WO2020238648A1 - 用于通讯检测的方法及装置、空调 - Google Patents

用于通讯检测的方法及装置、空调 Download PDF

Info

Publication number
WO2020238648A1
WO2020238648A1 PCT/CN2020/090426 CN2020090426W WO2020238648A1 WO 2020238648 A1 WO2020238648 A1 WO 2020238648A1 CN 2020090426 W CN2020090426 W CN 2020090426W WO 2020238648 A1 WO2020238648 A1 WO 2020238648A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
communication link
level
time point
data
Prior art date
Application number
PCT/CN2020/090426
Other languages
English (en)
French (fr)
Inventor
程绍江
国德防
时斌
禚百田
王军
张锐钢
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US17/297,544 priority Critical patent/US11611455B2/en
Priority to EP20815617.4A priority patent/EP3869115A4/en
Publication of WO2020238648A1 publication Critical patent/WO2020238648A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0216Channel estimation of impulse response with estimation of channel length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks

Definitions

  • This application relates to the technical field of air conditioners, for example, to a method and device for communication detection, and air conditioners.
  • Air conditioners include indoor units and outdoor units. For example, there is often information communication between the outdoor units and indoor units of an air-conditioning unit with multiple units. At present, the number of horses of a single module of the outdoor unit of a multi-line group can reach 32 horses. If the four modules are assembled together, the capacity of an outdoor unit can reach 128 horses, which can be connected to 128 indoor units. Judging from the development trend of multi-line units, the horsepower of the outdoor unit will continue to increase, so that an outdoor unit can be connected to more than 128 indoor units. The more indoor units connected, the longer the distance between the outdoor unit and the terminal indoor unit.
  • the embodiments of the present disclosure provide a method, a device and an air conditioner for communication detection to solve the problem that in the Homebus communication process in the related art, due to the long communication distance, the communication waveform attenuation occurs and the communication data cannot be detected normally.
  • the method includes: determining the length level of the communication link according to the time length of the pulse data transmitted on the communication link; and determining the detection time point according to the length level of the communication link .
  • the apparatus includes: a length level determination module configured to determine the length level of the communication link according to the time length of the pulse data transmitted on the communication link; and a detection time point determination module, It is configured to determine the detection time point according to the length level of the communication link.
  • the air conditioner includes: the above-mentioned device for communication detection.
  • the detection time point of the data is dynamically determined according to the time length of the pulse data, and Through the automatic adjustment of the detection time point, the data waveform attenuation caused by the long distance is avoided, the accuracy of the data detection is ensured, and the stability of the long-distance Homebus communication is improved.
  • FIG. 1 is a schematic flowchart of a method for communication detection provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the second flow of the method for communication detection provided by an embodiment of the present disclosure
  • FIG. 3 is a third schematic diagram of the flow of the method for communication detection provided by an embodiment of the present disclosure.
  • FIG. 4 is a fourth schematic flowchart of a method for communication detection provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an apparatus for communication detection provided by an embodiment of the present disclosure.
  • FIG. 6 is a second schematic diagram of an apparatus for communication detection provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of the third device for communication detection provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • 501 Length level determination module
  • 502 Detection time point determination module
  • 503 Communication link length determination module
  • 601 Acquisition unit
  • 602 Judgment unit
  • 700 Processor
  • 701 Memory
  • 702 Communication interface
  • 703 bus.
  • the embodiment of the present disclosure provides a method for communication detection, as shown in FIG. 1, including:
  • S101 Determine the length level of the communication link according to the time length of the pulse data transmitted on the communication link;
  • S102 Determine a detection time point according to the length level of the communication link.
  • the length level of the communication link is determined according to the time length of the pulse data transmitted on the communication link, and the corresponding detection time point on the communication link is determined according to the length level , So as to realize the dynamic adjustment of the position of the detection time point to avoid the data waveform attenuation caused by the long distance, ensure the accuracy of data detection, and improve the stability of long-distance Homebus communication.
  • the time length of the pulse data may be the time length of the high level signal of the pulse data, or the time length of other non-zero level signals; the length level of the communication link is used to characterize the communication distance level of the data.
  • the step S101 includes:
  • the time length of the pulse data includes the time length of the high-level signal of the pulse; the length range of the communication link corresponding to the first length level is smaller than the length range of the communication link corresponding to the second length level.
  • the value of the set threshold has a corresponding relationship with the transmission speed of the communication link.
  • the value of the set threshold is also related to margin design, and a certain margin time is added to the value range of the set threshold according to margin requirements.
  • the value range of the margin time is 8-12 us.
  • the transmission time of 1 bit is 104us.
  • the high-level signal is at least 52us.
  • the time length of the flat signal is less than 52us, the high-level signal of the data on the communication link cannot be detected correctly.
  • the value of the set threshold is, for example, a communication link with a baud rate of 9600 and when the margin time is 10 us, the value of the set threshold is 62 us.
  • determining the time length of the pulse data specifically includes:
  • the average value of the time lengths of the N high-level signals is calculated as the time length of the pulse data, and N is a natural number.
  • the N high-level signals may be N continuous high-level signals, or N-interval high-level signals.
  • the outdoor unit When entering the data pulse test mode, the outdoor unit starts to send data, and the data reaches the indoor unit of the air conditioner through the communication link. After the indoor unit receives the data, it acquires the high-level signal in the pulse data, and calculates the average of the time and space of the N high-level signals as the time length of the pulse data.
  • N is the preset number of groups. For example, to obtain 10 high-level signals, and calculate the average value of the time length T of the 10 high-level signals, obtain the average value T 1 of the time length of the high-level signal, and determine according to the relationship between T 1 and the set threshold The length level of the communication link.
  • T 1 is less than 62 us, it is determined that the communication link is of the second length level.
  • the length range of the communication link corresponding to the first length level is smaller than the length range of the communication link corresponding to the second length level.
  • the length level of the communication link may also include more than two levels.
  • the first length level is continuously divided into more length levels according to the transmission speed of the communication link to obtain a more stable and reliable time. check Point.
  • the step S102 includes:
  • S301 Acquire a first mapping relationship between the length level of the communication link and the detection time point
  • S302 Determine the length level of the communication link to which the communication link belongs; when the communication link is at the first length level, determine that the detection time point is the first detection time according to the first mapping relationship Point; when the communication link is at the second length level, the detection time point is determined to be the second detection time point according to the first mapping relationship.
  • the first detection time point is earlier than the second detection time point.
  • the detection time point of the data is determined, so as to realize the dynamic determination of the detection time point.
  • the detection time point range corresponding to the first length level is 50-55 us; the detection time point range corresponding to the second length level is 60-65 us.
  • the method further includes:
  • S401 Obtain a pulse signal time length of the communication data according to the communication data detected at the detection time point;
  • the communication distance is confirmed, and the location of the detection time point is dynamically determined, so that when the communication data is detected, the fixed detection time point cannot be detected due to the attenuation of the data waveform. The situation with correct data.
