WO2020241501A1 - 硬化性樹脂組成物およびその硬化物 - Google Patents
硬化性樹脂組成物およびその硬化物 Download PDFInfo
- Publication number
- WO2020241501A1 WO2020241501A1 PCT/JP2020/020310 JP2020020310W WO2020241501A1 WO 2020241501 A1 WO2020241501 A1 WO 2020241501A1 JP 2020020310 W JP2020020310 W JP 2020020310W WO 2020241501 A1 WO2020241501 A1 WO 2020241501A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- meth
- resin composition
- parts
- acrylate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/006—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
- C08F283/008—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F285/00—Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
Definitions
- the present disclosure relates to a curable resin composition and a cured product thereof.
- the cured resin layer is integrally laminated.
- the liquid surface of the liquid photocurable resin composition contained in the container is irradiated with light such as an ultraviolet laser to determine a predetermined value.
- a cured resin layer having a desired pattern in thickness is formed.
- the photocurable resin composition is supplied onto the cured resin layer, and light is irradiated in the same manner to laminate and form a new cured resin layer bonded to the previously formed cured resin layer.
- the stereolithography method is being applied to the modeling of prototypes for shape confirmation (rapid prototyping), the modeling of working models for functional verification, and the modeling of molds (rapid touring). Furthermore, in recent years, the use of stereolithography has begun to expand to the modeling of actual products (rapid manufacturing).
- a photocurable resin composition capable of forming a three-dimensional model having high impact resistance comparable to that of general-purpose engineering plastics and high heat resistance that does not deform even at a relatively high temperature is available. It has been demanded. Further, in addition to the above, low water absorption that exhibits high dimensional stability even in a high humidity environment is required.
- Patent Document 1 and Patent Document 2 disclose an optical three-dimensional modeling resin composition containing a urethane (meth) acrylate, an ethylenically unsaturated compound having a radically polymerizable group, rubber particles, and a radical polymerization initiator. ing.
- An object of the present disclosure is to provide a curable resin composition capable of obtaining a cured product having low water absorption and excellent impact resistance and heat resistance.
- the curable resin composition according to the present disclosure includes a polyfunctional urethane (meth) acrylate (A) having at least two (meth) acryloyl groups and at least two urethane groups in the molecule, and one in the molecule.
- the content of the rubber particles (D) containing the radical polymerization initiator (E) and the radical polymerization initiator (D) is 8 parts by mass or more and 50 parts by mass with respect to a total of 100 parts by mass of the radically polymerizable compound not containing the (D). It is characterized in that it is not more than a part by mass.
- the present embodiment an embodiment of the present invention (hereinafter, also referred to as “the present embodiment”) will be described.
- the embodiments described below are merely one of the present embodiments, and the present invention is not limited to these embodiments.
- the polyfunctional urethane (meth) acrylate (A) contained in the curable composition of the present embodiment is a urethane (meth) acrylate having at least two (meth) acryloyl groups and at least two urethane groups in the molecule. Is.
- the polyfunctional urethane (meth) acrylate (A) includes, for example, a compound obtained by reacting a hydroxyl group-containing (meth) acrylate compound with a polyvalent isocyanate compound, or an isocyanate group-containing (meth) acrylate compound and a polyol compound. Those obtained by reacting with a compound can be used. In addition, a compound obtained by reacting a hydroxyl group-containing (meth) acrylate compound, a multivalent isocyanate compound, and a polyol compound can be used. Of these, from the viewpoint of achieving high impact resistance, a compound obtained by reacting a hydroxyl group-containing (meth) acrylate compound, a multivalent isocyanate compound, and a polyol compound is preferable.
- hydroxyl group-containing (meth) acrylate-based compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
- Hydroxyalkyl (meth) acrylates such as 6-hydroxyhexyl (meth) acrylates, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalate, caprolactone-modified 2-hydroxyethyl (meth) acrylates.
- polyvalent isocyanate-based compound examples include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylenedi isocyanate, and naphthalene diisocyanate.
- aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylenedi isocyanate, and naphthalene diisocyanate.
- polyol compound examples include polyether-based polyols, polyester-based polyols, polycarbonate-based polyols, polyolefin-based polyols, polybutadiene-based polyols, (meth) acrylic-based polyols, polysiloxane-based polyols, and the like. These polyol compounds may be used alone or in combination of two or more.
- polyether polyol examples include alkylene structure-containing polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block co-weights of these polyalkylene glycols. Coalescence is mentioned.
- the polyester-based polyol includes, for example, three types of components: a condensation polymer of a polyhydric alcohol and a polyvalent carboxylic acid, a ring-opening polymer of a cyclic ester (lactone), a polyhydric alcohol, a polyvalent carboxylic acid, and a
- polyhydric alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, and 2-methyl-1,3-tri.
- Methylenediol 1,5-pentamethylenediol, neopentyl glycol, 1,6-hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, glycerin , Trimethylol propane, trimethylol ethane, cyclohexanediols (1,4-cyclohexanediol, etc.), bisphenols (bisphenol A, etc.), sugar alcohols (xylitol, sorbitol, etc.) and the like.
- polyvalent carboxylic acid examples include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecandioic acid, 1,4.
- aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecandioic acid, 1,4.
- alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, and aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid and trimellitic acid.
- cyclic ester examples include propiolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone and the like.
- polycarbonate-based polyol examples include a reaction product of a polyhydric alcohol and phosgene, a ring-opening polymer of a cyclic carbonate ester (alkylene carbonate, etc.), and the like.
- polyhydric alcohol as the polycarbonate-based polyol examples include the polyhydric alcohol exemplified in the description of the polyester-based polyol, and examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, and hexa. Methylene carbonate and the like can be mentioned.
- the polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxyl group at the end, and may have an ester bond together with the carbonate bond.
- the weight average molecular weight of the polyfunctional urethane (meth) acrylate (A) of the curable resin composition of the present embodiment is preferably 1000 or more and 60,000 or less. More preferably, it is 2000 or more and 50,000 or less. When the weight average molecular weight is 1000 or more, the impact resistance of the cured product tends to increase remarkably as the crosslink density decreases, which is preferable. If the weight average molecular weight is larger than 60,000, the viscosity of the curable composition tends to increase and it tends to be difficult to handle, which is not preferable.
- the weight average molecular weight (Mw) of the polyfunctional urethane (meth) acrylate (A) is the weight average molecular weight converted to the standard polystyrene molecular weight, and is high performance liquid chromatography (high performance GPC apparatus "HLC-8220 GPC” manufactured by Tosoh Corporation). It is measured by using two series of columns: Shodex GPCLF-804 (exclusion limit molecular weight: 2 ⁇ 10 6 , separation range: 300 to 2 ⁇ 10 6 ).
- the radically polymerizable functional group equivalent of the polyfunctional urethane (meth) acrylate (A) is preferably 400 g / eq or more.
- the radically polymerizable functional group equivalent is a value indicating the molecular weight per radically polymerizable functional group.
- the impact resistance tends to decrease as the crosslink density increases, which is not preferable.
- the content of the polyfunctional urethane (meth) acrylate (A) in the curable resin composition of the present embodiment is 100 parts by mass in total of the polyfunctional urethane (meth) acrylate (A) and other radically polymerizable compounds. On the other hand, it is preferably 5 parts by mass or more and 70 parts by mass or less. More preferably, it is 10 parts by mass or more and 60 parts by mass or less.
- the content of the polyfunctional urethane (meth) acrylate (A) is within the above range, it is possible to achieve both high impact resistance and heat resistance. If the content of the polyfunctional urethane (meth) acrylate (A) is less than 5 parts by mass, the impact resistance tends to decrease.
- the content of the polyfunctional urethane (meth) acrylate is more than 70 parts by mass, the heat resistance tends to decrease and the viscosity of the resin composition tends to be higher than the range suitable for the material of the stereolithography method.
- the hydrophilic monofunctional radical-polymerizable compound (B) contained in the curable resin composition of the present embodiment is a compound having one radical-polymerizable functional group in the molecule and exhibiting water solubility.
- the hydrophilic monofunctional radical polymerizable compound refers to a compound having a solubility in water of 2.5 [g / 100 g] or more.
- the solubility in water represents the amount of the hydrophilic monofunctional radically polymerizable compound (B) that can be dissolved in 100 g of water at 25 ° C.
- the hydrophilic monofunctional radically polymerizable compound (B) may be simply referred to as the compound (B).
- Examples of the radically polymerizable functional group include ethylenically unsaturated groups.
- examples of the ethylenically unsaturated group include a (meth) acryloyl group and a vinyl group.
- a (meth) acryloyl group means an acryloyl group or a methacryloyl group.
- hydrophilic monofunctional radically polymerizable compound (B) having a (meth) acryloyl group examples include a hydrophilic monofunctional acrylamide compound and a hydrophilic monofunctional (meth) acrylate compound.
- hydrophilic monofunctional acrylamide compounds include (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-methylol (meth) acrylamide, diacetone (meth) acrylamide, N, N.
- hydrophilic monofunctional acrylamide compounds include (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-methylol (meth) acrylamide, diacetone (meth) acrylamide, N, N.
- hydrophilic monofunctional acrylamide compounds include (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-methylol (meth) acrylamide, diacetone (meth) acrylamide, N, N.
- examples thereof include -dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide,
- hydrophilic monofunctional (meth) acrylate-based compound examples include (meth) acrylic acid, methyl acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydrokipropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. , 4-Hydroxybutyl (meth) acrylate, dimethylaminomethyl (meth) acrylate, 2-hydroxyethyl (meth) acryloyl phosphate, methoxypolyethylene glycol methacrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N- Diethylaminoethyl (meth) acrylate, and the like.
- examples of the hydrophilic monofunctional radically polymerizable compound having a vinyl group include vinyl acetate and a hydrophilic N-vinyl compound.
- examples of the hydrophilic N-vinyl compound include N-vinylpyrrolidone, N-vinylcaprolactam, and N-vinylacetamide.
- hydrophilic monofunctional radically polymerizable compound other than the above examples include styrene derivatives such as styrene sulfonic acid and salts thereof, and vinyl cyanide compounds such as (meth) acrylonitrile.
- hydrophilic monofunctional radical polymerizable compounds may be used alone or in combination of two or more.
- the preferable range of the content of the hydrophilic monofunctional radically polymerizable compound (B) in the curable resin composition of the present embodiment is the hydrophilic monofunctional radically polymerizable compound (B).
- the solubility of the hydrophilic monofunctional radical polymerizable compound (B) in water is 20 [g / 100 g] or more, the content thereof is preferably 55 parts by mass with respect to 100 parts by mass in total with the radically polymerizable compound. It is less than or equal to, more preferably 50 parts by mass or less.
- the content of the hydrophilic monofunctional radical polymerizable compound having a solubility in water of 20 [g / 100 g] or more is more than 55 parts by mass, the water absorption rate of the cured product of the curable resin composition becomes high. Therefore, when exposed to a high humidity environment, water is absorbed and the dimensional change tends to exceed the permissible range.
- the solubility of the hydrophilic monofunctional radical polymerizable compound (B) in water is less than 20 [g / 100 g]
- the content in the curable resin composition is 100 parts by mass in total with the radically polymerizable compound. On the other hand, it is preferably 65 parts by mass or less, and more preferably 60 parts by mass or less.
- the curable resin composition contains, as the hydrophilic monofunctional radically polymerizable compound (B), both a compound having a solubility in water of 20 [g / 100 g] or more and a compound having a solubility of less than 20 [g / 100 g], the compound.
- the upper limit of the content of (B) can be calculated by the following formula. That is, when the total of the hydrophilic monofunctional radically polymerizable compounds is 100 parts by mass and the content ratio of the hydrophilic monofunctional radically polymerizable compounds having a solubility in water of 20 [g / 100 g] or more is X parts by mass, (55). It can be calculated as ⁇ X + 65 ⁇ (100—X)) / 100 [parts by mass].
- the content of the hydrophilic monofunctional radically polymerizable compound (B) in the curable resin composition of the present embodiment is determined by the solubility in water from the viewpoint of viscosity. Regardless, it is preferably 10 parts by mass or more. More preferably, it is 15% by mass or more. When the content of the hydrophilic monofunctional radical polymerizable compound (B) is 10 parts by mass or more, the increase in viscosity of the curable resin composition when the rubber particles (D) is added tends to be alleviated, which is preferable.
- the preferable range of the content of the hydrophilic monofunctional radically polymerizable compound (B) in the curable resin composition is 10 parts by mass or more and 65 parts by mass or less with respect to 100 parts by mass in total with the radically polymerizable compound. It is more preferably 15 parts by mass or more and 55 parts by mass or less.
- the hydrophobic monofunctional radically polymerizable compound (C) contained in the curable resin composition is a compound having one radically polymerizable functional group in the molecule and has a solubility in water of 2.5. Refers to those less than [g / 100g].
- Examples of the radically polymerizable functional group include ethylenically unsaturated groups.
- examples of the ethylenically unsaturated group include a (meth) acryloyl group and a vinyl group.
- a (meth) acryloyl group means an acryloyl group or a methacryloyl group.
- hydrophobic monofunctional radically polymerizable compound having the (meth) acryloyl group examples include a hydrophobic monofunctional acrylamide compound and a hydrophobic monofunctional (meth) acrylate compound.
- hydrophobic monofunctional acrylamide compound examples include N-tert-butyl (meth) acrylamide, N-phenyl (meth) acrylamide, N- (meth) acryloylpiperidin, and the like.
- hydrophobic monofunctional (meth) acrylate-based compound examples include methyl methacrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and 2-ethylhexyl.
- hydrophobic monofunctional radical polymerizable compound having an ethylenically unsaturated group other than the above examples include styrene derivatives such as styrene, vinyltoluene, ⁇ -methylstyrene, and chlorostyrene, ethylmaleimide, propylmaleimide, and butylmaleimide.
- Maleimides such as hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, cyclohexylmaleimide, vinyl esters such as vinyl propionate, vinyl pivalate, vinyl benzoate, vinyl cinnate, N-vinylphthalimide, N -N-vinyl compounds such as vinylcarbazole may be mentioned.
- the content of the hydrophobic monofunctional radical polymerizable compound (C) in the curable resin composition is 100 in total with the radical polymerizable compound. It is preferably 5 parts by mass or more with respect to the mass part. More preferably, it is 10 parts by mass or more.
- the content of the hydrophobic monofunctional radical polymerizable compound is less than 5 parts by mass, the water absorption rate becomes high, and water is absorbed in a high humidity environment, and the dimensional change tends to exceed the permissible range. That is, it is preferable that the water absorption rate is such that the dimensional change does not exceed the permissible range and does not cause a large change in mechanical properties.
- the content thereof is less than 60 parts by mass with respect to a total of 100 parts by mass of the radical polymerizable compound of the present embodiment. Is preferable. More preferably, it is 55 parts by mass or less.
- the content of the hydrophobic monofunctional radical polymerizable compound having an alicyclic hydrocarbon group is 60 parts by mass or more, the viscosity of the curable resin composition when the rubber particles (D) are added increases, and the curable resin composition is handled. Tends to be difficult. For example, when a curable resin composition is used as a modeling material for a stereolithography method, the modeling time may become long due to an increase in viscosity, or the modeling itself may become difficult.
