WO2020235598A1 - 2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法 - Google Patents

2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法 Download PDF

Info

Publication number
WO2020235598A1
WO2020235598A1 PCT/JP2020/019965 JP2020019965W WO2020235598A1 WO 2020235598 A1 WO2020235598 A1 WO 2020235598A1 JP 2020019965 W JP2020019965 W JP 2020019965W WO 2020235598 A1 WO2020235598 A1 WO 2020235598A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
arc
refrigerant
small diameter
shaped
Prior art date
Application number
PCT/JP2020/019965
Other languages
English (en)
French (fr)
Inventor
明仁 山根
利行 秦
千尋 小塚
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021520819A priority Critical patent/JP7226539B2/ja
Priority to CN202080038524.3A priority patent/CN113891947B/zh
Priority to EP20809447.4A priority patent/EP3975664A4/en
Publication of WO2020235598A1 publication Critical patent/WO2020235598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a secondary coil module, a mobile quenching device and a mobile quenching method.
  • the present application claims priority based on Japanese Patent Application No. 2019-096867 filed in Japan on May 23, 2019, the contents of which are incorporated herein by reference.
  • the fatigue strength of the shaft-shaped body has been increased by moving and quenching the shaft-shaped body by induction heating.
  • moving quenching as used herein means quenching while moving a coil member or the like with respect to the axial body in the axial direction of the axial body.
  • induction heating a shaft-shaped body is inserted into a primary coil member formed in an annular shape, and a high-frequency current is passed through the primary coil member to heat the shaft-shaped body by induction heating.
  • induction heating the shorter the distance between the shaft and the primary coil member, the higher the temperature of the shaft.
  • the shaft-shaped body includes a main body portion and a small diameter portion provided in the main body portion and having a diameter smaller than that of the main body portion, there is a problem that the small diameter portion is less likely to be heated than the main body portion. ..
  • a mobile quenching device including a secondary coil member having an outer diameter smaller than the inner diameter of the primary coil member inside the primary coil member has been proposed (see, for example, Patent Documents 1 to 3 below). ).
  • the secondary coil member is formed in an O-shape or a C-shape.
  • the distance between the shaft-shaped body and the coil member close to the shaft-shaped body does not change so much between the main body and the small diameter part, so that the main body and the small diameter part are made equivalent. Can be heated.
  • the distance between the shaft-shaped body and the coil members close to the shaft-shaped body becomes uniform at each position in the circumferential direction. Since a coil member having a large number of turns and high current efficiency can be used, the shaft-shaped body can be heated evenly and efficiently with a small amount of current.
  • the secondary coils suitable for that shape are different. Even when the shaft diameter changes in one shaft-shaped body, the secondary coil suitable for each shaft diameter is different. If there are several steps of diameter difference, for example, a method of using not only the secondary coil but also a tertiary coil having an outer diameter smaller than the inner diameter of the secondary coil can be considered, but the tertiary coil has a certain thickness or more. Therefore, it is difficult to flexibly deal with a shaft-shaped body having a diameter difference at a fine pitch by a method using a tertiary coil. Therefore, when quenching is performed using the above-mentioned secondary coil and tertiary coil, the efficiency of input energy is lowered, and overheating is likely to occur at the corners of steps where a diameter difference occurs.
  • the present invention has been made in view of the above circumstances, and is a secondary coil module that can be used for shafts having various shapes (diameters) and has high ease of replacement of the secondary coil, and the second coil module thereof. It is an object of the present invention to provide a mobile quenching apparatus provided with a next coil module and a mobile quenching method feasible by the mobile quenching apparatus.
  • the present invention employs the following means in order to solve the above problems and achieve the object.
  • the secondary coil module includes an arc-shaped coil having a hollow rectangular cross section and a cooling jig configured to be detachably attached to the arc-shaped coil.
  • the arc coil has a refrigerant introduction port provided at one end in the circumferential direction of the arc coil and a refrigerant discharge port provided at the other end in the circumferential direction of the arc coil.
  • the cooling jig is a refrigerant having a refrigerant introduction pipe having an opening tip that is freely configured with respect to the refrigerant introduction port and a refrigerant having an opening tip that is freely configured with respect to the refrigerant discharge port.
  • the discharge pipe, the first connection component that detachably connects the opening tip of the refrigerant introduction pipe to the refrigerant introduction port, and the opening tip of the refrigerant discharge pipe are attached to and detached from the refrigerant discharge port.
  • the secondary coil module includes an arc-shaped coil having a hollow rectangular cross section and a cooling jig configured to be detachably attached to the arc-shaped coil.
  • the arc coil has a refrigerant inlet that opens toward one side in the central axis direction of the arc coil at one end in the circumferential direction of the arc coil and the other end in the circumferential direction of the arc coil.
  • the unit has a refrigerant discharge port that opens in the same direction as the refrigerant introduction port.
  • the cooling jig is a refrigerant having a refrigerant introduction pipe having an opening tip that is freely configured with respect to the refrigerant introduction port and a refrigerant having an opening tip that is freely configured with respect to the refrigerant discharge port.
  • a refrigerant recovery pipe connected to the refrigerant discharge pipe so as to extend outward in the radial direction of the arc-shaped coil.
  • the first connecting component is composed of an elastic material and extends in the central axis direction, and one end in the longitudinal direction of the first arm portion.
  • a first fixing portion for fixing the portion to the refrigerant introduction pipe, and a first claw portion provided at the other end in the longitudinal direction of the first arm portion and projecting inward in the radial direction of the arc-shaped coil. May have.
  • the second connecting component includes a second arm portion that is made of an elastic material and extends in the central axis direction, and a second fixing portion that fixes one end portion of the second arm portion in the longitudinal direction to the refrigerant discharge pipe.
  • the second claw portion provided at the other end in the longitudinal direction of the second arm portion and protruding inward in the radial direction of the arcuate coil may be provided.
  • the secondary coil module according to (2) or (3) above may further have a grip component fixed to the arc-shaped coil.
  • the grip component has a first portion extending from the arc-shaped coil to one side in the central axial direction, and a second portion extending from the first portion to the outer side in the radial direction of the arc-shaped coil. You may be.
  • the mobile quenching device is formed on a shaft-like body having a main body portion and a small diameter portion provided in an intermediate portion in the axial direction of the main body portion and having a diameter smaller than that of the main body portion.
  • a mobile quenching device for performing mobile quenching in which an annular primary coil member through which a high-frequency current is passed and the shaft-shaped body is inserted therein, and any one of the above (1) to (4).
  • the primary coil member the plurality of secondary coil modules described in the above and the arcuate coil of the plurality of secondary coil modules are separated from each other in the circumferential direction on the radial outer side of the small diameter portion.
  • a positioning device for positioning the plurality of secondary coil modules is provided so as to be arranged.
  • the mobile quenching device includes a plurality of two-to-one coil modules used for heating the other side end portion of the small diameter portion as the plurality of secondary coil modules.
  • a plurality of two-coil modules used for heating the one side end portion of the small-diameter portion may be provided.
  • the method of induction quenching according to one aspect of the present invention applies to a shaft-shaped body having a main body portion and a small diameter portion provided in an intermediate portion in the axial direction of the main body portion and having a diameter smaller than that of the main body portion.
  • a mobile quenching method for performing mobile quenching wherein the arcuate coil of the plurality of secondary coil modules according to any one of (1) to (4) above is subjected to the diameter of the small diameter portion.
  • the plurality of secondary coil modules are arranged so that the replacement step and the arc-shaped coil replaced by the replacement step are arranged apart from each other in the circumferential direction on the radial outer side of the small diameter portion.
  • the arrangement step of positioning and the annular primary coil member through which a high-frequency current is passed with the shaft-shaped body inserted therein are placed on one side of the small-diameter portion in the axial direction from the small diameter portion.
  • the end located on one side in the axial direction is defined as one end and the other end in the axial direction.
  • the arcuate coil of the plurality of two-order one-coil modules included in the plurality of secondary coil modules is used in the small diameter portion.
  • the first replacement step of replacing according to the diameter of the other side end portion and the arrangement step the plurality of two-order one-coil modules are provided, and the arcuate coils of the arc-shaped coils of the other side end portion of the small diameter portion.
  • the plurality of two-order one-coil modules are moved to one side in the axial direction with respect to the primary coil member, and then the plurality of two-step one-coil modules are moved from the small diameter portion to the small diameter portion.
  • the arcuate coil of the plurality of two-to-two coil modules included in the plurality of secondary coil modules is attached to the one side end portion of the small diameter portion.
  • the second replacement step of replacing according to the diameter and the plurality of two-order two-coil modules are passed through the primary coil member from the other side of the primary coil member in the axial direction.
  • the one-sided end portion of the small-diameter portion is placed.
  • the second heating step of heating may be performed.
  • a secondary coil module capable of corresponding to a shaft shape having various shapes (outer diameters) and having high ease of replacement of the secondary coil, and the secondary coil module thereof. It is possible to provide a mobile quenching apparatus provided and a mobile quenching method feasible by the mobile quenching apparatus.
  • FIG. 2A It is a perspective view which shows typically the appearance of the secondary coil module which concerns on the same embodiment. It is a figure which shows the secondary coil module, and is the AA sectional view of FIG. 2A. It is a figure which shows the secondary coil module, and is the side view seen from the arrow B of FIG. 2A. It is a perspective view which shows typically the appearance of the arc-shaped coil provided in the secondary coil module. It is a top view of the arc-shaped coil. It is a figure which shows the arc-shaped coil, and is the Ca-Ca sectional view of FIG. 3B.
  • the condition is that the outer diameter of the arc coil is fixed to one value, and the distance between the centers of the refrigerant introduction pipe and the refrigerant discharge pipe is fixed to one value according to the fixed value.
  • It is a top view for exemplifying the case where the inner diameter of the arc coil is changed. That is, in (b), the inner diameter R20 is larger than that in (a).
  • It is a side view which shows typically by breaking a part of the mobile quenching apparatus which concerns on this embodiment.
  • It is a perspective view of the main part of the mobile quenching apparatus. It is a figure which shows the main part of the mobile quenching apparatus, and is the plan sectional view seen from the DD line of FIG.
  • the inventors of the present application have diligently studied a method of mobile quenching a shaft-shaped body having various diameters and steps based on a method of using a secondary coil having good heating efficiency.
  • the advantage of the secondary coil is that the eddy current generated in the secondary coil wraps around from the outer peripheral surface to the inner peripheral surface of the secondary coil without closing in the circumferential direction due to the presence of a defect in the circumferential direction, and the inner circumference thereof.
  • the eddy current that wraps around the surface can induce and heat the surface of the shaft.
  • the primary coil is moving relative to the axial body (that is, during mobile quenching).
  • the secondary coil cannot be freely arranged or taken out in the gap between the primary coil and the shaft.
  • the inventors of the present application have proposed a method of preparing a plurality of arc-shaped coils 100 as secondary coils and replacing the arc-shaped coils 100 according to the diameter of the shaft-shaped body.
  • this method when the plurality of arcuate coils 100 are viewed as an integral secondary coil, a plurality of defective portions 110 are formed in the circumferential direction thereof, so that the inner peripheral surface of each arcuate coil 100 is formed.
  • the secondary coil (arc-shaped coil 100) is placed in the gap between the primary coil and the shaft during mobile quenching while maintaining the function of inducing and heating the surface of the shaft by the eddy current that wraps around. Can be freely arranged and taken out.
  • FIG. 1 a case where two (pair) arc-shaped coils 100 are used as secondary coils is shown, so that two missing portions 110 are also formed.
  • the number of arc-shaped coils 100 is not limited to two, and three or four arc-shaped coils 100 may be prepared as many as necessary.
  • the outer diameter R10 of the arc coil 100 is designed to have a value smaller than the inner diameter of the primary coil and close to the inner diameter of the primary coil. Further, the inner diameter R20 of the arc coil 100 is designed to have a value larger than the outer diameter of the shaft-shaped body and close to the outer diameter of the shaft-shaped body.
  • reference numeral C10 indicates the central axis of each arc-shaped coil 100.
  • the inventors of the present application have studied the configuration of a mobile quenching device that can make the best use of the characteristics of the arcuate coil 100 having high replaceability as described above. Further, since the arcuate coil 100 itself generates heat due to the Joule effect when a vortex current flows, it is necessary to cool the arcuate coil 100 during mobile quenching. Therefore, the inventors of the present application further examined the configuration of a mobile quenching device capable of realizing cooling of the arc coil 100 during mobile quenching while making the best use of the characteristics of the arc coil 100. As a result, he invented the secondary coil module according to the present invention and the mobile quenching device including the secondary coil module.
  • an embodiment of the present invention will be described in detail with reference to the drawings.
  • FIGS. 2A to 2C are diagrams schematically showing the appearance of the secondary coil module 200.
  • FIG. 2A is a plan view of the secondary coil module 200.
  • FIG. 2B is a view showing the secondary coil module 200 and is a cross-sectional view taken along the line AA of FIG. 2A.
  • FIG. 2C is a view showing the secondary coil module 200 and is a side view seen from arrow B in FIG. 2A.
  • the secondary coil module 200 includes an arc coil 300 having a hollow rectangular cross section and a cooling jig (410, 420) detachably configured with respect to the arc coil 300. 430, 440, 450, 460) and a grip component 500.
  • FIGS. 3A to 3C are diagrams schematically showing the appearance of the arc coil 300.
  • FIG. 3A is a perspective view of the arc coil 300.
  • FIG. 3B is a plan view of the arc coil 300.
  • FIG. 3C is a Ca—Ca cross-sectional view of the arc coil 300 shown in FIG. 3B.
  • the arcuate coil 300 is a coil having a hollow rectangular cross section and having an arcuate shape in a plan view.
  • the arc coil 300 has an outer diameter R10 designed to be smaller than the inner diameter of the primary coil described later and close to the inner diameter of the primary coil, and the outer diameter of the shaft-shaped body (particularly the small diameter portion) described later. Also has an inner diameter R20 designed to be large and close to the outer diameter of the shaft.
  • the arc-shaped coil 300 includes a refrigerant inlet 310 that opens toward one side (upper side) D10 of the arc-shaped coil 300 in the central axis C10 direction at one end in the circumferential direction of the arc-shaped coil 300, and an arc-shaped coil 300.