  • the time length of the pulse signal of the communication data may be the high level time length or the low level time length of the received bit of data.
  • the time length of the pulse signal of the communication data is the received one-bit high-level signal
  • the time length is 96us, according to the second difference between the time length of the pulse signal and the length of the communication link Mapping relationship
  • the length of the communication link corresponding to the pulse signal time length is 200 meters obtained by matching;
  • the time length is 70 us, according to the second mapping relationship
  • the communication link corresponding to the pulse signal time length is obtained by matching
  • the length of the link is 800 meters.
  • the communication distance is matched and inferred based on the signal condition of the received data at the detection time point, which avoids the attenuation of the data waveform caused by the long distance, ensures the accuracy of data detection, and improves the long-distance Homebus Stability of communication.
  • the embodiment of the present disclosure provides a detection device for communication, as shown in FIG. 5, including:
  • the length level determining module 501 is configured to determine the length level of the communication link according to the time length of the pulse data transmitted on the communication link;
  • the detection time point determination module 502 is configured to determine the detection time point according to the length level of the communication link.
  • the length level of the communication link is determined according to the time length of the pulse data transmitted on the communication link, and the corresponding detection time point on the communication link is determined according to the length level , So as to realize the dynamic adjustment of the position of the detection time point to avoid the data waveform attenuation caused by the long distance, ensure the accuracy of data detection, and improve the stability of long-distance Homebus communication.
  • the time length of the pulse data may be the time length of the high level signal of the pulse data, or the time length of other non-zero level signals; the length level of the communication link is used to characterize the communication distance level of the data.
  • the length level determining module 501 is configured to:
  • the time length of the pulse data includes the time length of the high-level signal of the pulse; the length range of the communication link corresponding to the first length level is smaller than the length range of the communication link corresponding to the second length level.
  • the value of the set threshold has a corresponding relationship with the transmission speed of the communication link.
  • the value of the set threshold is also related to margin design, and a certain margin time is added to the value range of the set threshold according to margin requirements.
  • the value range of the margin time is 8-12 us.
  • the transmission time of 1 bit is 104us.
  • the high-level signal is at least 52us.
  • the time length of the flat signal is less than 52us, the high-level signal of the data on the communication link cannot be detected correctly.
  • the value of the set threshold is, for example, a communication link with a baud rate of 9600 and when the margin time is 10 us, the value of the set threshold is 62 us.
  • the length level determination module 501 is configured to:
  • N is a natural number.
  • the outdoor unit of the air conditioner When entering the data pulse test mode, the outdoor unit of the air conditioner starts to send data, and the data reaches the indoor unit of the air conditioner through the communication link. After the indoor unit receives the data, it acquires the high-level signal in the pulse data, and calculates the average of the time and space of the N high-level signals as the time length of the pulse data.
  • N is the preset number of groups.
  • the length level determining module 501 obtains 10 high-level signals, and calculates the average value of the time length T of the 10 high-level signals, and obtains the average value T 1 of the time length of the high-level signal, according to T 1 and the setting The relationship of the threshold value determines the length level of the communication link.
  • T 1 is less than 62 us, it is determined that the communication link is of the second length level.
  • the length range of the communication link corresponding to the first length level is smaller than the length range of the communication link corresponding to the second length level.
  • the length level of the communication link may also include more than two levels.
  • the first length level is continuously divided into more length levels according to the transmission speed of the communication link to obtain More stable and reliable time detection point.
  • the detection time point determination module 502 includes:
  • the obtaining unit 601 is configured to obtain a first mapping relationship between the length level of the communication link and the detection time point;
  • the judging unit 602 is configured to judge the length level of the communication link to which the communication link belongs, and when the communication link is at the first length level, determine the detection time point according to the first mapping relationship Is the first detection time point; when the communication link is at the second length level, the detection time point is determined to be the second detection time point according to the first mapping relationship;
  • the first detection time point is earlier than the second detection time point.
  • the detection time point range corresponding to the first length level is 50-55 us; the detection time point range corresponding to the second length level is 60-65 us.
  • the detection time point of the data is determined, so as to realize the dynamic determination of the detection time point.
  • a communication link length determining module 503 is further included, and the communication link length determining module 503 is configured to:
  • the length of the communication link corresponding to the time length of the pulse signal is obtained by matching.
  • the time length of the pulse signal of the communication data may be the high level time length or the low level time length of the received bit of data.
  • the time length of the pulse signal of the communication data is the received one-bit high-level signal
  • the time length is 96us, according to the second difference between the time length of the pulse signal and the length of the communication link Mapping relationship
  • the length of the communication link corresponding to the pulse signal time length is 200 meters obtained by matching;
  • the time length is 70 us, according to the second mapping relationship
  • the communication link corresponding to the pulse signal time length is obtained by matching
  • the length of the link is 800 meters.
  • the communication distance is matched and inferred based on the signal condition of the received data at the detection time point, which avoids the attenuation of the data waveform caused by the long distance, ensures the accuracy of data detection, and improves the long-distance Homebus Stability of communication.
  • the embodiment of the present disclosure provides an air conditioner, which includes the above-mentioned device for communication detection.
  • the embodiment of the present disclosure provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method for communication detection.
  • the embodiments of the present disclosure provide a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer program The computer executes the above method for communication detection.
  • the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the embodiment of the present disclosure provides an electronic device, the structure of which is shown in FIG. 8, and the electronic device includes:
  • At least one processor (processor) 700 one processor 700 is taken as an example in FIG. 8; and a memory (memory) 701, which may also include a communication interface (Communication Interface) 702 and a bus 703.
  • the processor 700, the communication interface 702, and the memory 701 can communicate with each other through the bus 703.
  • the communication interface 702 can be used for information transmission.
  • the processor 700 may call the logic instructions in the memory 701 to execute the method for detecting communication in the foregoing embodiment.
  • the above-mentioned logical instructions in the memory 701 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the memory 701 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 700 executes functional applications and data processing by running software programs, instructions, and modules stored in the memory 701, that is, implements the method for detecting communication in the foregoing method embodiment.
  • the memory 701 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 701 may include a high-speed random access memory, and may also include a non-volatile memory.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences
  • the "second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates otherwise, the singular forms of "a” (a), “one” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including one" does not exclude the existence of other same elements in the process, method, or device including the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method parts disclosed in the embodiments, then the related parts can be referred to the description of the method parts.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)

