WO2020238310A1 - 轨道巡检机器人 - Google Patents

轨道巡检机器人 Download PDF

Info

Publication number
WO2020238310A1
WO2020238310A1 PCT/CN2020/077537 CN2020077537W WO2020238310A1 WO 2020238310 A1 WO2020238310 A1 WO 2020238310A1 CN 2020077537 W CN2020077537 W CN 2020077537W WO 2020238310 A1 WO2020238310 A1 WO 2020238310A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
inspection robot
distance sensor
chassis
distance
Prior art date
Application number
PCT/CN2020/077537
Other languages
English (en)
French (fr)
Inventor
王亚洲
秦宇
Original Assignee
北京海益同展信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京海益同展信息科技有限公司 filed Critical 北京海益同展信息科技有限公司
Publication of WO2020238310A1 publication Critical patent/WO2020238310A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects

Definitions

  • This application relates to railway track inspection technology, and in particular to a track inspection robot.
  • the detection tools mainly include a right-angle measuring ruler and an ordinary ruler.
  • the right-angle measuring ruler includes a measuring part with a scale and a measuring part perpendicular to one end of the measuring part. Abutment. When measuring, keep the whole right-angle measuring ruler horizontally, put the abutting part on the track, use the measuring part to read the distance between the platform and the track, and at the same time, another surveyor puts the ordinary ruler vertically and makes the ordinary ruler Press one end of the right-angle measuring ruler on the measuring part, and read the height value of the platform.
  • the measurement method of the prior art requires the measurement personnel to work on the track all the time, which has low safety, high labor intensity and high labor cost; at the same time, a slight misplacement of the measurement personnel and an unstable grip will cause great errors.
  • the accuracy of the data is low.
  • the purpose of this application is to provide a rail inspection robot, which can improve measurement accuracy, avoid measurement errors caused by human operation, reduce labor intensity, and improve labor safety.
  • An embodiment of the present application provides a track inspection robot, including a chassis, a running mechanism, a power source, and a measuring mechanism;
  • the running mechanism includes wheels and a transmission member, and two ends of the transmission member are respectively connected to the wheel and the power source
  • the power supply drives the wheels to walk on the track through the transmission member;
  • the measuring mechanism includes a distance sensor that can move up and down in a direction perpendicular to the chassis.
  • the measuring mechanism further includes a sliding rail, the sliding rail is vertically arranged on the chassis, and the distance sensor can slide along the sliding rail.
  • the rail inspection robot as described above may optionally further be provided with a driving member, the driving member is fixedly connected with the distance sensor, and the driving member is used to drive the distance sensor to move along the sliding rail.
  • the measuring mechanism further includes a lifting member, the distance sensor is fixedly arranged at the output end of the lifting member, and the distance sensor is driven by the lifting member mobile.
  • the track inspection robot as described above may optionally further include a radar, and the radar is used to scan the environment in front of the robot walking direction.
  • the track inspection robot as described above optionally, further includes a gauge measuring device, the gauge measuring device includes a first sensor and a second sensor that are arranged oppositely, and the first sensor and the second sensor are along the gauge The directions are respectively arranged on both sides of the chassis; the first distance sensor is arranged close to the first track, the second distance sensor is arranged close to the second track; the first distance sensor is used to detect the The distance between a distance sensor and the inner surface of the first track, and the second distance sensor is used for detecting the distance between the second distance sensor and the inner surface of the second track.
  • the gauge measuring device includes a first sensor and a second sensor that are arranged oppositely, and the first sensor and the second sensor are along the gauge The directions are respectively arranged on both sides of the chassis; the first distance sensor is arranged close to the first track, the second distance sensor is arranged close to the second track; the first distance sensor is used to detect the The distance between a distance sensor and the inner surface of the first track, and the second distance sensor is used for detecting the distance between the
  • the rail inspection robot as described above may optionally further include a bearing plate, and the sliding rail is arranged on the first side of the bearing plate.
  • the track inspection robot as described above optionally, further includes a plurality of electrical modules connected to the power supply, and the plurality of electrical modules are evenly arranged on the second side of the carrier board in a direction perpendicular to the chassis. Two sides.
  • the width of the chassis is less than or equal to half of the standard gauge, and the chassis is arranged close to the side of the platform.
  • the rail inspection robot as described above may optionally further include an external axis, one end of the external axis is connected with the wheel, and the other end of the external axis is detachably connected with the chassis.
  • the track inspection robot provided in this application walks on the track through a walking mechanism connected to a power source. It can stop measuring data at a certain distance during the walking process, and use a distance sensor that can move up and down in the direction perpendicular to the chassis to perform the platform The height and the distance between the platform and the track are measured. The minimum distance between the platform and the track measured when the distance sensor moves is the distance between the platform and the track. If the distance between the platform and the track suddenly increases when moving to a certain position, then this time The corresponding height is the platform height.
  • robots are used instead of humans to measure the height of the platform and the distance between the platform and the track, which can improve measurement accuracy, avoid measurement errors caused by human operations, and reduce labor intensity and improve labor safety.