- hydrophobic monofunctional radical polymerizable compound having an alicyclic hydrocarbon group examples include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and cyclohexyl (meth) acrylate. , 4-t-Butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, and the like.
- the glass transition temperature (Tg) of the copolymer of the mixture of the hydrophobic monofunctional radically polymerizable compound (C) and the hydrophilic monofunctional radically polymerizable compound (B) is preferably 85 ° C. or higher. More preferably, it is 90 ° C. or higher.
- the Tg of the copolymer can be determined by the FOX formula (formula (1)).
- Wi is the mass ratio of each of the hydrophilic and hydrophobic monofunctional radically polymerizable compounds in the copolymer.
- Tgi is the glass transition temperature (unit: absolute temperature) of the homopolymers of each of the hydrophilic and hydrophobic radically polymerizable compounds. Details of the FOX formula are described in Bulletin of the American Physical Society, Series 2, Volume 1, Issue 3, page 123 (1956). ing.
- Tgi glass transition temperature
- DSC differential scanning calorimetry
- DMA dynamic viscoelasticity measurement
- the hydrophilic monofunctional radical polymerizable compound (B) and the hydrophobic monofunctional radical polymerizable compound (C) are collectively referred to as a monofunctional radical polymerizable compound (B + C).
- the content of the monofunctional radically polymerizable compound (B + C) is preferably 30 parts by mass or more and 90 parts by mass or less, and more preferably 50 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound.
- ⁇ Rubber particles (D)> By including the rubber particles (D) in the curable resin composition, the impact resistance of the cured product can be improved.
- the type of rubber particles is not particularly limited.
- Preferred compositions constituting the rubber particles include, for example, butadiene rubber, styrene / butadiene copolymer rubber, acrylonitrile / butadiene copolymer rubber, saturated rubber obtained by hydrogenating or partially hydrogenating these diene rubbers, crosslinked butadiene rubber, and isoprene rubber. , Chloroprene rubber, natural rubber, silicon rubber, ethylene / propylene / diene monomer ternary copolymer rubber, acrylic rubber, acrylic / silicone composite rubber and the like.
- the rubber particles are preferably composed of these compositions alone or in combination of two or more.
- the glass transition temperature of the composition of the rubber particles is preferably 25 ° C. or lower. More preferably, it is 20 ° C. or lower. When the glass transition temperature is higher than 25 ° C., it tends to be difficult to obtain the effect of improving the impact resistance.
- the glass transition temperature of the composition of the rubber particles can be determined by, for example, differential scanning calorimetry (DSC) or dynamic viscoelasticity measurement (DMA).
- the rubber particles are more preferably rubber particles having a core-shell structure. Specifically, it is preferable that the rubber particles have the above-mentioned rubber particles as a core and further have a shell made of a polymer of a radically polymerizable compound that coats the outside thereof.
- the dispersibility of rubber particles in the inside can be improved. As a result, a cured product in which the rubber particles are uniformly dispersed can be obtained, and the rubber particles can effectively function in the cured product to further improve the impact resistance.
- the polymer of the radically polymerizable compound forming the shell is preferably graft-polymerized on the surface of the core via a chemical bond and has a form of covering a part or the whole of the core.
- the rubber particles having a core-shell structure in which the shell is graft-polymerized on the core can be formed by graft-polymerizing a radical-polymerizable compound by a known method in the presence of the core particles. For example, by adding a radical polymerizable compound, which is a constituent of the shell, to polymerized latex particles dispersed in water, which can be prepared by emulsion polymerization, miniemulsion polymerization, suspension polymerization, seed polymerization, etc. Can be manufactured.
- the form of the rubber particles having a core-shell structure includes a form in which a shell is provided on the core via an intermediate layer.
- the above-mentioned composition can be used as the composition constituting the core of the rubber particles having the core-shell structure.
- the core is particularly preferred.
- a monofunctional radically polymerizable compound having one radically polymerizable functional group in the molecule can be preferably used.
- the rubber particles having a shell containing a polymer of a monofunctional radically polymerizable compound are excellent in dispersibility when dispersed in a resin composition containing a radically polymerizable compound.
- the monofunctional radically polymerizable compound used to form the shell can be appropriately selected in consideration of compatibility with the composition constituting the core and dispersibility in the resin composition.
- one or a combination of two or more of the materials exemplified as the hydrophilic monofunctional radical polymerizable compound (B) and the hydrophobic monofunctional radical polymerizable compound (C) may be used.
- the shell contains a polymer of a monofunctional radically polymerizable compound having a (meth) acryloyl group
- the rubber particles are well dispersed in the curable resin composition and the increase in viscosity of the curable resin composition is suppressed. It is also preferable because it can be used.
- rubber particles having a shell containing a polymer of a hydrophobic monofunctional radically polymerizable compound having a (meth) acryloyl group are particularly preferable.
- the radically polymerizable compound for forming the shell a monofunctional radically polymerizable compound and a polyfunctional radically polymerizable compound may be used in combination.
- Forming a shell with a polyfunctional radically polymerizable compound tends to reduce the viscosity of the curable resin composition and facilitate handling.
- the polyfunctional radically polymerizable compound used for shell formation is preferably 0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound used for shell formation.
- the polyfunctional radically polymerizable compound used for shell formation can be appropriately selected in consideration of compatibility with the composition constituting the core and dispersibility in the resin composition.
- One or a combination of two or more of the polyfunctional urethane (meth) acrylate (A) and the material later exemplified as the polyfunctional radically polymerizable compound may be used.
- the mass ratio of the core to the shell in the rubber particles having the core-shell structure is preferably 1 part by mass or more and 200 parts by mass or less, and more preferably 2 parts by mass or more and 180 parts by mass with respect to 100 parts by mass of the core. It is as follows. When the mass ratio of the core and the shell is within the above range, it is possible to effectively improve the impact resistance by containing the rubber particles. When the amount of the shell is less than 1 part by mass, the dispersibility of the rubber particles in the curable resin composition is not sufficient, so that it tends to be difficult to obtain the effect of improving the impact resistance.
- the dispersibility in the curable resin composition is excellent, but since the rubber particles are thickly covered with the shell, the effect of improving the impact resistance by the rubber component is reduced. It ends up. Therefore, it is necessary to add a large amount of rubber particles in order to obtain sufficient impact resistance, and the viscosity of the curable resin composition tends to increase, making handling difficult.
- the average particle size of the rubber particles is preferably 20 nm or more and 10 ⁇ m or less, and more preferably 50 nm or more and 5 ⁇ m or less.
- the average particle size is less than 20 nm, the increase in viscosity in the curable resin composition due to the addition and the interaction between the rubber particles caused by the increase in the specific surface area of the rubber particles decrease the heat resistance of the cured product. And tends to cause a decrease in impact resistance.
- the average particle size is larger than 10 ⁇ m, the rubber particles (rubber component) are difficult to disperse in the curable resin composition, and the effect of improving the impact resistance by adding the rubber particles tends to decrease.
- the average particle size of the rubber particles in the present invention is an arithmetic (number) average particle size and can be measured by using a dynamic light scattering method.
- the rubber particles can be dispersed in a suitable organic solvent and measured using a particle size distribution meter.
- the gel fraction of the rubber particles is preferably 5% or more. When the gel fraction is less than 5%, both impact resistance and heat resistance tend to decrease, which is not preferable.
- the gel fraction can be determined by the following procedure.
- the dried rubber particles W1 [g] are immersed in a sufficient amount of toluene and left at room temperature for 7 days. Then, the solid content is taken out by centrifugation or the like and dried at 100 ° C. for 2 hours, and the amount of the solid content obtained after drying is measured. Assuming that the mass of the solid content obtained after drying is W2 [g], it can be calculated by the following formula.
- Gel fraction (%) W2 / W1 x 100
- the content of rubber particles in the curable resin composition shall be 8 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass in total of the radically polymerizable compound. Preferably, it is 10 parts by mass or more and 40 parts by mass or less. If the content of the rubber particles is less than 8 parts by mass, the effect of improving the impact resistance due to the addition of the rubber particles cannot be obtained. Further, when the content of the rubber particles is more than 50 parts by mass, the heat resistance of the obtained cured product is remarkably lowered. In addition, the viscosity of the curable resin composition increases remarkably, making it difficult to handle.
- Radar polymerization initiator (E) As the radical polymerization initiator (E), a photoradical polymerization initiator or a thermal radical polymerization initiator can be used.
- the photoradical polymerization initiator is mainly classified into an intramolecular cleavage type and a hydrogen abstraction type.
- an intramolecular cleavage type photoradical polymerization initiator by absorbing light of a specific wavelength, the bond at a specific site is cleaved, and a radical is generated at the cleaved site, which becomes a polymerization initiator (meth).
- Polymerization of the ethylenically unsaturated compound containing an acryloyl radical begins.
- the hydrogen abstraction type it absorbs light of a specific wavelength and becomes excited, and the excited species causes a hydrogen abstraction reaction from the surrounding hydrogen donor to generate radicals, which act as a polymerization initiator and radicals. Polymerization of the polymerizable compound begins.
- an alkylphenone-based photoradical polymerization initiator As the intramolecular cleavage type photoradical polymerization initiator, an alkylphenone-based photoradical polymerization initiator, an acylphosphine oxide-based photoradical polymerization initiator, and an oxime ester-based photoradical polymerization initiator are known. These are of the type in which the bond adjacent to the carbonyl group is alpha-cleaved to produce a radical species.
- the alkylphenone-based photoradical polymerization initiator include a benzylmethyl ketal-based photoradical polymerization initiator, an ⁇ -hydroxyalkylphenone-based photoradical polymerization initiator, and an aminoalkylphenone-based photoradical polymerization initiator.
- Specific compounds include, for example, 2,2'-dimethoxy-1,2-diphenylethane-1-one as a benzylmethyl ketal-based photoradical polymerization initiator (Irgacure (registered trademark) 651, manufactured by BASF).
- Benzylmethyl ketal-based photoradical polymerization initiator Irgacure (registered trademark) 651, manufactured by BASF.
- ⁇ -hydroxyalkylphenone-based photoradical polymerization initiators 2-hydroxy-2-methyl-1-phenylpropan-1-one (DaroCure 1173, manufactured by BASF), 1-hydroxycyclohexylphenylketone (Irgacure), etc.
- agent examples include 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one (Irgacure 907, manufactured by BASF) or 2-benzylmethyl-2-dimethylamino-1- (4-). Morphorinophenyl) -1-butanone (Irgacure 369, manufactured by BASF) and the like, but are not limited thereto.
- Acylphosphine oxide-based photoradical polymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucillin TPO, manufactured by BASF), bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure 819).
- oxime ester-based photoradical polymerization initiator examples include (2E) -2- (benzoyloxyimino) -1- [4- (phenylthio) phenyl] octane-1-one (Irgacure OXE-01, manufactured by BASF) and the like. However, it is not limited to this.
- An example of the product name is also shown in parentheses.
- Examples of the hydrogen abstraction type radical polymerization initiator include anthraquinone derivatives such as 2-ethyl-9,10-anthraquinone and 2-t-butyl-9,10-anthraquinone, and thioxanthone derivatives such as isopropylthioxanthone and 2,4-diethylthioxanthone.
- anthraquinone derivatives such as 2-ethyl-9,10-anthraquinone and 2-t-butyl-9,10-anthraquinone
- thioxanthone derivatives such as isopropylthioxanthone and 2,4-diethylthioxanthone.
- photoradical polymerization initiators may be used alone or in combination of two or more. In addition, it may be used in combination with a thermal radical polymerization initiator described later.
- the amount of the photoradical polymerization initiator added is preferably 0.1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound contained in the curable resin composition. More preferably, it is 0.1 part by mass or more and 10 parts by mass or less. If the amount of the photoradical polymerization initiator is small, the polymerization tends to be insufficient. If an excessive amount of the polymerization initiator is added, the molecular weight does not increase, and the heat resistance or impact resistance may decrease.
- the radically polymerizable compound is a combination of a polyfunctional urethane (meth) acrylate (A), a monofunctional radically polymerizable compound (B + C), and other polyfunctional radically polymerizable compounds.
- the thermal radical polymerization initiator is not particularly limited as long as it generates radicals by heating, and conventionally known compounds can be used.
- azo compounds, peroxides, persulfates and the like can be used.
- azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis (methylisobutyrate), 2,2'-azobis-2,4-dimethylvaleronitrile, and 1,1'-.
- examples thereof include azobis (1-acetoxy-1-phenylethane).
- peroxide examples include benzoyl peroxide, di-t-butylbenzoyl peroxide, t-butylperoxypivalate and di (4-t-butylcyclohexyl) peroxydicarbonate.
- persulfate examples include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate.
- the amount of the thermal radical polymerization initiator added is preferably 0.1 part by mass or more and 15 parts by mass or less, more preferably 0.1 part by mass, with respect to 100 parts by mass of the radically polymerizable compound contained in the curable resin composition. It is 10 parts by mass or less. If an excessive amount of the polymerization initiator is added, the molecular weight does not increase, and the heat resistance or impact resistance may decrease.
- the curable resin composition may contain other components as long as the object and effect of the present invention are not impaired.
- Examples of other components include polyfunctional radically polymerizable compounds and additives other than polyfunctional urethane (meth) acrylate (A).
- a polyfunctional radically polymerizable compound having a radically polymerizable functional group equivalent of less than 300 g / eq When a polyfunctional radically polymerizable compound having a radically polymerizable functional group equivalent of less than 300 g / eq is contained, the content thereof is 20 parts by mass with respect to a total of 100 parts by mass of the radically polymerizable compounds contained in the curable resin composition. The following is preferable. More preferably, it is 18 parts by mass or less.
- the radically polymerizable functional group equivalent is a value indicating the molecular weight per radically polymerizable functional group.
- the crosslink density of the cured product becomes high and at the same time, the crosslink density becomes non-uniform. Tend. Therefore, when an impact is applied from the outside, a part where stress is concentrated is generated, the effect of improving the impact resistance expected by adding rubber particles cannot be obtained, and the Charpy impact strength may be the same as that of the conventional technique. is there.
- the content thereof is 50 parts by mass with respect to 100 parts by mass of the total of the radically polymerizable compounds contained in the curable resin composition. It is preferably less than.
- the content of the polyfunctional radically polymerizable compound having a radically polymerizable functional group equivalent of 300 g / eq or more is more than 50 parts by mass, the heat resistance is lowered and the crosslink density of the cured product is increased, and by adding rubber particles, It tends to be difficult to obtain the expected effect of improving impact resistance.
- Examples of the radically polymerizable functional group of the polyfunctional radically polymerizable compound other than the polyfunctional urethane (meth) acrylate (A) include an ethylenically unsaturated group.
- Examples of the ethylenically unsaturated group include a (meth) acryloyl group and a vinyl group.
- Examples of the polyfunctional radical polymerizable compound include a polyfunctional (meth) acrylate compound, a vinyl ether group-containing (meth) acrylate compound, a polyfunctional (meth) acryloyl group-containing isocyanurate compound, and a polyfunctional (meth) acrylamide compound. Examples thereof include compounds, polyfunctional maleimide compounds, polyfunctional vinyl ether compounds, and polyfunctional aromatic vinyl compounds.
- polyfunctional (meth) acrylate-based compound examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and nonaethylene glycol.