Abstract

一种用于通讯检测的方法、装置以及包括该装置的空调,包括根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别;根据所述通信链路的长度级别,确定检测时间点。通过根据数据在通信链路上传输的脉冲数据的时间长度确定通信链路的长度级别,进而确认数据的检测时间点,实现了根据脉冲数据的时间长度,动态的确定数据的检测时间点,并通过检测时间点的自动调整,避免了因距离过长造成的数据波形衰减的情况,保证了数据检测的正确性,提高了长距离Homebus通讯的稳定性。

Description

用于通讯检测的方法及装置、空调
本申请基于申请号为201910471269.0、申请日为2019年05月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调器技术领域,例如涉及一种用于通讯检测的方法及装置、空调。
背景技术
空调包括室内机和室外机,如一拖多的空调机组的室外机和室内机之间往往要进行信息通讯。目前,多联机组的室外机,单模块的匹数已经可以做到32匹,如果四个模块实现组合装配,一套室外机机组的能力就可以达到128匹,可连接128台室内机。从多联机机组的发展趋势来看,外机机组的匹数会继续做大,这样一套室外机机组可以连接128台以上的室内机。连接的室内机台数越多,室外机与末端室内机之间的距离就会越长。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:在室外机与室内机通过Homebus(通讯总线)通讯的过程中,由于长距离通讯时容易发生信号折射干扰,室外机与室内机的距离越长,Homebus通讯的信号衰减就越严重,从而无法保障空调多联机组室内机、室外机之间的正常通讯检测。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于通讯检测的方法、装置和空调,以解决相关技术中在Homebus通讯过程中,由于通讯距离较长,出现通讯波形衰减,造成无法正常检测通讯数据的问题。
在一些实施例中,所述方法包括:根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别;根据所述通信链路的长度级别,确定检测时间点。
在一些实施例中,所述装置包括:长度级别确定模块,被配置为根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别;检测时间点确定模块,被配置为根据所述通信链路的长度级别,确定检测时间点。
在一些实施例中,所述空调包括:上述的用于通讯检测的装置。
本公开实施例提供的一些技术方案可以实现以下技术效果:
通过根据数据在通信链路上传输的脉冲数据的时间长度确定通信链路的长度级别,进而确认数据的检测时间点,实现了根据脉冲数据的时间长度,动态的确定数据的检测时间点,并通过检测时间点的自动调整,避免了因距离过长造成的数据波形衰减的情况,保证了数据检测的正确性,提高了长距离Homebus通讯的稳定性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的用于通讯检测的方法流程示意图;
图2是本公开实施例提供的用于通讯检测的方法流程示意图二;
图3是本公开实施例提供的用于通讯检测的方法流程示意图三;
图4是本公开实施例提供的用于通讯检测的方法流程示意图四;
图5是本公开实施例提供的用于通讯检测的装置示意图;
图6是本公开实施例提供的用于通讯检测的装置示意图二;
图7是本公开实施例提供的用于通讯检测的装置示意图三
图8是本公开实施例提供的电子设备的结构示意图。
附图标记:
501:长度级别确定模块;502:检测时间点确定模块;503:通信链路长度确定模块;601:获取单元;602:判断单元;700:处理器;701:存储器;702:通信接口;703:总线。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例提供了一种用于通讯检测的方法,如图1所示,包括:
S101,根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别;
S102,根据所述通信链路的长度级别,确定检测时间点。
通过设备上电后接收数据,并根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别,根据所述长度级别,确定通信链路上对应的检测时间点,从 而实现动态的调整检测时间点的位置,以避免因距离过长造成的数据波形衰减的情况,保证了数据检测的正确性,提高了长距离Homebus通讯的稳定性。其中所述脉冲数据的时间长度可以是脉冲数据的高电平信号时间长度,或其他非零电平信号时间长度;所述通信链路的长度级别用于表征数据的通讯距离级别。
在一些实施例中,如图2所示,所述步骤S101包括,
S201,确定所述脉冲数据的时间长度;
S202,在所述脉冲数据的时间长度大于设定阈值的情况下,确定所述通信链路为第一长度级别;
在所述脉冲数据的时间长度小于或等于所述设定阈值的情况下,确定所述通信链路为第二长度级别。
其中,所述脉冲数据的时间长度包括脉冲的高电平信号时间长度;所述第一长度级别对应的通信链路的长度范围小于所述第二长度级别对应的通信链路的长度范围。
可选的,所述设定阈值的取值与所述通信链路的传输速度具有对应关系。可选的,所述设定阈值的取值还与裕量设计有关,根据裕量需求为设定阈值的取值范围增加一定的裕量时间。可选的,所述裕量时间的取值范围为8-12us。
可选的,当所述通信链路为波特率为9600的通信链路,即每秒钟传输9600比特,那么1比特的传输时间为104us,可知高电平信号至少为52us,当高电平信号时间长度小于52us时,无法正确检测到数据在通信链路上的高电平信号。所述设定阈值的取值,例如是波特率为9600的通信链路,裕量时间为10us时,所述设定阈值的取值为62us。
可选的,所述步骤S201中,确定所述脉冲数据的时间长度,具体包括:
获取所述脉冲数据的N个高电平信号;
计算所述N个高电平信号的时间长度的平均值,作为所述脉冲数据的时间长度,N为自然数。
可选的,所述N个高电平信号可以是N个连续的高电平信号,或N个间隔的高电平信号。
当进入数据脉冲测试模式时,室外机开始发送数据,数据通过通信链路到达所述空调的室内机。室内机接收数据后,获取所述脉冲数据中的高电平信号,并计算N个高电平信号的时间航都的平均值,作为所述脉冲数据的时间长度。可选的,N为预设组数。例如是获取10个高电平信号,并计算10个高电平信号的时间长度T的平均值,获取高电平信号时间长度的平均值T 1,根据T 1与设定阈值的关系,确定所述通信链路的长度级别。
根据上述实施例,即,当T 1大于62us时,确定所述通信链路为第一长度级别;
当T 1小于62us时,确定所述通信链路为第二长度级别。
其中,所述第一长度级别对应的通信链路的长度范围小于所述第二长度级别对应的通信链路的长度范围。
在一些实施例中,所述通信链路的长度级别还可以包括两个以上的级别。例如是,在 本实施例提供的根据设定阈值得到的第一长度级别的基础上,将第一长度级别根据通信链路的传输速度继续划分为更多长度级别,以得到更加稳定可靠的时间检测点。
在一些实施例中,如图3所示,所述步骤S102包括:
S301,获取所述通信链路的长度级别与所述检测时间点之间的第一映射关系;
S302,判断所述通信链路所属的所述通信链路的长度级别;当所述通信链路为第一长度级别,则根据所述第一映射关系确定所述检测时间点为第一检测时间点;当在所述通信链路为第二长度级别,则根据所述第一映射关系确定所述检测时间点为第二检测时间点。
其中,所述第一检测时间点早于所述第二检测时间点。
根据所述通信链路的长度级别与检测时间点之间的映射关系,确定数据的检测时间点,从而实现动态的确定检测时间点。
可选的,根据所述第一长度级别对应的检测时间点范围为50-55us;所述第二长度级别对应的检测时间点范围为60-65us。
在一些实施例中,如图4所示,所述方法还包括:
S401,根据所述检测时间点检测的通讯数据,获得所述通讯数据的脉冲信号时间长度;
S402,根据脉冲信号时间长度与所述通信链路的长度之间的第二映射关系,匹配得到所述脉冲信号时间长度所对应的通信链路的长度。