  • Figure 1 is a schematic structural diagram of a track inspection robot provided by an embodiment of the application.
  • Fig. 2 is a schematic structural diagram of a track inspection robot provided by an embodiment of the application in a stowed state.
  • Figure 1 is a schematic structural diagram of a rail inspection robot provided by an embodiment of the application
  • Figure 2 is a structural schematic diagram of the rail inspection robot provided by an embodiment of the application in a stowed state; please refer to Figures 1 to 2 .
  • This embodiment provides a track inspection robot, which includes a chassis 100, a running mechanism, a power source 300, and a measuring mechanism 400;
  • the running mechanism includes wheels 210 and a transmission member. Both ends of the transmission member are connected to the wheel 210 and the power source 300, and the power source 300 passes The transmission member drives the wheel 210 to walk on the track 1000;
  • the measuring mechanism 400 includes a distance sensor, which can move up and down in a direction perpendicular to the chassis 100.
  • the chassis 100 in this embodiment mainly functions to carry other components.
  • the chassis 100 can be made of metal materials, and its specific shape and structure can be set according to needs.
  • the wheels 210 in the traveling mechanism are arranged under the chassis 100.
  • the number of wheels 210 is four.
  • the four wheels 210 are arranged on both sides of the chassis 100 in pairs, so that the track inspection robot can move along the two sides of the chassis 100.
  • the side opposite rail 1000 travels.
  • the transmission member connects the wheel 210 and the power source 300, and the power source 300 converts the internally stored electric energy into mechanical energy through the transmission member to be transmitted to the wheel 210 and drive the wheel 210 to rotate.
  • the specific transmission parts can be selected according to needs.
  • the transmission member includes a structure such as a motor, a sprocket, a chain, and a transmission shaft.
  • the motor obtains electrical energy from the power supply 300 and runs under the drive of the power supply 300.
  • the output end of the motor is provided with a sprocket, and the transmission A sprocket is also provided on the shaft, and the chain is meshed with two sprockets for transmission, so that the mechanical energy output by the motor is transmitted to the transmission shaft through the sprocket and chain mechanism, driving the transmission shaft to rotate, and then driving the wheel 210 on the transmission shaft to rotate .
  • the measuring mechanism 400 includes a distance sensor, which can be moved up and down in a direction perpendicular to the chassis 100 under the drive of other equipment to measure the distance between the platform and the track at different heights.
  • the track inspection robot of this embodiment also includes a memory and a controller; the controller is in communication connection with the walking mechanism and the measuring mechanism 400, and is used to control the motion state of the walking mechanism and the measuring mechanism 400; the memory is in communication with the controller and is used for recording The measurement data of the distance sensor.
  • the inspection program of the track inspection robot can be preset, so that the track inspection robot measures the height of the platform and the distance between the platform and the track every time the orbit inspection robot walks a certain distance. That is, when measuring the height of the platform and the distance between the platform and the track, the entire track inspection robot is in a stationary state. At this time, the distance sensor moves upward from the lowest end, and the distance sensor can send a horizontal measurement signal to the side of the platform, that is, it can measure the distance between the platform and the track at each point in the ascent process, and take the minimum distance as the distance between the platform and the track .
  • the distance sensor When the distance sensor rises to a position close to the height of the platform, if a sudden change in the distance between the platform and the track occurs, it can be determined that the position corresponding to the height is the height of the platform. By recording the height of the distance sensor at this time, plus the distance sensor The initial height of is the platform height.
  • the track inspection robot provided in this embodiment walks on the track 1000 through a walking mechanism connected to the power supply 300, and can stop performing data measurement every certain distance during the walking process, and can move up and down in a direction perpendicular to the chassis 100.
  • the distance sensor measures the height of the platform and the distance between the platform and the track. The minimum distance between the platform and the track measured when the distance sensor moves is the distance between the platform and the track. If it moves to a certain position, the distance between the platform and the track suddenly increases , Then the corresponding height at this time is the platform height.
  • robots are used instead of humans to measure the height of the platform and the distance between the platform and the track, which can improve measurement accuracy, avoid measurement errors caused by human operation, and reduce labor intensity and improve labor safety.
  • the measuring mechanism 400 further includes a sliding rail, which is vertically arranged on the chassis 100, and the distance sensor can slide along the sliding rail.
  • the measuring mechanism 400 is further provided with a driving part, which is fixedly connected to the distance sensor.
  • the driving part is used to drive the distance sensor to move along the sliding rail.
  • the driving part may be a device such as a linear motor. This embodiment does not further limited.
  • the measuring mechanism 400 further includes a lifting member, and the distance sensor is fixedly arranged at the output end of the lifting member, and the distance sensor is driven to move by the lifting member.
  • the lifting member can be, for example, a pneumatic cylinder or a hydraulic cylinder, and the distance sensor can be fixedly arranged on the piston rod of the pneumatic cylinder or hydraulic cylinder, and the distance sensor can move up and down in a direction perpendicular to the chassis 100 through the expansion and contraction of the pneumatic cylinder or hydraulic cylinder.
