WO2020239620A1 - Werkzeug zur halterung der hochdruckwelle eines flugzeugtriebwerks - Google Patents

Werkzeug zur halterung der hochdruckwelle eines flugzeugtriebwerks Download PDF

Info

Publication number
WO2020239620A1
WO2020239620A1 PCT/EP2020/064253 EP2020064253W WO2020239620A1 WO 2020239620 A1 WO2020239620 A1 WO 2020239620A1 EP 2020064253 W EP2020064253 W EP 2020064253W WO 2020239620 A1 WO2020239620 A1 WO 2020239620A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
end cap
shaft end
fastening
tool
Prior art date
Application number
PCT/EP2020/064253
Other languages
English (en)
French (fr)
Inventor
Jan SAβMANNSHAUSEN
Eugen Roppelt
Original Assignee
Lufthansa Technik Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lufthansa Technik Ag filed Critical Lufthansa Technik Ag
Priority to EP20729011.5A priority Critical patent/EP3976320B1/de
Priority to US17/613,497 priority patent/US11530624B2/en
Priority to CN202080038909.XA priority patent/CN113874169B/zh
Priority to ES20729011T priority patent/ES2950271T3/es
Publication of WO2020239620A1 publication Critical patent/WO2020239620A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B11/00Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • F01D25/285Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B27/00Hand tools, specially adapted for fitting together or separating parts or objects whether or not involving some deformation, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B27/00Hand tools, specially adapted for fitting together or separating parts or objects whether or not involving some deformation, not otherwise provided for
    • B25B27/14Hand tools, specially adapted for fitting together or separating parts or objects whether or not involving some deformation, not otherwise provided for for assembling objects other than by press fit or detaching same
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/72Maintenance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/02Transport and handling during maintenance and repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/38Retaining components in desired mutual position by a spring, i.e. spring loaded or biased towards a certain position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/432PTFE [PolyTetraFluorEthylene]