根据步骤S102确定的时间检测点的位置,进行通讯距离的确认,通过动态的确定检测时间点的位置,使得在检测通讯数据时,避免了因数据波形衰减导致固定设置的检测时间点无法检测到正确数据的情况。
可选的,所述步骤S401中,所述通讯数据的脉冲信号时间长度可以是接收到的一位数据的高电平时间长度或低电平时间长度。例如是,当所述通讯数据的脉冲信号时间长度为接收到的一位高电平信号,其时间长度为96us,根据所述脉冲信号时间长度与所述通信链路的长度之间的第二映射关系,匹配得到所述脉冲信号时间长度对应的通信链路的长度为200米;当所述时间长度为70us时,根据所述第二映射关系,匹配得到所述脉冲信号时间长度对应的通信链路的长度为800米。
不需增加外部设备,根据检测时间点所接收数据的信号情况进行通讯距离的匹配推断,避免了因距离过长造成的数据波形衰减的情况,保证了数据检测的正确性,提高了长距离Homebus通讯的稳定性。
本公开实施例提供了一种用于通讯的检测装置,如图5所示,包括:
长度级别确定模块501,被配置为根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别;
检测时间点确定模块502,被配置为根据所述通信链路的长度级别,确定检测时间点。
通过设备上电后接收数据,并根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别,根据所述长度级别,确定通信链路上对应的检测时间点,从而实现动态的调整检测时间点的位置,以避免因距离过长造成的数据波形衰减的情况,保 证了数据检测的正确性,提高了长距离Homebus通讯的稳定性。其中所述脉冲数据的时间长度可以是脉冲数据的高电平信号时间长度,或其他非零电平信号时间长度;所述通信链路的长度级别用于表征数据的通讯距离级别。
在一些实施例中,所述长度级别确定模块501被配置为:
确定所述脉冲数据的时间长度;
在所述数据在通信链路上传输时的有效时间信号长度大于设定阈值的情况下,确定所述通信链路为第一长度级别;
在所述数据在通信链路上传输时的有效时间信号长度小于或等于所述设定阈值的情况下,确定所述通信链路为第二长度级别;
其中,所述脉冲数据的时间长度包括脉冲的高电平信号时间长度;所述第一长度级别对应的通信链路的长度范围小于所述第二长度级别对应的通信链路的长度范围。
可选的,所述长度级别确定模块501中,所述设定阈值的取值与所述通信链路的传输速度具有对应关系。可选的,所述设定阈值的取值还与裕量设计有关,根据裕量需求为设定阈值的取值范围增加一定的裕量时间。可选的,所述裕量时间的取值范围为8-12us。
可选的,当所述通信链路为波特率为9600的通信链路,即每秒钟传输9600比特,那么1比特的传输时间为104us,可知高电平信号至少为52us,当高电平信号时间长度小于52us时,无法正确检测到数据在通信链路上的高电平信号。所述设定阈值的取值,例如是波特率为9600的通信链路,裕量时间为10us时,所述设定阈值的取值为62us。
在一些实施例中,长度级别确定模块501被配置为:
获取所述脉冲数据的N个高电平信号;
计算所述N个高电平信号的时间长度的平均值,作为所述脉冲数据的时间长度;
其中,N为自然数。
当进入数据脉冲测试模式时,空调的室外机开始发送数据,数据通过通信链路到达所述空调的室内机。室内机接收数据后,获取所述脉冲数据中的高电平信号,并计算N个高电平信号的时间航都的平均值,作为所述脉冲数据的时间长度。可选的,N为预设组数。例如是长度级别确定模块501获取10个高电平信号,并计算10个高电平信号的时间长度T的平均值,获取高电平信号时间长度的平均值T 1,根据T 1与设定阈值的关系,确定所述通信链路的长度级别。
根据上述实施例,即,当T 1大于62us时,确定所述通信链路为第一长度级别;
当T 1小于62us时,确定所述通信链路为第二长度级别。
其中,所述第一长度级别对应的通信链路的长度范围小于所述第二长度级别对应的通信链路的长度范围。
在一些实施例中,所述通信链路的长度级别还可以包括两个以上的级别。例如是,在本实施例提供的长度级别确定模块501根据设定阈值得到的第一长度级别的基础上,将第一长度级别根据通信链路的传输速度继续划分为更多长度级别,以得到更加稳定可靠的时 间检测点。
在一些实施例中,如图6所示,所述检测时间点确定模块502包括:
获取单元601,被配置为获取所述通信链路的长度级别与所述检测时间点之间的第一映射关系;
判断单元602,被配置为判断所述通信链路所属的所述通信链路的长度级别,当所述通信链路为第一长度级别,则根据所述第一映射关系确定所述检测时间点为第一检测时间点;当在所述通信链路为第二长度级别,则根据所述第一映射关系确定所述检测时间点为第二检测时间点;
其中,所述第一检测时间点早于第二检测时间点。
可选的,根据上述实施例,所述第一长度级别对应的检测时间点范围为50-55us;所述第二长度级别对应的检测时间点范围为60-65us。
根据所述通信链路的长度级别与检测时间点之间的映射关系,确定数据的检测时间点,从而实现动态的确定检测时间点。
在一些实施例中,如图7所述,在上述实施例的基础上,还包括通信链路长度确定模块503,所述通信链路长度确定模块503被配置为:
根据所述检测时间点检测的通讯数据,获得所述通讯数据的脉冲信号时间长度;
根据脉冲信号时间长度与所述通信链路的长度之间的第二映射关系,匹配得到所述脉冲信号时间长度所对应的通信链路的长度。
通过动态的确定检测时间点的位置,使得在检测通讯数据时,避免了因数据波形衰减导致固定设置的检测时间点无法检测到正确数据的情况。
可选的,所述通讯数据的脉冲信号时间长度可以是接收到的一位数据的高电平时间长度或低电平时间长度。例如是,当所述通讯数据的脉冲信号时间长度为接收到的一位高电平信号,其时间长度为96us,根据所述脉冲信号时间长度与所述通信链路的长度之间的第二映射关系,匹配得到所述脉冲信号时间长度对应的通信链路的长度为200米;当所述时间长度为70us时,根据所述第二映射关系,匹配得到所述脉冲信号时间长度对应的通信链路的长度为800米。
不需增加外部设备,根据检测时间点所接收数据的信号情况进行通讯距离的匹配推断,避免了因距离过长造成的数据波形衰减的情况,保证了数据检测的正确性,提高了长距离Homebus通讯的稳定性。
本公开实施例提供了一种空调,包含上述的用于通讯检测的装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于通讯检测的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于通讯检测的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例提供了一种电子设备,其结构如图8所示,该电子设备包括:
至少一个处理器(processor)700,图8中以一个处理器700为例;和存储器(memory)701,还可以包括通信接口(Communication Interface)702和总线703。其中,处理器700、通信接口702、存储器701可以通过总线703完成相互间的通信。通信接口702可以用于信息传输。处理器700可以调用存储器701中的逻辑指令,以执行上述实施例的用于检测通讯的方法。
此外,上述的存储器701中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器701作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器700通过运行存储在存储器701中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于检测通讯的方法。
存储器701可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器701可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和 “所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发 生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (11)