  • the track inspection robot of this embodiment further includes a radar 500, and the radar 500 is used to scan the environment in front of the walking direction of the robot.
  • the radar 500 can scan the side platform of the track inspection robot, obtain the outline shape of the platform through scanning, and compare it with the pre-stored platform outline to detect whether the platform meets the requirements. When it is found that the platform does not meet the requirements, stop the orbital inspection robot and use the measuring mechanism 400 for further precise measurement.
  • the track inspection robot of this embodiment can greatly improve the efficiency and accuracy of detection.
  • Radar 500 can also detect the size of the canopy above the platform, and compare it with the pre-stored canopy data by scanning the outline of the canopy to determine whether the canopy has intrusion points, preventing the normal passage of trains, and improving driving safety Sex.
  • the track inspection robot of this embodiment also measures the gauge. Since there is a certain tolerance in the gauge, a more accurate measurement value can be obtained after the gauge is measured.
  • the track inspection robot of this embodiment further includes a gauge measuring device 600.
  • the gauge measuring device 600 includes a first sensor and a second sensor that are arranged oppositely. The first sensor and the second sensor are respectively arranged in the gauge direction. Both sides of the chassis 100; the first distance sensor is located close to the first track, the second distance sensor is located close to the second track; the first distance sensor is used to detect the distance between the first distance sensor and the inner side of the first track, and the second distance The sensor is used to detect the distance between the second distance sensor and the inner side of the second track.
  • the distance between the first sensor and the second sensor and the rails on both sides is respectively obtained, and the fixed distance between the first sensor and the second sensor is added to obtain the track gauge.
  • the track inspection robot of this embodiment further includes a bearing plate 700, the sliding rail is arranged on the first side of the bearing plate 700, and the bearing plate 700 can be arranged vertically on the chassis 100.
  • the track inspection robot of this embodiment further includes a plurality of electrical modules 800 connected to the power supply 300 to realize the control of various components.
  • a plurality of electrical modules 800 are evenly arranged on the second side of the carrier plate 700 along a direction perpendicular to the chassis 100, so that the electrical modules 800 can provide a certain support for the carrier plate 700, and can improve the overall rigidity and reduce the track inspection robot The impact of vibration during walking on the measurement results.
  • the chassis 100 of this embodiment adopts an offset structure, that is, the width of the chassis 100 is less than or equal to half of the standard gauge, and the chassis 100 is arranged near the side of the platform, so that the measuring mechanism 400 is closer to On the side of the platform, reduce the distance between the distance sensor and the platform, thereby reducing the range and reducing the measurement deviation.
  • the offset chassis 100 is also provided with a clamping mechanism on the side close to the platform.
  • the clamping mechanism can not shake or deviate from the clamped track 1000 when the track inspection robot is walking, that is, it can make the track patrol.
  • the inspection robot always uses the clamped track 1000 as the benchmark to perform inspection operations, thereby eliminating errors in the inspection results of the track inspection robot and improving the accuracy of the inspection results.
  • the clamping mechanism includes a fixed wheel mechanism and a clamping wheel mechanism that are arranged oppositely, the fixed wheel of the fixed wheel mechanism always abuts on the first side surface of the rail 1000, and the clamping wheel mechanism includes a floating wheel and a pretensioning mechanism, The pre-tensioning mechanism is used to apply a pre-tensioning force to the floating wheel so that the floating wheel abuts on the second side surface of the rail 1000.
  • the pre-tensioning mechanism applies the pre-tightening force to the floating wheel so that the floating wheel can bear against the second side of the track 1000,
  • the wheel abuts on the first side surface of the track 1000, thereby clamping the track from both sides of the track 1000, so that the track inspection robot will not shake and deviate from the clamped track 1000 when walking, that is, it can make the track
  • the inspection robot always uses the clamped track 1000 as the benchmark to perform inspection operations, thereby eliminating errors in the inspection results of the track inspection robot and improving the accuracy of the inspection results.
  • an external shaft 900 is also provided on the side of the chassis 100 away from the platform.
  • One end of the external shaft 900 is connected to wheels 210, and the other end of the external shaft 900 is detachably connected to the chassis 100.
  • the external shaft 900 and the driving wheel 210 The rotating transmission shaft is connected to realize the normal walking of the track inspection robot.
  • the external axis 900 can be removed to reduce the volume occupied by the orbital inspection robot, which is convenient for operators to transport and carry.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction relationship between two elements.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction relationship between two elements.
  • first and second are only used to facilitate the description of different components, and cannot be understood as indicating or implying the order relationship, relative importance, or implicitly indicating that The number of technical characteristics. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种轨道巡检机器人,包括底盘(100)、行走机构、电源(300)和测量机构(400);行走机构包括车轮(210)和传动件,传动件的两端分别连接车轮(210)和电源(300),电源(300)通过传动件驱动车轮(210)在轨道上行走;测量机构(400)包括距离传感器,距离传感器可沿垂直于底盘(100)的方向上下移动。该机器人代替人工进行站台高度和站台距轨道的距离的测量,能够提高测量精度,避免人为操作造成的测量误差,同时还降低了劳动强度,提高劳动安全性。