Definitions

  • the invention relates to a tool for holding and axially fixing the high-pressure shaft of an aircraft engine when the high-pressure turbine stage is mounted and its use.
  • V2500 engine type from the manufacturer International Aero Engines (IAE).
  • IAE International Aero Engines
  • the high-pressure shaft is mounted on one side in a non-rotating front bearing receptacle ("Front Bearing Compartment") with a fixed bearing designed as a roller bearing, which is arranged in front of the high-pressure compressor module In the area of the combustion chamber and thus in front of the high-pressure turbine module, another roller bearing is provided as a floating bearing. If only the front bearing mount is removed - e.g. for maintenance purposes - the high-pressure shaft is axially secured by one on the high-pressure turbine module attached retainer. If only the high-pressure turbine module is removed, the axial securing takes place exclusively through the fixed bearing of the front bearing mount.
  • the object of the present invention is to create a tool and a use of this tool with which the disadvantages of the prior art can be avoided or at least reduced.
  • the invention relates to a tool for holding and axially fixing the hollow high-pressure shaft of an aircraft engine when the high-pressure turbine stage is dismantled, comprising a shaft end cap element with an inner radius adapted to a predetermined shaft diameter for attachment to the end of the high-pressure shaft on the turbine side, a shaft end cap holder for receiving the shaft end cap element in a radially movable manner and axially limited in a first direction,
  • a connector element attachable to the shaft end cap receptacle with a shaft which can be inserted into the high pressure shaft comprising a fixing element for axia len securing of the shaft end cap receptacle, with a spring element fixed in relation to the shaft end cap receptacle for applying a predetermined spring force to the shaft end cap element in the radial direction.
  • the invention also relates to a use of the tool according to the invention with the following steps: a) dismantling the high-pressure turbine stage (s) of the aircraft engine; b) plugging the shaft end cap element onto the turbine end of the high pressure shaft; c) inserting the shaft of the connector element with the Fi x michselement in the high pressure shaft; d) attaching the shaft end cap receptacle to the shaft end cap element; e) connecting the connector element with the Wellenendkap penability, so that the shaft end cap holder is axially fi xed by the fixing element of the connector element; and f) Applying a spring force to the Wellenendkappenele ment in the radial direction by the opposite of the Wel lenendkappenability fixed spring element.
  • the tool according to the invention it is possible to completely secure the high-pressure shaft of an aircraft engine with the high-pressure turbine stage dismantled in the axial direction and at the same time to hold it in the radial direction via the spring element so that the weight force acting on the high-pressure shaft when the high-pressure turbine stage is installed is via the specified spring force can be simulated.
  • the high-pressure shaft is not completely fixed in the radial direction, but is only loaded with a spring force corresponding to the weight force mentioned, whereby the shaft is held in the required, desired position on the one hand, but on the other hand no undesirable tensions by a Festlage tion at the rear end the high pressure wave are entered into this.
  • Axial securing takes place through the interaction of the Wel lenendkappenau, which prevents movement of the high-pressure shaft with the shaft end cap element attached by the axial limitation in the first direction, in particular, for example, in the direction of the shaft end cap element, and a connected shaft with its fixing element
  • Axial movement of the high-pressure wave against the shaft end cap counter to the first direction can prevent.
  • the high-pressure shaft can thus be completely fixed in the axial direction with respect to the shaft end caps, while only a predetermined force is exerted in the radial direction, but the high-pressure shaft is basically at least somewhat opposite in the radial direction the shaft end cap holder can move, since in particular there is no fixed bearing in this direction.
  • the spring element is adjustable with regard to the spring force.
  • the spring force specified for a certain engine, a certain engine variant (that is, one of several variants of an engine type) and / or a certain engine type can be set. It may also be possible, if necessary, to readjust the spring force when the tool is mounted on a drive unit.
  • the fixing element on the shaft of the connector element can in principle be designed for a non-positive connection with the inside of the hollow high-pressure shaft. But it is preferably designed for a positive connection with the high pressure shaft.
  • the fixing element can interact with undercuts that are regularly present in the case of high-pressure waves of an aircraft turbine due to an inner diameter that changes in the axial direction.
  • the fixing element can be arranged at the free end of the shaft to be inserted into the high-pressure shaft, around a bar extending on both sides of the shaft and preferably pivotable perpendicular to its longitudinal axis and / or to the axis of the shaft.
  • the fixing element In the pivoted state, the fixing element can be inserted into the hollow high-pressure axle, while the bolt in the non-pivoted state extends maximally in the radial direction and can thus interact with a contact surface in the interior of the hollow shaft.
  • an actuating device for example a wire pull, can be provided.
  • the bolt has an asymmetrical weight distribution with respect to the shaft. In this case, the bolt can be moved into a vertical orientation or an orientation pivoted relative to the shaft simply by rotating the shaft.
  • a fastening element is therefore preferably provided for the stationary fastening of the tool to the aircraft engine when the high-pressure turbine stage is demounted, with a fastening area for fastening the shaft end cap receptacle thereon.
  • the fastening element can be designed for fastening the tool to a flange of the combustion chamber.
  • the detachable attachment of the tool can be achieved, for example, with screws.
  • the fastening element is preferably to be fastened to the aircraft engine in a predetermined position.
  • the fastening area can preferably be designed in such a way that the tool can actually only be fastened to the engine in a single predetermined position. This can be achieved, for example, in that the fastening area and in particular the bores provided thereon for the engagement of screws are adapted to fit precisely to the intended fastening points on the engine.
  • the spring element is at least is also arranged on the fastening element or attached to it, a predetermined alignment of the spring element can be achieved by appropriate proper fastening of the tool to the aircraft engine in order to be able to simulate weight forces, for example.
  • the abutment and / or contact surfaces of the shaft end cap element and / or the fixing element provided for contact with the high pressure shaft are made of a softer material than the material of the high pressure shaft, preferably plastic, more preferably PTFE. In this way, damage to the high-pressure shaft when using the tool according to the invention can be effectively prevented.
  • the fastening area can be precisely adapted to the respective intended fastening points of an engine type and the relative position and curvature of the shaft contact element can be precisely adapted to the high pressure wave of the engine type. This simplifies the use of a tool according to the invention, since no special engine-specific settings have to be made on the tool.
  • the high-pressure turbine of an aircraft engine is demon benefits first.
  • the rear end of the high pressure shaft protrudes from the engine.
  • the high-pressure shaft is axially fixed by the fixed bearing of the high-pressure shaft, which is provided, for example, in a front bearing seat close to the high-pressure compressor.
  • the shaft end cap element is then first placed on the turbine-side end of the high-pressure shaft and the shaft of the connector element with the fixing element is inserted into the high-pressure shaft.
  • the shaft end cap holder is attached to the shaft end cap element and so connected to the shaft of the connector element when the connector element is connected to the high pressure shaft through the fixing element that the parts of the tool according to the invention mounted on the high pressure shaft are stationary in the axial direction compared to the high pressure shaft.
  • the high-pressure shaft can then be fixed in the axial direction with respect to the engine by suitable fastening of the shaft end cap holder, with a certain mobility being maintained in the radial direction due to the mobility of the shaft end cap element and the shaft end cap holder.
  • the spring element which is stationary with respect to the shaft end cap receptacle, however, if necessary, a predetermined spring force can be exerted in the radial direction on the shaft end cap element and thus the high pressure wave.
  • the attachment of the shaft end cap receptacle can preferably be achieved by a fastening element, as described above be and which allows a fixed attachment to the engine itself.
  • the Federele element is preferably not yet mounted during the fastening of the shaft end cap holder, but is only attached later.
  • the fastening element is fastened to the engine with the means provided for this purpose, for example on the combustion chamber flange, in such a way that the fastening area of the fastening element is suitable for fastening the shaft end cap mount to it is arranged.
  • the Wel lenendkappenfact is attached to the attachment area, preferably axially and / or radially variable, that is, the shaft end cap mount and the attachment area do not have a fixed position relative to each other, but can be connected to each other shifted axially and / or radially relative to each other.
  • the connection or attachment can be made with a force fit.
  • a predetermined spring force can be applied to the shaft end cap element in the radial direction via the spring element already mentioned, in particular to simulate the weight of the high pressure turbine otherwise acting on the high pressure shaft.
  • the spring element can preferably be arranged on the fastening element or connected to it.
  • a temporary radial support can first be attached to the high-pressure shaft in the area remote from the tool.
  • Corresponding supports, which form an additional floating bearing for the high-pressure shaft, are known from the prior art and are available for a large number of different engine types.
  • FIG. 1 a first exemplary embodiment of a tool according to the invention
  • FIG. 2 a schematic representation of the tool according to the invention according to FIG. 1;
  • FIG. 1 a first exemplary embodiment of a tool 1 according to the invention is shown, the individual components of the tool explained below being added together.
  • the tool 1 is shown in the state of use
  • Figure 3d finally shows a section through the tool 1 in the state of use according to Figure 2.
  • Figures 2 and 3 in addition to the tool 1 or its components, parts of an aircraft engine are indicated, namely the rear end of the high pressure shaft 80 and the end area of the combustion chamber 81 with a circumferential flange 82.
  • the tool 1 comprises a shaft end cap element 2, the inside diameter of which is adapted to the diameter of the turbine-side end of the high-pressure shaft of an aircraft engine for which the tool 1 is intended.
  • the shaft end cap element 2 can be separated from the other components of the tool 1 and is designed so that it can be attached to the end of the high pressure shaft in question.
  • the shaft end cap element 2 is arranged in a shaft end cap receptacle 3, which limits or restricts a movement of the shaft end cap element 2 in the first direction indicated by the arrow 90, but which simultaneously causes a radial movement of the shaft end cap element 2 in to a certain extent.
  • the inner radius of the shaft end cap receptacle 3, which is also cap-shaped in this embodiment, is greater than the outer radius of the shaft end cap element 2.
  • the fixing element 6 is, as explained below with reference to FIG. 3, for the form-fitting connection with the high-pressure shaft 80 as a bolt 8 pivotable about the axis 7, extending on both sides of the shaft 5 and having an asymmetrical weight compared to the shaft 5 having distribution. Because of this asymmetrical weight distribution, in which the center of gravity of the bolt 8 is in a vertical orientation, depending on the rotation of the shaft 5, a variable orientation below or above the axis 7, the bolt 8 either moves into the position shown in FIG axial fixation or in a ge compared to the shaft 5 angled position in which the connector element 4 can be inserted into a high-pressure shaft of an engine or removed from it again.
  • a guide element 5 'made of soft plastic is also provided on the shaft 5, with which it is ensured that the shaft 5 itself does not come into contact with the inner wall of the high pressure wave 80 and can possibly cause damage there.
  • the shaft end cap receptacle 3 is fastened to the fastening area 9 egg nes fastening element 10.
  • the fastening area 9 is designed in the form of a sleeve or socket and is thus attached to the outer diameter of the shaft end cap receptacle 3 adapted so that it can be fastened not only axially in the fastening area 9, but also to a certain extent in the axial direction in a variable manner.
  • the shaft end cap receptacle 3 has a certain amount of play with respect to the fastening area 9 before it can be fixed in the desired axial and radial position by the screws 11.
  • the spring element 12 arranged, which when the shaft end cap receptacle 3 has been fixed on the fastening element 10 is stationary relative to this.
  • the spring element 12 protrudes through the shaft end cap 3 and is designed to apply its spring force to the shaft end cap element 2 in the radial direction (see FIG. 3).
  • the spring element 12 is on the adjusting screw
  • the fastening element 2 has three arms 14 for fastening to the flange 82 of the combustion chamber 81 of an aircraft engine (see FIG. 2).
  • the arms 14 are arranged and designed in such a way that the fastening element 10 can only be fastened to the aircraft engine in a predetermined position. Due to this unique position in the assembled state, it can be ensured that the spring element 12 arranged on the fastening element 10 is vertically aligned in the assembled state and can simulate a weight force of a high-pressure turbine stage otherwise acting on the turbine-side end.
  • the components shaft end cap element 2 and fixing element 6 which come into direct contact with the high pressure shaft when the tool 1 is used are made entirely of plastic or at least provided with a plastic layer on the corresponding contact surfaces. Since plastic, such as PTFE, which is generally softer than the material of the high pressure shaft, can effectively prevent possible damage to the high pressure shaft.
  • the high-pressure turbine stage (s) is dismantled from an aircraft engine, of which only the rear part of the high-pressure shaft 80 and the end region of the combustion chamber 81 are shown, so that the turbine-side end 84 of the high-pressure shaft 80 is exposed.
  • the shaft end cap element 2 is slipped onto this exposed end 84 of the high pressure shaft 80 (FIG. 3b). Due to its inner radius adapted to the diameter of the high pressure shaft 80, the shaft end cap element 2 sits securely on the high pressure shaft 80, the cap shape ensuring that the shaft end cap element 2 actually remains on the turbine-side end 84 of the high pressure shaft 80.
  • the shaft 5 of the connector element 4 is then inserted into the high-pressure shaft 80 to such an extent that the fixing element 6 is located in a region 85 of the high-pressure shaft 80 in which the shaft diameter is increased (FIG. 3c).
  • the shaft 5 By appropriately rotating the shaft 5 around its longitudinal axis, due to the uneven weight distribution of the fixing element 6, which is designed as a bolt 8, an orthogonal alignment can be achieved with respect to the shaft 5, in which the fixing element 6 can no longer be pulled out by the high-pressure shaft 80, but rather a form-fitting connection binding with the undercut arising in the area 85 of the diameter enlargement of the high pressure shaft 80.
  • the shaft 5 is kept away from the inner wall of the high-pressure shaft 80 by the guide element 5 ′.
  • the shaft end cap receptacle 3 is attached to the shaft end cap element 2 and the connection between the shaft 5 of the connector element 4 is established (FIG. 3d).
  • the already assembled components 2-4 of the tool 1 can be fixed in the axial direction relative to the high pressure shaft 80: an axial movement of the shaft end cap element 2 relative to the high pressure shaft 80 is prevented by the correspondingly limiting shaft end cap holder 3, which in turn is fixed by the bracing with the United binder element 4 in the axial direction.
  • the fastening element 10 is mounted (FIG. 3e).
  • the fastening element 10 is fastened via the arm 14 in the only possible position on the rear flange 82 of the combustion chamber 80, to which at least one high-pressure turbine stage is otherwise fastened.
  • the shaft end cap holder 3 lies within the fastening area 9 and can be finely positioned therein until it is fixed in the desired position by the screws 11.
  • the spring element 12 provided on the fastening element 10 can then be fine-tuned using the adjusting screw 13 so that a predetermined spring force is exerted on the shaft end cap element 2, which is still fundamentally movable in the radial direction, which simulates the weight of the high-pressure turbine stage (s) otherwise mounted at this point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Gripping On Spindles (AREA)