- Examples of the vinyl ether group-containing (meth) acrylate compound include 2-vinyloxyethyl (meth) acrylate, 4-vinyloxybutyl (meth) acrylate, 4-vinyloxycyclohexyl (meth) acrylate, and 2- (vinyloxyethoxy) ethyl ( Examples thereof include meta) acrylate and 2- (vinyloxyethoxyethoxyethoxy) ethyl (meth) acrylate.
- Examples of the polyfunctional (meth) acryloyl group-containing isocyanurate compound include tri (acryloyloxyethyl) isocyanurate, tri (methacryloyloxyethyl) isocyanurate, and ⁇ -caprolactone-modified tris- (2-acryloyloxyethyl) isocyanate. Nurate and the like.
- polyfunctional (meth) acrylamide compound examples include N, N'-methylenebisacrylamide, N, N'-ethylenebisacrylamide, N, N'-(1,2-dihydroxyethylene) bisacrylamide, N, N'. -Methylenebismethacrylamide, N, N', N''-triacryloyldiethylenetriamine and the like can be mentioned.
- polyfunctional maleimide-based compound examples include 4,4'-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, and 3,3'-dimethyl-5,5'-diethyl-4,4'.
- examples thereof include -diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, and 1,6-bismaleimide- (2,2,4-trimethyl) hexane.
- polyfunctional vinyl ether-based compound examples include ethylene glycol divinyl ether, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol Aalkylene oxide divinyl ether, and bisphenol Falkylene.
- Examples thereof include oxide divinyl ether, trimethylol propane trivinyl ether, ditrimethylol propane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether and dipentaerythritol hexavinyl ether.
- polyfunctional aromatic vinyl compound examples include divinylbenzene.
- polyfunctional radically polymerizable compounds may be used alone or in combination of two or more.
- Additives include property modifiers, photosensitizers, polymerization initiation aids, leveling agents, wettability improvers, surfactants, plasticizers, UV absorbers, etc. to impart desired physical properties to the cured product.
- properties modifiers include property modifiers, photosensitizers, polymerization initiation aids, leveling agents, wettability improvers, surfactants, plasticizers, UV absorbers, etc. to impart desired physical properties to the cured product.
- examples thereof include silane coupling agents, inorganic fillers, pigments, dyes, antioxidants, flame retardants, thickeners, defoamers and the like.
- the amount of the additive added is 0.05 parts by mass with respect to 100 parts by mass in total of the polyfunctional urethane (meth) acrylate (A), the monofunctional radically polymerizable compound (B + C) and other polyfunctional radically polymerizable compounds. It is preferably 25 parts by mass or less. More preferably, it is 0.1 part by mass or more and 20 parts by mass or less. Within this range, desired physical properties can be imparted to the cured product or the curable resin composition without lowering the impact resistance of the obtained cured product or increasing the water absorption rate.
- a resin such as epoxy resin, polyurethane, polychloroprene, polyester, polysiloxane, petroleum resin, xylene resin, ketone resin, cellulose resin, or polycarbonate
- Engineering plastics such as polytrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, fluorine-based oligomers, silicone-based oligomers, polysulfide-based oligomers, soft metals such as gold, silver, and lead, graph
- photosensitizers polymerization inhibitors such as phenothiazine and 2,6-di-t-butyl-4-methylphenol, benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, and tertiary compounds.
- photoensitizers polymerization inhibitors such as phenothiazine and 2,6-di-t-butyl-4-methylphenol, benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, and tertiary compounds.
- examples include amine compounds and xanthone compounds.
- the curable resin composition includes a polyfunctional urethane (meth) acrylate (A), a monofunctional radically polymerizable compound (B + C), rubber particles (D), a radical polymerization initiator (E), and if necessary, other components.
- Ingredients are placed in a stirring container in appropriate amounts and stirred.
- the stirring temperature is usually 20 ° C. or higher and 120 ° C. or lower, preferably 40 ° C. or higher and 100 ° C. or lower. Then, it can be produced by removing a volatile solvent or the like as needed.
- the curable resin composition according to the present invention can be suitably used as a modeling material used in the stereolithography method. That is, by selectively irradiating the curable resin composition of the present embodiment with active energy rays to supply the energy required for curing, a modeled product having a desired shape can be produced.
- the viscosity at 25 ° C. is preferably 50 mPa ⁇ s or more and 5,000 mPa ⁇ s or less, more preferably 75 mPa ⁇ s or more 4, It is 500 mPa ⁇ s or less.
- a cured product (modeled product) obtained by curing the curable resin composition according to the present invention can be produced by using a known stereolithography method and apparatus.
- a preferable stereolithography method there is a step of repeating curing of a curable resin composition to a predetermined thickness based on slice data generated from three-dimensional shape data of a manufacturing object (modeling model).
- the method There are roughly two types, the free liquid level method and the regulated liquid level method.
- FIG. 1 shows a configuration example of the stereolithography apparatus 100 using the free liquid level method.
- the stereolithography apparatus 100 has a tank 11 filled with a liquid photocurable resin composition 10. Inside the tank 11, a modeling stage 12 is provided so as to be driveable in the vertical direction by a drive shaft 13.
- the irradiation position of the light energy ray 15 for curing the photocurable resin composition 10 emitted from the light source 14 is changed by the galvanometer mirror 16 controlled by the control unit 18 according to the slice data, and the surface of the tank 11 is scanned. Will be done.
- the scanning range is indicated by a thick broken line.
- the thickness d of the photocurable resin composition 10 cured by the light energy rays 15 is a value determined based on the setting at the time of generating the slice data, and the accuracy of the obtained modeled object (three-dimensional shape data of the article to be modeled). Affects reproducibility).
- the thickness d is achieved by the control unit 18 controlling the drive amount of the drive shaft 13.
- the control unit 18 controls the drive shaft 13 based on the setting, and the photocurable resin composition having a thickness d is supplied onto the stage 12.
- the liquid curable resin composition on the stage 12 is selectively irradiated with light energy rays based on the slice data so that a cured layer having a desired pattern can be obtained, and the cured layer is formed.
- the uncured curable resin composition having a thickness d is supplied to the surface of the cured layer.
- the light energy rays 15 are irradiated based on the slice data, and a cured product integrated with the previously formed cured layer is formed.
- the three-dimensional model obtained in this way is taken out from the tank 11, the unreacted curable resin composition remaining on the surface thereof is removed, and then washed if necessary.
- an alcohol-based organic solvent typified by alcohols such as isopropyl alcohol and ethyl alcohol can be used.
- a ketone-based organic solvent typified by acetone, ethyl acetate, methyl ethyl ketone or the like, or an aliphatic organic solvent typified by terpenes may be used.
- post-cure by light irradiation or heat irradiation may be performed, if necessary. Post-cure can cure the unreacted curable resin composition that may remain on the surface and inside of the three-dimensional model, suppress the stickiness of the surface of the three-dimensional model, and the three-dimensional model. The initial strength can be improved.
- Examples of the light energy beam used for manufacturing a three-dimensional model include ultraviolet rays, electron beams, X-rays, and radiation. Among them, ultraviolet rays having a wavelength of 300 nm or more and 450 nm or less are preferably used from an economical point of view.
- an ultraviolet laser for example, Ar laser, He-Cd laser, etc.
- a mercury lamp for example, a mercury lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, or the like can be used.
- the laser light source is preferably adopted because it has excellent light-collecting property, can increase the energy level, shorten the modeling time, and can obtain high modeling accuracy.
- a pointillism method or a stippling method is used using light energy rays squeezed into dots or lines.
- the resin can be cured by the line drawing method.
- the resin may be cured by irradiating the active energy rays in a planar manner through a planar drawing mask formed by arranging a plurality of micro light shutters such as a liquid crystal shutter or a digital micromirror shutter.
- the stereolithography device using the regulated liquid level method has a configuration in which the stage 12 of the stereolithography device 100 of FIG. 1 is provided so as to pull up the modeled object above the liquid level, and the light irradiation means is provided below the tank 11. Become.
- Typical modeling examples of the regulated liquid level method are as follows. First, the support surface of the support stage provided so as to be able to move up and down and the bottom surface of the tank containing the curable resin composition are installed so as to be at a predetermined distance between the support surface of the support stage and the bottom surface of the tank. A curable resin composition is supplied.
- the curable resin composition between the stage support surface and the bottom surface of the tank is selectively illuminated by a laser light source or a projector according to the slice data. Is irradiated. By irradiation with light, the curable resin composition between the stage support surface and the bottom surface of the tank is cured, and a solid cured resin layer is formed. After that, the support stage is raised and the cured resin layer is peeled off from the bottom surface of the tank.
- A-1 Bifunctional urethane acrylate; "KAYARAD UX-6101” (manufactured by Nippon Kayaku Co., Ltd., weight average molecular weight (measured value): 6.7 x 10 3 )
- A-2 Bifunctional urethane acrylate; "KAYARAD UX-8101” (manufactured by Nippon Kayaku Co., Ltd., weight average molecular weight (measured value): 3.3 x 10 3 )
- A-3 Bifunctional urethane acrylate; "CN9001NS” (manufactured by Arkema, weight average molecular weight (measured value): 5.4 x 10 3 )
- B-1 Acryloyl morpholine
- ACMO manufactured by KJ Chemicals
- B-2 N, N-diethylacrylamide
- DEAA manufactured by KJ Chemicals
- B-3 N-vinylcaprolactam
- B-4 2-hydroxyethyl methacrylate
- B-5 diacetone acrylamide
- DAAM manufactured by KJ Chemicals
- ⁇ Manufacturing of acetone dispersion of rubber particles D-1> In a 1 L glass container, 185 parts by mass of polybutadiene latex (Nipol LX111A2: manufactured by Nippon Zeon Co., Ltd.) (equivalent to 100 parts by mass of polybutadiene rubber particles) and 315 parts by mass of deionized water were charged, and the mixture was stirred at 60 ° C. while performing nitrogen substitution. Further, 0.005 parts by mass of ethylenediaminetetraacetic acid disodium (EDTA), 0.001 parts by mass of ferrous sulfate heptahydrate, and 0.2 parts by mass of sodium formaldehyde sulfoxylate were added.
- EDTA ethylenediaminetetraacetic acid disodium
- the radically polymerizable compound forming the shell (17.5 parts by mass of methyl methacrylate (MMA), 17.5 parts by mass of isobornyl methacrylate (IBMA)), and 0.1 parts by mass of cumene hydroperoxide.
- MMA methyl methacrylate
- IBMA isobornyl methacrylate
- cumene hydroperoxide 0.1 parts by mass of cumene hydroperoxide.
- the radically polymerizable compound was graft-polymerized on the surface of the polybutadiene rubber particles.
- the reaction is terminated by further stirring for 2 hours, and an aqueous dispersion of core-shell type rubber particles D-1 having a polybutadiene rubber as a core and a copolymer of MMA and IBMA as a shell is prepared. Obtained.
- the aqueous dispersion of core-shell type rubber particles obtained in the above procedure was put into 450 parts by mass of acetone and mixed uniformly. Substitution with acetone was carried out using a centrifuge to obtain an acetone dispersion of core-shell type rubber particles D-1.
- the average particle size of the core-shell type rubber particles D-1 measured by the dynamic light scattering method was 0.25 ⁇ m.
- ⁇ Manufacturing of acetone dispersion of rubber particles D-2> A core-shell type rubber particle by mixing 20 parts by mass of rubber particles D-2 (Kaneace M-511 (manufactured by Kaneka Co., Ltd.)) and 80 parts by mass of acetone and dispersing them using an ultrasonic homogenizer until they become primary particles. An acetone dispersion of D-2 was obtained. The average particle size of the core-shell type rubber particles D-2 measured by the dynamic light scattering method was 0.23 ⁇ m.
- E-1 Photoradical generator; "Irgacure819” (manufactured by BASF) [Other components (polyfunctional radical polymerizable compound) (F)]
- F-1 Polycarbonate diol diacrylate "UM-90 (1/3) DM" (molecular weight: about 900, radically polymerizable functional group equivalent: about 450 g / eq, manufactured by Ube Kosan Co., Ltd.)
- F-2 Ethoxylated isocyanuric acid triacrylate "A-9300” (molecular weight: 423, radically polymerizable functional group equivalent: 141 g / eq, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
- a cured product was prepared by the following method. First, a mold having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was sandwiched between two pieces of quartz glass, and a curable resin composition was poured into the mold. The poured curable resin composition was alternately irradiated with ultraviolet rays of 5 mW / cm 2 from both sides of the mold twice for 180 seconds with an ultraviolet irradiator (manufactured by HOYA CANDEO OPTRONICS, trade name "LIGHT SOURCE EXECURE 3000"). .. The obtained cured product was placed in a heating oven at 70 ° C. and heat-treated for 2 hours to obtain a test piece having a length of 80 mm, a width of 10 mm and a thickness of 4 mm.
- Tg Glass transition temperature (Tg) of polymer of monofunctional radically polymerizable compound
- the Tg of the polymer of the monofunctional radically polymerizable compound is calculated by using the above-mentioned FOX formula for the polymer of the generally known monofunctional radically polymerizable compound, and the viscoelasticity measuring device (Physica MCR302, Anton) otherwise. Measured by Pearl Co., Ltd.).
- Table 1 shows the case where the Tg of the polymer of the monofunctional radically polymerizable compound is 85 ° C. or higher as ⁇ , and the case where the temperature is lower than 85 ° C. is x.
- Viscosity of curable resin composition The viscosity of the curable resin composition was measured by a rotary rheometer method. Specifically, it was measured as follows using a viscoelasticity measuring device (Physica MCR302, manufactured by Anton Pearl Co., Ltd.). A measuring device equipped with a cone plate type measuring jig (CP25-2, manufactured by Anton Pearl Co., Ltd .; 25 mm diameter, 2 °) is filled with about 0.5 mL of a sample and adjusted to 25 ° C. It was measured at a data interval of 6 seconds under a constant shear rate condition of 50s -1 , and the value at 120 seconds was taken as the viscosity. The viscosity was evaluated according to the following criteria. A (very good): viscosity less than 2.0 Pa ⁇ s B (good): viscosity 2.0 Pa ⁇ s or more and less than 5.0 Pa ⁇ s C (bad): viscosity 5.0 Pa ⁇ s or more
- the curable resin compositions prepared in Examples 1 to 13 had a viscosity in a range suitable as a modeling material used in the stereolithography method.
- the obtained cured product was excellent in impact resistance and heat resistance, had a low water absorption rate, and was also excellent in water resistance.
- the cured product according to Comparative Example 1 obtained from the curable resin composition not containing the hydrophobic monofunctional radical polymerizable (C) had a high water absorption rate and was at a level that caused a problem in practical use.
- the cured product according to Comparative Example 3 obtained from the curable resin composition having a low content of the rubber particles (D) of 5 parts by mass did not sufficiently improve the impact resistance.
- the cured product according to Comparative Example 4 obtained from a curable resin composition in which the glass transition temperature of the polymer of the monofunctional radical polymerizable compound was as low as less than 85 ° C. was not sufficient in heat resistance.
- the cured product according to Comparative Example 5 obtained from a curable resin composition having a polyfunctional radical polymerizable compound having a radically polymerizable functional group equivalent of less than 300 g / eq and a large content of 25 parts by mass is resistant to the cured product. The improvement in impact resistance was not sufficient.