Description

轨道巡检机器人
本申请要求于2019年05月24日提交中国专利局、申请号为201910442058.4、申请名称为“轨道巡检机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及铁路轨道检测技术,尤其涉及一种轨道巡检机器人。
背景技术
近些年,我国铁路行业发展迅猛,铁路线路总长度逐年递增,铁路轨道巡检的工作量也越来越大,铁路轨道巡检主要是为了检查轨道线路有无缺陷,以防止列车运行时出现安全事故,其中,站台高度和站台距轨道的距离是两项重要的检测项。站台高度的检测主要是为了获取列车车门打开后与站台之间的高度差,以保证乘客的正常上下车;站台距轨道的距离检测主要是为了获取列车车体与站台之间的距离,使站台位于列车的行驶范围之外,防止列车车体与站台发生剐蹭。
现有技术中,对站台高度和站台距轨道的距离的检测主要依靠人工来完成,检测工具主要包括直角测量尺和普通尺子,直角测量尺包括带有刻度的测量部和垂直于测量部一端的抵接部。测量时,使直角测量尺整体保持水平放置,将抵接部抵顶在轨道上,利用测量部读取站台距轨道的距离,同时,另一测量人员将普通尺子竖直放置,并使普通尺子的一端抵顶在直角测量尺的测量部上,读取站台的高度数值。
但是,现有技术的测量方式需要测量人员一直在轨道作业,安全性低,工作劳动强度大,人工成本高;同时,测量人员稍有摆放不正,握尺不稳都会 产生极大误差,测量数据的精度低。
发明内容
为了克服现有技术下的上述缺陷,本申请的目的在于提供一种轨道巡检机器人,本申请能够提高测量精度,避免人为操作造成的测量误差,降低劳动强度,提高劳动安全性。
本申请一实施例提供一种轨道巡检机器人,包括底盘、行走机构、电源和测量机构;所述行走机构包括车轮和传动件,所述传动件的两端分别连接所述车轮和所述电源,所述电源通过所述传动件驱动所述车轮在轨道上行走;所述测量机构包括距离传感器,所述距离传感器可沿垂直于所述底盘的方向上下移动。
如上所述的轨道巡检机器人,可选地,所述测量机构还包括滑轨,所述滑轨垂直设置在所述底盘上,所述距离传感器可沿所述滑轨滑动。
如上所述的轨道巡检机器人,可选地,还设有驱动件,所述驱动件与所述距离传感器固定连接,所述驱动件用于驱动所述距离传感器沿所述滑轨移动。
如上所述的轨道巡检机器人,可选地,所述测量机构还包括起升件,所述距离传感器固定设置在所述起升件的输出端,通过所述起升件带动所述距离传感器移动。
如上所述的轨道巡检机器人,可选地,还包括雷达,所述雷达用于扫描所述机器人行走方向前方的环境。
如上所述的轨道巡检机器人,可选地,还包括轨距测量装置,所述轨距测量装置包括相对设置的第一传感器和第二传感器,所述第一传感器和 第二传感器沿轨距方向分别设置在所述底盘的两侧;所述第一距离传感器靠近所述第一轨道设置,所述第二距离传感器靠近所述第二轨道设置;所述第一距离传感器用于检测该第一距离传感器与第一轨道内侧面的距离,所述第二距离传感器用于检测该第二距离传感器与第二轨道内侧面的距离。
如上所述的轨道巡检机器人,可选地,还包括承载板,所述滑轨设置在所述承载板的第一侧。
如上所述的轨道巡检机器人,可选地,还包括多个与所述电源相连接的电气模块,多个所述电气模块沿垂直于所述底盘的方向均匀设置在所述承载板的第二侧。
如上所述的轨道巡检机器人,可选地,所述底盘的宽度小于等于标准轨距的一半,所述底盘靠近站台一侧设置。
如上所述的轨道巡检机器人,可选地,还包括外接轴,所述外接轴的一端连接有所述车轮,所述外接轴的另一端与所述底盘可拆卸连接。
本申请提供的轨道巡检机器人,通过与电源连接的行走机构在轨道上行走,行走过程中可以每隔一定距离即停止进行数据测量,通过可沿垂直于底盘的方向上下移动的距离传感器进行站台高度和站台距轨道的距离的测量,距离传感器移动时测量的站台距轨道的最小距离即为站台距轨道的距离,若移动到某一位置时,站台距轨道的距离突然增大,则此时对应的高度即为站台高度。本申请采用机器人代替人工进行站台高度和站台距轨道的距离的测量,能够提高测量精度,避免人为操作造成的测量误差,同时还降低了劳动强度,提高劳动安全性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的轨道巡检机器人的结构简图;
图2为本申请一实施例提供的轨道巡检机器人在收起状态下的结构简图。
附图标记:
100-底盘;
210-车轮;
300-电源;
400-测量机构;
500-雷达;
600-轨距测量装置;
700-承载板;
800-电气模块;
900-外接轴;
1000-轨道。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本申请一实施例提供的轨道巡检机器人的结构简图;图2为本申请一实施例提供的轨道巡检机器人在收起状态下的结构简图;请参照图1-图2。