  1. 一种用于通讯检测的方法,其特征在于,包括:
    根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别;
    根据所述通信链路的长度级别,确定检测时间点。
  2. 根据权利要求1所述的方法,其特征在于,所述根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别,包括:
    确定所述脉冲数据的时间长度;
    在所述脉冲数据的时间长度大于设定阈值的情况下,确定所述通信链路为第一长度级别;
    在所述脉冲数据的时间长度小于或等于所述设定阈值的情况下,确定所述通信链路为第二长度级别;
    其中,所述脉冲数据的时间长度包括脉冲的高电平信号时间长度;所述第一长度级别对应的通信链路的长度范围小于所述第二长度级别对应的通信链路的长度范围。
  3. 根据权利要求2所述的方法,其特征在于:所述确定所述脉冲数据的时间长度具体包括:
    获取所述脉冲数据的N个高电平信号;
    计算所述N个高电平信号的时间长度的平均值,作为所述脉冲数据的时间长度,N为自然数。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述通信链路的长度级别,确定检测时间点,包括:
    获取所述通信链路的长度级别与所述检测时间点之间的第一映射关系;
    判断所述通信链路所属的所述通信链路的长度级别,当所述通信链路为第一长度级别,则根据所述第一映射关系确定所述检测时间点为第一检测时间点;当在所述通信链路为第二长度级别,则根据所述第一映射关系确定所述检测时间点为第二检测时间点;
    其中,所述第一检测时间点早于第二检测时间点。
  5. 根据权利要求1至4任一所述的方法,其特征在于,该方法还包括:
    根据所述检测时间点检测的通讯数据,获得所述通讯数据的脉冲信号时间长度;
    根据脉冲信号时间长度与所述通信链路的长度之间的第二映射关系,匹配得到所述脉冲信号时间长度所对应的通信链路的长度。
  6. 一种用于通讯检测的装置,其特征在于,包括:
    长度级别确定模块,被配置为根据数据在通信链路上传输的脉冲数据的时间长度,确定所述通信链路的长度级别;
    检测时间点确定模块,被配置为根据所述通信链路的长度级别,确定检测时间点。
  7. 根据权利要求6所述的装置,其特征在于,所述长度级别确定模块被配置为:
    确定所述脉冲数据的时间长度;
    在所述数据在通信链路上传输时的有效时间信号长度大于设定阈值的情况下,确定所述通信链路为第一长度级别;
    在所述数据在通信链路上传输时的有效时间信号长度小于或等于所述设定阈值的情况下,确定所述通信链路为第二长度级别;
    其中,所述脉冲数据的时间长度包括脉冲的高电平信号时间长度;所述第一长度级别对应的通信链路的长度范围小于所述第二长度级别对应的通信链路的长度范围。
  8. 根据权利要求7所述的装置,其特征在于,所述长度级别确定模块被配置为:
    获取所述脉冲数据的N个高电平信号;
    计算所述N个高电平信号的时间长度的平均值,作为所述脉冲数据的时间长度;
    其中,N为自然数。
  9. 根据权利要求8所述的装置,其特征在于,所述检测时间点确定模块包括:
    获取单元,被配置为获取所述通信链路的长度级别与所述检测时间点之间的第一映射关系;
    判断单元,被配置为判断所述通信链路所属的所述通信链路的长度级别,当所述通信链路为第一长度级别,则根据所述第一映射关系确定所述检测时间点为第一检测时间点;当在所述通信链路为第二长度级别,则根据所述第一映射关系确定所述检测时间点为第二检测时间点;
    其中,所述第一检测时间点早于第二检测时间点。
  10. 根据权利要求6至9所述的任一装置,其特征在于:还包括通信链路长度确定模块,所述通信链路长度确定模块被配置为:
    根据所述检测时间点检测的通讯数据,获得所述通讯数据的脉冲信号时间长度;
    根据脉冲信号时间长度与所述通信链路的长度之间的第二映射关系,匹配得到所述脉冲信号时间长度所对应的通信链路的长度。
  11. 一种空调,其特征在于,包括权利要求6至10任一所述的用于通讯检测的装置。
PCT/CN2020/090426 2019-05-31 2020-05-15 用于通讯检测的方法及装置、空调 WO2020238648A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/297,544 US11611455B2 (en) 2019-05-31 2020-05-15 Method and device for communication detection and air conditioner
EP20815617.4A EP3869115A4 (en) 2019-05-31 2020-05-15 COMMUNICATION DETECTION METHOD AND DEVICE, AND AIR CONDITIONER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910471269.0 2019-05-31
CN201910471269.0A CN112013506B (zh) 2019-05-31 2019-05-31 用于通讯检测的方法及装置、空调