- the cured product according to Comparative Example 6 obtained from a curable resin composition having a radically polymerizable functional group equivalent of 300 g / eq or more and a content of a polyfunctional radically polymerizable compound as high as 50 parts by mass is The heat resistance was not sufficient.
- a curable resin composition having a viscosity suitable for a stereolithography method, and curing having good impact resistance, low water absorption rate, and heat resistance by curing the composition. It was confirmed that the product could be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
吸水性が低く、耐衝撃性と耐熱性がともに優れた硬化物を形成可能であり、立体造形に好適に使用できる硬化性樹脂組成物を提供する。多官能ウレタン(メタ)アクリレート(A)、親水性単官能ラジカル重合性化合物(B)、疎水性単官能ラジカル重合性化合物(C)、ゴム粒子(D)、およびラジカル重合開始剤(E)を含有し、該ゴム粒子(D)の含有量がラジカル重合性化合物100質量部に対して8質量部以上50質量部以下である硬化性樹脂組成物。
Description
本開示は、硬化性樹脂組成物、およびその硬化物に関する。
光硬化性樹脂組成物に、三次元モデルの立体形状に基づいて選択的に光照射して硬化樹脂層を形成する工程を繰り返すことにより、当該硬化樹脂層が一体的に積層されてなる造形物を作製する光学的立体造形法(以下、「光造形法」と記述する。)が知られている。
具体的には、作製する三次元モデルの立体形状データから生成したスライスデータに従って、容器内に収容された液状の光硬化性樹脂組成物の液面に紫外線レーザー等の光を照射し、所定の厚みで所望のパターンを有する硬化樹脂層を形成する。次いで、この硬化樹脂層の上に、光硬化性樹脂組成物を供給し、同様に光を照射することにより、先に形成された硬化樹脂層と接合した新しい硬化樹脂層を積層形成する。このように、スライスデータに基づいたパターンで硬化樹脂層を積層していくことで、所望の立体造形物を得ることができる。このような光造形法によれば、三次元モデルの立体形状データがあれば、複雑な形状の立体物でも容易に作製することが可能となる。
光造形法は、形状確認のための試作品の造形(ラピッドプロトタイピング)や、機能性検証のためのワーキングモデルの造形や型の造形(ラピッドツーリング)への応用が進んでいる。さらに、近年は、光造形法の用途は実製品の造形(ラピッドマニュファクチャリング)にも広がり始めている。
このような背景から、汎用のエンジニアリングプラスチックに匹敵するような高い耐衝撃性と、比較的高温でも変形しないという高い耐熱性とを有する立体造形物の造形が可能な、光硬化性樹脂組成物が求められている。さらに、上記に加えて、高湿環境においても高い寸法安定性を示す、低い吸水性が求められている。
特許文献1および特許文献2には、ウレタン(メタ)アクリレート、ラジカル重合性基を有するエチレン性不飽和化合物、ゴム粒子、およびラジカル重合開始剤を含有する光学的立体造形用樹脂組成物が開示されている。
しかしながら、特許文献1および2の光学的立体造形用樹脂組成物の硬化物は、良好な機械的強度と、吸水性の両立という観点では十分でなかった。
本開示は、吸水性が低く耐衝撃性および耐熱性に優れた硬化物を得ることのできる、硬化性樹脂組成物の提供を目的とする。本開示にかかる硬化性樹脂組成物は、分子内に少なくとも2個の(メタ)アクリロイル基と少なくとも2個のウレタン基とを有する多官能ウレタン(メタ)アクリレート(A)と、分子内に1個のラジカル重合性官能基を有する親水性単官能ラジカル重合性化合物(B)と、分子内に1個のラジカル重合性官能基を有する疎水性単官能ラジカル重合性化合物(C)と、ゴム粒子(D)と、ラジカル重合開始剤(E)とを含有し、前記ゴム粒子(D)の含有量が前記(D)を含まないラジカル重合性化合物の合計100質量部に対して8質量部以上50質量部以下、であることを特徴とする。
本開示によれば、吸水性が低く、耐衝撃性および耐熱性に優れた硬化物を形成でき、立体造形に好適な硬化性樹脂組成物を提供することができる。
以下、本発明の実施形態(以下、「本実施形態」とも称する。)について説明する。なお、以下に説明する実施形態は、あくまでも本実施形態の一つであり、本発明はこれら実施形態に限定されるものではない。
<多官能ウレタン(メタ)アクリレート(A)>
本実施形態の硬化性組成物に含まれる多官能ウレタン(メタ)アクリレート(A)は、分子内に少なくとも2個の(メタ)アクリロイル基と少なくとも2個のウレタン基とを有するウレタン(メタ)アクリレートである。
本実施形態の硬化性組成物に含まれる多官能ウレタン(メタ)アクリレート(A)は、分子内に少なくとも2個の(メタ)アクリロイル基と少なくとも2個のウレタン基とを有するウレタン(メタ)アクリレートである。
多官能ウレタン(メタ)アクリレート(A)には、例えば、水酸基含有(メタ)アクリレート系化合物と多価イソシアネート系化合物とを反応させてなるものや、イソシアネート基含有(メタ)アクリレート系化合物とポリオール系化合物とを反応させてなるものを用いることができる。他に、水酸基含有(メタ)アクリレート系化合物と多価イソシアネート系化合物とポリオール系化合物とを反応させてなるものを用いることができる。中でも、高い耐衝撃性を実現できるという観点から、水酸基含有(メタ)アクリレート系化合物と、多価イソシアネート系化合物と、ポリオール系化合物とを反応させてなるものが好ましい。
前記水酸基含有(メタ)アクリレート系化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート、ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。これら水酸基含有(メタ)アクリレート系化合物は単独でも、2種以上を組み合せて用いてもよい。
前記多価イソシアネート系化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ポリイソシアネート、或いはこれらポリイソシアネートの3量体化合物または多量体化合物、アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート、水分散型ポリイソシアネート等が挙げられる。これら多価イソシアネート系化合物は単独でも、2種以上を組み合せて用いてもよい。
前記ポリオール系化合物としては、例えば、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、(メタ)アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。これらのポリオール系化合物は、単独でも、2種以上を組み合せて用いてもよい。
前記ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリヘキサメチレングリコール等のアルキレン構造含有ポリエーテル系ポリオールや、これらポリアルキレングリコールのランダム或いはブロック共重合体が挙げられる。
前記ポリエステル系ポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物、環状エステル(ラクトン)の開環重合物、多価アルコール、多価カルボン酸および環状エステルの3種類の成分による反応物などが挙げられる。
前記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオールなど)、ビスフェノール類(ビスフェノールAなど)、糖アルコール類(キシリトールやソルビトールなど)などが挙げられる。
前記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸などが挙げられる。
前記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなどが挙げられる。
前記ポリカーボネート系ポリオールとしては、例えば、多価アルコールとホスゲンとの反応物、環状炭酸エステル(アルキレンカーボネートなど)の開環重合物などが挙げられる。
前記ポリカーボネート系ポリオールとしての多価アルコールとしては、前記ポリエステル系ポリオールの説明中で例示した多価アルコール等が挙げられ、前記アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネートなどが挙げられる。
なお、ポリカーボネート系ポリオールは、分子内にカーボネート結合を有し、末端がヒドロキシル基である化合物であればよく、カーボネート結合とともにエステル結合を有していてもよい。
本実施形態の硬化性樹脂組成物の多官能ウレタン(メタ)アクリレート(A)の重量平均分子量は、1000以上60000以下であることが好ましい。より好ましくは、2000以上50000以下である。重量平均分子量が1000以上である場合には、架橋密度の低減に伴い硬化物の耐衝撃性が著しく増大する傾向にあるため好ましい。重量平均分子量が60000よりも大きい場合には、硬化性組成物の粘度が上昇して取り扱いが困難になる傾向があるため好ましくない。
なお、多官能ウレタン(メタ)アクリレート(A)の重量平均分子量(Mw)は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフィー(東ソー社製、高速GPC装置「HLC-8220GPC」)に、カラム:Shodex GPCLF-804(排除限界分子量:2×106、分離範囲:300~2×106)の2本直列を用いることにより測定される。
また、多官能ウレタン(メタ)アクリレート(A)のラジカル重合性官能基当量は400g/eq以上であることが好ましい。本実施形態において、ラジカル重合性官能基当量とは、ラジカル重合性官能基1個あたりの分子量を示す値である。ラジカル重合性官能基当量が400g/eq未満である場合には、架橋密度の上昇に伴い耐衝撃性が低下する傾向があるため好ましくない。
本実施形態の硬化性樹脂組成物の多官能ウレタン(メタ)アクリレート(A)の含有量は、多官能ウレタン(メタ)アクリレート(A)と、他のラジカル重合性化合物との合計100質量部に対して、5質量部以上70質量部以下であることが好ましい。より好ましくは10質量部以上60質量部以下である。多官能ウレタン(メタ)アクリレート(A)の含有量が前述の範囲内にあることで、高い耐衝撃性と耐熱性を両立することが可能となる。多官能ウレタン(メタ)アクリレート(A)の含有量が5質量部より少ないと、耐衝撃性が低下する傾向がある。また、多官能ウレタン(メタ)アクリレートの含有量が70質量部より多いと、耐熱性が低下し且つ、樹脂組成物の粘度が光造形法の材料に適した範囲よりも高くなる傾向にある。
<親水性単官能ラジカル重合性化合物(B)>
本実施形態の硬化性樹脂組成物に含まれる親水性単官能ラジカル重合性化合物(B)は、分子内に1個のラジカル重合性官能基を有し、かつ水溶性を示す化合物である。本発明において、親水性単官能ラジカル重合性化合物とは、水に対する溶解度が2.5[g/100g]以上のものを指す。ここで、水に対する溶解度は、25℃の水100g中に溶解させることが可能な、親水性単官能ラジカル重合性化合物(B)の量を表している。以下、親水性単官能ラジカル重合性化合物(B)を、単に化合物(B)と記述する場合がある。
本実施形態の硬化性樹脂組成物に含まれる親水性単官能ラジカル重合性化合物(B)は、分子内に1個のラジカル重合性官能基を有し、かつ水溶性を示す化合物である。本発明において、親水性単官能ラジカル重合性化合物とは、水に対する溶解度が2.5[g/100g]以上のものを指す。ここで、水に対する溶解度は、25℃の水100g中に溶解させることが可能な、親水性単官能ラジカル重合性化合物(B)の量を表している。以下、親水性単官能ラジカル重合性化合物(B)を、単に化合物(B)と記述する場合がある。
ラジカル重合性官能基としては、エチレン性不飽和基が挙げられる。具体的に、エチレン性不飽和基としては、(メタ)アクリロイル基、ビニル基、などが挙げられる。なお、本明細書において、(メタ)アクリロイル基とは、アクリロイル基またはメタクリロイル基を意味する。
(メタ)アクリロイル基を有する親水性単官能ラジカル重合性化合物(B)としては、例えば、親水性単官能アクリルアミド系化合物や親水性単官能(メタ)アクリレート系化合物が挙げられる。
親水性単官能アクリルアミド系化合物としては、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルフォリン、N-[3-(ジメチルアミノ)プロピル]アクリルアミドなどが挙げられる。
親水性単官能(メタ)アクリレート系化合物としては、例えば、(メタ)アクリル酸、メチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ジメチルアミノメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート、メトキシポリエチレングリコールメタクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、などが挙げられる。
また、ビニル基を有する親水性単官能ラジカル重合性化合物としては、例えば、酢酸ビニルや親水性N-ビニル化合物が挙げられる。例えば、親水性N-ビニル化合物として、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、などが挙げられる。
上記以外の親水性単官能ラジカル重合性化合物としては、例えば、スチレンスルホン酸およびその塩などのスチレン誘導体や、(メタ)アクリロニトリルなどのシアン化ビニル化合物が挙げられる。
これらの親水性単官能ラジカル重合性化合物は、単独でも、2種以上を組み合せて用いてもよい。
硬化物の寸法安定性の観点から、本実施形態の硬化性樹脂組成物中の親水性単官能ラジカル重合性化合物(B)の含有量の好ましい範囲は、親水性単官能ラジカル重合性化合物(B)の水に対する溶解度によって異なる。親水性単官能ラジカル重合性化合物(B)の水に対する溶解度が20[g/100g]以上である場合の含有量は、ラジカル重合性化合物との合計100質量部に対して、好ましくは55質量部以下であり、より好ましくは50質量部以下である。水に対する溶解度が20[g/100g]以上の親水性単官能ラジカル重合性化合物の含有量が55質量部より多いと硬化性樹脂組成物の硬化物の吸水率が高くなる。そのため、高湿環境に曝されると吸水して寸法変化が許容範囲を超えてしまう傾向がある。また、親水性単官能ラジカル重合性化合物(B)の水に対する溶解度が20[g/100g]未満である場合、硬化性樹脂組成物中の含有量は、ラジカル重合性化合物との合計100質量部に対して、好ましくは65質量部以下であり、より好ましくは60質量部以下である。硬化性樹脂組成物が、親水性単官能ラジカル重合性化合物(B)として、水に対する溶解度が20[g/100g]以上の化合物と20[g/100g]未満の化合物の両方を含む場合、化合物(B)の含有量の上限は以下の式により算出することができる。すなわち、親水性単官能ラジカル重合性化合物の合計を100質量部、水に対する溶解度が20[g/100g]以上の親水性単官能ラジカル重合性化合物の含有比率をX質量部とした場合、(55×X+65×(100-X))/100[質量部]として算出することができる。
また、硬化性樹脂組成物を光造形に用いる場合、粘度の観点から、本実施形態の硬化性樹脂組成物中の親水性単官能ラジカル重合性化合物(B)の含有量は、水に対する溶解度に関わらず、10質量部以上であることが好ましい。より好ましくは、15質量%以上である。親水性単官能ラジカル重合性化合物(B)の含有量が10質量部以上の場合、ゴム粒子(D)を添加した際の硬化性樹脂組成物の粘度上昇が緩和される傾向があるため好ましい。
すなわち、硬化性樹脂組成物中の親水性単官能ラジカル重合性化合物(B)の含有量の好ましい範囲は、ラジカル重合性化合物との合計100質量部に対して、10質量部以上65質量部以下であり、より好ましくは15質量部以上55質量部以下である。
<疎水性単官能ラジカル重合性化合物(C)>
本発明において、硬化性樹脂組成物に含まれる疎水性単官能ラジカル重合性化合物(C)とは、分子内に1個のラジカル重合性官能基を有する化合物であり、水に対する溶解度が2.5[g/100g]未満のものを指す。
本発明において、硬化性樹脂組成物に含まれる疎水性単官能ラジカル重合性化合物(C)とは、分子内に1個のラジカル重合性官能基を有する化合物であり、水に対する溶解度が2.5[g/100g]未満のものを指す。