  • the coil 300 has a refrigerant discharge port 320 that opens in the same direction (upper side) as the refrigerant introduction port 310 at the other end in the circumferential direction.
  • the refrigerant introduction port 310 and the refrigerant discharge port 320 enable the flow of a refrigerant such as cooling water in the internal space of the arcuate coil 300. As shown in FIG.
  • the refrigerant introduction port 310 is formed so that the opening diameter gradually decreases from one side D10 in the central axis C10 direction toward the other side D20.
  • the refrigerant discharge port 320 is also formed so that the opening diameter gradually decreases from one side D10 in the central axis C10 direction toward the other side D20. That is, the refrigerant introduction port 310 is formed so as to taper from the outside to the inside of the arcuate coil 300.
  • the refrigerant introduction port 310 is also formed so as to taper from the outside to the inside of the arcuate coil 300.
  • the arc coil 300 has a pair of surfaces orthogonal to the central axis C10 direction.
  • the arc-shaped surface located on one side D10 in the central axis C10 direction is referred to as the first arc surface 330
  • the arc-shaped surface located on the other side D20 in the central axis C10 direction is referred to as a second arc plane 340.
  • the cooling jig includes a refrigerant introduction pipe 410, a refrigerant discharge pipe 420, a first connection component 430, a second connection component 440, a refrigerant supply pipe 450, and a refrigerant recovery pipe. It is composed of 460.
  • the refrigerant introduction pipe 410 is a tubular component used for introducing the refrigerant into the arc-shaped coil 300 from the outside, and is an opening tip that is freely configured with respect to the refrigerant introduction port 310 of the arc-shaped coil 300. It has a part 411. Specifically, the opening tip portion 411 is configured to have a shape that fits tightly with the refrigerant introduction port 310.
  • the refrigerant discharge pipe 420 is a tubular component used to discharge the refrigerant from the inside of the arc-shaped coil 300 to the outside, and is an opening tip that is freely configured with respect to the refrigerant discharge port 320 of the arc-shaped coil 300. It has a part 421. Specifically, the opening tip portion 421 is configured to have a shape that fits tightly with the refrigerant discharge port 320.
  • the first connection component 430 is in a state in which the opening end portion 411 of the refrigerant introduction pipe 410 is aligned with the refrigerant introduction port 310 and the longitudinal direction of the refrigerant introduction pipe 410 is parallel to the central axis C10 direction of the arcuate coil 300.
  • the first connection component 430 has a first arm portion 431 that is made of an elastic material and extends in the central axis C10 direction, and a first end portion of the first arm portion 431 in the longitudinal direction is fixed to the refrigerant introduction pipe 410.
  • the first arm portion 431 is made of an elastic material, and has properties like a leaf spring that curves when an external force is applied and restores to the original linear shape when the external force disappears. ing.
  • the second connection component 440 is in a state in which the opening tip portion 421 of the refrigerant discharge pipe 420 is aligned with the refrigerant discharge port 320 and the longitudinal direction of the refrigerant discharge pipe 420 is parallel to the central axis C10 direction of the arcuate coil 300.
  • the second connection component 440 has a second arm portion 441 that is made of an elastic material and extends in the central axis C10 direction, and a first end portion of the second arm portion 441 in the longitudinal direction that is fixed to the refrigerant discharge pipe 420.
  • the second arm portion 441 is made of an elastic material and has a leaf spring-like property of being curved when an external force is applied and restoring to the original linear shape when the external force disappears. ing.
  • the refrigerant supply pipe 450 is a tubular component connected to the refrigerant introduction pipe 410 so as to extend outward in the radial direction of the arcuate coil 300.
  • the refrigerant supply pipe 450 is configured to supply a refrigerant such as cooling water from a secondary coil refrigerant supply device (not shown). That is, it is possible to supply the refrigerant from the secondary coil refrigerant supply device to the arc-shaped coil 300 via the refrigerant supply pipe 450 and the refrigerant introduction pipe 410.
  • the refrigerant introduction pipe 410 and the refrigerant supply pipe 450 may be composed of one part.
  • the refrigerant recovery pipe 460 is a tubular component connected to the refrigerant discharge pipe 420 so as to extend outward in the radial direction of the arcuate coil 300.
  • the refrigerant recovery pipe 460 is configured to send back the refrigerant used for cooling the arcuate coil 300 to the above-mentioned secondary coil refrigerant supply device. That is, it is possible to forward the refrigerant from the arcuate coil 300 to the secondary coil refrigerant supply device via the refrigerant discharge pipe 420 and the refrigerant recovery pipe 460.
  • the refrigerant discharge pipe 420 and the refrigerant recovery pipe 460 may be configured by one part.
  • the above is the configuration of the cooling jig, and such a cooling jig can be easily connected to the arc coil 300 by the following procedure.
  • the introduction pipe 410 is arranged at a position away from the refrigerant introduction port 310 on one side D10.
  • the arcuate coil 300 and the refrigerant introduction pipe 410 are moved so as to approach each other along the central axis C10 direction.
  • the first claw portion 433 of the first connection component 430 first contacts the first arc surface 330 of the arc coil 300, but the arc coil 300 and the refrigerant introduction pipe 410 are brought closer to each other as they are. ..
  • the inclined surface 433a formed on the first claw portion 433 is pushed away by the first arc surface 330 toward the outer side in the radial direction, so that an external force toward the outer side in the radial direction is applied to the first claw portion 433.
  • the first arm portion 431 made of the elastic material is curved outward in the radial direction and is disturbed by the first claw portion 433.
  • the arcuate coil 300 and the refrigerant introduction pipe 410 can be brought close to each other without any need.
  • the arc coil 300 The refrigerant introduction pipe 410 is brought closer to the refrigerant introduction pipe 410.
  • the refrigerant introduction port 310 is formed so that the opening diameter gradually decreases from one side D10 in the central axis C10 direction toward the other side D20, the opening tip portion 411 of the refrigerant introduction pipe 410 is a refrigerant. The movement of the refrigerant introduction pipe 410 to the other side D20 can be stopped while being fitted to the introduction port 310.
  • the opening tip portion 411 of the refrigerant introduction pipe 410 is fitted to the refrigerant introduction port 310, the external force applied to the first claw portion 433 disappears, and the first arm portion 431 has the original linear shape. Restore to.
  • the first claw portion 433 is in a state of being locked (hooked) to the second arc surface 340 of the arc-shaped coil 300, and the opening tip portion 411 of the refrigerant introduction pipe 410 fits the refrigerant introduction port 310.
  • the refrigerant introduction pipe 410 is connected to the arc-shaped coil 300 (see FIG. 2B).
  • the refrigerant introduction pipe 410 can be easily connected to the arc coil 300.
  • the refrigerant discharge pipe 420 can also be easily connected to the arc coil 300. (1) That is, first, the central axis of the refrigerant discharge pipe 420 coincides with the central axis of the refrigerant discharge port 320, and the opening tip portion 421 of the refrigerant discharge pipe 420 faces the other side D20 in the central axis C10 direction. , The refrigerant discharge pipe 420 is arranged at a position away from the refrigerant discharge port 320 on one side D10.
  • the arcuate coil 300 and the refrigerant discharge pipe 420 are moved so as to approach each other along the central axis C10 direction.
  • the second claw portion 443 of the second connecting component 440 first contacts the first arc surface 330 of the arc coil 300, but the arc coil 300 and the refrigerant discharge pipe 420 are brought closer to each other as they are. ..
  • the inclined surface 443a formed on the second claw portion 443 is pushed away by the first arc surface 330 toward the outer side in the radial direction, so that an external force toward the outer side in the radial direction is applied to the second claw portion 443.
  • the second arm portion 441 made of the elastic material is curved outward in the radial direction and is disturbed by the second claw portion 443.
  • the arcuate coil 300 and the refrigerant discharge pipe 420 can be brought close to each other without any need.
  • the arc-shaped coil 300 The refrigerant discharge pipe 420 is brought closer to the refrigerant discharge pipe 420.
  • the refrigerant discharge port 320 is formed so that the opening diameter gradually decreases from one side D10 in the central axis C10 direction toward the other side D20, the opening tip portion 421 of the refrigerant discharge pipe 420 is a refrigerant. The movement of the refrigerant discharge pipe 420 to the other side D20 can be stopped while being fitted to the discharge port 320.
  • the opening tip portion 421 of the refrigerant discharge pipe 420 is in a state of fitting to the refrigerant discharge port 320, the external force applied to the second claw portion 443 disappears, and the second arm portion 441 has the original linear shape. Restore to.
  • the second claw portion 443 is in a state of being locked (hooked) to the second arc surface 340 of the arcuate coil 300, and the opening tip portion 421 of the refrigerant discharge pipe 420 fits the refrigerant discharge port 320.
  • the refrigerant discharge pipe 420 is connected to the arcuate coil 300 (see FIG. 2B).
  • an external force is applied to the inclined surface 433a in the radial direction in a state where the refrigerant introduction pipe 410 is connected to the arc coil 300.
  • the refrigerant introduction pipe 410 can be easily removed from the arc coil 300. it can.
  • the refrigerant discharge pipe 420 can be easily removed from the arcuate coil 300. That is, in a state where the refrigerant discharge pipe 420 is connected to the arcuate coil 300, an external force is applied to the inclined surface 443a outward in the radial direction.
  • the refrigerant discharge pipe 420 can be easily removed from the arc-shaped coil 300. it can.
  • the secondary coil module 200 has a grip component 500 fixed to the arcuate coil 300.
  • the grip component 500 is an L-shaped component fixed to the central portion in the circumferential direction of the first arc surface 330 of the arc coil 300.
  • the grip component 500 includes a first portion 510 extending from the first arc surface 330 of the arc coil 300 to one side D10 in the central axis C10 direction, and a second portion 520 extending radially outward from the tip of the first portion 510.
  • the grip component 500 is a component that is gripped by a gripping mechanism such as a robot arm when the position of the arcuate coil 300 of the secondary coil module 200 is controlled by a positioning device described later.
  • the configuration of the secondary coil module 200 has been described above, but at least the parts that come into contact with the arc coil 300, that is, the refrigerant introduction pipe 410, the refrigerant discharge pipe 420, the first connection part 430, the second connection part 440, and the grip It is desirable that the component 500 is made of an electrically insulating material. Further, in the above description, as the configuration of the first connecting component 430, a case where a configuration including the first arm portion 431, the first fixing portion 432, and the first claw portion 433 is adopted has been illustrated. The configuration of the connecting component 430 is not limited to this.
  • the refrigerant introduction pipe 410 is circular in a state where the opening tip 411 of the refrigerant introduction pipe 410 is aligned with the refrigerant introduction port 310 and the longitudinal direction of the refrigerant introduction pipe 410 is parallel to the central axis C10 direction of the arcuate coil 300.
  • Any configuration may be adopted as the configuration of the first connecting component 430 as long as it can be detachably connected to the arc-shaped coil 300.
  • the refrigerant discharge pipe 420 is in a state where the opening tip portion 421 of the refrigerant discharge pipe 420 is aligned with the refrigerant discharge port 320 and the longitudinal direction of the refrigerant discharge pipe 420 is parallel to the central axis C10 direction of the arcuate coil 300.
  • Any configuration may be adopted as the configuration of the second connecting component 440 as long as it can be detachably connected to the arcuate coil 300.
  • the plurality of arc-shaped coils 300 can be formed by adjusting the positions of the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420 according to the size of the arc-shaped coil 300. It can be replaced each time. That is, according to the outer diameter of the arc-shaped coil 300, when the outer diameter is large, the positions of the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420 are located outward in the radial direction of the arc-shaped coil 300, and conversely, when the outer diameter is small. If the distance between the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420 is changed inward in the radial direction, it is possible to correspond to a plurality of arc-shaped coils 300.
  • the center-to-center distance L10 between the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420 is defined as the inner diameter of the primary coil, that is, the outer diameter R10 of the arcuate coil 300.
  • the outer diameter R10 of the arc coil 300 is fixed to one value, and the distance L10 between the centers of the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420 is fixed to one value according to the fixed value.
  • the arc-shaped coil 300 having various inner diameters R20 can be easily replaced without adjusting the positions of the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420.
  • FIG. 4A illustrates a case where the inner diameter R20 of the arc coil 300 is relatively small.
  • FIG. 4B illustrates a case where the inner diameter R20 of the arc coil 300 is relatively large.
  • the outer diameter R10 of the arcuate coil 300 is fixed to one value, and the distance L10 between the centers of the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420 is fixed to one value according to the fixed value.
  • a secondary coil module 200 can be obtained in which the arcuate coil 300 having various inner diameters R20 can be easily replaced without adjusting the positions of the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420.
  • the mobile quenching device 1 is a device for performing mobile quenching on a shaft-shaped body 51 such as an axle for a railway vehicle by using a high frequency current.
  • the shaft-shaped body 51 includes a main body portion 52 and a small diameter portion 53 provided in the middle portion of the main body portion 52 in the axis C direction.
  • the main body portion 52 and the small diameter portion 53 are each formed in a columnar shape, and the axis of the small diameter portion 53 coincides with the axis C of the main body portion 52.
  • the portion of the main body portion 52 arranged on one side D1 in the axis C direction with respect to the small diameter portion 53 will be referred to as the first main body portion 52A.
  • the portion arranged on the other side D2 in the axis C direction with respect to the small diameter portion 53 is referred to as the second main body portion 52B.
  • the first main body portion 52A, the small diameter portion 53, and the second main body portion 52B are each formed in a columnar shape and are arranged on a common axis C.
  • the outer diameter of the small diameter portion 53 is smaller than the outer diameter of the first main body portion 52A and the second main body portion 52B, respectively.
  • the shaft-shaped body 51 is formed of a conductive material such as carbon steel or low alloy steel containing 95% by weight or more of iron (Fe), which is a ferrite phase.
  • the mobile quenching device 1 includes a support member 6, a primary coil member 11, a plurality of 2-coil members 16A and 16B, a plurality of 2-coil members 17A and 17B (see FIG. 8), and a cooling ring 36. And a control unit 46.
  • the 2nd and 1st coil members (2nd and 1st coil modules) 16A and 16B and the 2nd and 2nd coil members (2nd and 2nd coil modules) 17A and 17B have the same configurations (features) as the secondary coil module 200 described above, respectively.