Abstract

Die Erfindung betrifft ein Werkzeug (1) zur Halterung und axialen Fixierung der Hochdruckwelle (80) eines Flugzeugtriebwerks bei demontierter Hochdruckturbinenstufe sowie dessen Verwendung. Das Werkzeug (1) umfasst - ein Wellenendkappenelement (2) mit einem an einen vorgegebenen Wellendurchmesser angepassten Innenradius zum Aufstecken auf das turbinenseitige Ende (84) der Hochdruckweile (80), - eine Wellenendkappenaufnahme (3) zur radial beweglichen und in einer ersten Richtung axial begrenzten Aufnahme des Wellenendkappenelements (2), und - ein an der Wellenendkappenaufnahme (3) befestigbares Verhinderelement (4) mit einem in die Hochdruckwelle einführbaren Schaft (5) umfassend ein Fixierungselement (6) zur axialen Sicherung der Wellenendkappenaufnahme (3), wobei ein gegenüber der Wellenendkappenaufnahme (3) ortsfestes Federelement (12) zur Aufbringung einer vorgegebenen Federkraft auf das Wellenendkappenelement (2) in radialer Richtung vorgesehen ist. Die erfindungsgemäße Verwendung betrifft die Anbringung dieses Werkzeug an die Hochdruckwelle (80) eines Flugzeugtriebwerks.