Publications (1)

Publication Number Publication Date
WO2020238648A1 true WO2020238648A1 (zh) 2020-12-03

Family

ID=73506149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090426 WO2020238648A1 (zh) 2019-05-31 2020-05-15 用于通讯检测的方法及装置、空调

Country Status (4)

Country Link
US (1) US11611455B2 (zh)
EP (1) EP3869115A4 (zh)
CN (1) CN112013506B (zh)
WO (1) WO2020238648A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029860A1 (en) * 2019-05-31 2022-01-27 Qingdao Haier Air-Conditioning Electronic Co., Ltd. Method and device for communication detection and air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244175A (ja) * 1992-03-02 1993-09-21 Daikin Ind Ltd 伝送装置
JP2012163232A (ja) * 2011-02-04 2012-08-30 Panasonic Corp 空気調和機の通信制御回路
CN103471201A (zh) * 2012-06-08 2013-12-25 海尔集团公司 空调通讯电路
CN106093850A (zh) * 2016-06-04 2016-11-09 四川中电昆辰科技有限公司 时序获取装置及其定位装置和方法
CN106545955A (zh) * 2016-10-08 2017-03-29 珠海格力电器股份有限公司 一种通讯中继装置、方法及空调
CN107078808A (zh) * 2014-11-04 2017-08-18 三菱电机株式会社 通信系统、信号传递方法以及空调机
CN107101348A (zh) * 2017-03-27 2017-08-29 青岛海尔空调电子有限公司 空调多联机组的室内、外机通讯方法、装置及空调机组
US20180027203A1 (en) * 2016-07-22 2018-01-25 Sony Corporation Directional remote control based on ranging
CN107819512A (zh) * 2017-11-03 2018-03-20 深圳大希创新科技有限公司 一种随距离自适应调整的延时辐射器及延时辐射方法