ラジカル重合性官能基としては、エチレン性不飽和基が挙げられる。具体的に、エチレン性不飽和基としては、(メタ)アクリロイル基、ビニル基、などが挙げられる。なお、本明細書において、(メタ)アクリロイル基とは、アクリロイル基またはメタクリロイル基を意味する。
前記(メタ)アクリロイル基を有する疎水性単官能ラジカル重合性化合物としては、例えば、疎水性単官能アクリルアミド系化合物や疎水性単官能(メタ)アクリレート系化合物が挙げられる。
前記疎水性単官能アクリルアミド系化合物としては、N-tert-ブチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-(メタ)アクリロイルピペリジン、などが挙げられる。
前記疎水性単官能(メタ)アクリレート系化合物としては、例えば、メチルメタクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、i-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、3-ヒドロキシ-1-アタマンチル(メタ)アクリレート、3,5-ジヒドロキシー1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、2-イソプロピル-2-アダマンチル(メタ)アクリレート、グリシジル(メタ)アクリレート、3-メチル-3-オキセタニル-メチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェニルグリシジル(メタ)アクリレート、フェニルセロソルブ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ビフェニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリフルオロメチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、オクタフルオロペンチルアクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、アリル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H,オクタフルオロペンチル(メタ)アクリレート、アリルオキシアクリル酸メチル(製品名:AO-MA、日本触媒社製)、イミド基を有する(メタ)アクリレート類(製品名:M-140、東亞合成社製)、などが挙げられる。
上記以外のエチレン性不飽和基を有する疎水性単官能ラジカル重合性化合物としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロロスチレン、などのスチレン誘導体、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド、などのマレイミド類、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニルなどのビニルエステル類、N-ビニルフタルイミド、N-ビニルカルバゾールなどのN-ビニル化合物などが挙げられる。
硬化性樹脂組成物を硬化させて作製した物品の寸法安定性を考慮すると、硬化性樹脂組成物における疎水性単官能ラジカル重合性化合物(C)の含有量は、ラジカル重合性化合物との合計100質量部に対して、5質量部以上であることが好ましい。より好ましくは、10質量部以上である。疎水性単官能ラジカル重合性化合物の含有量が5質量部より少ないと、吸水率が高くなり、高湿環境において吸水して寸法変化が許容範囲を超える傾向がある。すなわち、吸水率として、寸法変化が許容範囲を超えず、機械物性の大きな変化を引き起こさない程度であることが好ましい。
疎水性単官能ラジカル重合性化合物(C)として脂環式炭化水素基を有する化合物を用いる場合、その含有量は、本実施形態のラジカル重合性化合物の合計100質量部に対して60質量部未満であることが好ましい。より好ましくは、55質量部以下である。脂環式炭化水素基を有する疎水性単官能ラジカル重合性化合物の含有量が60質量部以上であると、ゴム粒子(D)を添加した際の硬化性樹脂組成物の粘度が上昇し、取り扱いが困難になる傾向がある。例えば、硬化性樹脂組成物を光造形法の造形材料として用いる場合、粘度上昇のために造形時間が長くなったり、造形自体が困難になったりする恐れがある。
前記脂環式炭化水素基を有する疎水性単官能ラジカル重合性化合物としては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-t-ブチルシクロヘキシルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、などが挙げられる。
疎水性単官能ラジカル重合性化合物(C)と、親水性単官能ラジカル重合性化合物(B)の混合物の共重合体のガラス転移温度(Tg)は、85℃以上であることが好ましい。より好ましくは、90℃以上である。共重合体のTgは、FOX式(式(1))によって求めることができる。Tgの単位は絶対温度である。
1/Tg=Σ(Wi/Tgi)・・・式(1)
1/Tg=Σ(Wi/Tgi)・・・式(1)
上記式(1)中、Wiは、親水性および疎水性の単官能ラジカル重合性化合物それぞれの、共重合体中における質量比率である。Tgiは親水性および疎水性のラジカル重合性化合物それぞれの単独重合体のガラス転移温度(単位は絶対温度)である。FOX式の詳細は、ブレティン・オブ・ジ・アメリカン・フィジカル・ソサエティ・シリーズ2(Bulletin of the American Physical Society,Series 2)、第1巻、第3号、第123頁(1956年)に記載されている。FOX式に用いる各種ラジカル重合性化合物それぞれの単独重合体のガラス転移温度(Tgi)には、それぞれの重合体について一般に知られている値を採用することができる。あるいは、実際に重合体を作製し、示差走査熱量測定(DSC)や動的粘弾性測定(DMA)にて得られた実測値を用いても良い。
以下、親水性単官能ラジカル重合性化合物(B)と疎水性単官能ラジカル重合性化合物(C)をまとめて、単官能ラジカル重合性化合物(B+C)と呼ぶ。単官能ラジカル重合性化合物(B+C)の含有量は、ラジカル重合性化合物100質量部に対して30質量部以上90質量部以下が好ましく、50質量部以上80質量部以下がより好ましい。
<ゴム粒子(D)>
硬化性樹脂組成物に、ゴム粒子(D)を含有させることにより、硬化物の耐衝撃性を向上させることができる。
硬化性樹脂組成物に、ゴム粒子(D)を含有させることにより、硬化物の耐衝撃性を向上させることができる。
ゴム粒子の種類は特に限定されるものではない。ゴム粒子を構成する好ましい組成物としては、例えば、ブタジエンゴム、スチレン/ブタジエン共重合ゴム、アクリロニトリル/ブタジエン共重合ゴム、これらのジエンゴムを水素添加または部分水素添加した飽和ゴム、架橋ブタジエンゴム、イソプレンゴム、クロロプレンゴム、天然ゴム、シリコンゴム、エチレン/プロピレン/ジエンモノマー三元共重合ゴム、アクリルゴム、アクリル/シリコーン複合ゴムなどが挙げられる。ゴム粒子は、これらの組成物を、単独で、または2種以上を組み合せた組成物から構成されることが好ましい。中でも、耐衝撃性を向上させ、硬化性樹脂組成物の粘度上昇を抑制するという観点から、ブタジエンゴム、架橋ブタジエンゴム、スチレン/ブタジエン共重合ゴム、アクリルゴムおよびシリコーン/アクリル複合ゴムのいずれかからなるゴム粒子が特に好ましい。
前記ゴム粒子の組成物のガラス転移温度は、25℃以下であることが好ましい。より好ましくは、20℃以下である。ガラス転移温度が25℃より高い場合には、耐衝撃性の向上効果が得られ難くなる傾向がある。ゴム粒子の組成物のガラス転移温度は、例えば、示差走査熱量測定(DSC)や動的粘弾性測定(DMA)により求めることができる。
ゴム粒子は、コアシェル構造を有するゴム粒子であることがより好ましい。具体的には、前述したゴム粒子をコアとし、その外側を被覆するラジカル重合性化合物の重合体からなるシェルをさらに有するゴム粒子であることが好ましい。コアシェル構造を有するゴム粒子を用いれば、多官能ウレタン(メタ)アクリレート(A)、親水性単官能ラジカル重合性化合物(B)、および疎水性単官能ラジカル重合性化合物(C)を含む樹脂組成物中におけるゴム粒子の分散性を向上させることができる。その結果、ゴム粒子が均一に分散した硬化物が得られ、硬化物中においてゴム粒子が効果的に機能して耐衝撃性をより向上させることができる。
シェルを形成するラジカル重合性化合物の重合体は、コアの表面に化学結合を介してグラフト重合しており、コアの一部または全体を覆う形態を有していることが好ましい。シェルがコアにグラフト重合されてなるコアシェル構造を有するゴム粒子は、コアとなる粒子の存在下において、公知の方法でラジカル重合性化合物をグラフト重合させて形成することができる。例えば、乳化重合やミニエマルション重合、懸濁重合、シード重合、等で調製され得る、水中に分散されたラテックス粒子に対して、シェルの構成成分であるラジカル重合性化合物を加えて重合させることで製造することができる。
なお、コアの表面に、シェルがグラフト重合され得るエチレン性不飽和基等の反応性部位が存在しない、または極めて少ない場合には、反応性部位を含有する中間層をコアとなる粒子の表面に設けてから、シェルをグラフト重合させてもよい。すなわち、コアシェル構造を有するゴム粒子の形態としては、中間層を介してコアにシェルが設けられた形態も含まれる。
コアシェル構造を有するゴム粒子のコアを構成する組成物としては、前述の組成物を用いることができる。ゴム粒子が柔軟なほど耐衝撃性の改善が期待されることから、中でも、ブタジエンゴム、架橋ブタジエンゴム、スチレン/ブタジエン共重合ゴム、アクリルゴムおよびシリコーン/アクリル複合ゴムの少なくともいずれか1つからなるコアが特に好ましい。
シェルを形成するラジカル重合性化合物としては、分子内に1個のラジカル重合性官能基を有する単官能ラジカル重合性化合物を好適に用いることができる。単官能ラジカル重合性化合物の重合体を含むシェルを有するゴム粒子は、ラジカル重合性化合物を含む樹脂組成物中に分散させたときの分散性に優れる。
シェルを形成するために用いる単官能ラジカル重合性化合物は、コアを構成する組成物との相性や、樹脂組成物中での分散性を考慮して適宜選択することができる。例えば、親水性単官能ラジカル重合性化合物(B)や疎水性単官能ラジカル重合性化合物(C)として例示した材料の中から、1種、あるいは2種以上を組み合わせて用いてもよい。シェルが(メタ)アクリロイル基を有する単官能ラジカル重合性化合物の重合体を含んでいると、硬化性樹脂組成物中におけるゴム粒子の分散が良好で、硬化性樹脂組成物の粘度上昇を抑制することもできるため好ましい。中でも、(メタ)アクリロイル基を有する疎水性単官能ラジカル重合性化合物の重合体を含むシェルを有するゴム粒子は、特に好ましい。
また、シェルを形成するためのラジカル重合性化合物として、単官能ラジカル重合性化合物と、多官能ラジカル重合性化合物を併用してもよい。多官能ラジカル重合性化合物を用いてシェルを形成すると、硬化性樹脂組成物の粘度が低くなり、取り扱いが容易になる傾向がある。その一方で、多官能ラジカル重合性化合物の含有量が過剰になると、コアシェル構造を有するゴム粒子の添加による、耐衝撃性の向上効果が得られ難くなる傾向がある。そのため、シェル形成に用いられる多官能ラジカル重合性化合物は、シェル形成のために用いるラジカル重合性化合物100質量部に対して、0質量部以上40質量部以下であることが好ましい。さらに、0質量部以上30質量部以下がより好ましく、0質量部以上25質量部以下が特に好ましい。なお、シェル形成に用いる多官能ラジカル重合性化合物には、コアを構成する組成物との相性や、樹脂組成物中での分散性を考慮して適宜選択することができる。多官能ウレタン(メタ)アクリレート(A)、および後に多官能ラジカル重合性化合物として例示する材料の中から、1種、あるいは2種以上を組み合わせて用いてもよい。
コアシェル構造を有するゴム粒子におけるコアとシェルの質量比率としては、コア100質量部に対して、シェルが1質量部以上200質量部以下であることが好ましく、より好ましくは2質量部以上180質量部以下である。コアとシェルの質量比率が上記範囲内であれば、ゴム粒子を含有させることにより効果的に耐衝撃性を向上させることが可能である。シェルが1質量部未満である場合、硬化性樹脂組成物中におけるゴム粒子の分散性が十分でないため、耐衝撃性を向上させる効果を得にくい傾向がある。また、シェルが200質量部よりも多いと、硬化性樹脂組成物中における分散性に優れるが、ゴム粒子がシェルで厚く覆われてしまうため、ゴム成分による耐衝撃性の向上効果が低減されてしまう。従って、十分な耐衝撃性を得るためには多量のゴム粒子を添加する必要があり、硬化性樹脂組成物の粘度が増大して取り扱いが困難になる傾向がある。
ゴム粒子は、その平均粒子径が20nm以上10μm以下であることが好ましく、より好ましくは、50nm以上5μm以下である。平均粒子径が20nm未満の場合、添加に伴って硬化性樹脂組成物中の粘度上昇や、ゴム粒子の比表面積の増加に伴って生じるゴム粒子間の相互作用が、硬化物の耐熱性の低下や耐衝撃性の低下を引き起こす傾向がある。また、平均粒子径が10μmより大きい場合には、ゴム粒子(ゴム成分)が硬化性樹脂組成物中に分散しづらくなり、ゴム粒子の添加による耐衝撃性の向上効果が減少する傾向がある。
本発明におけるゴム粒子の平均粒子径は、算術(個数)平均粒径であって、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤にゴム粒子を分散させ、粒度分布計を用いて測定することができる。
また、ゴム粒子のゲル分率は、5%以上であることが好ましい。ゲル分率が5%未満である場合には、耐衝撃性ともに耐熱性が低下する傾向があるため好ましくない。ゲル分率は、以下の手順で求めることができる。乾燥ゴム粒子W1[g]を、十分な量のトルエン中に浸漬して、室温で7日間放置する。その後、遠心分離等により固形分を取り出して100℃で2時間乾燥させ、乾燥後に得られた固形分の量を計測する。乾燥後に得られた固形分の質量をW2[g]とすると、次式により求めることができる。
ゲル分率(%)=W2/W1×100
ゲル分率(%)=W2/W1×100
硬化性樹脂組成物中のゴム粒子の含有量は、ラジカル重合性化合物の合計100質量部に対して、8質量部以上50質量部以下とする。好ましくは、10質量部以上40質量部以下である。ゴム粒子の含有量が8質量部より少ないと、ゴム粒子の添加による耐衝撃性の向上効果が得られない。また、ゴム粒子の含有量が50質量部より多いと、得られる硬化物の耐熱性が著しく低下する。加えて、硬化性樹脂組成物の粘度が著しく上昇してしまい、取り扱いが困難になってしまう。
<ラジカル重合開始剤(E)>
ラジカル重合開始剤(E)には、光ラジカル重合開始剤や熱ラジカル重合開始剤を用いることができる。
ラジカル重合開始剤(E)には、光ラジカル重合開始剤や熱ラジカル重合開始剤を用いることができる。
前記光ラジカル重合開始剤は、主に分子内開裂型と水素引抜き型に分類される。分子内開裂型の光ラジカル重合開始剤では、特定波長の光を吸収することで、特定の部位の結合が切断され、その切断された部位にラジカルが発生し、それが重合開始剤となり(メタ)アクリロイル基を含有するエチレン性不飽和化合物の重合が始まる。一方、水素引き抜き型の場合は、特定波長の光を吸収し励起状態になり、その励起種が周囲にある水素供与体から水素引き抜き反応を起こし、ラジカルが発生し、それが重合開始剤となりラジカル重合性化合物の重合が始まる。
前記分子内開裂型光ラジカル重合開始剤としては、アルキルフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、オキシムエステル系光ラジカル重合開始剤が知られている。これらはカルボニル基に隣接した結合がα開裂して、ラジカル種を生成するタイプのものである。アルキルフェノン系光ラジカル重合開始剤としては、ベンジルメチルケタール系光ラジカル重合開始剤、α-ヒドロキシアルキルフェノン系光ラジカル重合開始剤、アミノアルキルフェノン系光ラジカル重合開始剤等がある。具体的な化合物としては、例えば、ベンジルメチルケタール系光ラジカル重合開始剤としては、2,2’-ジメトキシ-1,2-ジフェニルエタン-1-オン(イルガキュア(登録商標)651、BASF社製)等があり、α-ヒドロキシアルキルフェノン系光ラジカル重合開始剤としては2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(ダロキュア1173、BASF社製)、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュア184、BASF社製)、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュア2959、BASF社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(イルガキュア127、BASF社製)等があり、アミノアルキルフェノン系光ラジカル重合開始剤としては、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(イルガキュア907、BASF社製)あるいは2-ベンジルメチル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン(イルガキュア369、BASF社製)等があるが、これに限定されることはない。アシルホスフィンオキサイド系光ラジカル重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(ルシリンTPO、BASF社製)、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(イルガキュア819、BASF社製)等があるが、これに限定されることはない。オキシムエステル系光ラジカル重合開始剤としては、(2E)-2-(ベンゾイルオキシイミノ)-1-[4-(フェニルチオ)フェニル]オクタン-1-オン(イルガキュアOXE-01、BASF社製)等が挙げられるが、これに限定されることはない。括弧内に商品名の一例を併記しておく。