本实施例提供一种轨道巡检机器人,包括底盘100、行走机构、电源300和测量机构400;行走机构包括车轮210和传动件,传动件的两端分别连接车轮210和电源300,电源300通过传动件驱动车轮210在轨道1000上行走;测量机构400包括距离传感器,距离传感器可沿垂直于底盘100的方向上下移动。
具体的,本实施例中底盘100主要起到承载其他零部件的作用,底盘100可采用金属材料制成,其具体形状和结构可根据需要进行设置。行走机构中的车轮210设置在底盘100的下方,可选的,车轮210的数量为四个,四个车轮210两两一组分设在底盘100的两侧,以使轨道巡检机器人能够沿两侧相对的轨道1000行驶。传动件连接车轮210和电源300,电源300将内部存储的电能通过传动件转化为机械能以传递到车轮210上,驱动车轮210转动。传动件具体可根据需要进行选择。在一个可选的实施方式中,传动件包括电动机、链轮、链条和传动轴等结构,电动机从电源300获取电能,在电源300的驱动下运转,电动机的输出端上设有链轮,传动轴上也设有链轮,链条与两个链轮啮合传动,这样电动机输出的机械能通过链轮链条机构传递到传动轴上,带动传动轴转动,从而再带动设置在传动轴上的车轮210转动。
测量机构400包括距离传感器,距离传感器在其他设备的带动下能够沿垂直于底盘100的方向上下移动,从而测量不同高度下站台距轨道的距离。
本实施例的轨道巡检机器人还包括存储器和控制器;控制器与行走机构和测量机构400通讯连接,用于控制行走机构和测量机构400的运动状态;存储器与控制器通讯连接,用于记录距离传感器的测量数据。
使用时,可以预先设定轨道巡检机器人的检测程序,使得轨道巡检机器人每行走一定的距离即进行站台高度和站台距轨道的距离的测量。也即,测量站台高度和站台距轨道的距离时,整个轨道巡检机器人处于静止状态。此时,距离传感器从最低端向上移动,距离传感器能够向站台侧发出水平测量信号,即能够测量出上升过程中每一点处站台距离轨道的距离,取其中的最小距离做为站台距轨道的距离。距离传感器上升到接近站台高度的位置时,若发生站台距轨道距离数值的突变,即可判定该高度对应的位置即为站台的高度,通过记录此时距离传感器上升的高度,再加上距离传感器的初始高度,即为站台高度。
本实施例提供的轨道巡检机器人,通过与电源300连接的行走机构在轨道1000上行走,行走过程中可以每隔一定距离即停止进行数据测量,通过可沿垂直于底盘100的方向上下移动的距离传感器进行站台高度和站台距轨道的距离的测量,距离传感器移动时测量的站台距轨道的最小距离即为站台距轨道的距离,若移动到某一位置时,站台距轨道的距离突然增大,则此时对应的高度即为站台高度。本实施例采用机器人代替人工进行站台高度和站台距轨道的距离的测量,能够提高测量精度,避免人为操作造成的测量误差,同时还降低了劳动强度,提高劳动安全性。
在一个可选的实施方式中,测量机构400还包括滑轨,滑轨垂直设置在底盘100上,距离传感器可沿滑轨滑动。
可选地,测量机构400还设有驱动件,驱动件与距离传感器固定连接,驱动件用于驱动距离传感器沿滑轨移动,驱动件可选为直线电机等装置,本实施例对此不作进一步限定。
在另一个可选的实施方式中,测量机构400还包括起升件,距离传感器固定设置在起升件的输出端,通过起升件带动距离传感器移动。起升件例如可选为气压缸或液压缸,距离传感器可以固定设置在气压缸或液压缸的活塞杆上,通过气压缸或液压缸的伸缩实现距离传感器沿垂直于底盘100方向的上下移动。
可选地,本实施例的轨道巡检机器人还包括雷达500,雷达500用于扫描机器人行走方向前方的环境。
具体的,雷达500可以对轨道巡检机器人的侧面站台进行扫描,通过扫描获得站台的轮廓形状,并与预先存储的站台轮廓进行比对,以检测站台是否符合要求,当发现站台存在不符合要求的设计时,再停下轨道巡检机器人,并利用测量机构400进行进一步的精准测量。通过上述设置,本实施例的轨道巡检机器人能够大大提高检测的效率和准确度。
雷达500还可以检测站台上方雨棚的尺寸,通过扫描雨棚外轮廓与预先存储的雨棚数据进行比对,以判断雨棚是否有侵限点,防止阻碍列车的正常通行,提高行车的安全性。
为进一步提高测量精度,本实施例的轨道巡检机器人还进行轨距的测量,由于轨距存在一定的公差,进行轨距测量后能够获得更为精准的测量数值。
具体的,本实施例的轨道巡检机器人还包括轨距测量装置600,轨距测量装置600包括相对设置的第一传感器和第二传感器,第一传感器和第二传感器沿轨距方向分别设置在底盘100的两侧;第一距离传感器靠近第一轨道设置,第二距离传感器靠近第二轨道设置;第一距离传感器用于检测该第一距离传感器与第一轨道内侧面的距离,第二距离传感器用于检测该第二距离传感器与第二轨道内侧面的距离。
通过第一传感器和第二传感器分别获取与两侧轨道的间距,再加上第一传感器和第二传感器之间的固定间距,即可得到轨道的轨距。
可选地,本实施例的轨道巡检机器人还包括承载板700,滑轨设置在承载板700的第一侧,承载板700可垂直设置在底盘100上。