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102151A1 (de) * 1991-01-25 1992-07-30 Philips Patentverwaltung Empfaenger fuer ein digitales uebertragungssystem
CA2687472C (en) * 2000-01-07 2015-09-08 Aware, Inc. Systems and methods for loop length and bridged tap length determination of a transmission line
ATE367690T1 (de) * 2001-02-24 2007-08-15 Ibm Datenerfassungstechnik für die schnelle zeichengabe
JP3870280B2 (ja) 2004-01-15 2007-01-17 株式会社日立製作所 空気調和機及び電力線通信システム
US7216016B2 (en) * 2004-01-20 2007-05-08 Carrier Corporation Failure mode for HVAC system
JP2007315709A (ja) * 2006-05-26 2007-12-06 Max Co Ltd 浴室空調装置
JP2009012573A (ja) * 2007-07-03 2009-01-22 Calsonic Kansei Corp 車両用空調制御装置
CN101635694A (zh) * 2008-07-21 2010-01-27 中兴通讯股份有限公司 一种自适应均衡器和自适应均衡方法
CN101873155A (zh) * 2009-04-22 2010-10-27 雷凌科技股份有限公司 估测传输线长度的方法及装置
JP5060534B2 (ja) * 2009-09-09 2012-10-31 日立アプライアンス株式会社 空気調和機
CN101706144A (zh) * 2009-11-05 2010-05-12 宁波奥克斯空调有限公司 变频空调器内外机通信故障的判定方法
JP2011185532A (ja) * 2010-03-09 2011-09-22 Panasonic Corp 空気調和機の通信制御回路
JP5195814B2 (ja) * 2010-04-30 2013-05-15 ダイキン工業株式会社 空気調和装置およびその制御方法
WO2012172690A1 (ja) * 2011-06-17 2012-12-20 三菱電機株式会社 空調管理装置、空調管理方法、及び、プログラム
WO2013157303A1 (ja) * 2012-04-20 2013-10-24 三菱電機株式会社 電力変換装置、その電力変換装置を備えたモータ駆動制御装置、そのモータ駆動制御装置を備えた送風機および圧縮機、ならびに、その送風機あるいは圧縮機を備えた空気調和機
JP5993621B2 (ja) * 2012-06-04 2016-09-14 アズビル株式会社 要望判別装置、空調制御システム、要望判別方法および空調制御方法
US9729362B1 (en) * 2013-03-20 2017-08-08 Georgia Tech Research Corporation Systems and methods for autonomous signal modulation format identification
CN104076328B (zh) * 2013-03-29 2016-12-28 日电(中国)有限公司 信号检测的方法及装置
CA2926453C (en) * 2013-10-07 2023-02-21 Google Inc. Visual and auditory user notification methods for smart-home hazard detector
JP6290028B2 (ja) * 2014-07-30 2018-03-07 株式会社東芝 モータ制御装置,空気調和機,洗濯機及び冷蔵庫
CN104502531A (zh) * 2014-11-21 2015-04-08 小米科技有限责任公司 空气质量获取方法和装置
CN104896656B (zh) * 2015-05-11 2018-04-06 小米科技有限责任公司 开启空调的方法及装置
CN106485321B (zh) * 2015-10-08 2019-02-12 上海兆芯集成电路有限公司 具有架构神经网络执行单元的处理器
US10474627B2 (en) * 2015-10-08 2019-11-12 Via Alliance Semiconductor Co., Ltd. Neural network unit with neural memory and array of neural processing units that collectively shift row of data received from neural memory
JP6740602B2 (ja) * 2015-12-11 2020-08-19 ダイキン工業株式会社 情報処理装置
WO2017154296A1 (ja) * 2016-03-10 2017-09-14 三菱電機株式会社 受信装置及び事象検知時刻の推定方法
CN105783194B (zh) * 2016-04-14 2018-12-18 广东美的暖通设备有限公司 多联机空调系统及其通信方法
CN106209496A (zh) * 2016-06-23 2016-12-07 珠海格力电器股份有限公司 一种通信异常检测装置及方法
CN106452671B (zh) * 2016-09-28 2020-09-18 青岛海尔空调电子有限公司 多联机内外机通信方法
US9967024B1 (en) 2017-04-11 2018-05-08 Macom Technology Solutions Holdings, Inc. Automatic optical reflectometer power adjustment
CN108050664A (zh) * 2017-12-13 2018-05-18 广东美的制冷设备有限公司 空气调节装置运行参数的获取方法、装置及存储介质
US10880213B2 (en) * 2018-02-20 2020-12-29 Johnson Controls Technology Company Building management system network with power conservation via adaptive use of network protocols
CN108489007A (zh) * 2018-03-20 2018-09-04 深圳明创自控技术有限公司 一种环境可调节的智能家居
CN108488914A (zh) * 2018-04-13 2018-09-04 珠海格力电器股份有限公司 空调机组、空调机组的操作方法和装置
CN109028517B (zh) * 2018-07-31 2020-10-20 广东美的制冷设备有限公司 过滤网洁净度的检测方法、空调器及计算机可读存储介质
CN110873426B (zh) * 2018-08-31 2022-04-19 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN110873422B (zh) * 2018-08-31 2022-04-15 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN110873407B (zh) * 2018-08-31 2022-03-29 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN110873417B (zh) * 2018-08-31 2022-01-21 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN110873419B (zh) * 2018-08-31 2021-08-24 重庆海尔空调器有限公司 一种空调及其自清洁的控制方法
CN109323361B (zh) * 2018-09-30 2021-08-20 广东美的制冷设备有限公司 空调的运行能力检测方法及系统
CN109059233B (zh) * 2018-10-24 2024-03-15 奥克斯空调股份有限公司 风道结构及空调器
CN108954754B (zh) * 2018-10-24 2023-09-15 奥克斯空调股份有限公司 风道结构及空调器
US11817973B2 (en) * 2019-01-04 2023-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and receiving node for determining channel window length
CN110030688B (zh) * 2019-03-21 2020-09-25 青岛海尔空调器有限总公司 空调器的控制方法及控制装置
CN109959127B (zh) * 2019-04-28 2020-06-16 珠海格力电器股份有限公司 机组的控制方法及装置、空调器
CN110173809B (zh) * 2019-05-21 2021-03-19 广东美的制冷设备有限公司 空调器室外机的积尘检测方法、装置和存储介质
CN112013505B (zh) * 2019-05-31 2021-11-02 青岛海尔空调电子有限公司 用于控制通讯补偿的方法及装置、空调
CN112013506B (zh) * 2019-05-31 2022-02-25 青岛海尔空调电子有限公司 用于通讯检测的方法及装置、空调
CN112443949B (zh) * 2019-08-30 2022-09-27 广东美的制冷设备有限公司 空调器的控制方法、控制装置及可读存储介质
CN110822647B (zh) * 2019-11-25 2021-12-17 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质
EP3940497B1 (en) * 2020-07-15 2023-03-15 Siemens Schweiz AG Maximum flow setting
CN112556105B (zh) * 2020-12-09 2022-05-31 广东美的暖通设备有限公司 通信设备的控制方法、控制装置、通信系统和存储介质
CN112984718A (zh) * 2020-12-18 2021-06-18 四川虹美智能科技有限公司 基于人体跟踪的智能空调控制方法、装置及系统
CN113915741B (zh) * 2021-09-02 2023-05-12 远景智能国际私人投资有限公司 指令发送方法、装置及系统
CN114017846B (zh) * 2021-12-03 2022-10-28 青岛海信网络能源股份有限公司 重力热管列间空调的控制方法和重力热管列间空调

