也显示出不同的差别。这一差别从图2样品的荧光光谱峰位及峰强上也得到印证。这之后,将装有产物甲苯溶液的玻璃瓶超声三次,单次10min,使产物均匀地分散在甲苯溶液中。将超声后的溶液转移至离心管中,离心10min,得到带有明显青色荧光的上清液和黄色的下层沉淀。将上清液收集,上清液显示颜色如图1。与图2荧光光谱测试的结果结合可知,上清液颜色近似青色,具体色坐标在图3的黑点处标明。将分离上清液后的离心管管口用皮筋封上卫生纸,放入真空干燥箱,以60℃的温度烘干12h。之后从真空干燥箱内取出离心管,待其冷却至室温后将所得干燥后的产物转入玛瑙研钵,充分研磨约15分钟,得到具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体。
PMMA封装薄膜制作方法:将收集的上清液按照一定比例加入PMMA的二氯甲烷溶液(PMMA:二氯甲烷=1:1),获得被PMMA封装的耐氧气、水分、热量和光照的,稳定的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5量子点溶液。将溶液以1000r的转速旋涂在玻璃片上,获得被PMMA封装的钙钛矿量子点薄膜。图5表明经这种方式封装的量子点发光稳定性有很强的提升,在60天内可保持初始量子产率的90%以上。

Claims (1)

1.一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体,其具体制备过程为:
(1)按照摩尔比为1:1的比例称取PbBr2和CsBr粉末0.5mol,与球磨球一起加入球磨罐中,密封好后放入球磨仪,在700r/h的转速下球磨30min,得到混合均匀的粉末。
(2)步骤(1)结束后,取出球磨罐,向罐中加入0.5ml油胺,密封好放入球磨仪,以700r/h的转速球磨30min,得到被油胺充分包覆的粉末。
(3)步骤(2)结束后,取出球磨罐,向罐中加入8ml甲苯充分冲洗罐中产物,并收集在干净的玻璃瓶中。
(4)将装有产物甲苯溶液的玻璃瓶超声三次,单次10min,使产物均匀地分散在甲苯溶液中。
(5)将超声后的溶液转移至离心管中,离心10min,得到带有明显青色荧光的上清液和黄色的下层沉淀。
(6)将步骤(5)中上清液收集,并将离心管口用皮筋封上卫生纸,放入真空干燥箱,以60℃的温度烘干12h。
(7)将步骤(6)中收集的上清液按照任意比例加入PMMA的二氯甲烷溶液(PMMA:二氯甲烷=1:1),获得被PMMA封装的耐氧气、水分、热量和光照的,稳定的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5量子点溶液。
(8)将步骤(6)所得干燥后的产物转入玛瑙研钵,充分研磨约15分钟,得到具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体。
由上述过程制备的双相CsPbBr3–CsPb2Br5纳米晶体同时具有蓝光发射峰(波长在460nm左右)和绿光发射峰(波长在510nm左右),并且通过控制溶液中双相CsPbBr3–CsPb2Br5纳米晶体的含量可实现溶液荧光强弱的改变。此外,环境中氧气、水分、热量和光照的存在可能会极大地影响未受保护的PQD的稳定性,导致发光效率降低,甚至完全猝灭。本发明通过使用PMMA封装的方式,可获得较为稳定的双相CsPbBr3–CsPb2Br5量子点溶液。该发明原料来源广,制备过程简单,突破了纳米晶体单发射峰的限制,具有良好的前景和发展价值。
CN202210448805.7A 2022-04-27 2022-04-27 一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体 Pending CN114736679A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210448805.7A CN114736679A (zh) 2022-04-27 2022-04-27 一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210448805.7A CN114736679A (zh) 2022-04-27 2022-04-27 一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体

Publications (1)

Publication Number Publication Date
CN114736679A true CN114736679A (zh) 2022-07-12

Family

ID=82282774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210448805.7A Pending CN114736679A (zh) 2022-04-27 2022-04-27 一种基于球磨法制备的具有蓝绿光双峰的双相CsPbBr3–CsPb2Br5纳米晶体

Country Status (1)