  • FIGS. 5 to 14 only the parts corresponding to the arc coil 300 and the grip component 500 are shown in FIGS. 5 to 14. That is, in the following, the two-coil members 16A and 16B and the two-coil members 17A and 17B will be described as parts corresponding to the arc-shaped coil 300 itself. The portion corresponding to the grip component 500 will be described below.
  • the mobile quenching device 1 includes a refrigerant supply device for a secondary coil that supplies a refrigerant such as cooling water to each secondary coil module, but this is also shown in FIGS. 5 to 14. Is omitted.
  • the refrigerant is supplied from the secondary coil refrigerant supply device to each secondary coil module, so that each of the arcuate coils is cooled.
  • the support member 6 includes a lower center 7 and an upper center 8.
  • the lower center 7 supports the second main body 52B of the shaft-shaped body 51 from below the second main body 52B.
  • the upper center 8 supports the first main body 52A of the shaft-shaped body 51 from above the first main body 52A.
  • the lower center 7 and the upper center 8 support the axial body 51 so that the axis C is along the vertical direction, one side D1 in the axis C direction is upward, and the other side D2 is downward.
  • the primary coil member 11 is formed in an annular shape in which a wire of a coil is spirally wound.
  • the inner diameter of the primary coil member 11 is larger than the outer diameter of the first main body portion 52A and the second main body portion 52B.
  • a shaft-shaped body 51 is coaxially inserted inside the primary coil member 11.
  • Each end of the primary coil member 11 is electrically and mechanically connected to the current transformer 12.
  • the carrent transformer 12 passes a high frequency current through the primary coil member 11.
  • two 2-coil members 16A and 16B are provided as a plurality of 2-coil members 16A and 16B.
  • the number of the two-depending coil members included in the mobile quenching device 1 is not limited to two as long as it is plural, and may be three or more.
  • the 1-coil members 16A and 16B are formed in an arc shape in a plan view along the axis C direction.
  • the 1-coil members 16A and 16B are arranged side by side along the circumferential direction of the axial body 51 (hereinafter, simply referred to as the circumferential direction) and at two points in the circumferential direction so as to be separated from each other.
  • This circumferential direction coincides with the circumferential direction of the primary coil member 11.
  • the length of the two coil members 16A and 16B in the axis C direction is considerably shorter than the length of the small diameter portion 53 of the shaft-shaped body 51 in the axis C direction.
  • the diameter R1 of the inscribed circle that is, the inner peripheral surfaces of the 2 coil members 16A and 16B in contact with the outer surfaces of the 2 coil members 16A and 16B facing the axis C.
  • the inner diameter is larger than the diameter (that is, the outer diameter) of the small diameter portion 53 of the shaft-shaped body 51. It is desirable that the inner diameter R1 is smaller than the diameter (that is, the outer diameter) of the first main body portion 52A and the second main body portion 52B.
  • the diameter R2 of the circumscribed circle that is, the outer diameter formed by the outer peripheral surfaces of the 1-coil members 16A and 16B) is primary. It is smaller than the inner diameter of the coil member 11.
  • the 1-coil members 16A and 16B can be arranged at positions outside the small-diameter portion 53 in the radial direction and within the primary coil member 11 so as to be separated from the small-diameter portion 53 and the primary coil member 11, respectively. ..
  • the radial direction coincides with the radial direction of the primary coil member 11.
  • the first support portions 19A and 19B are fixed to the 1 coil members 16A and 16B.
  • the first support portion 19A includes a first support piece 20A extending upward from the one coil member 16A, and a first connecting piece 21A extending radially outward from the upper end of the first support piece 20A. ing.
  • the first support piece 20A is arranged at the central portion or the end portion in the circumferential direction of the 1 coil member 16A.
  • the first support piece 20A is attached at a position that is the radial outer end of the 1 coil member 16A and is radially outer than the first main body 52A and the second main body 52B. It is desirable to avoid interference between the support piece 20A and the first main body 52A and the second main body 52B.
  • the first connecting piece 21A extends radially outward from the upper end portion of the first supporting piece 20A, which is opposite to the lower end portion to which the one coil member 16A is fixed.
  • the first support portion 19B includes a first support piece 20B and a first connecting piece 21B.
  • the first connecting pieces 21A and 21B are arranged on the same straight line.
  • the first support portions 19A and 19B are formed by, for example, bending a rod-shaped member having electrical insulation at a right angle.
  • the first support portions 19A and 19B described above are portions corresponding to the grip component 500 in the secondary coil module 200.
  • a first moving unit 23A (positioning device) is connected to the first connecting piece 21A. Further, the first moving portion 23B (positioning device) is connected to the first connecting piece 21B.
  • the first moving portions 23A and 23B include, for example, a three-axis stage and a drive motor (not shown), and the one coil members 16A and 16B are vertically aligned and along the horizontal plane via the first support portions 19A and 19B. It can be moved in the direction.
  • the two-coil members 17A and 17B are configured in the same manner as the two-coil members 16A and 16B.
  • the primary coil members 11, 2 and 1 coil members 16A and 16B, and 2 and 2 coil members 17A and 17B are each made of a conductive material such as copper.
  • the second support portion 25A is fixed to the two-coil member 17A.
  • the second support portion 25B is fixed to the two-coil member 17B.
  • the second support portion 25A includes a second support piece 26A extending downward from the lower surface of the two coil member 17A, and a second connecting piece 27A extending radially outward from the lower end of the second support piece 26A. It has.
  • the second support piece 26A is connected to the central portion or the end portion in the circumferential direction of the two-coil member 17A.
  • the second support piece 26A is attached at a position that is the radial outer end of the two coil member 17A and is radially outer than the first main body 52A and the second main body 52B, and the second support is supported. It is desirable to avoid interference between the piece 26A and the first main body 52A and the second main body 52B.
  • the second connecting piece 27A extends radially outward from the lower end of the second support piece 26A, which is opposite to the upper end to which the two coil members 17A are fixed.
  • the second support portion 25B includes a second support piece 26B and a second connecting piece 27B.
  • the second connecting pieces 27A and 27B are arranged on the same straight line.
  • the first connecting pieces 21A and 21B and the second connecting pieces 27A and 27B are arranged on the same plane.
  • the second support portions 25A and 25B described above are portions corresponding to the grip component 500 in the secondary coil module 200.
  • the second connecting pieces 27A and 27B (the second connecting piece 27B is not shown) have the second moving parts 29A and 29B (second moving parts 29A and 29B) configured in the same manner as the first moving parts 23A and 23B.
  • the moving unit 29B (not shown) is connected to each other.
  • the second moving portion 29A (positioning device) can move the two-coil member 17A in the vertical direction and in the horizontal direction via the second supporting portion 25A.
  • the second moving portion 29B (positioning device) can move the two-coil member 17B in the vertical direction and in the horizontal direction via the second supporting portion 25B.
  • the cooling ring 36 is formed in an annular shape.
  • An internal space 36a is formed in the cooling ring 36.
  • a plurality of nozzles 36b communicating with the internal space 36a are formed so as to be separated from each other in the circumferential direction.
  • a shaft-shaped body 51 is inserted inside the cooling ring 36.
  • the cooling ring 36 is arranged below the primary coil member 11.
  • a pump 37 is connected to the cooling ring 36 via a water pipe 37a.
  • the pump 37 supplies the cooling liquid L such as water into the internal space 36a of the cooling ring 36 via the water pipe 37a.
  • the coolant L supplied to the internal space 36a is ejected toward the outer peripheral surface of the shaft-shaped body 51 through the plurality of nozzles 36b to cool the shaft-shaped body 51.
  • the primary coil member 11, the car rent transformer 12, the cooling ring 36, and the pump 37 are fixed to the support plate 39.
  • a pinion 39a is formed on the support plate 39.
  • a motor 40 for driving the pinion 39a is attached to the support plate 39.
  • the pinion 39a of the support plate 39 meshes with the rack 42.
  • the rack 42 may be a ball screw.
  • a plurality of pinions 39a may be arranged so as to sandwich the ball screw.
  • control unit 46 includes an arithmetic circuit and a memory.
  • a control program or the like for driving an arithmetic circuit is stored in the memory.
  • the control unit 46 is connected to the current transformer 12, the first moving units 23A and 23B, the second moving units 29A and 29B, the pump 37, and the motor 40, and controls them.
  • FIG. 9 is a flowchart showing the mobile quenching method S according to the present embodiment.
  • the arc of the secondary coil module for heating the lower end portion (the other side end portion) of the small diameter portion 53 of the shaft-shaped body 51.
  • the control unit 46 drives the first moving units 23A and 23B, and 2 depends on 1.
  • the coil members 16A and 16B are arranged at the lower end of the small diameter portion 53 of the shaft-shaped body 51. At this time, one coil members 16A and 16B are arranged on the outer side in the radial direction of the small diameter portion 53 so as to be separated from each other at two points in the circumferential direction.
  • the diameter R1 (that is, the inner diameter) of the inscribed circle in contact with each outer peripheral surface of the 1-coil members 16A and 16B facing the axis C is made larger than the outer diameter of the small diameter portion 53 of the shaft-shaped body 51. Deploy. At this time, it is desirable to arrange the inner diameter R1 so as to be smaller than the outer diameter of the first main body portion 52A and the second main body portion 52B. The inner peripheral surfaces of the 1-coil members 16A and 16B are separated from the outer peripheral surface of the small diameter portion 53 in the radial direction.
  • the control unit 46 moves and quenches the second main body portion 52B of the shaft-shaped body 51.
  • the carrent transformer 12 is driven to pass a high frequency current through the primary coil member 11.
  • the pump 37 is driven to eject the coolant L from the plurality of nozzles 36b of the cooling ring 36.
  • the motor 40 is driven to move the support plate 39 upward with respect to the rack 42.
  • the primary coil member 11 and the cooling ring 36 are externally inserted and moved upward in this order with respect to the shaft-shaped body 51.
  • the upper direction is the moving direction of the primary coil member 11 with respect to the shaft-shaped body 51.
  • the second main body portion 52B is heated by the primary coil member 11 from the lower end portion toward the upper side (small diameter portion 53), and is further rapidly cooled by the cooling ring 36.
  • the electromagnetic induction of the primary coil member 11 causes a direct current to flow directly through the second main body 52B without passing through another coil, and the electric resistance of the second main body 52B causes the second main body to flow.
  • Joule heat is generated in the main body 52B.
  • the second main body 52B is heated by induction heating to become an austenite phase.
  • the second main body 52B heated by induction heating is cooled by the cooling ring 36 that moves upward after the primary coil member 11, so that the second main body 52B becomes a martensite phase.
  • the second main body portion 52B is mobile hardened.
  • the first heating step S3 the first heating step S5, the first separation step S7, the central heating step S9, the second arrangement step S11, the second heating step S13, and the second main body heating step S15, which will be described later, the shafts.
  • the primary coil member 11 and the cooling ring 36 with respect to the body 51 are moved and hardened without being stopped.
  • the process proceeds to step S5.
  • the first heating step when at least a part of the 1 coil members 16A and 16B is arranged in the primary coil member 11, the lower end portion of the small diameter portion 53 is heated.
  • the 1-coil members 16A and 16B are separated from the primary coil member 11 in the radial direction.
  • the electromagnetic induction of the primary coil member 11 causes a current to flow to the lower end of the small diameter portion 53 via the 1 coil members 16A and 16B, and the small diameter portion 53 is heated by induction.
  • the lower end of the is heated. Specifically, as shown in FIG.
  • the first arrangement step S1 may be performed after the first main body heating step S3 and before the first heating step S5. When the first heating step S5 is completed, the process proceeds to step S7.
  • the control unit 46 drives the first moving units 23A and 23B, and uses the first support units 19A and 19B as shown in FIG. 1 coil members 16A and 16B are moved upward according to 2 with respect to the next coil member 11. Then, as shown in FIG. 11, the 1-coil members 16A and 16B are separated from the small diameter portion 53 in the radial direction.
  • the first separation step S7 is performed after the first heating step S5. When the first separation step S7 is completed, the process proceeds to step S9.
  • step S9 the central portion of the small diameter portion 53 in the axis C direction is heated.
  • the 1-coil members 16A and 16B are not arranged between the primary coil member 11 and the small-diameter portion 53, the current value of the high-frequency current flowing through the primary coil member 11 is increased.
  • the primary coil member 11 is a connecting portion 51a (particularly, the shaft shape portion 51) between the first main body portion 52A and the second main body portion 52B and the small diameter portion 53 in the shaft shape portion 51.
  • the primary coil member 11 is separated from the portion that is convex toward the outside of the small diameter portion 53 as compared with the case where the lower end portion of the small diameter portion 53 is heated. Therefore, even if the value of the current flowing through the primary coil member 11 is increased, it is possible to prevent the temperature of the connecting portion 51a from becoming too high.
  • the heating of the central portion of the small diameter portion 53 in the axis C direction is completed, the current value of the high frequency current flowing through the primary coil member 11 is reduced and returned to the original current value.
  • the central heating step S9 is completed, the process proceeds to step S10.
  • the central portion of the small diameter portion 53 in the axis C direction may be heated by using the 1 coil members 16A and 16B in the central heating step.
  • a first separating step of separating the 1-coil members 16A and 16B from the small diameter portion 53 to the outside in the radial direction is performed.
  • the circle of the secondary coil module for heating the upper end portion (one side end portion) of the small diameter portion 53 of the shaft-shaped body 51 is replaced according to the outer diameter of the upper end portion of the small diameter portion 53.
  • a secondary coil module that is, two coil members 17A and 17B depending on the number 2) equipped with an arc-shaped coil suitable for heating the upper end portion of the small diameter portion 53 is provided.
  • the control unit 46 drives the second moving units 29A and 29B to move the two coil members 17A and 17B into 1 as shown in FIG.
  • the next coil member 11 and the cooling ring 36 are brought closer to the lower end of the small diameter portion 53 from the lower side.
  • the two-coil members 17A and 17B are moved upward, and as shown in FIG. 8, the two-coil member 17A is passed through the primary coil member 11 to the upper end of the small diameter portion 53. , 17B are placed.
  • the two coil members 17A and 17B are separated from the small diameter portion 53 in the radial direction.