前記水素引き抜き型ラジカル重合開始剤としては、2-エチル-9,10-アントラキノン、2-t-ブチル-9,10-アントラキノン等のアントラキノン誘導体、イソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン誘導体が挙げられるが、これに限定されることはない。これらの光ラジカル重合開始剤は、単独で用いても、2種類以上を組み合わせて用いてもよい。また、後述する熱ラジカル重合開始剤と併用していてもよい。
光ラジカル重合開始剤の添加量としては、硬化性樹脂組成物に含まれるラジカル重合性化合物100質量部に対して、0.1質量部以上15質量部以下であることが好ましい。より好ましくは0.1質量部以上10質量部以下である。光ラジカル重合開始剤量が少ないと、重合が不十分となる傾向がある。重合開始剤を過剰に添加すると、分子量が増大せず、耐熱性あるいは耐衝撃性が低下してしまう恐れがある。ここで、ラジカル重合性化合物は、多官能ウレタン(メタ)アクリレート(A)と単官能ラジカル重合性化合物(B+C)とその他の多官能ラジカル重合性化合物を合わせたものである。
また、熱ラジカル重合開始剤としては、加熱によりラジカルを発生するものであれば特に制限されず従来既知の化合物を用いることが可能であり、例えば、アゾ系化合物、過酸化物および過硫酸塩等を好ましいものとして例示することができる。アゾ系化合物としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(メチルイソブチレ-ト)、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)等が挙げられる。過酸化物としては、ベンゾイルパーオキサイド、ジ-t-ブチルベンゾイルパーオキサイド、t-ブチルパーオキシピバレートおよびジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート等が挙げられる。過硫酸塩としては、過硫酸アンモニウム、過硫酸ナトリウムおよび過硫酸カリウム等の過硫酸塩等が挙げられる。
熱ラジカル重合開始剤の添加量としては、硬化性樹脂組成物に含まれるラジカル重合性化合物100質量部に対して、好ましくは0.1質量部以上15質量部以下、より好ましくは0.1質量部以上10質量部以下である。重合開始剤を過剰に添加すると、分子量が増大せず、耐熱性あるいは耐衝撃性が低下してしまう場合がある。
<その他の成分(F)>
硬化性樹脂組成物は、本発明の目的、効果を損なわない範囲において、その他の成分を含有していてもよい。
硬化性樹脂組成物は、本発明の目的、効果を損なわない範囲において、その他の成分を含有していてもよい。
その他の成分としては、多官能ウレタン(メタ)アクリレート(A)以外の多官能ラジカル重合性化合物や添加剤が挙げられる。
まず、多官能ウレタン(メタ)アクリレート(A)以外の多官能ラジカル重合性化合物を含む場合について説明する。
ラジカル重合性官能基当量が300g/eq未満の多官能ラジカル重合性化合物を含む場合、その含有量は、硬化性樹脂組成物に含まれるラジカル重合性化合物の合計100質量部に対して20質量部以下であることが好ましい。より好ましくは18質量部以下である。なお、ラジカル重合性官能基当量とは、ラジカル重合性官能基1個あたりの分子量を示す値である。
ラジカル重合性官能基当量が300g/eq未満である多官能ラジカル重合性化合物の含有量が20質量部より多いと、硬化物の架橋密度が高くなるのと同時に、架橋密度が不均一化になる傾向がある。そのため、外部から衝撃を加えた際に応力が集中する部分が生じ、ゴム粒子添加によって期待される耐衝撃性向上の効果が得られず、シャルピー衝撃強さが従来技術並みになってしまう場合がある。
ラジカル重合性官能基当量が300g/eq以上である多官能ラジカル重合性化合物を含む場合、その含有量は硬化性樹脂組成物に含まれるラジカル重合性化合物の合計100質量部に対して50質量部未満であることが好ましい。ラジカル重合性官能基当量が300g/eq以上である多官能ラジカル重合性化合物の含有量が50質量部より多いと、耐熱性が低下し且つ、硬化物の架橋密度が高くなり、ゴム粒子添加によって期待される耐衝撃性向上の効果を得られにくい傾向がある。
多官能ウレタン(メタ)アクリレート(A)以外の多官能ラジカル重合性化合物のラジカル重合性官能基としては、エチレン性不飽和基が挙げられる。エチレン性不飽和基としては、(メタ)アクリロイル基、ビニル基、などが挙げられる。多官能ラジカル重合性化合物としては、例えば、多官能(メタ)アクリレート系化合物、ビニルエーテル基含有(メタ)アクリレート系化合物、多官能(メタ)アクリロイル基含有イソシアヌレート系化合物、多官能(メタ)アクリルアミド系化合物、多官能マレイミド系化合物、多官能ビニルエーテル系化合物、多官能芳香族ビニル系化合物などが挙げられる。
前記多官能(メタ)アクリレート系化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4ブタンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサメチレンジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのε-カプロラクトン付加物のジ(メタ)アクリレート(例えば、日本化薬社製、KAYARAD HX-220、HX-620など)、ビスフェノールAのEO付加物のジ(メタ)アクリレート、フッ素原子を有する多官能(メタ)アクリレート、シロキサン構造を有する多官能(メタ)アクリレート、ポリカーボネートジオールジ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、などを挙げることができる。
前記ビニルエーテル基含有(メタ)アクリレート系化合物としては、例えば、2-ビニロキシエチル(メタ)アクリレート、4-ビニロキシブチル(メタ)アクリレート、4-ビニロキシシクロヘキシル(メタ)アクリレート、2-(ビニロキシエトキシ)エチル(メタ)アクリレート、2-(ビニロキシエトキシエトキシエトキシ)エチル(メタ)アクリレートなどが挙げられる。
前記多官能(メタ)アクリロイル基含有イソシアヌレート系化合物としては、例えば、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(メタクリロイルオキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレートなどが挙げられる。
前記多官能(メタ)アクリルアミド系化合物としては、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド、N,N’-(1,2-ジヒドロキシエチレン)ビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N,N’,N’’-トリアクリロイルジエチレントリアミンなどが挙げられる。
前記多官能マレイミド系化合物としては、例えば、4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサンなどが挙げられる。
前記多官能ビニルエーテル系化合物としては、例えば、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテルなどが挙げられる。
前記多官能芳香族ビニル系化合物としては、例えば、ジビニルベンゼンなどが挙げられる。
なお、これらの多官能ラジカル重合性化合物は、単独でも2種以上を組み合せて用いてもよい。
添加剤としては、硬化物に所望の物性を付与するための物性改質剤、光増感剤、重合開始助剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、シランカップリング剤、無機充填剤、顔料、染料、酸化防止剤、難燃剤、増粘剤、消泡剤等を挙げることができる。
添加剤の添加量は、多官能ウレタン(メタ)アクリレート(A)と単官能ラジカル重合性化合物(B+C)とその他の多官能ラジカル重合性化合物の合計100質量部に対して、0.05質量部以上25質量部以下であることが好ましい。より好ましくは、0.1質量部以上20質量部以下である。この範囲であれば、得られる硬化物の耐衝撃性が低下したり吸水率が上昇したりすることなく、硬化物や硬化性樹脂組成物に所望の物性を付与することができる。
例えば、硬化物に所望の物性を付与するための物性改質剤として、エポキシ樹脂、ポリウレタン、ポリクロロプレン、ポリエステル、ポリシロキサン、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂などの樹脂、あるいはポリカーボネート、変性ポリフェニレンエーテル、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、超高分子量ポリエチレン、ポリフェニルスルホン、ポリスルホン、ポリアリレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリエーテルスルホン、ポリアミドイミド、液晶ポリマー、ポリトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデンなどのエンジニアリングプラスチック、フッ素系オリゴマー、シリコーン系オリゴマー、ポリスルフィド系オリゴマー、金、銀、鉛などの軟質金属、黒鉛、二硫化モリブデン、二硫化タングステン、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、フッ化バリウム、フッ化リチウム、窒化ケイ素、セレン化モリブデンなどの層状結晶構造物質などが挙げられる。
また、光増感剤として、フェノチアジン、2,6-ジ-t-ブチル-4-メチルフェノール等の重合禁止剤、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物などが挙げられる。
<硬化性樹脂組成物>
硬化性樹脂組成物は、多官能ウレタン(メタ)アクリレート(A)、単官能ラジカル重合性化合物(B+C)、ゴム粒子(D)、ラジカル重合開始剤(E)、並びに、必要に応じてその他の成分を、適量ずつ攪拌容器に入れて攪拌する。攪拌温度は、通常20℃以上120℃以下、好ましくは40℃以上100℃以下である。そして、必要に応じて揮発性の溶剤等を除去することにより製造することができる。
硬化性樹脂組成物は、多官能ウレタン(メタ)アクリレート(A)、単官能ラジカル重合性化合物(B+C)、ゴム粒子(D)、ラジカル重合開始剤(E)、並びに、必要に応じてその他の成分を、適量ずつ攪拌容器に入れて攪拌する。攪拌温度は、通常20℃以上120℃以下、好ましくは40℃以上100℃以下である。そして、必要に応じて揮発性の溶剤等を除去することにより製造することができる。
本発明に係る硬化性樹脂組成物は、光造形法に用いる造形材料として好適に用いることができる。すなわち、本実施形態の硬化性樹脂組成物に対して、活性エネルギー線を選択的に照射して硬化に必要なエネルギーを供給することにより、所望の形状の造形物を製造することができる。本実施形態の硬化性樹脂組成物を光造形法の造形材料として用いる場合、25℃における粘度が50mPa・s以上5,000mPa・s以下であるのが好ましく、より好ましくは75mPa・s以上4,500mPa・s以下である。
<物品の製造方法>
本発明にかかる硬化性樹脂組成物を硬化せしめてなる硬化物(造形物)は、公知の光造形法および装置を用いて作製することができる。好ましい光造形法の代表例としては、製造目的物(造形モデル)の三次元形状データから生成したスライスデータに基づいて、硬化性樹脂組成物を所定の厚さで硬化させることを繰り返す工程を有する方法である。大きく分けて自由液面法と規制液面法の2種類がある。
本発明にかかる硬化性樹脂組成物を硬化せしめてなる硬化物(造形物)は、公知の光造形法および装置を用いて作製することができる。好ましい光造形法の代表例としては、製造目的物(造形モデル)の三次元形状データから生成したスライスデータに基づいて、硬化性樹脂組成物を所定の厚さで硬化させることを繰り返す工程を有する方法である。大きく分けて自由液面法と規制液面法の2種類がある。
図1に、自由液面法を用いた光造形装置100の構成例を示す。光造形装置100は、液状の光硬化性樹脂組成物10を満たした槽11を有している。槽11の内側には、造形ステージ12が、駆動軸13によって鉛直方向に駆動可能に設けられている。光源14から射出された光硬化性樹脂組成物10を硬化するための光エネルギー線15は、スライスデータに従って制御部18によって制御されるガルバノミラー16で照射位置が変更され、槽11の表面を走査される。図1では、走査範囲を太い破線で示している。
光エネルギー線15によって硬化される光硬化性樹脂組成物10の厚さdは、スライスデータの生成時の設定に基づいて決まる値で、得られる造形物の精度(造形する物品の三次元形状データの再現性)に影響を与える。厚さdは、制御部18が駆動軸13の駆動量を制御することによって達成される。
まず、制御部18が設定に基づいて駆動軸13を制御し、ステージ12の上に厚さdで光硬化性樹脂組成物が供給される。ステージ12上の液状の硬化性樹脂組成物に、所望のパターンを有する硬化層が得られるように、スライスデータに基づいて光エネルギー線が選択的に照射され、硬化層が形成される。次いで、ステージ12を白抜きの矢印の方向に移動させることによって、硬化層の表面に厚さdで未硬化の硬化性樹脂組成物が供給される。そして、スライスデータに基づいて光エネルギー線15が照射され、先に形成した硬化層と一体化した硬化物が形成される。この層状に硬化させる工程を繰り返すことによって目的とする立体的な造形物を得ることができる。
このようにして得られる立体造形物を槽11から取り出し、その表面に残存する未反応の硬化性樹脂組成物を除去した後、必要に応じて洗浄する。洗浄剤としては、イソプロピルアルコール、エチルアルコール等のアルコール類に代表されるアルコール系有機溶剤を用いることができる。他に、アセトン、酢酸エチル、メチルエチルケトン等に代表されるケトン系有機溶剤や、テルペン類に代表される脂肪族系有機溶剤を用いても良い。なお、洗浄剤で洗浄した後には必要に応じて、光照射又は熱照射によるポストキュアーを行っても良い。ポストキュアーは、立体造形物の表面及び内部に残存することのある未反応の硬化性樹脂組成物を硬化させることができ、立体造形物の表面のべたつきを抑えることができる他、立体造形物の初期強度を向上させることができる。
立体造形物の製造に用いる光エネルギー線としては、紫外線、電子線、X線、放射線などを挙げることができる。なかでも、300nm以上450nm以下の波長を有する紫外線が経済的な観点から好ましく用いられる。紫外線を発生させる光源としては、紫外線レーザー(例えばArレーザー、He-Cdレーザーなど)、水銀ランプ、キセノンランプ、ハロゲンランプ、蛍光灯などを使用することができる。なかでも、レーザー光源は、集光性に優れ、エネルギーレベルを高めて造形時間を短縮することができ、高い造形精度を得ることができるため好ましく採用される。
硬化性樹脂組成物よりなる面に活性エネルギー線を照射して、所定の形状パターンの硬化層を形成するに当たっては、点状あるいは線状に絞られた光エネルギー線を使用して、点描方式または線描方式で樹脂を硬化させることができる。あるいは、液晶シャッターまたはデジタルマイクロミラーシャッターなどのような微小光シャッターを複数配列して形成した面状描画マスクを通して、活性エネルギー線を面状に照射して樹脂を硬化させてもよい。
同様に、規制液面法による造形も好ましい。規制液面法を用いる光造形装置は、図1の光造形装置100のステージ12が造形物を液面の上方に引き上げるように設けられ、光照射手段が槽11の下方に設けられた構成となる。規制液面法の代表的な造形例は、次のとおりである。まず、昇降自在に設けられた支持ステージの支持面と硬化性樹脂組成物を収容した槽の底面とが所定の距離となるように設置され、支持ステージの支持面と槽の底面との間に硬化性樹脂組成物が供給される。次いで、硬化性樹脂組成物を収容した槽の底面側から、レーザー光源あるいは、プロジェクターによって、ステージ支持面と槽の底面との間の硬化性樹脂組成物に、スライスデータに応じて選択的に光が照射される。光の照射により、ステージ支持面と槽の底面との間の硬化性樹脂組成物が硬化し、固体状の硬化樹脂層が形成される。その後、支持ステージを上昇させ、槽の底面から硬化樹脂層が引きはがされる。