进一步地,本实施例的轨道巡检机器人还包括多个与电源300相连接的电气模块800,以实现对各零部件的控制。多个电气模块800沿垂直于底盘100的方向均匀设置在承载板700的第二侧,从而使得电气模块800能够为承载板700提供一定的支撑,并且能够提高整体的刚度,降低轨道巡检机器人行走时的震动对测量结果的影响。
在一个可选的实施方式中,本实施例的底盘100采用偏置结构,即底盘100的宽度小于等于标准轨距的一半,并且底盘100靠近站台一侧设置,从而使得测量机构400整体更靠近站台一侧,降低距离传感器与站台之间的距离,从而降低量程,减小测量偏差值。
具体的,偏置的底盘100靠近站台一侧还设有夹紧机构,夹紧机构能够在轨道巡检机器人行走时不会与被夹紧的轨道1000发生晃动和偏移,即能够使得轨道巡检机器人始终以被夹紧的轨道1000为基准进行检测作业,从而消除了轨道巡检机器人检测结果的误差,提高了检测结果的精准度。
可选的,夹紧机构包括相对设置的定轮机构和夹紧轮机构,定轮机构的定轮始终抵顶在轨道1000的第一侧面上,夹紧轮机构包括浮动轮和预紧机构,预紧机构用于向浮动轮施加预紧力,以使浮动轮抵顶在轨道1000的第二侧面上。在轨道巡检机器人进行巡检作业前,根据被测量轨道1000的实际尺寸,调节预紧机构向浮动轮施加预紧力的大小,使得浮动轮能够抵顶在轨道1000的第二侧面上,定轮抵顶在轨道1000的第一侧面上,从而从轨道1000的两侧夹紧轨道,使得轨道巡检机器人在行走时不会与被夹紧的轨道1000发生晃动和偏移,即能够使得轨道巡检机器人始终以被夹紧的轨道1000为基准进行检测作业,从而消除了轨道巡检机器人检测结果的误差,提高了检测结果的精准度。
此外,在底盘100远离站台的一侧还设有外接轴900,外接轴900的一端连接有车轮210,外接轴900的另一端与底盘100可拆卸连接,具体的,外接轴900与驱动车轮210转动的传动轴连接,从而实现轨道巡检机器人的正常行走。并且,当轨道巡检机器人不作业时,可以通过拆除外接轴900来降低轨道巡检机器人所占的体积,方便操作人员运输和搬运。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要说明的是,在本申请的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种轨道巡检机器人,其特征在于,包括底盘、行走机构、电源和测量机构;所述行走机构包括车轮和传动件,所述传动件的两端分别连接所述车轮和所述电源,所述电源通过所述传动件驱动所述车轮在轨道上行走;所述测量机构包括距离传感器,所述距离传感器可沿垂直于所述底盘的方向上下移动。
  2. 根据权利要求1所述的轨道巡检机器人,其特征在于,所述测量机构还包括滑轨,所述滑轨垂直设置在所述底盘上,所述距离传感器可沿所述滑轨滑动。
  3. 根据权利要求2所述的轨道巡检机器人,其特征在于,还设有驱动件,所述驱动件与所述距离传感器固定连接,所述驱动件用于驱动所述距离传感器沿所述滑轨移动。
  4. 根据权利要求1所述的轨道巡检机器人,其特征在于,所述测量机构还包括起升件,所述距离传感器固定设置在所述起升件的输出端,通过所述起升件带动所述距离传感器移动。
  5. 根据权利要求1所述的轨道巡检机器人,其特征在于,还包括雷达,所述雷达用于扫描所述机器人行走方向前方的环境。
  6. 根据权利要求1所述的轨道巡检机器人,其特征在于,还包括轨距测量装置,所述轨距测量装置包括相对设置的第一传感器和第二传感器,所述第一传感器和第二传感器沿轨距方向分别设置在所述底盘的两侧;所述第一距离传感器靠近所述第一轨道设置,所述第二距离传感器靠近所述第二轨道设置;所述第一距离传感器用于检测该第一距离传感器与第一轨道内侧面的距离,所述第二距离传感器用于检测该第二距离传感器与第二轨道内侧面的距离。
  7. 根据权利要求2所述的轨道巡检机器人,其特征在于,还包括承载板,所述滑轨设置在所述承载板的第一侧。
  8. 根据权利要求7所述的轨道巡检机器人,其特征在于,还包括多个与所述电源相连接的电气模块,多个所述电气模块沿垂直于所述底盘的方向均匀设置在所述承载板的第二侧。
  9. 根据权利要求1所述的轨道巡检机器人,其特征在于,所述底盘的 宽度小于等于标准轨距的一半,所述底盘靠近站台一侧设置。
  10. 根据权利要求9所述的轨道巡检机器人,其特征在于,还包括外接轴,所述外接轴的一端连接有所述车轮,所述外接轴的另一端与所述底盘可拆卸连接。
PCT/CN2020/077537 2019-05-24 2020-03-03 轨道巡检机器人 WO2020238310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910442058.4A CN110193837B (zh) 2019-05-24 2019-05-24 轨道巡检机器人
CN201910442058.4 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238310A1 true WO2020238310A1 (zh) 2020-12-03