Description

Werkzeug zur Halterung der Hochdruckwelle
eines Flugzeugtriebwerks
Die Erfindung betrifft ein Werkzeug zur Halterung und axialen Fixierung der Hochdruckwelle eines Flugzeugtriebwerks bei de montierter Hochdruckturbinenstufe sowie dessen Verwendung.
Bei der Wartung, Instandhaltung oder Verbesserung von Flug zeugtriebwerken müssen einzelne Bauteile und Module vom Trieb werk demontiert werden, um nach einer gesonderten Bearbeitung wieder montiert zu werden. Sofern das Flugzeugtriebwerk nicht vollständig zerlegt wird, ist es aufgrund der bei Flugzeug triebwerken typischen Leichtbauweise und dem damit verbundenen Verzicht auf eine gesonderte Tragstruktur häufig nicht mög lich, beliebige Bauteile oder Module zu demontieren. Die Bau teile und Module eines Flugzeugtriebwerks sind nämlich derart miteinander verbunden, dass sie sich gegenseitig stützen oder ineinander lagern, wodurch auf eine gesonderte Tragstruktur, wie sie von anderen, insbesondere stationären Maschinen be kannt ist und an der Bauteile und Module einzeln lösbar befes tigt sind, verzichtet werden kann.
Ein Beispiel hierfür ist neben einer Vielzahl weiterer Trieb werkstypen der Triebwerktyps V2500 des Herstellers Internatio nal Aero Engines (IAE) . Bei diesem Flugzeugtriebwerk ist die Hochdruckwelle auf der einen Seite in einer nicht-rotierenden vorderen Lageraufnahme („Front Bearing Compartment" ) mit einem als Wälzlager ausgestaltetem Festlager, welche vor dem Hoch- druckkompressor-Modul angeordnet ist, gelagert. Auf der ande ren Seite ist im Bereich der Brennkammer und somit vor dem Hochdruckturbinen-Modul ein weiteres Wälzlager als Loslager vorgesehen. Wird nur die vordere Lageraufnahme - bspw. zu War tungszwecken - entfernt, erfolgt die axiale Sicherung der Hochdruckwelle allein durch einen am Hochdruckturbinen-Modul angebrachten Retainer. Wird nur das Hochdruckturbinen-Modul entfernt, erfolgt die axiale Sicherung ausschließlich durch das Festlager der vorderen Lageraufnahme.
Für das beispielhaft genannte Triebwerk V2500, aber auch bei einer Vielzahl anderer Triebwerkstypen, ist - sofern das Triebwerk nicht vollständig zerlegt wird - kein zulässiger Bauzustand definiert, in dem sowohl die vordere Lageraufnahme als auch das Hochdruckturbinen-Modul demontiert ist. In der Folge können Wartungs- und Instandsetzungsarbeiten an den bei- den genannten Komponenten nur sequenziell erfolgen, wodurch sich die Bearbeitungsdauer eines Triebwerks erheblich erhöhen kann .
Aufgabe der vorliegenden Erfindung ist es, ein Werkzeug sowie eine Verwendung dieses Werkzeugs zu schaffen, mit dem die Nachteile aus dem Stand der Technik vermieden oder zumindest reduziert werden können.
Gelöst wird diese Aufgabe durch ein Werkzeug gemäß dem Haupt anspruch sowie dessen Verwendung gemäß Anspruch 11. Vorteil hafte Weiterbildungen sind Gegenstand der abhängigen Ansprü- che.
Demnach betrifft die Erfindung ein Werkzeug zur Halterung und axialen Fixierung der hohlen Hochdruckwelle eines Flugzeug triebwerks bei demontierter Hochdruckturbinenstufe umfassend ein Wellenendkappenelement mit einem an einen vorgege benen Wellendurchmesser angepassten Innenradius zum Aufstecken auf das turbinenseitige Ende der Hochdruck welle, eine Wellenendkappenaufnahme zur radial beweglichen und in einer ersten Richtung axial begrenzten Aufnahme des Wellenendkappenelements ,
- ein an der Wellenendkappenaufnahme befestigbares Ver- binderelement mit einem in die Hochdruckwelle einführ baren Schaft umfassend ein Fixierungselement zur axia len Sicherung der Wellenendkappenaufnahme, wobei ein gegenüber der Wellenendkappenaufnahme ortsfestes Fe derelement zur Aufbringung einer vorgegebenen Federkraft auf das Wellenendkappenelement in radialer Richtung vorge sehen ist.
Weiterhin betrifft die Erfindung eine Verwendung des erfin dungsgemäßen Werkzeugs mit den Schritten: a) Demontage der Hochdruckturbinestufe (n) des Flugzeug triebwerkes; b) Aufstecken des Wellenendkappenelements auf das turbi nenseitige Ende der Hochdruckwelle; c) Einführen des Schafts des Verbinderelements mit dem Fi xierungselement in die Hochdruckwelle; d) Anbringen der Wellenendkappenaufnahme um das Wellenend kappenelement ; e) Verbinden des Verbinderelements mit der Wellenendkap penaufnahme, sodass die Wellenendkappenaufnahme durch das Fixierungselement des Verbinderelements axial fi xiert ist; und f) Aufbringen einer Federkraft auf das Wellenendkappenele ment in radialer Richtung durch das gegenüber der Wel lenendkappenaufnahme ortsfeste Federelement.
Mit dem erfindungsgemäßen Werkzeug ist es möglich, die Hoch druckwelle eines Flugzeugtriebwerks bei demontierter Hoch druckturbinenstufe in axialer Richtung vollständig zu sichern und gleichzeitig in radialer Richtung über das Federelement so zu halten, dass über die vorgegebene Federkraft die bei mon tierter Hochdruckturbinenstufe auf die Hochdruckwelle wirkende Gewichtskraft simuliert werden kann. Die Hochdruckwelle ist also in radialer Richtung nicht vollständig fixiert, sondern wird lediglich mit einer der genannten Gewichtskraft entspre chenden Federkraft belastet, womit die Welle einerseits in der erforderlichen, gewünschten Position gehalten wird, anderer seits aber keine unerwünschten Spannungen durch eine Festlage rung am hinteren Ende der Hochdruckwelle in diese eingetragen werden .
Die axiale Sicherung erfolgt durch das Zusammenwirken der Wel lenendkappenaufnahme, die eine Bewegung der Hochdruckwelle mit aufgesetztem Wellenendkappenelement durch die axiale Begren zung in die erste Richtung, insbesondere bspw. in Richtung des Wellenendkappenelements, unterbindet, und einen damit verbun denen Schaft, der mit seinem Fixierungselement eine axiale Be wegung der Hochdruckwelle gegenüber der Wellenendkappenauf nahme entgegen der ersten Richtung (bspw. weg von dem Wel lenendkappenelement) verhindern kann.
Die Hochdruckwelle kann somit gegenüber der Wellenendkappen aufnahme in axialer Richtung vollständig fixiert werden, wäh ren in radialer Richtung lediglich eine vorgegebene Kraft aus geübt wird, wobei sich die Hochdruckwelle aber grundsätzlich in radialer Richtung zumindest grundsätzlich etwas gegenüber der Wellenendkappenaufnahme bewegen kann, da insbesondere keine Festlagerung in dieser Richtung besteht. Mit Fixierung der Wellenendkappenaufnahme erfolgt also die gewünschte Halte rung und axiale Fixierung der Hochdruckwelle eines Flugzeug triebwerks .
Es ist bevorzugt, wenn das Federelement hinsichtlich der Fe derkraft einstellbar ist. Dadurch kann das für ein bestimmtes Triebwerk, eine bestimmte Triebwerksvariante (also eine von mehreren Varianten eines Triebwerkstyps ) und/oder einen be stimmten Triebwerkstyp vorgegebene Federkraft eingestellt wer den. Auch kann es ggf. möglich sein, die Federkraft bei an ei nem Triebwerk montierten Zustand des Werkzeuges bei Bedarf noch nachzuj ustieren .
Das Fixierungselement am Schaft des Verbinderelements kann grundsätzlich zur kraftschlüssigen Verbindung mit der Innen seite der hohlen Hochdruckwelle ausgebildet sein. Es ist aber bevorzugt zur formschlüssigen Verbindung mit der Hochdruck welle ausgebildet. Dazu kann das Fixierungselement mit regel mäßig bei Hochdruckwellen einer Flugzeugturbine vorhandenen Hinterschnitten aufgrund eines sich in axialer Richtung verän dernden Innendurchmessers Zusammenwirken.
So kann das Fixierungselement bspw. ein an dem freien, in die Hochdruckwelle einzuführenden Ende des Schaftes angeordneter, sich um einen zu beiden Seiten des Schafts erstreckenden Rie gel sein, der vorzugsweise senkrecht zu seiner Längsachse und/oder zur Achse des Schafts verschwenkbar ist. Im ver- schwenkten Zustand lässt sich das Fixierungselement in die hohle Hochdruckachse einführen, während sich der Riegel im un- verschwenkten Zustand maximal in radialer Richtung erstreckt und so mit einer Anlagefläche im Innern der Hohlwelle Zusam menwirken kann. Zum aktiven Verschwenken des Riegels kann eine Betätigungsvor richtung, bspw. ein Drahtzug vorgesehen sein. Es ist aber be sonders bevorzugt, wenn der Riegel gegenüber dem Schaft eine unsymmetrische Gewichtsverteilung aufweist. In diesem Fall kann allein durch Drehen des Schafts der Riegel in eine verti kale Ausrichtung oder eine gegenüber dem Schaft verschwenkte Ausrichtung bewegt werden.