  • step S13 the control unit 46 is divided into two coil members in the primary coil member 11 that moves upward with respect to the shaft-shaped body 51 as shown in FIG.
  • the control unit 46 is divided into two coil members in the primary coil member 11 that moves upward with respect to the shaft-shaped body 51 as shown in FIG.
  • the upper end portion of the small diameter portion 53 is heated.
  • the two coil members 17A and 17B are separated from the primary coil member 11 in the radial direction.
  • step S15 the control unit 46 moves the first main body 52A when the first main body 52A of the shaft-shaped body 51 is arranged in the primary coil member 11. Quench.
  • step S15 the process proceeds to step S17.
  • the control unit 46 drives the second moving units 29A and 29B to separate the two coil members 17A and 17B from the small diameter portion 53 in the radial direction.
  • the second separation step S17 may be performed before the second main body heating step S15. After the small diameter portion 53 and the first main body portion 52A are heated in the first heating step S5, the central heating step S9, the second heating step S13, and the second main body heating step S15, the coolant L is ejected from the cooling ring 36. As a result, the small diameter portion 53 and the first main body portion 52A are cooled.
  • the second separation step S17 is completed, all the steps of the mobile quenching method S are completed, and the entire shaft-shaped body 51 is in a state of being mobile-quenched. The hardness of the mobile hardened shaft-shaped body 51 is improved.
  • the coil members 16A, 16B, 17A, 17B are arranged on the radial outer side of the small diameter portion 53, or the coil members 16A, 16B, 17A, 17B are separated from the small diameter portion 53. While moving and quenching the shaft-shaped body 51.
  • a plurality of two-coil members 16A and 16B separated from each other in advance are provided with a small diameter portion 53 of the shaft-shaped body 51. They are arranged side by side on the outer side in the radial direction so as to be separated from each other in the circumferential direction. Then, a high-frequency current is passed through the primary coil member 11 that moves upward with respect to the shaft-shaped body 51.
  • first main body 52A and the second main body 52B of the shaft-shaped body 51 a current flows directly to the first main body 52A and the second main body 52B by the electromagnetic induction of the primary coil member 11, and the first main body Joule heat is generated in the first main body 52A and the second main body 52B due to the electric resistance of the parts 52A and the second main body 52B.
  • the first main body 52A and the second main body 52B heated by Joule heat are cooled by the cooling ring 36 that moves upward after the primary coil member 11, and the first main body 52A and the second main body 52A and the second main body are cooled. 52B is mobile hardened.
  • a current is applied to the small-diameter portion 53 of the shaft-shaped body 51 via two coil members 16A and 16B arranged on the radial outer side of the small-diameter portion 53 by electromagnetic induction. Due to the flow and the electrical resistance of the small diameter portion 53, Joule heat is generated in the small diameter portion 53. The small diameter portion 53 heated by Joule heat is similarly cooled by the cooling ring 36, and the small diameter portion 53 is subjected to mobile quenching. After the moving quenching of the small diameter portion 53 is completed, the 1 coil members 16A and 16B are removed from the small diameter portion 53 in the radial direction.
  • the 1-coil members 16A and 16B can be removed from the small diameter portion 53 to 2 and from the shaft-shaped body 51 to 2. 1 Coil members 16A and 16B can be easily removed.
  • the diameter R1 that is, the inner diameter
  • the diameter R1 that is, the inner diameter of the inscribed circles of the 1-coil members 16A and 16B is slightly larger than the outer diameters of the first main body 52A and the second main body 52B of the shaft-shaped body 51, It is possible to prevent the 1 coil members 16A and 16B from interfering with the 1 main body portion 52A and the 2nd main body portion 52B.
  • the diameter R1 (that is, the inner diameter) of the inscribed circle in contact with each outer surface of the 1-coil members 16A and 16B facing the axis C is smaller than the outer diameters of the first main body portion 52A and the second main body portion 52B.
  • the two-coil members 16A and 16B can be brought closer to the small-diameter portion 53, and the two-coil members 16A and 16B can heat the small-diameter portion 53 more efficiently.
  • the two-coil members 16A and 16B and the two-coil members 17A and 17B are provided.
  • the primary coil members 16A and 16B are used with respect to the primary coil member 11 using the first support pieces 20A and 20B.
  • 1 coil members 16A and 16B are moved upward.
  • the first support pieces 20A and 20B are prevented from interfering with the primary coil member 11 and the second main body portion 52B arranged below the small diameter portion 53, and 2 from the inside of the primary coil member 11.
  • the 1-coil members 16A and 16B can be taken out, and the 1-coil members 16A and 16B can be separated from the small diameter portion 53 in the radial direction.
  • the 2nd support pieces 26A and 26B are used to 2 depending on the primary coil member 11.
  • the coil members 17A and 17B are moved downward.
  • the second support pieces 26A and 26B are prevented from interfering with the primary coil member 11 and the first main body portion 52A arranged above the small diameter portion 53, and 2 from the inside of the primary coil member 11.
  • the two-coil members 17A and 17B can be taken out, and the plurality of two-coil members 17A and 17B can be separated from the small diameter portion 53 in the radial direction.
  • the 1st support 19A is removed from the 2 coil member 16A and the 1st support 19A, and the 2nd support 25A is attached. You may use it.
  • the arrangement of the 2 coil member 16A and the 1st support portion 19A is rotated by 180 ° (upside down) around the axis along the horizontal plane. You may use it.
  • the first support portion 19A does not have to include the first connecting piece 21A.
  • the second support portion 25A does not have to include the second connecting piece 27A.
  • the first support portion 19B does not have to include the first connecting piece 21B.
  • the second support portion 25B does not have to include the second connecting piece 27B.
  • the mobile quenching device 1 When the length of the two-coil members 16A and 16B in the axis C direction is approximately equal to the length of the small diameter portion 53 of the shaft-shaped body 51 in the axis C direction, the mobile quenching device 1 is set to the two-coil member 17A. , 17B, the second support portions 25A, 25B, and the second moving portions 29A, 29B may not be provided. In this case, in the mobile quenching method S, the central heating step S9, the second arrangement step S11, the second heating step S13, and the second separation step S17 are not performed.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention.
  • the axial body 51 may not be arranged so that the axis C is arranged along the vertical direction (vertical direction), and the axial line C may be arranged so as to be inclined with respect to the vertical direction.
  • the primary coil member 11 and the cooling ring 36 move in an inclined manner in the vertical direction.
  • the mobile quenching device 1 does not have to include the support member 6 and the control unit 46.
  • the shaft-shaped body 51 is assumed to be an axle for a railway vehicle, it may be another shaft-shaped body such as a ball screw.
  • FIGS. 2A to 4 show an example in which the refrigerant introduction port 310 and the refrigerant discharge port 320 of the arcuate coil 300 are opened on one side D10 in the central axis C10 direction.
  • the secondary coil arc-shaped coil
  • the refrigerant introduction port 310 and the refrigerant discharge port 320 are opened in the direction of the central axis C10, and it is desirable that the introduction side and the discharge side are aligned so that they can be easily separated from the primary coil and easily attached and detached.
  • the opening may be formed outward in the radial direction, or may be formed on the other side in the central axis C10 direction.
  • the connection component for attaching and detaching the refrigerant introduction pipe 410 and the refrigerant discharge pipe 420 to the arc coil 300 has been described with an example of an elastic material.
  • the connecting component does not necessarily have to be elastically deformed as long as the fitting force can be controlled, and may be a material having high rigidity.
  • FIG. 15 shows an analysis model used in the simulation.
  • the vertical lengths of the 1-coil members 16A and 16B are not so shorter than the vertical length of the small diameter portion 53 of the shaft-shaped body 51, and are used during mobile quenching.
  • the shape of the shaft-shaped body 51 is such that the temperature tends to rise.
  • the diameter of the inscribed circle of the one coil members 16A and 16B is larger than the outer diameter of the main body 52.
  • the outer diameter of the main body 52 is 198 mm, and the outer diameter (minimum diameter) of the small diameter 53 is 181 mm.
  • the material of the shaft-shaped body 51 is carbon steel.
  • the frequency of the high frequency current flowing through the primary coil member 11 was set to 1 kHz.
  • the maximum temperature of the shaft-shaped body 51 was obtained when the shaft-shaped body 51 was heated to a certain depth by mobile quenching.
  • FIG. 16 shows the simulation results of the mobile quenching apparatus 1 of the first embodiment.
  • temperature scales corresponding to shades of gray are shown. The temperature gradually increases as the gray becomes whiter.
  • the primary coil member 11 shown in FIG. 16 has a depth of 5.0 mm that can be heated to 800 ° C. or higher in the small diameter portion 53.
  • the temperature of the region R11 indicates the maximum temperature of the shaft-shaped body 51.
  • the maximum temperature in this region R11 is 1149 ° C.
  • the mobile quenching device 1 of the second embodiment has a diameter of the inscribed circle of the one coil members 16A and 16B as the main body, as shown by the alternate long and short dash line in FIG. The difference is that it is smaller than the outer diameter of the portion 52.
  • the diameter of the inscribed circle of the 1-coil members 16A and 16B is 6 mm smaller than the outer diameter of the main body 52.
  • the primary coil member 11 shown in FIG. 17 has a depth of 4.8 mm that can be heated to 800 ° C. or higher in the small diameter portion 53.
  • the temperature of region R12 indicates the maximum temperature of shaft-shaped body 51.
  • the maximum temperature in this region R12 is 1072 ° C.
  • FIG. 18 shows the simulation results of the mobile quenching apparatus 1A of the comparative example.
  • the mobile quenching device 1A of the comparative example is different from the configuration of the mobile quenching device 1 of Examples 1 and 2, and does not include 1 coil members 16A and 16B.
  • the temperature of the region R13 is the shaft-shaped body 51 even though the small diameter portion 53 can only secure a depth of 3.5 mm that can be heated to 800 ° C. or higher. It was found to show the highest temperature of.
  • the maximum temperature in this region R13 is 1225 ° C.
  • the mobile quenching device 1 of the first embodiment can have a depth of 1.5 mm that can be heated to 800 ° C. or higher in the small diameter portion 53, and the shaft-shaped body 51 at the time of the mobile quenching can be deepened. It was found that the maximum value of the temperature can be reduced by about 76 ° C. Further, the mobile quenching device 1 of the second embodiment can have a depth of 1.3 mm that can be heated to 800 ° C. or higher in the small diameter portion 53 as compared with the mobile quenching device 1A of the comparative example, and has a shaft shape during the mobile quenching. It was found that the maximum temperature of the body 51 can be reduced by about 153 ° C.