Family

ID=67752969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077537 WO2020238310A1 (zh) 2019-05-24 2020-03-03 轨道巡检机器人

Country Status (2)

Country Link
CN (1) CN110193837B (zh)
WO (1) WO2020238310A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937631A (zh) * 2021-01-29 2021-06-11 吉林市盈冲科技有限公司 一种铁路隧道限界的检测方法
CN113110454A (zh) * 2021-04-15 2021-07-13 山东东辰共赢服务有限公司 一种用于电力系统的轨道式巡检机器人
CN113110469A (zh) * 2021-04-23 2021-07-13 杭州申昊科技股份有限公司 一种基于双轨道定心检测的铁轨巡检机器人
CN113173195A (zh) * 2021-04-21 2021-07-27 北京中铁诚业工程建设监理有限公司 一种用于铁路轨道形变质量检测仪
CN113334406A (zh) * 2021-06-25 2021-09-03 北京铁道工程机电技术研究所股份有限公司 一种轨道交通车辆侧边巡检机器人系统及检测方法
CN113587883A (zh) * 2021-07-27 2021-11-02 联想新视界(江苏)设备服务有限公司 一种电梯主轨安装检测装置
CN114170703A (zh) * 2021-12-15 2022-03-11 鞍钢集团自动化有限公司 一种通廊巡检系统及激光扫描检测方法
CN115070791A (zh) * 2022-06-15 2022-09-20 武汉黎赛科技有限责任公司 一种可分离型母子结构机器人系统与巡检方法
CN115639436A (zh) * 2022-10-19 2023-01-24 江苏遇宁智能科技有限公司 一种巡检机器人及其巡检方法
CN116766237A (zh) * 2023-08-24 2023-09-19 中国电建集团北京勘测设计研究院有限公司 一种人工湿地巡检用机器人及巡检方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193837B (zh) * 2019-05-24 2023-09-26 京东科技信息技术有限公司 轨道巡检机器人
CN110779434B (zh) * 2019-12-02 2020-07-17 北京中铁诚业工程建设监理有限公司 一种用于铁路轨道形变质量检测仪
CN111638714B (zh) * 2020-05-28 2023-12-05 京东科技信息技术有限公司 用于防止轨道巡检机器人跌落的方法和装置
CN111975740A (zh) * 2020-08-18 2020-11-24 北京海益同展信息科技有限公司 巡检机器人及轨距检测方法
CN113681535A (zh) * 2021-07-16 2021-11-23 煤炭科学技术研究院有限公司 巡检机器人行走装置及其巡检机器人系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202508115U (zh) * 2012-05-02 2012-10-31 武汉汉宁科技有限公司 高速铁路轨道综合检测小车
CN103465938A (zh) * 2013-08-28 2013-12-25 北京交通大学 轨道交通车辆的快速精确定位装置及定位方法
CN106049210A (zh) * 2016-07-14 2016-10-26 北京鹰路科技有限公司 一种轨道状态智能检测平台
US20160368510A1 (en) * 2015-06-16 2016-12-22 The Johns Hopkins University Instrumented rail system
CN206178470U (zh) * 2016-09-19 2017-05-17 科大智能电气技术有限公司 一种巡检机器人的定位装置
CN108590180A (zh) * 2018-04-27 2018-09-28 河北卓秋实业有限公司 房屋基础自动建造载体机及其控制方法
CN109079748A (zh) * 2018-10-12 2018-12-25 广州国机智能电力科技有限公司 一种轨道巡检机器人
CN110193837A (zh) * 2019-05-24 2019-09-03 北京海益同展信息科技有限公司 轨道巡检机器人

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007568A1 (de) * 2009-02-04 2010-08-05 Db Netz Ag Schienenfahrzeug mit einem durch Schienenfahrwerke auf einem Gleis verfahrbaren Maschinenrahmen
CN104898671B (zh) * 2015-05-07 2017-11-24 北京工业大学 一种带清障功能的轨道式矿用输送机自动巡检小车
CN205589249U (zh) * 2016-03-23 2016-09-21 中国矿业大学 轨道检测小车
CN106239474B (zh) * 2016-08-31 2018-03-27 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮救援机器人
CN106379436B (zh) * 2016-11-24 2019-08-06 国网山东省电力公司电力科学研究院 变电站轮式越障机构、机器人及其方法
CN108082210A (zh) * 2017-12-25 2018-05-29 中铁第四勘察设计院集团有限公司 一种具有传感器组合的轨道自动测量车
CN208027173U (zh) * 2018-02-01 2018-10-30 太原工业学院 一种机器人摄像头安装参数可调式测试装置
CN108413885B (zh) * 2018-03-29 2024-05-07 吴立滨 一种车站站台限界测量装置及测量方法
CN108436943B (zh) * 2018-05-14 2024-06-14 深圳博通机器人有限公司 一种设备巡检机器人
CN109343536A (zh) * 2018-11-19 2019-02-15 浙江大学滨海产业技术研究院 一种室内巡检机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202508115U (zh) * 2012-05-02 2012-10-31 武汉汉宁科技有限公司 高速铁路轨道综合检测小车
CN103465938A (zh) * 2013-08-28 2013-12-25 北京交通大学 轨道交通车辆的快速精确定位装置及定位方法
US20160368510A1 (en) * 2015-06-16 2016-12-22 The Johns Hopkins University Instrumented rail system
CN106049210A (zh) * 2016-07-14 2016-10-26 北京鹰路科技有限公司 一种轨道状态智能检测平台
CN206178470U (zh) * 2016-09-19 2017-05-17 科大智能电气技术有限公司 一种巡检机器人的定位装置
CN108590180A (zh) * 2018-04-27 2018-09-28 河北卓秋实业有限公司 房屋基础自动建造载体机及其控制方法
CN109079748A (zh) * 2018-10-12 2018-12-25 广州国机智能电力科技有限公司 一种轨道巡检机器人
CN110193837A (zh) * 2019-05-24 2019-09-03 北京海益同展信息科技有限公司 轨道巡检机器人