Es ist möglich, das erfindungsgemäße Werkzeug und insbesondere durch Ständer oder Halterungen gegenüber dem Flugzeugtrieb werks zu positionieren bzw. zu fixieren. Es ist aber bevor zugt, wenn das Werkzeug unmittelbar am Flugzeugtriebwerk be festigt wird, womit die Gefahr von Beschädigungen aufgrund von Relativbewegungen zwischen Werkzeug und Flugzeugtriebwerk praktisch ausgeschlossen wird.
Vorzugsweise ist daher ein Befestigungselement zur ortsfesten Befestigung des Werkzeugs an dem Flugzeugtriebwerk bei demon tierter Hochdruckturbinenstufe mit einem Befestigungsbereich zur Befestigung der Wellenendkappenaufnahme daran vorgesehen. Beispielsweise kann das Befestigungselement zur Befestigung des Werkzeugs an einem Flansch der Brennkammer ausgestaltet sein. Die lösbare Befestigung des Werkzeugs kann bspw. mit Schrauben erreicht werden.
Das Befestigungselement ist vorzugsweise in einer vorgegebenen Position an dem Flugzeugtriebwerk zu befestigen. Dazu kann der Befestigungsbereich vorzugsweise so ausgestaltet sein, dass sich das Werkzeug tatsächlich nur in einer einzigen vorgegebe nen Position am Triebwerk befestigen lässt. Dies kann bspw. erreicht werden, in dem der Befestigungsbereich und insbeson dere daran vorgesehene Bohrungen zum Eingreifen von Schrauben passgenau auf die vorgesehenen Befestigungspunkte am Triebwerk angepasst sind. Insbesondere wenn das Federelement wenigstens auch an dem Befestigungselement angeordnet bzw. daran befes tigt ist, kann durch entsprechende ordnungsgemäße Befestigung des Werkzeugs am Flugzeugtriebwerk eine vorgegebene Ausrich tung des Federelementes erreicht werden, um darüber bspw. Ge wichtskräfte simulieren zu können.
Es ist bevorzugt, wenn die für den Kontakt mit der Hochdruck welle vorgesehenen Anlage- und/oder Kontaktflächen des Wel lenendkappenelement und/oder des Fixierungselements aus einem gegenüber dem Werkstoff der Hochdruckwelle weicherem Material, vorzugsweise aus Kunststoff, weiter vorzugsweise aus PTFE, sind. Dadurch können Beschädigungen an der Hochdruckwelle bei Einsatz des erfindungsgemäßen Werkzeuges wirksam verhindert werden .
Es kann vorteilhaft sein, jeweils ein erfindungsgemäßes Werk zeug für jeden gewünschten Triebwerkstyp vorzusehen, welches dann jeweils genau auf den Triebwerkstyp abgestimmt ist. So kann der Befestigungsbereich an die jeweils vorgesehenen Be festigungspunkte eines Triebwerktyps und die relative Lage und Krümmung des Wellenanlageelementes an die Hochdruckwelle des Triebwerkstyps genau angepasst werden. Dadurch wird die Ver wendung eines erfindungsgemäßen Werkzeugs vereinfacht, da keine besonderen triebwerksspezifischen Einstellungen am Werk zeug vorgenommen werden müssen.
Für die Verwendung des erfindungsgemäßen Werkzeugs wird zu nächst die Hochdruckturbine eines Flugzeugtriebwerkes demon tiert. In der Folge ragt das hintere Ende der Hochdruckwelle aus dem Triebwerk heraus. In diesem Zustand erfolgt die axiale Fixierung der Hochdruckwelle noch durch das Festlager der Hochdruckwelle, welches bspw. in einer vorderen Lageraufnahme nahe bei dem Hochdruckkompressor vorgesehen ist. In einer mögliche Verwendungsvariante wird anschließend zu nächst das Wellenendkappenelement auf das turbinenseitige Ende der Hochdruckwelle gesteckt und der Schaft des Verbinderele ments mit dem Fixierungselement in die Hochdruckwelle einge führt. Anschließend wird die Wellenendkappenaufnahme um das Wellenendkappenelement angebracht und so mit dem Schaft des Verbinderelements bei erfolgter Verbindung des Verbinderele ments mit der Hochdruckwelle durch das Fixierungselement ver bunden, dass die an der Hochdruckwelle montierten Teile des erfindungsgemäßen Werkzeugs in axialer Richtung ortsfest ge genüber der Hochdruckwelle sind.
Durch geeignete Befestigung der Wellenendkappenaufnahme kann dann die Hochdruckwelle in axialer Richtung gegenüber dem Triebwerk fixiert werden, wobei aufgrund der Beweglichkeit des Wellenendkappenelementes und der Wellenendkappenaufnahme eine gewisse Beweglichkeit in radialer Richtung erhalten bleibt. Durch das gegenüber der Wellenendkappenaufnahme ortsfeste Fe derelement kann jedoch bei Bedarf eine vorgegebene Federkraft in radialer Richtung auf das Wellenendkappenelement und somit die Hochdruckwelle ausgeübt werden.
Die Befestigung der Wellenendkappenaufnahme kann bevorzugt durch ein Befestigungselement erreicht werden, wie es oben be schrieben ist und welches eine ortsfeste Befestigung an dem Triebwerk selbst ermöglicht. Dabei ist bevorzugt das Federele ment während der Befestigung der Wellenendkappenaufnahme noch nicht montiert, sondern wird erst später angebracht.
Das Befestigungselement wird mit den dafür vorgesehenen Mit teln an dem Triebwerk, bspw. am Brennkammerflansch, derart be festigt, dass der Befestigungsbereich des Befestigungselemen tes zur Befestigung der Wellenendkappenaufnahme daran geeignet angeordnet ist. Anschließend erfolgt die Befestigung der Wel lenendkappenaufnahme an dem Befestigungsbereich, vorzugweise axial und/oder radial variabel, d.h. Wellenendkappenaufnahme und Befestigungsbereich haben für die Befestigung keine fest definierte relative Position zueinander, sondern können in axial und/oder radialer Richtung relativ zueinander verschoben miteinander verbunden werden. Die Verbindung bzw. Befestigung kann kraftschlüssig erfolgen.
Nach erfolgter Befestigung der Wellenendkappenaufnahme an dem Brennkammerflansch kann über das bereits erwähnte Federelement eine vorgegebene Federkraft auf das Wellenendkappenelement in radialer Richtung aufgebracht werden, insbesondere um die an sonsten auf die Hochdruckwelle einwirkende Gewichtskraft der Hochdruckturbine zu simulieren. Das Federelement kann dabei vorzugsweise an dem Befestigungselement angeordnet bzw. mit diesem verbunden sein.
Aufgrund der mithilfe des Werkzeugs erreichten Halterung der Hochdruckwelle kann nachfolgend bspw. das Festlager der Hoch druckwelle demontiert werden. Dabei kann - um ein Absacken des vorderen Teils der Hochdruckwelle zu verhindern - zuvor eine temporäre radiale Stütze in dem von dem Werkzeug entfernten Bereich an der Hochdruckwelle angebracht werden. Entsprechende Stützen, die ein zusätzliches Loslager für die Hochdruckwelle bilden, sind aus dem Stand der Technik bekannt und für eine Vielzahl unterschiedlicher Triebwerkstypen verfügbar.
Die Erfindung wird nun anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die beigefügten Zeichnungen weiter be schrieben. Es zeigen:
Figur 1 : ein erstes Ausführungsbeispiel eines erfindungs- gemäßen Werkzeugs; Figur 2 : eine schematische Darstellung des erfindungsgemäß verwendeten Werkzeugs gemäß Figur 1; und
Figur 3a-e: schematische Darstellungen der Verwendung des
Werkzeugs aus Figur 1 zur Erreichung des in Figur 2 dargestellten Zustands.
In Figur 1 ist ein erstes Ausführungsbeispiel eines erfin dungsgemäßen Werkzeugs 1 dargestellt, wobei die einzelnen und nachfolgend erläuterten Komponenten des Werkzeugs zusammenge fügt sind. In Figur 2 ist das Werkzeug 1 im Verwendungszustand dargestellt, Figur 3d zeigt letztendlich einen Schnitt durch das Werkzeug 1 in dem Verwendungszustand gemäß Figur 2. In Fi guren 2 und 3 sind neben dem Werkzeug 1 bzw. dessen Komponen ten noch Teile eines Flugzeugtriebwerks angedeutet, nämlich das hintere Ende der Hochdruckwelle 80 sowie der Endbereich der Brennkammer 81 mit einem umlaufenden Flansch 82.