次いで、支持ステージの上に形成された硬化層と槽の底面との間が所定の距離となるように支持ステージの高さを調整する。そして、先ほどと同様に選択的に光を照射することによって、硬化樹脂層と槽の底面との間に先に形成した硬化樹脂層と一体化する新しい硬化樹脂層を形成する。そして、光照射されるパターンを変化させながら或いは変化させずに、この工程を所定回数繰り返すことにより、複数の硬化樹脂層が一体的に積層されてなる立体造形物が造形される。
以下、実施例により本実施形態を詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。
<使用材料>
以下、実施例および比較例にて使用した材料を列記する。
以下、実施例および比較例にて使用した材料を列記する。
[多官能ウレタン(メタ)アクリレート(A)]
A-1:二官能ウレタンアクリレート;「KAYARAD UX-6101」(日本化薬社製、重量平均分子量(実測値):6.7×103)
A-2:二官能ウレタンアクリレート;「KAYARAD UX-8101」(日本化薬社製、重量平均分子量(実測値):3.3×103)
A-3:二官能ウレタンアクリレート;「CN9001NS」(アルケマ社製、重量平均分子量(実測値):5.4×103)
A-1:二官能ウレタンアクリレート;「KAYARAD UX-6101」(日本化薬社製、重量平均分子量(実測値):6.7×103)
A-2:二官能ウレタンアクリレート;「KAYARAD UX-8101」(日本化薬社製、重量平均分子量(実測値):3.3×103)
A-3:二官能ウレタンアクリレート;「CN9001NS」(アルケマ社製、重量平均分子量(実測値):5.4×103)
[親水性単官能ラジカル重合性化合物(B)]
B-1:アクリロイルモルフォリン;「ACMO」(KJケミカルズ社製)
B-2:N,N-ジエチルアクリルアミド;「DEAA」(KJケミカルズ社製)
B-3:N-ビニルカプロラクタム
B-4:2-ヒドロキシエチルメタクリレート
B-5:ジアセトンアクリルアミド;「DAAM」(KJケミカルズ社製)
B-1:アクリロイルモルフォリン;「ACMO」(KJケミカルズ社製)
B-2:N,N-ジエチルアクリルアミド;「DEAA」(KJケミカルズ社製)
B-3:N-ビニルカプロラクタム
B-4:2-ヒドロキシエチルメタクリレート
B-5:ジアセトンアクリルアミド;「DAAM」(KJケミカルズ社製)
[疎水性単官能ラジカル重合性化合物(C)]
C-1:イソボルニルアクリレート
C-2:N-フェミルマレイミド;「imilex-P」(株式会社日本触媒製)
C-3:N-シクロヘキシルマレイミド;「imilex-C」(株式会社日本触媒製)
C-1:イソボルニルアクリレート
C-2:N-フェミルマレイミド;「imilex-P」(株式会社日本触媒製)
C-3:N-シクロヘキシルマレイミド;「imilex-C」(株式会社日本触媒製)
[ゴム粒子(D)]
ゴム粒子D-1およびD-2のアセトン分散液は以下に示す方法にて製造した。
ゴム粒子D-1およびD-2のアセトン分散液は以下に示す方法にて製造した。
<ゴム粒子D-1のアセトン分散液の製造>
1Lガラス容器に、ポリブタジエンラテックス(Nipol LX111A2:日本ゼオン社製)185質量部(ポリブタジエンゴム粒子100質量部相当)および脱イオン水315質量部を仕込み、窒素置換を行いながら60℃で撹拌した。さらに、エチレンジアミン四酢酸二ナトリウム(EDTA)0.005質量部、硫酸第一鉄・7水和塩0.001質量部、およびナトリウムホルムアルデヒドスルホキシレート0.2質量部を加えた。その後、シェルを形成するラジカル重合性化合物35質量部(メチルメタクリレート(MMA)17.5質量部、イソボルニルメタクリレート(IBMA)17.5質量部)、およびクメンヒドロパーオキサイド0.1質量部の混合物を2時間かけて連続的に添加した。これにより、ポリブタジエンゴム粒子の表面にラジカル重合性化合物がグラフト重合した。シェルを形成する材料の添加を終えると、更に2時間撹拌して反応を終了させ、ポリブタジエンゴムをコア、MMAとIBMAの共重合体をシェルとして有するコアシェル型ゴム粒子D-1の水分散液を得た。
1Lガラス容器に、ポリブタジエンラテックス(Nipol LX111A2:日本ゼオン社製)185質量部(ポリブタジエンゴム粒子100質量部相当)および脱イオン水315質量部を仕込み、窒素置換を行いながら60℃で撹拌した。さらに、エチレンジアミン四酢酸二ナトリウム(EDTA)0.005質量部、硫酸第一鉄・7水和塩0.001質量部、およびナトリウムホルムアルデヒドスルホキシレート0.2質量部を加えた。その後、シェルを形成するラジカル重合性化合物35質量部(メチルメタクリレート(MMA)17.5質量部、イソボルニルメタクリレート(IBMA)17.5質量部)、およびクメンヒドロパーオキサイド0.1質量部の混合物を2時間かけて連続的に添加した。これにより、ポリブタジエンゴム粒子の表面にラジカル重合性化合物がグラフト重合した。シェルを形成する材料の添加を終えると、更に2時間撹拌して反応を終了させ、ポリブタジエンゴムをコア、MMAとIBMAの共重合体をシェルとして有するコアシェル型ゴム粒子D-1の水分散液を得た。
上記手順にて得られたコアシェル型ゴム粒子の水分散液を、アセトン450質量部中に投入し、均一に混合した。遠心分離機を用いてアセトンへの置換を行い、コアシェル型ゴム粒子D-1のアセトン分散液を得た。動的光散乱法を用いて計測したコアシェル型ゴム粒子D-1の平均粒子径は0.25μmであった。
<ゴム粒子D-2のアセトン分散液の製造>
ゴム粒子D-2(カネエース M-511(株式会社カネカ製))20質量部およびアセトン80質量部を混合し、超音波ホモジナイザーを用いて1次粒子となるまで分散させることによって、コアシェル型ゴム粒子D-2のアセトン分散液を得た。動的光散乱法を用いて計測したコアシェル型ゴム粒子D-2の平均粒子径は0.23μmであった。
ゴム粒子D-2(カネエース M-511(株式会社カネカ製))20質量部およびアセトン80質量部を混合し、超音波ホモジナイザーを用いて1次粒子となるまで分散させることによって、コアシェル型ゴム粒子D-2のアセトン分散液を得た。動的光散乱法を用いて計測したコアシェル型ゴム粒子D-2の平均粒子径は0.23μmであった。
[ラジカル重合開始剤(E)]
E-1:光ラジカル発生剤;「Irgacure819」(BASF社製)
[その他の成分(多官能ラジカル重合性化合物)(F)]
F-1:ポリカーボネートジオールジアクリレート「UM-90(1/3)DM」(分子量:約900,ラジカル重合性官能基当量:約450g/eq,宇部興産社製)
F-2:エトキシ化イソシアヌル酸トリアクリレート「A-9300」(分子量:423,ラジカル重合性官能基当量:141g/eq,新中村化学工業社製)
E-1:光ラジカル発生剤;「Irgacure819」(BASF社製)
[その他の成分(多官能ラジカル重合性化合物)(F)]
F-1:ポリカーボネートジオールジアクリレート「UM-90(1/3)DM」(分子量:約900,ラジカル重合性官能基当量:約450g/eq,宇部興産社製)
F-2:エトキシ化イソシアヌル酸トリアクリレート「A-9300」(分子量:423,ラジカル重合性官能基当量:141g/eq,新中村化学工業社製)
<硬化性樹脂組成物の製造>
表1に示す配合比にてそれぞれの材料を配合し、均一になるよう混合した。この混合物中に、ゴム粒子D-1またはD-2のアセトン分散液を混合し、揮発分であるアセトンを除去することによって、実施例1~13および比較例1~6にかかる硬化性樹脂組成物を得た。
表1に示す配合比にてそれぞれの材料を配合し、均一になるよう混合した。この混合物中に、ゴム粒子D-1またはD-2のアセトン分散液を混合し、揮発分であるアセトンを除去することによって、実施例1~13および比較例1~6にかかる硬化性樹脂組成物を得た。
<試験片の作製>
調製した硬化性樹脂組成物から、下記の方法で硬化物を作製した。まず、二枚の石英ガラスの間に長さ80mm、幅10mm、厚さ4mmの金型を挟み、ここに硬化性樹脂組成物を流し込んだ。流し込んだ硬化性樹脂組成物に対して紫外線照射機(HOYA CANDEO OPTRONICS社製、商品名「LIGHT SOURCE EXECURE3000」)で5mW/cm2の紫外線を金型の両面から交互に180秒間ずつ2回照射した。得られた硬化物を70℃の加熱オーブン内に入れて2時間熱処理を行うことで、長さ80mm、幅10mm、厚さ4mmの試験片を得た。
調製した硬化性樹脂組成物から、下記の方法で硬化物を作製した。まず、二枚の石英ガラスの間に長さ80mm、幅10mm、厚さ4mmの金型を挟み、ここに硬化性樹脂組成物を流し込んだ。流し込んだ硬化性樹脂組成物に対して紫外線照射機(HOYA CANDEO OPTRONICS社製、商品名「LIGHT SOURCE EXECURE3000」)で5mW/cm2の紫外線を金型の両面から交互に180秒間ずつ2回照射した。得られた硬化物を70℃の加熱オーブン内に入れて2時間熱処理を行うことで、長さ80mm、幅10mm、厚さ4mmの試験片を得た。
<評価>
[重量平均分子量]
ゲルパーミエションクロマトグラフィー(Gel Permeation Chromatography;GPC)装置(東ソー社製、HLC-8220GPC)に、Shodex GPC LF-804カラム(昭和電工社製、排除限界分子量:2×106、分離範囲:300~2×106)を2本直列に配置し、40℃、展開溶媒としてTHFを用い、RI(Refractive Index、示差屈折率)検出器により測定した。得られた重量平均分子量は標準ポリスチレン換算値である。
[重量平均分子量]
ゲルパーミエションクロマトグラフィー(Gel Permeation Chromatography;GPC)装置(東ソー社製、HLC-8220GPC)に、Shodex GPC LF-804カラム(昭和電工社製、排除限界分子量:2×106、分離範囲:300~2×106)を2本直列に配置し、40℃、展開溶媒としてTHFを用い、RI(Refractive Index、示差屈折率)検出器により測定した。得られた重量平均分子量は標準ポリスチレン換算値である。
[ゴム粒子の平均粒子径]
粒度分布計(マルバーン社製、ゼータサイザーナノZS)を用いて、ガラス製セルにゴム粒子(D-1)の希薄アセトン分散液を約1ml入れて25℃で算術(個数)平均粒径を測定した。
粒度分布計(マルバーン社製、ゼータサイザーナノZS)を用いて、ガラス製セルにゴム粒子(D-1)の希薄アセトン分散液を約1ml入れて25℃で算術(個数)平均粒径を測定した。
[単官能ラジカル重合性化合物の重合体のガラス転移温度(Tg)]
単官能ラジカル重合性化合物の重合体のTgは、一般に知られている単官能ラジカル重合性化合物の重合体については前記FOX式を用いて算出し、それ以外は粘弾性測定装置(Physica MCR302、アントンパール社製)にて測定した。単官能ラジカル重合性化合物の重合体のTgが85℃以上の場合に○、85℃未満の場合を×として表1に記載した。
単官能ラジカル重合性化合物の重合体のTgは、一般に知られている単官能ラジカル重合性化合物の重合体については前記FOX式を用いて算出し、それ以外は粘弾性測定装置(Physica MCR302、アントンパール社製)にて測定した。単官能ラジカル重合性化合物の重合体のTgが85℃以上の場合に○、85℃未満の場合を×として表1に記載した。
[硬化性樹脂組成物の粘度]
硬化性樹脂組成物の粘度は、回転式レオメーター法で測定した。具体的には、粘弾性測定装置(Physica MCR302、アントンパール社製)を用いて、下記のように測定した。
コーンプレート型測定治具(CP25-2、アントンパール社製;25mm径、2°)を取り付けた測定装置に試料約0.5mLを充填し、25℃に調整する。50s-1の一定せん断速度条件下、データ間隔6秒で測定し、120秒時の値を粘度とした。粘度は、以下の基準にて評価した。
A(非常に良好):粘度が2.0Pa・s未満
B(良好):粘度が2.0Pa・s以上5.0Pa・s未満
C(不良):粘度が5.0Pa・s以上
硬化性樹脂組成物の粘度は、回転式レオメーター法で測定した。具体的には、粘弾性測定装置(Physica MCR302、アントンパール社製)を用いて、下記のように測定した。
コーンプレート型測定治具(CP25-2、アントンパール社製;25mm径、2°)を取り付けた測定装置に試料約0.5mLを充填し、25℃に調整する。50s-1の一定せん断速度条件下、データ間隔6秒で測定し、120秒時の値を粘度とした。粘度は、以下の基準にて評価した。
A(非常に良好):粘度が2.0Pa・s未満
B(良好):粘度が2.0Pa・s以上5.0Pa・s未満
C(不良):粘度が5.0Pa・s以上
[荷重たわみ温度]
試験片について、JIS K 7191-2に準じて、荷重たわみ温度試験機(東洋精機製作所製、商品名「No.533 HDT 試験装置 3M-2」)を用い、曲げ応力1.80MPaで、室温から2℃毎分で昇温した。試験片のたわみ量が0.34mmに達した温度を荷重たわみ温度とし、耐熱性の指標とした。得られた結果を表1に示す。耐熱性は、以下の基準にて評価した。
A(非常に良好):荷重撓み温度が80℃以上
B(良好):荷重撓み温度が60℃以上80℃未満
C(不良):荷重撓み温度が60℃未満
試験片について、JIS K 7191-2に準じて、荷重たわみ温度試験機(東洋精機製作所製、商品名「No.533 HDT 試験装置 3M-2」)を用い、曲げ応力1.80MPaで、室温から2℃毎分で昇温した。試験片のたわみ量が0.34mmに達した温度を荷重たわみ温度とし、耐熱性の指標とした。得られた結果を表1に示す。耐熱性は、以下の基準にて評価した。
A(非常に良好):荷重撓み温度が80℃以上
B(良好):荷重撓み温度が60℃以上80℃未満
C(不良):荷重撓み温度が60℃未満
[シャルピー衝撃強さ]
JIS K 7111に準じて、切欠き形成機(東洋精機製作所製、商品名「ノッチングツール A-4」)にて試験片の中央部に深さ2mm、45°の切欠き(ノッチ)を入れた。衝撃試験機(東洋精機製作所製、商品名「IMPACT TESTER IT」)を用い、試験片の切欠きの背面から2Jのエネルギーで破壊する。150°まで振り上げたハンマーが試験片破壊後に振りあがる角度から破壊に要したエネルギーを算出し、それをシャルピー衝撃強さとし、耐衝撃性の指標とした。得られた結果を表1に示す。耐衝撃性は以下の基準にて評価した。
A(非常に良好):シャルピー衝撃強さが12kJ/m2以上
B(良好):シャルピー衝撃強さが8kJ/m2以上12kJ/m2未満
C(不良):シャルピー衝撃強さが8kJ/m2未満
JIS K 7111に準じて、切欠き形成機(東洋精機製作所製、商品名「ノッチングツール A-4」)にて試験片の中央部に深さ2mm、45°の切欠き(ノッチ)を入れた。衝撃試験機(東洋精機製作所製、商品名「IMPACT TESTER IT」)を用い、試験片の切欠きの背面から2Jのエネルギーで破壊する。150°まで振り上げたハンマーが試験片破壊後に振りあがる角度から破壊に要したエネルギーを算出し、それをシャルピー衝撃強さとし、耐衝撃性の指標とした。得られた結果を表1に示す。耐衝撃性は以下の基準にて評価した。
A(非常に良好):シャルピー衝撃強さが12kJ/m2以上
B(良好):シャルピー衝撃強さが8kJ/m2以上12kJ/m2未満
C(不良):シャルピー衝撃強さが8kJ/m2未満
[吸水率]
試験片について、50℃で24時間乾燥させて秤量した値をM1(g)、300ml以上の水中に浸漬して室温で24時間放置した後に表面の水分を拭き取って秤量した値をM2(g)とし、下記式に当てはめて吸水率を算出した。
吸水率[%]=(M2-M1)/M1×100
吸水率は以下の基準にて評価した。
試験片について、50℃で24時間乾燥させて秤量した値をM1(g)、300ml以上の水中に浸漬して室温で24時間放置した後に表面の水分を拭き取って秤量した値をM2(g)とし、下記式に当てはめて吸水率を算出した。
吸水率[%]=(M2-M1)/M1×100
吸水率は以下の基準にて評価した。
A(非常に良好):吸水率が2.0%未満
B(良好):吸水率が2.0%以上10%未満
C(不良):吸水率が10%以上
B(良好):吸水率が2.0%以上10%未満
C(不良):吸水率が10%以上
表1中、空欄は組成物中にその材料を含まないことを意味する。
表1に示すように、実施例1乃至13にて調整した硬化性樹脂組成物は、光造形法に用いる造形材料として好適な範囲の粘度であった。また、得られた硬化物は、耐衝撃性、耐熱性に優れ、吸水率も低く耐水性にも優れていた。
一方、疎水性単官能ラジカル重合性(C)を含有しない硬化性樹脂組成物から得られた、比較例1にかかる硬化物は、吸水率が高く、実用上で問題が生じるレベルであった。親水性単官能ラジカル重合性(B)を含有しない、比較例2にかかる硬化性樹脂組成物は、粘度が極めて高く、光造形法に用いた造形が困難なレベルであった。ゴム粒子(D)の含有量が5質量部と少ない硬化性樹脂組成物から得られた、比較例3にかかる硬化物は、耐衝撃性の向上が十分ではなかった。また、単官能ラジカル重合性化合物の重合体のガラス転移温度が85℃未満と低い硬化性樹脂組成物から得られた、比較例4にかかる硬化物は、耐熱性が十分ではなかった。さらに、ラジカル重合性官能基当量が300g/eq未満である多官能ラジカル重合性化合物の含有量が25質量部と多い硬化性樹脂組成物から得られた、比較例5にかかる硬化物は、耐衝撃性の向上が十分ではなかった。同様に、ラジカル重合性官能基当量が300g/eq以上である多官能ラジカル重合性化合物の含有量が50質量部と多い硬化性樹脂組成物から得られた、比較例6にかかる硬化物は、に耐熱性が十分ではなかった。