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937631A (zh) * 2021-01-29 2021-06-11 吉林市盈冲科技有限公司 一种铁路隧道限界的检测方法
CN112937631B (zh) * 2021-01-29 2022-12-06 吉林市盈冲科技有限公司 一种铁路隧道限界的检测方法
CN113110454A (zh) * 2021-04-15 2021-07-13 山东东辰共赢服务有限公司 一种用于电力系统的轨道式巡检机器人
CN113173195A (zh) * 2021-04-21 2021-07-27 北京中铁诚业工程建设监理有限公司 一种用于铁路轨道形变质量检测仪
CN113173195B (zh) * 2021-04-21 2022-06-21 北京中铁诚业工程建设监理有限公司 一种用于铁路轨道形变质量检测仪
CN113110469A (zh) * 2021-04-23 2021-07-13 杭州申昊科技股份有限公司 一种基于双轨道定心检测的铁轨巡检机器人
CN113334406A (zh) * 2021-06-25 2021-09-03 北京铁道工程机电技术研究所股份有限公司 一种轨道交通车辆侧边巡检机器人系统及检测方法
CN113334406B (zh) * 2021-06-25 2024-06-04 北京铁道工程机电技术研究所股份有限公司 一种轨道交通车辆侧边巡检机器人系统及检测方法
CN113587883B (zh) * 2021-07-27 2023-05-23 联想新视界(江苏)设备服务有限公司 一种电梯主轨安装检测装置
CN113587883A (zh) * 2021-07-27 2021-11-02 联想新视界(江苏)设备服务有限公司 一种电梯主轨安装检测装置
CN114170703A (zh) * 2021-12-15 2022-03-11 鞍钢集团自动化有限公司 一种通廊巡检系统及激光扫描检测方法
CN115070791A (zh) * 2022-06-15 2022-09-20 武汉黎赛科技有限责任公司 一种可分离型母子结构机器人系统与巡检方法
CN115639436B (zh) * 2022-10-19 2023-06-02 江苏遇宁智能科技有限公司 一种巡检机器人及其巡检方法
CN115639436A (zh) * 2022-10-19 2023-01-24 江苏遇宁智能科技有限公司 一种巡检机器人及其巡检方法
CN116766237A (zh) * 2023-08-24 2023-09-19 中国电建集团北京勘测设计研究院有限公司 一种人工湿地巡检用机器人及巡检方法
CN116766237B (zh) * 2023-08-24 2023-10-27 中国电建集团北京勘测设计研究院有限公司 一种人工湿地巡检用机器人及巡检方法

Also Published As

Publication number Publication date
CN110193837A (zh) 2019-09-03
CN110193837B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2020238310A1 (zh) 轨道巡检机器人
CN209879338U (zh) 轨道巡检机器人
CN100573031C (zh) 导轨直线度检测装置
CN102230789B (zh) 一种高速铁路钢轨平直度测量仪及其测量面定位方法
CN104534998A (zh) 一种汽车基本参数测量装置及其测量方法
CN209446782U (zh) 可同时多测线进行隧道衬砌无损检测的检测台车
CN112068540A (zh) 轨道巡检机器人
CN109969227B (zh) 轮对检测装置、高铁轮对检测装置与动车轮对检测装置
WO2011044741A1 (zh) 一种测量装配台
CN207215086U (zh) 一种便携非接触式轨道交通隧道限界检测系统
CN105547161B (zh) 一种用于长度测量的高精度柔性测量装置及方法
CN110793477B (zh) 一种车厢底架三维检测系统、在线调矫系统及方法
JP2009173373A (ja) 昇降機能を備えたコンベア装置
CN107607077A (zh) 建筑地面平整度检测方法
CN103353368A (zh) 一种扭矩测试平台
JP2008107291A (ja) 鉄道のプラットホーム測定装置及び測定方法
CN203298725U (zh) 一种硅棒几何尺寸测量仪
CN110907467A (zh) 一种电梯配件生产用裂纹检测设备
CN210313184U (zh) 一种测量小车及测量系统
CN214470772U (zh) 一种轻量级隧道综合检测分析系统
KR100447418B1 (ko) 계측기 검사용 계측 마스터의 세팅 장치
CN111362088B (zh) 基于传感器技术的电梯对重导轨制导行程测量装置
CN113044733B (zh) 一种发动机安装车及发动机安装方法
CN103292702B (zh) 一种硅棒几何尺寸测量仪
LU500039B1 (en) New Instrument for Detecting the Characteristics of Cracks and Spallings on Rail Surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814191

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20814191

Country of ref document: EP

Kind code of ref document: A1