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244175A (ja) * 1992-03-02 1993-09-21 Daikin Ind Ltd 伝送装置
JP2012163232A (ja) * 2011-02-04 2012-08-30 Panasonic Corp 空気調和機の通信制御回路
CN103471201A (zh) * 2012-06-08 2013-12-25 海尔集团公司 空调通讯电路
CN107078808A (zh) * 2014-11-04 2017-08-18 三菱电机株式会社 通信系统、信号传递方法以及空调机
CN106093850A (zh) * 2016-06-04 2016-11-09 四川中电昆辰科技有限公司 时序获取装置及其定位装置和方法
US20180027203A1 (en) * 2016-07-22 2018-01-25 Sony Corporation Directional remote control based on ranging
CN106545955A (zh) * 2016-10-08 2017-03-29 珠海格力电器股份有限公司 一种通讯中继装置、方法及空调
CN107101348A (zh) * 2017-03-27 2017-08-29 青岛海尔空调电子有限公司 空调多联机组的室内、外机通讯方法、装置及空调机组
CN107819512A (zh) * 2017-11-03 2018-03-20 深圳大希创新科技有限公司 一种随距离自适应调整的延时辐射器及延时辐射方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029860A1 (en) * 2019-05-31 2022-01-27 Qingdao Haier Air-Conditioning Electronic Co., Ltd. Method and device for communication detection and air conditioner
US11611455B2 (en) * 2019-05-31 2023-03-21 Qingdao Haier Air-Conditioning Electronic Co., Ltd. Method and device for communication detection and air conditioner

Also Published As

Publication number Publication date
CN112013506A (zh) 2020-12-01
US20220029860A1 (en) 2022-01-27
EP3869115A1 (en) 2021-08-25
EP3869115A4 (en) 2022-03-02
US11611455B2 (en) 2023-03-21
CN112013506B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US10884965B2 (en) PCI express tunneling over a multi-protocol I/O interconnect
TWI424317B (zh) 用於協定堆疊之時序管理的裝置、方法及系統
KR101298862B1 (ko) Pci 익스프레스를 통해 ⅰd 기반 스트림을 가능하게 하는 방법 및 장치
CN101404556B (zh) 一线总线的通讯方法
CN107147553B (zh) 从站波特率及帧格式的调整方法、调整装置及调整设备
US9218259B2 (en) Computing device and method for testing SOL function of a motherboard of the computing device
US20190121765A1 (en) System, Apparatus And Method For Hardware-Based Bi-Directional Communication Via Reliable High Performance Half-Duplex Link
US6665275B1 (en) Network device including automatic detection of duplex mismatch
CN104166611A (zh) 硬盘温度信息获取装置及方法
CN106878164A (zh) 一种报文传输方法和装置
US7353300B2 (en) Apparatus to improve the firmware efficiency for a multiframe serial interface
WO2020238649A1 (zh) 用于控制通讯补偿的方法及装置、空调
WO2020238648A1 (zh) 用于通讯检测的方法及装置、空调
CN108011692A (zh) 一种用于单片机的数据通信方法
CN104317762A (zh) 一种fpga自适应控制rs485芯片收发方向的方法
US9483435B2 (en) USB transceiver
CN103559164A (zh) 串口波特率识别方法和装置
CN105553628A (zh) 一种串行通讯波特率检测方法及装置
US20130036243A1 (en) Host-daughtercard configuration with double data rate bus
CN109032976A (zh) 一种物理通道的处理方法和装置
WO2022147794A1 (zh) 误比特率测试方法和装置
CN114095300A (zh) 自适应速率的数据读写方法及设备
US20150212960A1 (en) Ss hub, usb 3.0 hub, and information processing instrument
CN110059030A (zh) 一种基于uart串联环路网络的数据传输系统及方法
KR101218543B1 (ko) 9-비트 시리얼 통신을 위한 제어기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020815617

Country of ref document: EP

Effective date: 20210521

NENP Non-entry into the national phase

Ref country code: DE