Country Link
CN (1) CN114736679A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106675559A (zh) * 2016-12-27 2017-05-17 南京理工大学 一种球磨制备高稳定性钙钛矿复合材料荧光粉的方法
CN111849478A (zh) * 2020-07-20 2020-10-30 南开大学 一种新型磁性荧光双功能纳米材料的制备方法
WO2020244047A1 (zh) * 2019-06-04 2020-12-10 致晶科技(北京)有限公司 钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用
CN112442363A (zh) * 2020-11-10 2021-03-05 厦门理工学院 一种全无机钙钛矿纳米晶体及其伪包晶合成方法
CN113683118A (zh) * 2021-09-01 2021-11-23 郑州大学 一种利用高能球磨的方法制备全无机钙钛矿纳米晶的工艺
CN113817467A (zh) * 2021-10-28 2021-12-21 江南大学 一种球磨制备掺杂双钙钛矿荧光粉的方法
US20220102634A1 (en) * 2020-09-28 2022-03-31 Samsung Electronics Co., Ltd. Method of preparing light-emitting material, light-emitting material prepared by method, and light-emitting device including light-emitting material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106675559A (zh) * 2016-12-27 2017-05-17 南京理工大学 一种球磨制备高稳定性钙钛矿复合材料荧光粉的方法
WO2020244047A1 (zh) * 2019-06-04 2020-12-10 致晶科技(北京)有限公司 钙钛矿纳米材料、含有其的复合发光材料及其制备方法和应用
CN111849478A (zh) * 2020-07-20 2020-10-30 南开大学 一种新型磁性荧光双功能纳米材料的制备方法
US20220102634A1 (en) * 2020-09-28 2022-03-31 Samsung Electronics Co., Ltd. Method of preparing light-emitting material, light-emitting material prepared by method, and light-emitting device including light-emitting material
CN112442363A (zh) * 2020-11-10 2021-03-05 厦门理工学院 一种全无机钙钛矿纳米晶体及其伪包晶合成方法
CN113683118A (zh) * 2021-09-01 2021-11-23 郑州大学 一种利用高能球磨的方法制备全无机钙钛矿纳米晶的工艺
CN113817467A (zh) * 2021-10-28 2021-12-21 江南大学 一种球磨制备掺杂双钙钛矿荧光粉的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ELISABETTA FANIZZA ET AL.,: "CsPbBr3 Nanocrystals-Based Polymer Nanocomposite Films: Effect of Polymer on Spectroscopic Properties and Moisture Tolerance", 《ENERGIES》 *
FRANCISCO PALAZON ETAL.,: "Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence", 《J. MATER. CHEM. C》 *
GOYAL ET AL.,: "Mechanochemical synthesis of stable, quantum-confined CsPbBr3 perovskite nanocrystals with blue-green emission and high PLQY", 《J. PHYS. MATER.》 *
董宇辉等: "BN/CsPbX3复合纳米晶的制备及其白光 LED 应用", 《无机材料学报》 *

Similar Documents

Publication Publication Date Title
Yuan et al. CsPbBr 3: x Eu 3+ perovskite QD borosilicate glass: a new member of the luminescent material family
Pang et al. Precipitating CsPbBr 3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays
Wang et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability
Jiang et al. Ultrastability and color-tunability of CsPb (Br/I) 3 nanocrystals in P–Si–Zn glass for white LEDs
CN108034418B (zh) 一种全无机铅卤钙钛矿纳米复合发光材料及制备方法和应用
Zheng et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability
Wang et al. Solid-state fluorescent carbon dots: quenching resistance strategies, high quantum efficiency control, multicolor tuning, and applications
Yang et al. Lead oxide enables lead volatilization pollution inhibition and phase purity modulation in perovskite quantum dots embedded borosilicate glass
Yuan et al. Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs
Yin et al. Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes
Zhang et al. Suppressing thermal quenching of lead halide perovskite nanocrystals by constructing a wide-bandgap surface layer for achieving thermally stable white light-emitting diodes
Liu et al. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering
CN112680213A (zh) 一种正硅酸乙酯包覆的钙钛矿纳米晶的制备方法
CN113845142B (zh) 一种铯铅碘钙钛矿纳米晶及其制备方法和应用
Chen et al. Red C-dots and C-dot films: solvothermal synthesis, excitation-independent emission and solid-state-lighting
Cheng et al. Water-assisted synthesis of highly stable CsPbX 3 perovskite quantum dots embedded in zeolite-Y
CN103275715B (zh) 一种稀土钼酸盐基质红色纳米荧光粉的制备方法
Jiang et al. Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles
CN114410304A (zh) 一种新型稀土基无铅钙钛矿纳米晶材料及其制备方法与应用
Liu et al. A novel phosphor of Cu+-doped PbBrOH: preparation, luminescence mechanism, and outstanding properties
Babeker et al. Preparation and photoluminescence properties of perovskite Cs4PbBr6/CsPbBr3 quantum dots integrated into lithium-borosilicate glass
Lian et al. In situ synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices
Li et al. Strongly quantum-confined Mn 2+-doped CsPbBr 3 nanocrystals in MCM-41 with pure blue emission
Zhao et al. Continuous synthesis of all-inorganic low-dimensional bismuth-based metal halides Cs 4 MnBi 2 Cl 12 from reversible precursors Cs 3 BiCl 6 and Cs 3 Bi 2 Cl 9 under phase engineering
Ding et al. Tunable morphologies, multicolor properties and applications of RE 3+ doped NaY (MoO 4) 2 nanocrystals via a facile ligand-assisted reprecipitation process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220712