以上の結果から、本発明によれば、光造形法に適した粘度の硬化性樹脂組成物、および、それを硬化させることにより、良好な耐衝撃性と低い吸水率、および耐熱性を有する硬化物が得られることが確認された。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
本願は、2019年5月24日提出の日本国特許出願特願2019-097824及び2020年4月21日提出の日本国特許出願特願2020-075189を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
Claims (9)
- 硬化性樹脂組成物であって、
該硬化性樹脂組成物は、多官能ウレタン(メタ)アクリレート(A)、親水性単官能ラジカル重合性化合物(B)、疎水性単官能ラジカル重合性化合物(C)、ゴム粒子(D)、およびラジカル重合開始剤(E)を含有し、
該ゴム粒子(D)の含有量がラジカル重合性化合物100質量部に対して8質量部以上50質量部以下である、ことを特徴とする硬化性樹脂組成物。 - 前記ゴム粒子(D)の含有量がラジカル重合性化合物100質量部に対して10質量部以上40質量部以下である、請求項1に記載の硬化性樹脂組成物。
- 前記多官能ウレタン(メタ)アクリレート(A)の重量平均分子量が1000以上60000以下である、請求項1または2に記載の硬化性樹脂組成物。
- 前記親水性単官能ラジカル重合性化合物(B)の含有量が、ラジカル重合性化合物との合計100質量部に対して、65質量部以下である、請求項1から3のいずれか1項に記載の硬化性樹脂組成物。
- 前記親水性単官能ラジカル重合性化合物(B)のうち、水に対する溶解度が20[g/100g]以上の親水性単官能ラジカル重合性化合物(b-1)の含有量が、ラジカル重合性化合物との合計100質量部に対して、55質量部以下である、請求項1から4のいずれか1項に記載の硬化性樹脂組成物。
- 前記疎水性単官能ラジカル重合性化合物(C)のうち、脂環式炭化水素基を有する疎水性単官能ラジカル重合性化合物(c-1)の含有量が、前記硬化性樹脂組成物中のラジカル重合性化合物の合計100質量部に対して60質量部未満である、請求項1から5のいずれか1項に記載の硬化性樹脂組成物。
- 前記硬化性樹脂組成物中のラジカル重合性化合物の合計100質量部に対して、ラジカル重合性官能基当量が300g/eq未満である多官能ラジカル重合性化合物の含有量が、20質量部以下である、請求項1から6のいずれか1項に記載の硬化性樹脂組成物。
- 前記親水性単官能ラジカル重合性化合物(B)と前記疎水性単官能ラジカル重合性化合物(C)との共重合体のガラス転移温度が85℃以上である、請求項1から7のいずれか1項に記載の硬化性樹脂組成物。
- 請求項1から8のいずれか1項に記載の硬化性樹脂組成物の硬化物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20813501.2A EP3957662A4 (en) | 2019-05-24 | 2020-05-22 | CURABLE RESIN COMPOSITION AND CURED OBJECT MADE THEREOF |
CN202080037277.5A CN113853395B (zh) | 2019-05-24 | 2020-05-22 | 固化性树脂组合物及其固化物 |
US17/528,659 US20220073669A1 (en) | 2019-05-24 | 2021-11-17 | Curable resin composition and cured object thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019097824 | 2019-05-24 | ||
JP2019-097824 | 2019-05-24 | ||
JP2020075189 | 2020-04-21 | ||
JP2020-075189 | 2020-04-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/528,659 Continuation US20220073669A1 (en) | 2019-05-24 | 2021-11-17 | Curable resin composition and cured object thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241501A1 true WO2020241501A1 (ja) | 2020-12-03 |
Family
ID=73552154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020310 WO2020241501A1 (ja) | 2019-05-24 | 2020-05-22 | 硬化性樹脂組成物およびその硬化物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220073669A1 (ja) |
EP (1) | EP3957662A4 (ja) |
JP (1) | JP2021169597A (ja) |
CN (1) | CN113853395B (ja) |
WO (1) | WO2020241501A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022113863A1 (ja) * | 2020-11-24 | 2022-06-02 | キヤノン株式会社 | 光硬化性樹脂組成物とその硬化物、および立体物の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6907286B2 (ja) * | 2018-10-22 | 2021-07-21 | キヤノン株式会社 | 硬化性樹脂組成物、およびその硬化物 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000351819A (ja) * | 1999-06-10 | 2000-12-19 | Denki Kagaku Kogyo Kk | 硬化性樹脂組成物、接着剤組成物、硬化体、複合体及び接着方法 |
JP2004051665A (ja) | 2002-07-16 | 2004-02-19 | Mitsubishi Rayon Co Ltd | 光学的立体造形用樹脂組成物、及び立体造形物 |
JP2013112715A (ja) * | 2011-11-28 | 2013-06-10 | Toagosei Co Ltd | 活性エネルギー線硬化型接着剤組成物 |
WO2013099985A1 (ja) * | 2011-12-27 | 2013-07-04 | 昭和電工株式会社 | 重合性組成物、重合物、画像表示装置およびその製造方法 |
JP2014201688A (ja) | 2013-04-08 | 2014-10-27 | アイカ工業株式会社 | 光硬化樹脂組成物 |
JP2015007191A (ja) * | 2013-06-25 | 2015-01-15 | 株式会社日本触媒 | 不飽和カルボニル変性共役ジエン系水添ポリマーを用いたエネルギー線硬化型樹脂組成物 |
JP2015164981A (ja) * | 2014-03-03 | 2015-09-17 | 日本化薬株式会社 | ポリウレタン化合物及びそれを含有する樹脂組成物 |
JP2015193725A (ja) * | 2014-03-31 | 2015-11-05 | 株式会社タムラ製作所 | 異方性導電性接着剤およびそれを用いたプリント配線基板 |
JP2017095551A (ja) * | 2015-11-19 | 2017-06-01 | アイカ工業株式会社 | 光硬化性樹脂組成物 |
JP2019097824A (ja) | 2017-11-30 | 2019-06-24 | 株式会社吉野工業所 | 繰出容器 |
JP2020075189A (ja) | 2020-02-20 | 2020-05-21 | 株式会社三洋物産 | 遊技機 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090042900A (ko) * | 2006-07-27 | 2009-05-04 | 닛뽄 가야쿠 가부시키가이샤 | 수지 조성물, 렌즈용 수지 조성물 및 그 경화물 |
JP6361121B2 (ja) * | 2013-11-29 | 2018-07-25 | 三菱ケミカル株式会社 | 粘着剤樹脂組成物 |
EP3872105A4 (en) * | 2018-10-22 | 2022-07-06 | Canon Kabushiki Kaisha | CURABLE RESIN COMPOSITION AND CURED ARTICLE MADE THEREOF |
JP6907286B2 (ja) * | 2018-10-22 | 2021-07-21 | キヤノン株式会社 | 硬化性樹脂組成物、およびその硬化物 |
-
2020
- 2020-05-22 JP JP2020089618A patent/JP2021169597A/ja active Pending
- 2020-05-22 CN CN202080037277.5A patent/CN113853395B/zh active Active
- 2020-05-22 EP EP20813501.2A patent/EP3957662A4/en not_active Withdrawn
- 2020-05-22 WO PCT/JP2020/020310 patent/WO2020241501A1/ja unknown
-
2021
- 2021-11-17 US US17/528,659 patent/US20220073669A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000351819A (ja) * | 1999-06-10 | 2000-12-19 | Denki Kagaku Kogyo Kk | 硬化性樹脂組成物、接着剤組成物、硬化体、複合体及び接着方法 |
JP2004051665A (ja) | 2002-07-16 | 2004-02-19 | Mitsubishi Rayon Co Ltd | 光学的立体造形用樹脂組成物、及び立体造形物 |
JP2013112715A (ja) * | 2011-11-28 | 2013-06-10 | Toagosei Co Ltd | 活性エネルギー線硬化型接着剤組成物 |
WO2013099985A1 (ja) * | 2011-12-27 | 2013-07-04 | 昭和電工株式会社 | 重合性組成物、重合物、画像表示装置およびその製造方法 |
JP2014201688A (ja) | 2013-04-08 | 2014-10-27 | アイカ工業株式会社 | 光硬化樹脂組成物 |
JP2015007191A (ja) * | 2013-06-25 | 2015-01-15 | 株式会社日本触媒 | 不飽和カルボニル変性共役ジエン系水添ポリマーを用いたエネルギー線硬化型樹脂組成物 |
JP2015164981A (ja) * | 2014-03-03 | 2015-09-17 | 日本化薬株式会社 | ポリウレタン化合物及びそれを含有する樹脂組成物 |
JP2015193725A (ja) * | 2014-03-31 | 2015-11-05 | 株式会社タムラ製作所 | 異方性導電性接着剤およびそれを用いたプリント配線基板 |
JP2017095551A (ja) * | 2015-11-19 | 2017-06-01 | アイカ工業株式会社 | 光硬化性樹脂組成物 |
JP2019097824A (ja) | 2017-11-30 | 2019-06-24 | 株式会社吉野工業所 | 繰出容器 |
JP2020075189A (ja) | 2020-02-20 | 2020-05-21 | 株式会社三洋物産 | 遊技機 |
Non-Patent Citations (2)
Title |
---|
BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, vol. 1, no. 3, 1956, pages 123 |
See also references of EP3957662A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022113863A1 (ja) * | 2020-11-24 | 2022-06-02 | キヤノン株式会社 | 光硬化性樹脂組成物とその硬化物、および立体物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113853395A (zh) | 2021-12-28 |
EP3957662A4 (en) | 2023-07-12 |
CN113853395B (zh) | 2024-05-03 |
JP2021169597A (ja) | 2021-10-28 |
EP3957662A1 (en) | 2022-02-23 |
US20220073669A1 (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240059823A1 (en) | Curable resin composition and cured product thereof | |
JP6907286B2 (ja) | 硬化性樹脂組成物、およびその硬化物 | |
JP6766287B1 (ja) | 立体造形用の光硬化性樹脂組成物、及び、物品の製造方法 | |
EP4206249A1 (en) | Photocurable resin composition for three-dimensional shaping, and method for manufacturing three-dimensional object | |
US20220073669A1 (en) | Curable resin composition and cured object thereof | |
WO2020246489A1 (ja) | 硬化性樹脂組成物とその硬化物、及び立体物の製造方法 | |
JP7443069B2 (ja) | 硬化性樹脂組成物 | |
US20230287151A1 (en) | Photocurable resin composition, cured product thereof, and method for producing three-dimensional object | |
US20220073725A1 (en) | Curable resin composition and cured product thereof, and method for producing three-dimensional shaped product | |
JP2022083414A (ja) | 光硬化性樹脂組成物とその硬化物、および立体物の製造方法 | |
JP2022065627A (ja) | 立体造形用の光硬化性樹脂組成物及び立体物の製造方法 | |
JP2022135918A (ja) | 硬化性樹脂組成物および物品の製造方法 | |
JP2020200450A (ja) | 硬化性樹脂組成物とその硬化物、及び立体物の製造方法 | |
WO2021215407A1 (ja) | 硬化性樹脂組成物およびそれを用いた立体物の製造方法 | |
CN117279965A (zh) | 光固化性树脂组合物、其固化产品和用于生产三维物品的方法 | |
US20240026163A1 (en) | Photocurable resin composition and method for manufacturing three-dimensional object | |
US20240287231A1 (en) | Curable resin composition and method of manufacturing article | |
US20240034824A1 (en) | Photocurable resin composition and method for producing three-dimensional object | |
JP2024014707A (ja) | 光硬化性樹脂組成物及び立体物の製造方法 | |
JP2021172823A (ja) | 硬化性樹脂組成物およびそれを用いた立体物の製造方法 | |
JP2024014706A (ja) | 立体造形用の光硬化性樹脂組成物、及び、立体物の製造方法 | |
WO2020162475A1 (ja) | 硬化性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20813501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020813501 Country of ref document: EP Effective date: 20220103 |