Das Werkzeug 1 umfasst ein Wellenendkappenelement 2, deren In nendurchmesser an den Durchmesser des turbinenseitigen Endes der Hochdruckwelle eines Flugzeugtriebwerks, für welches das Werkzeug 1 vorgesehen ist, angepasst ist. Das Wellenendkappen- element 2 ist von den übrigen Komponenten des Werkzeugs 1 ab trennbar und so ausgestaltet, dass es auf das fragliche Ende der Hochdruckwelle aufgesteckt werden kann.
Im montierten Zustand des Werkzeugs ist das Wellenendkappen element 2 in einer Wellenendkappenaufnahme 3 angeordnet, wel- che eine Bewegung des Wellenendkappenelements 2 in die durch den Pfeil 90 angedeutete erste Richtung begrenzt bzw. unter bindet, die aber gleichzeitig eine radiale Bewegung des Wel lenendkappenelements 2 in gewissem Maßen zulässt. Dazu ist der Innenradius der in diesem Ausführungsspiel ebenfalls kappen förmig ausgestalteten Wellenendkappenaufnahme 3 größer als der Außenradius des Wellenendkappenelements 2.
An der Wellenendkappenaufnahme 3 lösbar befestigt ist ein Ver binderelement 4 mit einem in die Hochdruckwelle einführbaren Schaft 5 umfassend ein Fixierungselement 6 zur axialen Siche rung der Wellenendkappenaufnahme 3.
Das Fixierungselement 6 ist dabei, wie nachfolgend noch anhand der Figur 3 erläutert, zur formschlüssigen Verbindung mit der Hochdruckwelle 80 als um die Achse 7 verschwenkbarer, sich zu beiden Seiten des Schafts 5 erstreckender Riegel 8 ausgebil det, der gegenüber dem Schaft 5 eine unsymmetrische Gewichts verteilung aufweist. Aufgrund eben dieser unsymmetrischen Ge- wichtsverteilung, bei welcher sich der Schwerpunkt des Riegels 8 in vertikaler Ausrichtung je nach Drehung des Schaftes 5 veränderbaren Orientierung unter- oder oberhalb der Achse 7 befindet, bewegt sich der Riegel 8 entweder in die in Figur 1 dargestellte Position zur axialen Fixierung oder in eine ge genüber dem Schaft 5 angewinkelte Position, in welcher sich das Verbinderelement 4 in eine Hochdruckwelle eines Triebwerks einführen oder wieder daraus entfernen lässt.
Am Schaft 5 ist weiterhin ein Führungselement 5' aus weichem Kunststoff vorgesehen, mit dem sichergestellt wird, das der Schaft 5 selbst nicht in Kontakt mit der Innenwand der Hoch druckwelle 80 kommt und dort evtl. Beschädigungen verursachen kann .
Die Wellenendkappenaufnahme 3 ist am Befestigungsbereich 9 ei nes Befestigungselementes 10 befestigt. Der Befestigungsbe reich 9 ist dabei hülsen- bzw. buchsenförmig ausgestaltet und derart an den Außendurchmesser der Wellenendkappenaufnahme 3 angepasst, dass diese nicht nur axial im Befestigungsbereich 9, sondern in gewissen Umfang auch in axialer Richtung varia bel befestigbar ist. Dazu weist die Wellenendkappenaufnahme 3 ein gewisses Spiel gegenüber dem Befestigungsbereich 9 auf, bevor sie durch die Schrauben 11 in der gewünschten axialen und radialen Position fixiert werden kann.
An dem Befestigungselement 10 ist weiterhin ein Federelement
12 angeordnet, welches bei erfolgter Fixierung der Wellenend kappenaufnahme 3 am Befestigungselement 10 ortsfest gegenüber dieser ist. Das Federelement 12 ragt durch die Wellenendkap penaufnahme 3 und ist zum Aufbringen seiner Federkraft auf das Wellenendkappenelement 2 in radialer Richtung ausgebildet (vgl. Figur 3) . Das Federelement 12 ist über die Stellschraube
13 hinsichtlich der auf das Wellenendkappenelement 2 ausgeüb ten Federkraft einstellbar.
Das Befestigungselement 2 weist drei Ausleger 14 zur Befesti gung an dem Flansch 82 der Brennkammer 81 eines Flugzeugtrieb werks (vgl. Figur 2) auf. Dabei sind die Ausleger 14 so ange ordnet und ausgebildet, dass sich das Befestigungselement 10 nur in einer vorgegebenen Lage an dem Flugzeugtriebwerk befes tigen lässt. Aufgrund dieser eindeutigen Lage im montierten Zustand kann sichergestellt werden, dass das an dem Befesti gungselement 10 angeordnete Federelement 12 im montierten Zu stand vertikal ausgerichtet ist und eine ansonsten auf das turbinenseitige Ende einwirkende Gewichtskraft einer Hoch druckturbinenstufe simulieren kann.
Die bei der Verwendung des Werkzeugs 1 in unmittelbar mit der Hochdruckwelle in Kontakt kommenden Bauteile Wellenendkappen element 2 und Fixierungselement 6 sind vollständig aus Kunst stoff oder zumindest an den entsprechenden Kontaktflächen mit einer KunststoffSchicht versehen. Da Kunststoff, wie bspw. PTFE, in der Regel weicher ist als das Material der Hochdruck welle können evtl. Beschädigungen an der Hochdruckwelle wirk sam vermieden werden.
Anhand der Figuren 3a-e wird nun exemplarisch die Montage des Werkzeugs 1 gemäß Figur 1 erläutert, um den in Figur 2 gezeig ten Verwendungszustand zu erreichen.
In Figur 3a ist von einem Flugzeugtriebwerk, von dem nur der hintere Teil der Hochdruckwelle 80 und der Endbereich der Brennkammer 81 dargestellt ist, die Hochdruckturbinenstufe (n) demontiert, sodass das turbinenseitige Ende 84 der Hochdruck welle 80 freiliegt.
Auf dieses freiliegende Ende 84 der Hochdruckwelle 80 wird das Wellenendkappenelement 2 aufgesteckt (Figur 3b) . Aufgrund sei nes an den Durchmesser der Hochdruckwelle 80 angepassten In- nenradius sitzt das Wellenendkappenelement 2 sicher auf der Hochdruckwelle 80, wobei durch die Kappenform sichergestellt ist, dass das Wellenendkappenelement 2 auch tatsächlich am turbinenseitige Ende 84 der Hochdruckwelle 80 verbleibt.
Anschließend wird der Schaft 5 des Verbinderelements 4 soweit in die Hochdruckwelle 80 eingeführt, dass sich das Fixierungs element 6 in einem Bereich 85 der Hochdruckwelle 80 befindet, in dem der Wellendurchmesser vergrößert ist (Figur 3c) . Durch geeignete Drehen des Schaftes 5 um seine Längsachse kann dann aufgrund der ungleichen Gewichtsverteilung des als Riegel 8 ausgebildeten Fixierungselements 6 eine orthogonale Ausrich tung gegenüber dem Schaft 5 erreicht werden, in der das Fixie rungselement 6 nicht mehr durch die Hochdruckwelle 80 heraus gezogen werden kann, sondern vielmehr eine formschlüssige Ver- bindung mit dem durch den im Bereich 85 der Durchmesservergrö ßerung der Hochdruckwelle 80 entstehenden Hinterschnitt bil den .
Durch das Führungselement 5 ' wird der Schaft 5 von der Innen- wand der Hochdruckwelle 80 ferngehalten.
Im nächsten Schritt wird die Wellenendkappenaufnahme 3 um das Wellenendkappenelement 2 angebracht und die Verbindung zwi schen Schaft 5 des Verbinderelements 4 hergestellt (Figur 3d) . Durch ausreichendes Verspannen von Wellenendkappenaufnahme 3 und Verbinderelements 4 können die bereits montierten Kompo nenten 2-4 des Werkzeugs 1 in axialer Richtung gegenüber der Hochdruckwelle 80 fixiert werden: eine axiale Bewegung des Wellenendkappenelements 2 gegenüber der Hochdruckwelle 80 wird durch die entsprechend begrenzende Wellenendkappenaufnahme 3 unterbunden, die wiederum durch die Verspannung mit dem Ver binderelement 4 in axialer Richtung fixiert ist.
Trotz dieser axialen Fixierung sind zumindest kleinere rela tive Bewegungen des Wellenendkappenelement 2 gegenüber der die Wellenendkappenaufnahme 3 in radialer Richtung weiterhin mög- lieh.
Abschließend wird das Befestigungselement 10 montiert (Figur 3e) . Dazu wird das Befestigungselement 10 über die Ausleger 14 in der einzig möglich Position an dem hinteren Flansch 82 der Brennkammer 80, an der ansonsten wenigstens eine Hochdrucktur- binenstufe befestigt ist, befestigt. In diesem Zustand liegt die Wellenendkappenaufnahme 3 innerhalb des Befestigungsbe reichs 9 und kann darin feinpositioniert werden, bis sie in der wünschten Position durch die Schrauben 11 fixiert wird. Das an dem Befestigungselement 10 vorgesehene Federelement 12 kann anschließend über die Stellschraube 13 feinjustiert wer den, sodass auf das radial weiterhin grundsätzlich bewegbare Wellenendkappenelement 2 eine vorgegebene Federkraft ausgeübt wird, welche die Gewichtskraft der ansonsten an dieser Stelle montierten Hochdruckturbinenstufe (n) simuliert.