  • a secondary coil module that can be used for shaft-shaped bodies having various shapes (outer diameters) and has high ease of replacement of the secondary coil, and mobile quenching including the secondary coil module. It is possible to provide an apparatus and a mobile quenching method feasible by the mobile quenching apparatus. Therefore, the industrial applicability is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

この2次コイルモジュールは、円弧形コイルと冷却治具を備える。前記円弧形コイルは、冷媒導入口と冷媒排出口を有する。前記冷却治具は、前記冷媒導入口に対して篏合自在に構成された開口先端部を有する冷媒導入管と、前記冷媒排出口に対して篏合自在に構成された開口先端部を有する冷媒排出管と、前記冷媒導入管の前記開口先端部を前記冷媒導入口に対して着脱自在に接続する第1接続部品と、前記冷媒排出管の前記開口先端部を前記冷媒排出口に対して着脱自在に接続する第2接続部品と、前記円弧形コイルの半径方向外側に向かって延びるように前記冷媒導入管に接続された冷媒供給管と、前記円弧形コイルの前記半径方向外側に向かって延びるように前記冷媒排出管に接続された冷媒回収管と、を有する。

Description

2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法
 本発明は、2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法に関する。
 本願は、2019年5月23日に、日本国に出願された特願2019-096867号に基づき優先権を主張し、その内容をここに援用する。
 従来、軸状体を誘導加熱により移動焼入れし、軸状体の疲労強度を高めることが行われている。ここで言う、移動焼入れとは、軸状体に対してコイル部材等を軸状体の軸線方向に移動させながら焼入れすることを意味する。
 誘導加熱では、環状に形成された1次コイル部材内に軸状体を挿入し、1次コイル部材に高周波電流を流して誘導加熱により軸状体を加熱する。誘導加熱では、軸状体と1次コイル部材との距離が短いほど軸状体が高い温度で加熱される。このため、軸状体が、本体部と、本体部に設けられて本体部よりも径が小さい小径部と、を備える場合には、本体部に比べて小径部が加熱されにくいという課題がある。
 この課題に対して、1次コイル部材の内側に、1次コイル部材の内径よりも小さい外径を有する2次コイル部材を備える移動焼入れ装置が提案されている(例えば下記特許文献1~3参照)。2次コイル部材は、O字形又はC字形に形成されている。提案されている2次コイルを用いた装置では、軸状体と軸状体に近接するコイル部材との距離が、本体部と小径部であまり変わらないため、本体部と小径部とを同等に加熱することができる。
 これらの移動焼入れ装置では、複数のコイル部材が同心円状に配置されているため、軸状体と軸状体に近接するコイル部材との距離は周方向の各位置で均一になる。巻き数を多くした電流効率の良いコイル部材を用いることができるため、少ない電流でむらなく効率的に軸状体を加熱することができる。
日本国特公昭52-021215号公報 日本国特開2015-108188号公報 日本国特開2000-87134号公報
 しかしながら、上記特許文献1~3に開示された移動焼入れ装置では、いずれも軸線方向の端部に小径部が設けられた軸状体を加熱対象にしている。軸状体の小径部が軸状体の軸線方向の中間部に設けられた場合には、小径部に取付けた2次コイル部材を、軸状体の軸線方向の端まで移動させて軸状体から取外すのに時間を要するという問題がある。
 また、様々な形状の軸状体を焼入れする場合、その形状に適した2次コイルはそれぞれ異なる。1本の軸状体において軸径が変化する場合にも、それぞれの軸径に適した2次コイルは異なる。数段階の径差であれば、例えば2次コイルだけでなく、2次コイルの内径よりも小さい外径を有する3次コイルを使用する方法が考えられるが、3次コイルは一定以上の太さが必要であるため、3次コイルを用いる方法によって、細かいピッチで径差が設けられた軸状体に対して柔軟に対応することは難しい。従って、上述の2次コイル及び3次コイルを用いて焼入れする場合には投入エネルギーの効率が落ち、径差が生じる段差の角部等で過加熱も生じやすくなる。
 本発明は上記の事情に鑑みてなされたものであり、様々な形状(径)を有する軸状体に対応可能であって且つ2次コイルの交換容易性が高い2次コイルモジュールと、その2次コイルモジュールを備えた移動焼入れ装置と、その移動焼入れ装置によって実現可能な移動焼入れ方法を提供することを目的とする。
 本発明は上記課題を解決して係る目的を達成するために以下の手段を採用する。
(1)本発明の一態様に係る2次コイルモジュールは、中空矩形断面を有する円弧形コイルと、前記円弧形コイルに対して着脱自在に構成された冷却治具と、を備える。
 前記円弧形コイルは、前記円弧形コイルの周方向一端部に設けた冷媒導入口と、前記円弧形コイルの周方向他端部に設けた冷媒排出口と、を有する。
 前記冷却治具は、前記冷媒導入口に対して篏合自在に構成された開口先端部を有する冷媒導入管と、前記冷媒排出口に対して篏合自在に構成された開口先端部を有する冷媒排出管と、前記冷媒導入管の前記開口先端部を前記冷媒導入口に対して着脱自在に接続する第1接続部品と、前記冷媒排出管の前記開口先端部を前記冷媒排出口に対して着脱自在に接続する第2接続部品と、前記円弧形コイルの半径方向外側に向かって延びるように前記冷媒導入管に接続された冷媒供給管と、前記円弧形コイルの前記半径方向外側に向かって延びるように前記冷媒排出管に接続された冷媒回収管と、を有する。
(2)本発明の他の態様に係る2次コイルモジュールは、中空矩形断面を有する円弧形コイルと、前記円弧形コイルに対して着脱自在に構成された冷却治具と、を備える。
 前記円弧形コイルは、前記円弧形コイルの周方向一端部において前記円弧形コイルの中心軸方向の一方側に向かって開口する冷媒導入口と、前記円弧形コイルの周方向他端部において前記冷媒導入口と同じ向きに開口する冷媒排出口と、を有する。
 前記冷却治具は、前記冷媒導入口に対して篏合自在に構成された開口先端部を有する冷媒導入管と、前記冷媒排出口に対して篏合自在に構成された開口先端部を有する冷媒排出管と、前記冷媒導入管の前記開口先端部が前記冷媒導入口に篏合し且つ前記冷媒導入管の長手方向が前記中心軸方向に平行となる状態で、前記冷媒導入管を前記円弧形コイルに着脱自在に接続する第1接続部品と、前記冷媒排出管の前記開口先端部が前記冷媒排出口に篏合し且つ前記冷媒排出管の長手方向が前記中心軸方向に平行となる状態で、前記冷媒排出管を前記円弧形コイルに着脱自在に接続する第2接続部品と、前記円弧形コイルの半径方向外側に向かって延びるように前記冷媒導入管に接続された冷媒供給管と、前記円弧形コイルの前記半径方向外側に向かって延びるように前記冷媒排出管に接続された冷媒回収管と、を有する。
(3)上記(2)に記載の2次コイルモジュールにおいて、前記第1接続部品は、弾性材料によって構成され且つ前記中心軸方向に延びる第1アーム部と、前記第1アーム部の長手方向一端部を前記冷媒導入管に固定する第1固定部と、前記第1アーム部の長手方向他端部に設けられ且つ前記円弧形コイルの半径方向内側に向かって突出する第1爪部と、を有していてもよい。また、前記第2接続部品は、弾性材料によって構成され且つ前記中心軸方向に延びる第2アーム部と、前記第2アーム部の長手方向一端部を前記冷媒排出管に固定する第2固定部と、前記第2アーム部の長手方向他端部に設けられ且つ前記円弧形コイルの前記半径方向内側に向かって突出する第2爪部と、を有していてもよい。
(4)上記(2)または(3)に記載の2次コイルモジュールは、前記円弧形コイルに固定されたグリップ部品をさらに有していてもよい。前記グリップ部品は、前記円弧形コイルから前記中心軸方向の一方側へ延びる第1部位と、前記第1部位から前記円弧形コイルの前記半径方向外側へ延びる第2部位と、を有していてもよい。
(5)本発明の一態様に係る移動焼入れ装置は、本体部と、前記本体部の軸線方向の中間部に設けられ前記本体部よりも径が小さい小径部と、を有する軸状体に、移動焼入れを行うための移動焼入れ装置であって、高周波電流が流され、内部に前記軸状体が挿入される環状の1次コイル部材と、上記(1)~(4)のいずれか一つに記載の複数の2次コイルモジュールと、前記複数の2次コイルモジュールの前記円弧形コイルが、前記小径部の径方向外側において、周方向に互いに離間した状態で前記1次コイル部材内に配置されるように、前記複数の2次コイルモジュールの位置決めを行う位置決め装置と、を備える。
(6)上記(5)に記載の移動焼入れ装置において、前記小径部の端部のうち、前記軸線方向の一方側に位置する端部を一方側端部とし、前記軸線方向の他方側に位置する端部を他方側端部としたとき、前記移動焼入れ装置は、前記複数の2次コイルモジュールとして、前記小径部の前記他方側端部の加熱に用いられる複数の2次第1コイルモジュールと、前記小径部の前記一方側端部の加熱に用いられる複数の2次第2コイルモジュールと、を備えていてもよい。
(7)本発明の一態様に係る移動焼入れ方法は、本体部と、前記本体部の軸線方向の中間部に設けられ前記本体部よりも径が小さい小径部と、を有する軸状体に、移動焼入れを行うための移動焼入れ方法であって、上記(1)~(4)のいずれか一つに記載の複数の2次コイルモジュールの前記円弧形コイルを、前記小径部の径に応じて取り換える取換工程と、前記取換工程によって取り換えられた前記円弧形コイルが前記小径部の径方向外側において、周方向に互いに離間して配置されるように前記複数の2次コイルモジュールを位置決めする配置工程と、内部に前記軸状体が挿入された状態で高周波電流が流される環状の1次コイル部材を、前記小径部の前記軸線方向の一方側に位置する端部から、前記小径部の他方側に位置する端部に向かって前記軸線方向に移動させる際に、前記1次コイル部材内に前記複数の2次コイルモジュールの前記円弧形コイルの少なくとも一部を配置することで、誘導加熱により前記小径部を加熱する加熱工程と、を有する。
(8)上記(7)に記載の移動焼入れ方法において、前記小径部の一対の端部のうち、前記軸線方向の一方側に位置する前記端部を一方側端部とし、前記軸線方向の他方側に位置する前記端部を他方側端部としたとき、前記取換工程として、前記複数の2次コイルモジュールに含まれる複数の2次第1コイルモジュールの円弧形コイルを、前記小径部の前記他方側端部の径に応じて取り換える第1取換工程と、前記配置工程として、前記複数の2次第1コイルモジュールを、それらの円弧形コイルが前記小径部の前記他方側端部の径方向外側において周方向に互いに離間して配置されるように位置決めする第1配置工程と、前記加熱工程として、前記軸状体に対して前記軸線方向の一方側に相対的に移動する前記1次コイル部材内に前記複数の2次第1コイルモジュールの前記円弧形コイルの少なくとも一部が配置されたときに、前記小径部の前記他方側端部を加熱する第1加熱工程と、前記第1加熱工程の後で、前記1次コイル部材に対して前記複数の2次第1コイルモジュールを前記軸線方向の一方側に移動させた後、前記複数の2次第1コイルモジュールを前記小径部から前記径方向外側に移動させる離間工程と、前記取換工程として、前記複数の2次コイルモジュールに含まれる複数の2次第2コイルモジュールの円弧形コイルを、前記小径部の前記一方側端部の径に応じて取り換える第2取換工程と、前記複数の2次第2コイルモジュールを、それらの円弧形コイルが前記1次コイル部材の前記軸線方向の他方側から前記1次コイル部材内を通って前記小径部の前記一方側端部の径方向外側において周方向に互いに離間して配置されるように位置決めする第2配置工程と、前記加熱工程として、前記軸状体に対して前記軸線方向の一方側に相対的に移動する前記1次コイル部材内に前記複数の2次第2コイルモジュールの円弧形コイルの少なくとも一部が配置されたときに、前記小径部の前記一方側端部を加熱する第2加熱工程と、を行ってもよい。
 本発明の上記各態様によれば、様々な形状(外径)を有する軸状体に対応可能であって且つ2次コイルの交換容易性が高い2次コイルモジュールと、その2次コイルモジュールを備えた移動焼入れ装置と、その移動焼入れ装置によって実現可能な移動焼入れ方法とを提供することが可能である。
本発明の一実施形態において2次コイルとして用いられる一対の円弧形コイルを模式的に示す斜視図である。 同実施形態に係る2次コイルモジュールの外観を模式的に示す平面図である。 同2次コイルモジュールを示す図であって図2AのA-A断面図である。 同2次コイルモジュールを示す図であって図2Aの矢印Bより見た側面図である。 同2次コイルモジュールが備える円弧形コイルの外観を模式的に示す斜視図である。 同円弧形コイルの平面図である。 同円弧形コイルを示す図であって、図3BのCa-Ca断面図である。 同2次コイルモジュールにおいて、円弧形コイルの外径を一つの値に固定し、その固定値に合わせて冷媒導入管と冷媒排出管との中心間距離を一つの値に固定するという条件下で、円弧形コイルの内径を変化させた場合を例示するための平面図である。すなわち、(b)では、(a)よりも内径R20を大きくしている。 同実施形態に係る移動焼入れ装置の一部を破断して模式的に示す側面図である。 同移動焼入れ装置の要部の斜視図である。 同移動焼入れ装置の要部を示す図であって、図5のD-D線より見た平断面図である。 同移動焼入れ装置において、軸状体の小径部に2次第2コイル部材を配置した状態を示す斜視図である。 同実施形態に係る移動焼入れ方法を示すフローチャートである。 同移動焼入れ方法における第1離間工程を説明するための図であって、同移動焼入れ装置の斜視図である。 同移動焼入れ方法における第1離間工程を説明するための斜視図である。 同移動焼入れ方法における中央加熱工程を説明するための図であって、移動焼入れ装置の一部を破断して模式的に示す側面図である。 同移動焼入れ方法における第2配置工程を説明するための斜視図である。 同移動焼入れ方法における第2配置工程を説明するための斜視図である。 同移動焼入れ装置のシミュレーションに用いた解析モデルの側面図である。 実施例1の移動焼入れ装置によるシミュレーション結果を示す図である。 実施例2の移動焼入れ装置によるシミュレーション結果を示す図である。 比較例の移動焼入れ装置によるシミュレーション結果を示す図である。
 本願発明者らは、加熱効率が良い2次コイルを使用する方法をベースに、様々な径や段差を有する軸状体を移動焼入れする方法を鋭意検討した。
 2次コイルの利点は、その周方向に欠損部が存在することにより、2次コイルに生じた渦電流が周方向に閉じずに2次コイルの外周面から内周面に回り込み、その内周面に回り込んだ渦電流によって軸状体の表面を誘導加熱できることにある。その一方で、従来のようにO字形又はC字形に形成された2次コイルを使用する場合、1次コイルが軸状体に対して相対的に移動している際中(つまり移動焼入れ中)に、1次コイルと軸状体との間の空隙に2次コイルを自由に配置したり取り出したりできない。