Claims

Patentansprüche
1. Werkzeug (1) zur Halterung und axialen Fixierung der hohlen Hochdruckwelle (80) eines Flugzeugtriebwerks bei demontier ter Hochdruckturbinenstufe umfassend ein Wellenendkappenelement (2) mit einem an einen vor gegebenen Wellendurchmesser angepassten Innenradius zum Aufstecken auf das turbinenseitige Ende (84) der Hoch druckwelle (80), eine Wellenendkappenaufnahme (3) zur radial beweglichen und in einer ersten Richtung axial begrenzten Aufnahme des Wellenendkappenelements (2), und ein an der Wellenendkappenaufnahme (3) befestigbares Verbinderelement (4) mit einem in die Hochdruckwelle einführbaren Schaft (5) umfassend ein Fixierungselement (6) zur axialen Sicherung der Wellenendkappenaufnahme ( 3 ) , wobei ein gegenüber der Wellenendkappenaufnahme (3) ortsfestes Federelement (12) zur Aufbringung einer vorgegebenen Feder kraft auf das Wellenendkappenelement (2) in radialer Rich tung vorgesehen ist.
2. Werkzeug nach Anspruch 1,
dadurch gekennzeichnet, dass
das Federelement (12) hinsichtlich der Federkraft einstell bar ist.
3. Werkzeug nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Fixierungselement (6) zur formschlüssigen Verbindung mit der Hochdruckwelle (80) ausgebildet ist.
4. Werkzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das Fixierungselement (6) ein verschwenkbarer, sich zu bei den Seiten des Schafts (5) erstreckender Riegel (8) ist.
5. Werkzeug nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet, dass
der Riegel (8) gegenüber dem Schaft (5) eine unsymmetrische Gewichtsverteilung aufweist.
6. Werkzeug nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
ein Befestigungselement (10) zur ortsfesten Befestigung des Werkzeugs (1) an dem Flugzeugtriebwerk bei demontierter Hochdruckturbinenstufe mit einem Befestigungsbereich (9) zur Befestigung der Wellenendkappenaufnahme (3) daran vor gesehen ist.
7. Werkzeug nach Anspruch 6,
dadurch gekennzeichnet, dass
der Befestigungsbereich (9) und/oder die Wellenendkappen aufnahme (3) zur gegenüber dem Befestigungsbereich (9) axial und/oder radial variablen Befestigung der Wellenend kappenaufnahme (3) ausgebildet ist.
8. Werkzeug nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass
das Befestigungselement (10) zur Befestigung an einem
Flansch (82) der Brennkammer (81) des Flugzeugtriebwerks ausgebildet ist.
9. Werkzeug nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet, dass
das Befestigungselement (10) derart ausgestaltet ist, dass es nur in einer einzigen vorgegebenen Position am Flugzeug triebwerk befestigbar ist.
10. Werkzeug nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die für den Kontakt mit der Hochdruckwelle (80) vorgesehe nen Anlage- und/oder Kontaktflächen des Wellenendkappenele ments (2) und/oder des Fixierungselements (6) aus einem ge genüber dem Werkstoff der Hochdruckwelle (80) weicherem Ma terial, vorzugsweise aus Kunststoff, weiter vorzugsweise aus PTFE, sind.
11. Verwendung eines Werkzeugs (1) nach einem der vorhergehen den Ansprüche zur Halterung und axialen Fixierung der Hoch druckwelle (80) eines Flugzeugtriebwerks, mit den Schrit ten : a) Demontage der Hochdruckturbinestufe (n) des Flugzeug triebwerkes; b) Aufstecken des Wellenendkappenelements (2) auf das tur binenseitige Ende (84) der Hochdruckwelle (80); c) Einführen des Schafts (5) des Verbinderelements (4) mit dem Fixierungselement (6) in die Hochdruckwelle (80); d) Anbringen der Wellenendkappenaufnahme (3) um das Wel lenendkappenelement (2); e) Verbinden des Verbinderelements (4) mit der Wellenend kappenaufnahme (3), sodass die Wellenendkappenaufnahme (3) durch das Fixierungselement (6) des Verbinderele ments (4) axial fixiert ist; und f) Aufbringen einer Federkraft auf das Wellenendkappenele ment (2) in radialer Richtung durch das gegenüber der Wellenendkappenaufnahme (3) ortsfeste Federelement (12) .
12. Verwendung nach Anspruch 11,
dadurch gekennzeichnet, dass
zur Fixierung des Werkzeugs (1) in axialer Richtung gegen über dem Flugzeugtriebwerk ein an dem Flugzeugtriebwerk be festigtbares Befestigungslement (10) mit einem Befesti gungsbereich (9) zur Befestigung der Wellenendkappenauf nahme (3) daran vorgesehen wird.
PCT/EP2020/064253 2019-05-24 2020-05-22 Werkzeug zur halterung der hochdruckwelle eines flugzeugtriebwerks WO2020239620A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20729011.5A EP3976320B1 (de) 2019-05-24 2020-05-22 Werkzeug zur halterung der hochdruckwelle eines flugzeugtriebwerks
US17/613,497 US11530624B2 (en) 2019-05-24 2020-05-22 Tool for mounting the high-pressure shaft of an aircraft engine
CN202080038909.XA CN113874169B (zh) 2019-05-24 2020-05-22 用于安装飞机发动机的高压轴的工具
ES20729011T ES2950271T3 (es) 2019-05-24 2020-05-22 Herramienta para el soporte del eje de alta presión de un motor de avión

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019114029.3A DE102019114029A1 (de) 2019-05-24 2019-05-24 Werkzeug zur Halterung der Hochdruckwelle eines Flugzeugtriebwerks
DE102019114029.3 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020239620A1 true WO2020239620A1 (de) 2020-12-03

Family

ID=70918412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/064253 WO2020239620A1 (de) 2019-05-24 2020-05-22 Werkzeug zur halterung der hochdruckwelle eines flugzeugtriebwerks

Country Status (6)

Country Link
US (1) US11530624B2 (de)
EP (1) EP3976320B1 (de)
CN (1) CN113874169B (de)
DE (1) DE102019114029A1 (de)
ES (1) ES2950271T3 (de)
WO (1) WO2020239620A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8127417B1 (en) * 2007-02-26 2012-03-06 American Airlines, Inc. Bearing assembly removal system and method
EP3106756A1 (de) * 2015-06-15 2016-12-21 General Electric Company Anhebewerkzeug für verbrennungsströmungshülse

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641831A (en) * 1950-11-21 1953-06-16 Helton William Henry Sleeve puller
US8528192B2 (en) * 2008-06-30 2013-09-10 General Electric Company Fixture for removing slip rings from rotating electrical machinery
US8683670B2 (en) * 2010-12-20 2014-04-01 Turbine Tooling Solutions Llc Method for partial disassembly of a bypass turbofan engine
RU2593053C2 (ru) * 2011-02-09 2016-07-27 Сименс Акциенгезелльшафт Способ снятия корпуса подшипника с ротора газовой турбины, а также трубчатый вал для продолжения ротора
KR101451155B1 (ko) * 2013-10-11 2014-10-15 현대자동차주식회사 드라이브샤프트의 장착구조
CN203847444U (zh) * 2014-03-25 2014-09-24 南方风机股份有限公司 核级高压轴流风机的电机安装结构
US10012082B2 (en) * 2014-11-25 2018-07-03 United Technologies Corporation Gas turbine engine shaft members and maintenance method
EP3067627B1 (de) * 2015-03-12 2019-09-18 Ansaldo Energia Switzerland AG Montage- und Demontagevorrichtung für die Auskleidung einer Gasturbine und zugehöriges Verfahren

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8127417B1 (en) * 2007-02-26 2012-03-06 American Airlines, Inc. Bearing assembly removal system and method
EP3106756A1 (de) * 2015-06-15 2016-12-21 General Electric Company Anhebewerkzeug für verbrennungsströmungshülse

Also Published As

Publication number Publication date
ES2950271T3 (es) 2023-10-06
CN113874169B (zh) 2023-05-30
US11530624B2 (en) 2022-12-20
US20220243619A1 (en) 2022-08-04
CN113874169A (zh) 2021-12-31
EP3976320B1 (de) 2023-06-21
EP3976320A1 (de) 2022-04-06
DE102019114029A1 (de) 2020-11-26

Similar Documents

Publication Publication Date Title
EP2655808B1 (de) Verfahren zum abziehen eines lagerkörpers vom rotor einer gasturbine sowie rohrförmige wellenverlängerung
DE4011827A1 (de) Abstuetzlager
AT522164B1 (de) Gleitlagerung
DE102005052951B4 (de) Verfahren und Werkzeug zur Montage/Demontage von Bremsscheiben
EP1722123B1 (de) Mechanischer Rotationsantrieb
DE102008051041B4 (de) Turbolader mit Befestigungselementen zum Befestigen von Schaufellagerringen einer variablen Turbinengeometrie VTG
DE4036367C2 (de) Scheibenwischerantriebseinrichtung für Kraftfahrzeuge
DE102005017746B4 (de) Einbauanordnung für Antriebswellen in Kreuzgelenkgabeln
EP2236248A2 (de) Vorrichtung zur Demontage eines Radlagergehäuses
DE19643336C2 (de) Verfahren zum Demontieren des stirnseitigen Lagergehäuses oder ND-Verdichter-Wellenteiles eines Flugtriebwerkes
WO2020239620A1 (de) Werkzeug zur halterung der hochdruckwelle eines flugzeugtriebwerks
DE102017110973A1 (de) Dichtungsträgerring
DE2930833C3 (de) Klemmuffe
EP2522819B1 (de) Befestigung einer Axiallagerscheibe in einer magnetgelagerten Turbomaschine mittels einer Schrumpfscheibenverbindung
DE202010005460U1 (de) Werkzeug zum Auf- und Abbau eines Lagers
DE102018112448A1 (de) Werkzeug zur Halterung der Hochdruckwelle eines Flugzeugtriebwerks
DE102018124557B4 (de) Ritzelnadelrollenlagerpfosten zur verwendung während der ritzelzahnradträgermontage
EP3144546A1 (de) Verbindungseinrichtung, verbindungsanordnung und verfahren zum herstellen einer verindungseinrichtung
DE19801689A1 (de) Druckplatte mit schmalem Spalt und einfügbarem Klemmechanismus sowie Verfahren für dessen Gebrauch
DE102018106135B4 (de) Führungsvorrichtung
DE19934998A1 (de) Verbindungselement zum lösbaren Verbinden von Teilen
DE102011079883B4 (de) Gelenkverbindung für Leuchtensystem
EP2852774A1 (de) Schwingungsdämpfer, insbesondere ein kolbenstangendämpfer für ein kraftfahrzeug
DE102019117464B4 (de) Sperrbalken
DE102019116250B4 (de) Schwenkwiegenlagerung und Verfahren zur Herstellung einer Schwenkwiegenlagerung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20729011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020729011

Country of ref document: EP

Effective date: 20220103