 そこで、本願発明者らは、図1に示すように、2次コイルとして円弧形コイル100を複数準備し、軸状体の径に応じて円弧形コイル100を取り換える方法を発案した。この方法によれば、複数の円弧形コイル100を一体の2次コイルとして見たとき、その周方向に複数の欠損部110が形成されるので、各円弧形コイル100の内周面に回り込んだ渦電流によって軸状体の表面を誘導加熱できるという機能を保持したまま、移動焼入れ中に、1次コイルと軸状体との間の空隙に2次コイル(円弧形コイル100)を自由に配置したり取り出したりすることが可能となる。
 なお、図1では、一例として、2個(一対)の円弧形コイル100を2次コイルとして用いた場合を図示しているため、欠損部110も2箇所形成されている。しかしながら、円弧形コイル100の数は2個に限らず、3個でも4個でも必要な数だけ円弧形コイル100を用意しても勿論よい。
 図1に示すように、円弧形コイル100の外径R10は、1次コイルの内径よりも小さく且つ1次コイルの内径に近接する値に設計される。また、円弧形コイル100の内径R20は、軸状体の外径よりも大きく且つ軸状体の外径に近接する値に設計される。なお、図1において、符号C10は、各円弧形コイル100の中心軸を指し示している。このように設計された円弧形コイル100を軸状体の外径に応じて複数準備しておくことにより、様々な形状の軸状体に対応することが可能となる。また、1本の軸状体において軸径が変化する場合でも、移動焼入れ中に、それぞれの軸径に適した円弧形コイル100に取り換えることで対応できるようになる。
 本願発明者らは、上述したような高い交換容易性を有する円弧形コイル100の特性を最大限に活用できる移動焼入れ装置の構成を検討した。また、円弧形コイル100自身も渦電流が流れるとジュール効果により発熱するため、移動焼入れ中に円弧形コイル100を冷却する必要がある。そこで、本願発明者らは、円弧形コイル100の特性を最大限に活用しながら、移動焼入れ中における円弧形コイル100の冷却をも実現できる移動焼入れ装置の構成をさらに検討した。その結果、本発明に係る2次コイルモジュールと、それを備える移動焼入れ装置とを発明したのである。
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
〔2次コイルモジュール〕
 まず、本実施形態に係る2次コイルモジュール200について説明する。
 図2A~図2Cは、2次コイルモジュール200の外観を模式的に示す図である。図2Aは、2次コイルモジュール200の平面図である。図2Bは、2次コイルモジュール200を示す図であって図2AのA-A断面図である。図2Cは、2次コイルモジュール200を示す図であって図2Aの矢印Bより見た側面図である。
 図2A~図2Cに示すように、2次コイルモジュール200は、中空矩形断面を有する円弧形コイル300と、円弧形コイル300に対して着脱自在に構成された冷却治具(410、420、430、440、450、460)と、グリップ部品500とを備える。
 先に、図3A~図3Cを参照しながら円弧形コイル300について説明する。図3A~図3Cは、円弧形コイル300の外観を模式的に示す図である。図3Aは円弧形コイル300の斜視図である。図3Bは、円弧形コイル300の平面図である。図3Cは、図3Bに示す円弧形コイル300のCa-Ca断面図である。
 図3A~図3Cに示すように、円弧形コイル300は、中空矩形断面を有し、且つ平面視において円弧形の形状を有するコイルである。円弧形コイル300は、後述の1次コイルの内径よりも小さく且つ1次コイルの内径に近接する値に設計された外径R10と、後述の軸状体(とくに小径部)の外径よりも大きく且つ軸状体の外径に近接する値に設計された内径R20とを有する。
 円弧形コイル300は、円弧形コイル300の周方向一端部において円弧形コイル300の中心軸C10方向の一方側(上方側)D10に向かって開口する冷媒導入口310と、円弧形コイル300の周方向他端部において冷媒導入口310と同じ向き(上方側)に開口する冷媒排出口320とを有する。これらの冷媒導入口310及び冷媒排出口320により、円弧形コイル300の内部空間において冷却水等の冷媒の流通が可能となっている。
 なお、図3Cに示すように、冷媒導入口310は、中心軸C10方向の一方側D10から他方側D20に向かって開口径が徐々に小さくなるように形成されている。冷媒排出口320も、中心軸C10方向の一方側D10から他方側D20に向かって開口径が徐々に小さくなるように形成されている。すなわち、冷媒導入口310は、円弧形コイル300の外部から内部に向かって先細りとなるように形成されている。冷媒導入口310も、円弧形コイル300の外部から内部に向かって先細りとなるように形成されている。
 円弧形コイル300は、中心軸C10方向に直交する一対の表面を有する。以下では、これら一対の表面のうち、中心軸C10方向の一方側D10に位置する円弧形の表面を第1円弧面330と呼称し、中心軸C10方向の他方側D20に位置する円弧形の表面を第2円弧面340と呼称する。
 以下、図2A~図2Cに戻って2次コイルモジュール200の説明を続ける。
 図2A~図2Cに示すように、冷却治具は、冷媒導入管410と、冷媒排出管420と、第1接続部品430と、第2接続部品440と、冷媒供給管450と、冷媒回収管460とから構成されている。
 冷媒導入管410は、外部から円弧形コイル300内に冷媒を導入するために用いられる管状部品であり、円弧形コイル300の冷媒導入口310に対して篏合自在に構成された開口先端部411を有する。具体的には、開口先端部411は、冷媒導入口310に対して隙間なくフィットする形状を有するように構成されている。
 冷媒排出管420は、円弧形コイル300内から外部に冷媒を排出するために用いられる管状部品であり、円弧形コイル300の冷媒排出口320に対して篏合自在に構成された開口先端部421を有する。具体的には、開口先端部421は、冷媒排出口320に対して隙間なくフィットする形状を有するように構成されている。
 第1接続部品430は、冷媒導入管410の開口先端部411が冷媒導入口310に篏合し且つ冷媒導入管410の長手方向が円弧形コイル300の中心軸C10方向に平行となる状態で、冷媒導入管410を円弧形コイル300に着脱自在に接続するための部品である。
 具体的には、第1接続部品430は、弾性材料によって構成され且つ中心軸C10方向に延びる第1アーム部431と、第1アーム部431の長手方向一端部を冷媒導入管410に固定する第1固定部432と、第1アーム部431の長手方向他端部に設けられ且つ円弧形コイル300の半径方向内側に向かって突出する第1爪部433とを有する。第1爪部433の先端には、傾斜面433aが形成されている。上記のように、第1アーム部431は弾性材料によって構成されており、外力が付与されると湾曲し、外力が消失すると元の直線状の形に復元する板バネのような性質を有している。
 第2接続部品440は、冷媒排出管420の開口先端部421が冷媒排出口320に篏合し且つ冷媒排出管420の長手方向が円弧形コイル300の中心軸C10方向に平行となる状態で、冷媒排出管420を円弧形コイル300に着脱自在に接続するための部品である。
 具体的には、第2接続部品440は、弾性材料によって構成され且つ中心軸C10方向に延びる第2アーム部441と、第2アーム部441の長手方向一端部を冷媒排出管420に固定する第2固定部442と、第2アーム部441の長手方向他端部に設けられ且つ円弧形コイル300の半径方向内側に向かって突出する第2爪部443とを有する。第2爪部443の先端には、傾斜面443aが形成されている。上記のように、第2アーム部441は弾性材料によって構成されており、外力が付与されると湾曲し、外力が消失すると元の直線状の形に復元する板バネのような性質を有している。
 冷媒供給管450は、円弧形コイル300の半径方向外側に向かって延びるように冷媒導入管410に接続された管状部品である。この冷媒供給管450は、不図示の2次コイル用冷媒供給装置から冷却水等の冷媒を供給されるように構成されている。つまり、冷媒供給管450及び冷媒導入管410を介して前記2次コイル用冷媒供給装置から円弧形コイル300へ冷媒を供給することが可能となっている。
 なお、例えばL字形の管状部品を使って、冷媒導入管410と冷媒供給管450とを一つの部品で構成してもよい。
 冷媒回収管460は、円弧形コイル300の半径方向外側に向かって延びるように冷媒排出管420に接続された管状部品である。この冷媒回収管460は、上述した2次コイル用冷媒供給装置へ円弧形コイル300の冷却に使用された冷媒を送り戻すように構成されている。つまり、冷媒排出管420及び冷媒回収管460を介して円弧形コイル300から前記2次コイル用冷媒供給装置へ冷媒を回送することが可能となっている。
 なお、例えばL字形の管状部品を使って、冷媒排出管420と冷媒回収管460とを一つの部品で構成してもよい。
 以上が冷却治具の構成であるが、このような冷却治具は以下のような手順によって容易に円弧形コイル300に接続することが可能である。
(1)まず、冷媒導入管410の中心軸と冷媒導入口310の中心軸とが一致し、且つ冷媒導入管410の開口先端部411が中心軸C10方向の他方側D20を向くように、冷媒導入管410を冷媒導入口310から一方側D10の離れた位置に配置する。
(2)続いて、円弧形コイル300と冷媒導入管410とが中心軸C10方向に沿って互いに接近するように、一方或いは両方を移動させる。その過程において、第1接続部品430の第1爪部433が最初に円弧形コイル300の第1円弧面330に接触するが、そのまま円弧形コイル300と冷媒導入管410とをさらに接近させる。すると、第1爪部433に形成された傾斜面433aが第1円弧面330により半径方向外側へ向かって押し退けられるので、第1爪部433には半径方向外側へ向かう外力が付与される。
 このように第1爪部433に半径方向外側へ向かう外力が付与されると、弾性材料によって構成されている第1アーム部431が半径方向外側へ湾曲し、第1爪部433によって邪魔されることなく、円弧形コイル300と冷媒導入管410とを接近させることができるようになる。
(3)続いて、冷媒導入管410の開口先端部411が冷媒導入口310に篏合するまで(つまり開口先端部411が冷媒導入口310に隙間なくフィットするまで)、円弧形コイル300と冷媒導入管410とをさらに接近させる。ここで、冷媒導入口310は、中心軸C10方向の一方側D10から他方側D20に向かって開口径が徐々に小さくなるように形成されているので、冷媒導入管410の開口先端部411が冷媒導入口310にフィットした状態で、冷媒導入管410の他方側D20への移動を停止させることができる。
 このように、冷媒導入管410の開口先端部411が冷媒導入口310にフィットした状態になると、第1爪部433に付与されていた外力が消失し、第1アーム部431が元の直線形状に復元する。その結果、第1爪部433が円弧形コイル300の第2円弧面340に係止された状態(引っ掛かった状態)になり、冷媒導入管410の開口先端部411が冷媒導入口310にフィットした状態で、冷媒導入管410が円弧形コイル300に接続されることになる(図2B参照)。
 以上のような手順により、冷媒導入管410を円弧形コイル300に容易に接続することができる。同様な手順により、冷媒排出管420も円弧形コイル300に容易に接続することができる。
(1)すなわち、まず、冷媒排出管420の中心軸と冷媒排出口320の中心軸とが一致し、且つ冷媒排出管420の開口先端部421が中心軸C10方向の他方側D20を向くように、冷媒排出管420を冷媒排出口320から一方側D10の離れた位置に配置する。
(2)続いて、円弧形コイル300と冷媒排出管420とが中心軸C10方向に沿って互いに接近するように、一方或いは両方を移動させる。その過程において、第2接続部品440の第2爪部443が最初に円弧形コイル300の第1円弧面330に接触するが、そのまま円弧形コイル300と冷媒排出管420とをさらに接近させる。すると、第2爪部443に形成された傾斜面443aが第1円弧面330により半径方向外側へ向かって押し退けられるので、第2爪部443には半径方向外側へ向かう外力が付与される。
 このように第2爪部443に半径方向外側へ向かう外力が付与されると、弾性材料によって構成されている第2アーム部441が半径方向外側へ湾曲し、第2爪部443によって邪魔されることなく、円弧形コイル300と冷媒排出管420とを接近させることができるようになる。
(3)続いて、冷媒排出管420の開口先端部421が冷媒排出口320に篏合するまで(つまり開口先端部421が冷媒排出口320に隙間なくフィットするまで)、円弧形コイル300と冷媒排出管420とをさらに接近させる。ここで、冷媒排出口320は、中心軸C10方向の一方側D10から他方側D20に向かって開口径が徐々に小さくなるように形成されているので、冷媒排出管420の開口先端部421が冷媒排出口320にフィットした状態で、冷媒排出管420の他方側D20への移動を停止させることができる。
 このように、冷媒排出管420の開口先端部421が冷媒排出口320にフィットした状態になると、第2爪部443に付与されていた外力が消失し、第2アーム部441が元の直線形状に復元する。その結果、第2爪部443が円弧形コイル300の第2円弧面340に係止された状態(引っ掛かった状態)になり、冷媒排出管420の開口先端部421が冷媒排出口320にフィットした状態で、冷媒排出管420が円弧形コイル300に接続されることになる(図2B参照)。
 なお、図2Bに示すように、冷媒導入管410が円弧形コイル300に接続された状態で、傾斜面433aに半径方向外側へ向かう外力を与える。これによって第1爪部433に再び半径方向外側へ向かう外力を付与し、第1アーム部431を半径方向外側へ湾曲させれば、円弧形コイル300から冷媒導入管410を容易に取り外すことができる。
 同様な方法で、冷媒排出管420も円弧形コイル300から容易に取り外すことができる。すなわち、冷媒排出管420が円弧形コイル300に接続された状態で、傾斜面443aに半径方向外側へ向かう外力を与える。これによって第2爪部443に再び半径方向外側へ向かう外力を付与し、第2アーム部441を半径方向外側へ湾曲させれば、円弧形コイル300から冷媒排出管420を容易に取り外すことができる。
 さらに、2次コイルモジュール200は、円弧形コイル300に固定されたグリップ部品500を有する。グリップ部品500は、円弧形コイル300の第1円弧面330の周方向中央部に固定されたL字形の部品である。グリップ部品500は、円弧形コイル300の第1円弧面330から中心軸C10方向の一方側D10へ延びる第1部位510と、第1部位510の先端から半径方向外側へ延びる第2部位520とを有する。グリップ部品500は、後述の位置決め装置によって2次コイルモジュール200の円弧形コイル300の位置を制御する際に、ロボットアーム等の把持機構によって把持される部品である。
 以上、2次コイルモジュール200の構成について説明したが、少なくとも円弧形コイル300に接触する部品、すなわち、冷媒導入管410、冷媒排出管420、第1接続部品430、第2接続部品440及びグリップ部品500は、電気的絶縁材料によって構成されていることが望ましい。
 また、上記の説明では、第1接続部品430の構成として、第1アーム部431と、第1固定部432と、第1爪部433とを含む構成を採用する場合を例示したが、第1接続部品430の構成はこれのみに限定されない。冷媒導入管410の開口先端部411が冷媒導入口310に篏合し且つ冷媒導入管410の長手方向が円弧形コイル300の中心軸C10方向に平行となる状態で、冷媒導入管410を円弧形コイル300に対して着脱自在に接続することが可能な構成であれば、第1接続部品430の構成としてどのような構成を採用してもよい。
 第2接続部品440についても同様である。すなわち、冷媒排出管420の開口先端部421が冷媒排出口320に篏合し且つ冷媒排出管420の長手方向が円弧形コイル300の中心軸C10方向に平行となる状態で、冷媒排出管420を円弧形コイル300に対して着脱自在に接続することが可能な構成であれば、第2接続部品440の構成としてどのような構成を採用してもよい。
 以上のような2次コイルモジュール200によれば、円弧形コイル300の大きさに応じて、冷媒導入管410及び冷媒排出管420の位置を調整することにより、複数の円弧形コイル300を都度取り換えることができる。すなわち、円弧形コイル300の外径に応じて、外径が大きい場合は冷媒導入管410及び冷媒排出管420の位置を円弧形コイル300の半径方向外側に、逆に外径が小さい場合には半径方向内側にすれば、冷媒導入管410と冷媒排出管420の間隔を変えることなく、複数の円弧形コイル300に対応することができる。
 あるいは、図4の(a),(b)に示すように、冷媒導入管410と冷媒排出管420との中心間距離L10を、1次コイルの内径、すなわち円弧形コイル300の外径R10に合わせて設定する。つまり、円弧形コイル300の外径R10を一つの値に固定し、その固定値に合わせて冷媒導入管410と冷媒排出管420との中心間距離L10を一つの値に固定する。このようにすれば、冷媒導入管410及び冷媒排出管420の位置を調整する必要なく、様々な内径R20を有する円弧形コイル300を容易に取り換えることができる。
 図4(a)は、円弧形コイル300の内径R20が比較的小さい場合を例示している。図4(b)は、円弧形コイル300の内径R20が比較的大きい場合を例示している。これらの図から、円弧形コイル300の外径R10を一つの値に固定し、その固定値に合わせて冷媒導入管410と冷媒排出管420との中心間距離L10を一つの値に固定すれば、冷媒導入管410及び冷媒排出管420の位置を調整する必要なく、様々な内径R20を有する円弧形コイル300を容易に交換できる2次コイルモジュール200が得られる。
 以上のように、本実施形態によれば、様々な形状(外径)を有する軸状体に対応可能であって且つ2次コイル(円弧形コイル300)の交換容易性が高く、さらに移動焼入れ中に2次コイルの冷却も可能な2次コイルモジュール200を得ることができる。
〔移動焼入れ装置〕
 次に、本実施形態に係る移動焼入れ装置1について、図5~図14を参照しながら詳細に説明する。
 図5及び図6に示すように、移動焼入れ装置1は、鉄道車両用の車軸等の軸状体51に、高周波電流を用いて移動焼入れを行うための装置である。
 まず、軸状体51について説明する。軸状体51は、本体部52と、本体部52の軸線C方向の中間部に設けられた小径部53と、を備えている。本体部52及び小径部53は、それぞれ円柱状に形成され、小径部53の軸線は、本体部52の軸線Cに一致する。
 以下では、本体部52のうち、小径部53に対して軸線C方向の一方側D1に配置された部分を、第1本体部52Aと言う。小径部53に対して軸線C方向の他方側D2に配置された部分を、第2本体部52Bと言う。
 第1本体部52A、小径部53、及び第2本体部52Bは、それぞれ円柱状に形成され、共通の軸線C上に配置されている。小径部53の外径は、第1本体部52A及び第2本体部52Bの外径よりもそれぞれ小さい。
 軸状体51は、フェライト相である、炭素鋼、鉄(Fe)を95重量%以上含有する低合金鋼等の導電性を有する材料で形成されている。
 移動焼入れ装置1は、支持部材6と、1次コイル部材11と、複数の2次第1コイル部材16A,16Bと、複数の2次第2コイル部材17A,17B(図8参照)と、冷却環36と、制御部46と、を備えている。
 なお、2次第1コイル部材(2次第1コイルモジュール)16A,16Bと、2次第2コイル部材(2次第2コイルモジュール)17A,17Bは、それぞれ上述した2次コイルモジュール200と同じ構成(特徴)を有しているが、説明の便宜上、図5~図14では、円弧形コイル300とグリップ部品500に対応する部位のみを図示している。すなわち、以下では、2次第1コイル部材16A,16Bと、2次第2コイル部材17A,17Bを、円弧形コイル300そのものに対応する部位として説明する。グリップ部品500に対応する部位については以下で説明する。
 また、本来であれば、移動焼入れ装置1は、各2次コイルモジュールに冷却水等の冷媒を供給する2次コイル用冷媒供給装置を備えているが、これについても図5~図14では図示を省略している。移動焼入れ中において、2次コイル用冷媒供給装置から各2次コイルモジュールに冷媒が供給されることにより、それらの各円弧形コイルが冷却される。
 図5に示すように、支持部材6は、下方センター7と、上方センター8と、を備えている。下方センター7は、軸状体51の第2本体部52Bを第2本体部52Bの下方から支持している。上方センター8は、軸状体51の第1本体部52Aを第1本体部52Aの上方から支持している。下方センター7及び上方センター8は、軸線Cが上下方向に沿い、軸線C方向の一方側D1が上方、他方側D2が下方となるように軸状体51を支持している。
 1次コイル部材11は、コイルの素線を螺旋状に巻いた環状に形成されている。1次コイル部材11の内径は、第1本体部52A及び第2本体部52Bの外径よりも大きい。1次コイル部材11の内部には、軸状体51が同軸に挿入される。
 1次コイル部材11の各端部は、カーレントトランス12に電気的及び機械的に接続されている。カーレントトランス12は、1次コイル部材11に高周波電流を流す。
 図6及び図7に示すように、本実施形態では、複数の2次第1コイル部材16A,16Bとして2つの2次第1コイル部材16A,16Bを備えている。ただし、移動焼入れ装置1が備える2次第1コイル部材の数は、複数であれば2つのみに限定されず、3つ以上でもよい。
 2次第1コイル部材16A,16Bは、軸線C方向に沿って見た平面視で、円弧形に形成されている。2次第1コイル部材16A,16Bは、軸状体51の周方向(以下、単に周方向と言う)に沿ってかつ、周方向の2箇所において互いに離間するように、並べて配置されている。この周方向は、1次コイル部材11の周方向等に一致する。この例では、図5に示すように、2次第1コイル部材16A,16Bの軸線C方向の長さは、軸状体51の小径部53の軸線C方向の長さよりもかなり短い。
 図7に示すように、2次第1コイル部材16A,16Bの軸線Cに対向する各外面に接する内接円の径R1(つまり、2次第1コイル部材16A,16Bの内周面によって形成される内径)は、軸状体51の小径部53の径(つまり外径)よりも大きい。この内径R1は、第1本体部52A及び第2本体部52Bの径(つまり外径)よりも小さいことが望ましい。2次第1コイル部材16A,16Bの軸線Cとは反対側の各外面に接する外接円の径R2(つまり、2次第1コイル部材16A,16Bの外周面によって形成される外径)は、1次コイル部材11の内径よりも小さい。
 2次第1コイル部材16A,16Bは、小径部53の径方向外側であってかつ1次コイル部材11内の位置に、小径部53及び1次コイル部材11からそれぞれ離間した状態に配置可能である。なお、この径方向は、1次コイル部材11の径方向等に一致する。
 図6及び図7に示すように、2次第1コイル部材16A,16Bには、第1支持部19A,19Bが固定されている。
 第1支持部19Aは、2次第1コイル部材16Aから上方に向かって延びる第1支持片20Aと、第1支持片20Aの上端から径方向外側に向かって延びる第1連結片21Aと、を備えている。第1支持片20Aは、2次第1コイル部材16Aの周方向における中央部又は端部に配置されている。第1支持片20Aを、2次第1コイル部材16Aの径方向外側の端部であって、第1本体部52A及び第2本体部52Bよりも径方向外側となる位置に取付けることで、第1支持片20Aと第1本体部52A及び第2本体部52Bとの干渉を避けることが望ましい。第1連結片21Aは、第1支持片20Aにおける2次第1コイル部材16Aが固定された下端部とは反対である上端部から径方向外側に向かって延びている。
 第1支持部19Aと同様に、第1支持部19Bは、第1支持片20Bと、第1連結片21Bと、を備えている。第1連結片21A,21Bは、同一直線上に配置されている。第1支持部19A,19Bは、例えば電気的な絶縁性を有する棒状部材を直角に折り曲げて形成されている。以上説明の第1支持部19A,19Bが、2次コイルモジュール200におけるグリップ部品500に相当する部位である。
 図7に示すように、第1連結片21Aには第1移動部23A(位置決め装置)が接続されている。また、第1連結片21Bには、第1移動部23B(位置決め装置)が接続されている。第1移動部23A,23Bは、例えば、図示しない3軸ステージ及び駆動モータを備えていて、第1支持部19A,19Bを介して2次第1コイル部材16A,16Bを、上下方向及び水平面に沿う方向に移動させることができる。
 図5及び図8に示すように、2次第2コイル部材17A,17Bは、2次第1コイル部材16A,16Bと同様に構成されている。1次コイル部材11、2次第1コイル部材16A,16B、及び2次第2コイル部材17A,17Bは、銅等の導電性を有する材料でそれぞれ形成されている。2次第2コイル部材17Aには、第2支持部25Aが固定されている。2次第2コイル部材17Bには、第2支持部25Bが固定されている。
 第2支持部25Aは、2次第2コイル部材17Aの下面から下方に向かって延びる第2支持片26Aと、第2支持片26Aの下端から径方向外側に向かって延びる第2連結片27Aと、を備えている。第2支持片26Aは、2次第2コイル部材17Aの周方向における中央部又は端部に接続されている。第2支持片26Aを、2次第2コイル部材17Aの径方向外側の端部であって、第1本体部52A及び第2本体部52Bよりも径方向外側となる位置に取付けて、第2支持片26Aと第1本体部52A及び第2本体部52Bとの干渉を避けることが望ましい。第2連結片27Aは、第2支持片26Aにおける2次第2コイル部材17Aが固定された上端部とは反対である下端部から径方向外側に向かって延びている。
 第2支持部25Aと同様に、第2支持部25Bは、第2支持片26Bと、第2連結片27Bと、を備えている。第2連結片27A,27Bは、同一直線上に配置されている。この例では、第1連結片21A,21B及び第2連結片27A,27Bは、同一平面上に配置されている。以上説明の第2支持部25A,25Bが、2次コイルモジュール200におけるグリップ部品500に相当する部位である。
 図5に示すように、第2連結片27A,27B(第2連結片27Bは不図示)には、第1移動部23A,23Bと同様に構成された第2移動部29A,29B(第2移動部29Bは不図示)がそれぞれ接続されている。第2移動部29A(位置決め装置)は、第2支持部25Aを介して2次第2コイル部材17Aを、上下方向及び水平面に沿う方向に移動させることができる。第2移動部29B(位置決め装置)は、第2支持部25Bを介して2次第2コイル部材17Bを、上下方向及び水平面に沿う方向に移動させることができる。
 図5及び図6に示すように、冷却環36は、環状に形成されている。冷却環36内には、内部空間36aが形成されている。冷却環36の内周面には、内部空間36aに連通する複数のノズル36bが周方向に互いに離間して形成されている。冷却環36の内部には、軸状体51が挿入される。冷却環36は、1次コイル部材11よりも下方に配置されている。
 冷却環36には、送水管37aを介してポンプ37が連結されている。ポンプ37は、水等の冷却液Lを、送水管37aを介して冷却環36の内部空間36a内に供給する。内部空間36aに供給された冷却液Lは、複数のノズル36bを通して軸状体51の外周面に向かって噴出し、軸状体51を冷却する。
 図5に示すように、1次コイル部材11、カーレントトランス12、冷却環36、及びポンプ37は、支え板39に固定されている。支え板39には、ピニオン39aが形成されている。支え板39には、ピニオン39aを駆動するモータ40が取付けられている。
 支え板39のピニオン39aは、ラック42に噛み合っている。モータ40を駆動すると、ピニオン39aが正回転又は逆回転するので、ラック42に対して支え板39が上方又は下方に移動する。
 なお、ラック42はボールねじでもよい。この場合、ピニオン39aはボールねじを挟むように複数配置してもよい。
 制御部46は、図示はしないが、演算回路と、メモリと、を備えている。メモリには、演算回路を駆動するための制御プログラム等が記憶されている。
 制御部46は、カーレントトランス12、第1移動部23A,23B、第2移動部29A,29B、ポンプ37、及びモータ40に接続され、これらを制御する。
〔移動焼入れ方法〕
 次に、上記のように構成された移動焼入れ装置1を用いて実現される移動焼入れ方法について説明する。
 図9は、本実施形態に係る移動焼入れ方法Sを示すフローチャートである。
 まず、第1取換工程(取換工程、図9に示すステップS0)において、軸状体51の小径部53の下端部(他方側端部)を加熱するための2次コイルモジュールの円弧形コイルを、小径部53の下端部の外径に応じて取り換えることにより、小径部53の下端部の加熱に適した円弧形コイルを備える2次コイルモジュール(つまり、2次第1コイル部材16A,16B)を装備する。
 次に、第1配置工程(配置工程、図9に示すステップS1)において、図5及び図6に示すように、制御部46は、第1移動部23A,23Bを駆動して、2次第1コイル部材16A,16Bを、軸状体51の小径部53の下端部に配置する。このとき、小径部53の径方向外側に、2次第1コイル部材16A,16Bを周方向の2箇所で互いに離間するように配置する。さらに、2次第1コイル部材16A,16Bの軸線Cに対向する各外周面に接する内接円の径R1(つまり内径)が、軸状体51の小径部53の外径よりも大きくなるように配置する。このとき、内径R1が第1本体部52A及び第2本体部52Bの外径よりも小さくなるように配置することが望ましい。2次第1コイル部材16A,16Bの各内周面は、小径部53の外周面から径方向外側に離間している。
 第1配置工程S1が終了すると、ステップS3に移行する。
 次に、第1本体加熱工程(ステップS3)において、制御部46は、軸状体51の第2本体部52Bを移動焼入れする。
 具体的には、カーレントトランス12を駆動して1次コイル部材11に高周波電流を流す。ポンプ37を駆動して、冷却環36の複数のノズル36bから冷却液Lを噴出する。モータ40を駆動して、ラック42に対して支え板39を上方に移動させる。軸状体51に対して1次コイル部材11及び冷却環36をこの順に外挿し、上方に移動させる。上方は、1次コイル部材11の軸状体51に対する移動方向である。
 第2本体部52Bを、その下端部から上方(小径部53)に向かって1次コイル部材11により加熱し、さらに冷却環36により急速に冷却する。1次コイル部材11に高周波電流を流すことにより、1次コイル部材11の電磁誘導により第2本体部52Bに他のコイルを介さず直接電流が流れ、第2本体部52Bの電気抵抗により第2本体部52Bにジュール熱が発生する。第2本体部52Bは、誘導加熱により加熱されてオーステナイト相になる。誘導加熱により加熱された第2本体部52Bを、1次コイル部材11の後を追って上方に移動する冷却環36により冷却することにより、第2本体部52Bがマルテンサイト相になる。こうして、第2本体部52Bを移動焼入れする。
 なお、第1本体加熱工程S3、及び後述する第1加熱工程S5、第1離間工程S7、中央加熱工程S9、第2配置工程S11、第2加熱工程S13、第2本体加熱工程S15において、軸状体51に対する1次コイル部材11及び冷却環36の上方への移動は止めずに移動焼入れする。
 第1本体加熱工程S3が終了すると、ステップS5に移行する。
 次に、第1加熱工程(加熱工程、ステップS5)において、1次コイル部材11内に2次第1コイル部材16A,16Bの少なくとも一部が配置されたときに、小径部53の下端部を加熱開始する。このとき、2次第1コイル部材16A,16Bは、1次コイル部材11から径方向内側に離間している。
 1次コイル部材11に高周波電流を流すことにより、1次コイル部材11の電磁誘導により2次第1コイル部材16A,16Bを介して小径部53の下端部に電流が流れ、誘導加熱により小径部53の下端部が加熱される。具体的には、図7に示すように、1次コイル部材11に方向E1の電流が流れると、電磁誘導により2次第1コイル部材16A,16Bの外表面に方向E2,E3の渦電流が流れ、さらに小径部53の外表面に方向E4の渦電流が流れる。こうして、小径部53の下端部が加熱される。
 なお、第1本体加熱工程S3の後でかつ第1加熱工程S5の前に、第1配置工程S1を行ってもよい。
 第1加熱工程S5が終了すると、ステップS7に移行する。
 次に、第1離間工程(離間工程、ステップS7)において、制御部46は第1移動部23A,23Bを駆動して、図10に示すように第1支持部19A,19Bを用いて、1次コイル部材11に対して2次第1コイル部材16A,16Bを上方に移動させる。そして、図11に示すように2次第1コイル部材16A,16Bを小径部53から径方向外側に離間させる。第1離間工程S7は、第1加熱工程S5の後で行われる。
 第1離間工程S7が終了すると、ステップS9に移行する。
 次に、中央加熱工程(ステップS9)において、図12に示すように、小径部53における軸線C方向の中央部を加熱する。このとき、1次コイル部材11と小径部53との間に2次第1コイル部材16A,16Bが配置されていないため、1次コイル部材11に流す高周波電流の電流値を増加させる。小径部53の中央部を加熱するときの1次コイル部材11は、軸状体51における第1本体部52A及び第2本体部52Bと小径部53との接続部分51a(特に、軸状体51の外側に向かって凸となる部分)に対し、1次コイル部材11が小径部53の下端部を加熱している位置に配置されているときよりも離間している。そのため、1次コイル部材11に流す電流値を増加させても、接続部分51aの温度が高くなり過ぎるのが抑えられる。
 小径部53の軸線C方向の中央部の加熱が終わったら、1次コイル部材11に流す高周波電流の電流値を低減させ、元の電流値に戻す。
 中央加熱工程S9が終了すると、ステップS10に移行する。
 なお、第1離間工程S7及び中央加熱工程S9に代えて、中央加熱工程において2次第1コイル部材16A,16Bを用いて小径部53における軸線C方向の中央部を加熱してもよい。その場合、この中央加熱工程の後で、小径部53から2次第1コイル部材16A,16Bを径方向外側に離間させる第1離間工程を行う。
 次に、第2取換工程(取換工程、図9に示すステップS10)において、軸状体51の小径部53の上端部(一方側端部)を加熱するための2次コイルモジュールの円弧形コイルを、小径部53の上端部の外径に応じて取り換える。これにより、小径部53の上端部の加熱に適した円弧形コイルを備える2次コイルモジュール(つまり、2次第2コイル部材17A,17B)を装備する。
 次に、第2配置工程(配置工程、ステップS11)において、制御部46は、第2移動部29A,29Bを駆動して、図13に示すように2次第2コイル部材17A,17Bを、1次コイル部材11及び冷却環36の下方側から小径部53の下端部に近づける。そして、図14に示すように、2次第2コイル部材17A,17Bを上方に移動させて、図8に示すように1次コイル部材11内を通して小径部53の上端部に2次第2コイル部材17A,17Bを配置する。2次第2コイル部材17A,17Bは、小径部53から径方向外側に離間している。
 第2配置工程S11が終了すると、ステップS13に移行する。
 次に、第2加熱工程(加熱工程、ステップS13)において、制御部46は、図8に示すように軸状体51に対して上方に移動する1次コイル部材11内に2次第2コイル部材17A,17Bの少なくとも一部が配置されたときに、小径部53の上端部を加熱する。このとき、2次第2コイル部材17A,17Bは、1次コイル部材11から径方向に離間している。
 第2加熱工程S13が終了すると、ステップS15に移行する。
 次に、第2本体加熱工程(ステップS15)において、制御部46は、1次コイル部材11内に軸状体51の第1本体部52Aが配置されたときに、第1本体部52Aを移動焼入れする。第2本体加熱工程S15が終了すると、ステップS17に移行する。
 次に、第2離間工程(ステップS17)において、制御部46は第2移動部29A,29Bを駆動して、2次第2コイル部材17A,17Bを小径部53から径方向外側に離間させる。なお、第2離間工程S17は、第2本体加熱工程S15の前に行ってもよい。
 第1加熱工程S5、中央加熱工程S9、第2加熱工程S13、第2本体加熱工程S15において小径部53及び第1本体部52Aが加熱された後で、冷却環36から冷却液Lを噴出させることにより、小径部53及び第1本体部52Aが冷却される。
 第2離間工程S17が終了すると、移動焼入れ方法Sの全工程が終了し、軸状体51全体が移動焼入れされた状態となる。移動焼入れされた軸状体51は、硬度が向上する。
 上述したように、移動焼入れ方法Sでは、小径部53の径方向外側にコイル部材16A,16B,17A,17Bを配置したり、小径部53からコイル部材16A,16B,17A,17Bを離間させたりしながら、軸状体51を移動焼入れする。
 以上説明したように、本実施形態に係る移動焼入れ装置1及び移動焼入れ方法Sによれば、予め互いに分離した状態の複数の2次第1コイル部材16A,16Bを、軸状体51の小径部53の径方向外側に周方向に互いに離間して並べて配置する。
 そして、軸状体51に対して上方に移動する1次コイル部材11に高周波電流を流す。すると、軸状体51の第1本体部52A及び第2本体部52Bについては、1次コイル部材11の電磁誘導により第1本体部52A及び第2本体部52Bに直接電流が流れ、第1本体部52A及び第2本体部52Bの電気抵抗により第1本体部52A及び第2本体部52Bにジュール熱が発生する。ジュール熱により加熱された第1本体部52A及び第2本体部52Bを、1次コイル部材11の後を追って上方に移動する冷却環36により冷却して、第1本体部52A及び第2本体部52Bを移動焼入れする。
 一方で、軸状体51の小径部53については、電磁誘導により小径部53の径方向外側に配置された2次第1コイル部材16A,16Bを介して軸状体51の小径部53に電流が流れ、小径部53の電気抵抗により小径部53にジュール熱が発生する。ジュール熱により加熱された小径部53を同様に冷却環36で冷却して、小径部53を移動焼入れする。小径部53の移動焼入れが終わったら、2次第1コイル部材16A,16Bを小径部53から径方向外側に取外す。
 この際に、小径部53から2次第1コイル部材16A,16Bを径方向外側に移動させれば、小径部53から2次第1コイル部材16A,16Bを取外せるため、軸状体51から2次第1コイル部材16A,16Bを容易に取外すことができる。
 例えば、2次第1コイル部材16A,16Bの内接円の径R1(つまり内径)が軸状体51の第1本体部52A及び第2本体部52Bの外径よりも僅かに大きい場合でも、第1本体部52A及び第2本体部52Bに2次第1コイル部材16A,16Bが干渉することを避けることができる。
 また、2次第1コイル部材16A,16Bの軸線Cに対向する各外面に接する内接円の径R1(つまり内径)は、第1本体部52A及び第2本体部52Bの外径よりも小さい。これにより、2次第1コイル部材16A,16Bを小径部53により近づけて、2次第1コイル部材16A,16Bにより小径部53をさらに効率的に加熱することができる。
 また、本実施形態では、2次第1コイル部材16A,16B及び2次第2コイル部材17A,17Bを備えている。1次コイル部材11及び2次第1コイル部材16A,16Bにより軸状体51の小径部53の下端部を加熱した後で、第1支持片20A,20Bを用いて1次コイル部材11に対して2次第1コイル部材16A,16Bを上方に移動させる。これにより、第1支持片20A,20Bが、1次コイル部材11、及び小径部53よりも下方に配置された第2本体部52Bに干渉するのを防いで、1次コイル部材11内から2次第1コイル部材16A,16Bを取出し、2次第1コイル部材16A,16Bを小径部53から径方向外側に離間させることができる。
 そして、1次コイル部材11及び2次第2コイル部材17A,17Bにより小径部53の上端部を加熱した後で、第2支持片26A,26Bを用いて1次コイル部材11に対して2次第2コイル部材17A,17Bを下方に移動させる。これにより、第2支持片26A,26Bが、1次コイル部材11、及び小径部53よりも上方に配置された第1本体部52Aに干渉するのを抑えて、1次コイル部材11内から2次第2コイル部材17A,17Bを取出し、複数の2次第2コイル部材17A,17Bを小径部53から径方向外側に離間させることができる。
 なお、2次第2コイル部材17A及び第2支持部25Aの代わりに、2次第1コイル部材16A及び第1支持部19Aから第1支持部19Aを取外し、そして第2支持部25Aを取付けたものを用いてもよい。あるいは、2次第2コイル部材17A及び第2支持部25Aの代わりに、2次第1コイル部材16A及び第1支持部19Aの配置を水平面に沿う軸線回りに180°回転(上下反転)させたものを用いてもよい。
 第1支持部19Aは、第1連結片21Aを備えなくてもよい。第2支持部25Aは、第2連結片27Aを備えなくてもよい。第1支持部19Bは、第1連結片21Bを備えなくてもよい。第2支持部25Bは、第2連結片27Bを備えなくてもよい。
 2次第1コイル部材16A,16Bの軸線C方向の長さが軸状体51の小径部53の軸線C方向の長さとほぼ等しい場合等には、移動焼入れ装置1は、2次第2コイル部材17A,17B、第2支持部25A,25B、及び第2移動部29A,29Bを備えなくてもよい。この場合、移動焼入れ方法Sでは、中央加熱工程S9、第2配置工程S11、第2加熱工程S13、及び第2離間工程S17を行わない。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態のみに限定されず、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 例えば、上記実施形態において、軸状体51は、軸線Cが上下方向(鉛直方向)に沿うように配置されなくてもよく、軸線Cが上下方向に対して傾くように配置されてもよい。この場合、1次コイル部材11及び冷却環36は、上下方向に対して傾いて移動する。
 移動焼入れ装置1は、支持部材6及び制御部46を備えなくてもよい。
 軸状体51は、鉄道車両用の車軸であるとしたが、ボールネジ等の他の軸状体であってもよい。
 また、図2Aから図4では、円弧形コイル300の冷媒導入口310及び冷媒排出口320が中心軸C10方向の一方側D10に開口する例を示した。1次コイルの半径方向内側に2次コイル(円弧形コイル)を配置するときに、1次コイルと2次コイルとの間隙を小さくした方が少ない供給電流で加熱できる。そのため、冷媒導入口310及び冷媒排出口320は、中心軸C10方向に開口することが望ましく、導入側と排出側の方向を合わせると1次コイルから離間させやすく着脱が容易になるため望ましい。しかし、開口部は半径方向外向きに形成されてもよく、あるいは中心軸C10方向の他方側に形成されてもよい。
 また、上記実施形態では、冷媒導入管410及び冷媒排出管420を円弧形コイル300に着脱させる接続部品について弾性材料の例で説明した。しかし、接続部品は、嵌合力を制御できるのであれば必ずしも接続部品を弾性変形させる必要はなく、剛性の高い材料であってもよい。
〔解析結果〕
 以下では、本実施形態に基づく実施例1,2の移動焼入れ装置1と、比較例の移動焼入れ装置をシミュレーションした結果について説明する。
 図15に、シミュレーションに用いた解析モデルを示す。
 シミュレーションに用いた軸状体51は、2次第1コイル部材16A,16Bの上下方向の長さが、軸状体51の小径部53の上下方向の長さよりもそれほど短くなく、移動焼入れする際に軸状体51の温度が高くなりやすい形状とした。
 なお、実施例1の解析モデルでは、2次第1コイル部材16A,16Bの内接円の径は、本体部52の外径よりも大きい。
 本体部52の外径は198mmであり、小径部53の外径(最小径)は181mmであるとした。軸状体51の材質は、炭素鋼であるとした。1次コイル部材11に流す高周波電流の周波数を1kHzとした。移動焼入れにより軸状体51に対して一定の深さの焼入れをするために必要な加熱をする際に、軸状体51の温度の最高値を求めた。
 移動焼入れ時に軸状体51の温度が高くなり過ぎる(過加熱になる)と、軸状体51の組織が変化してしまうという問題がある。このため、軸状体51に対して一定の深さの焼入れを確保しつつ、軸状体51の温度の最高値を抑制することが望まれる。
[実施例1]
 図16に、実施例1の移動焼入れ装置1によるシミュレーション結果を示す。図16及び後述する図17、図18中には、灰色の濃淡に対応した温度スケールを示す。温度は、灰色が白くなるに従い漸次、高くなる。
 実施例1の移動焼入れ装置1により軸状体51を移動焼入れすると、小径部53で800℃以上に加熱できる深さを5.0mmに確保しながら、図16中に示す1次コイル部材11の位置の時に、領域R11の温度が軸状体51の最高温度を示すことが分かった。この領域R11での最高温度は、1149℃である。
[実施例2]
 実施例2の移動焼入れ装置1は、実施例1の移動焼入れ装置1に比べて、図15中に二点鎖線で示すように、2次第1コイル部材16A,16Bの内接円の径が本体部52の外径よりも小さいことが異なる。2次第1コイル部材16A,16Bの内接円の径は、本体部52の外径よりも6mm小さい。
 実施例2の移動焼入れ装置1により軸状体51を移動焼入れすると、小径部53で800℃以上に加熱できる深さを4.8mmに確保しながら、図17中に示す1次コイル部材11の位置の時に、領域R12の温度が軸状体51の最高温度を示すことが分かった。この領域R12での最高温度は、1072℃である。
[比較例]
 図18に、比較例の移動焼入れ装置1Aによるシミュレーション結果を示す。比較例の移動焼入れ装置1Aは、実施例1,2の移動焼入れ装置1の構成とは異なり、2次第1コイル部材16A,16Bを備えていない。比較例の移動焼入れ装置1Aにより軸状体51を移動焼入れすると、小径部53で800℃以上に加熱できる深さが3.5mmしか確保できないにもかかわらず、領域R13の温度が軸状体51の最高温度を示すことが分かった。この領域R13での最高温度は、1225℃である。
 実施例1の移動焼入れ装置1は、比較例の移動焼入れ装置1Aに比べて、小径部53で800℃以上に加熱できる深さを1.5mm深くでき、かつ、移動焼入れ時における軸状体51の温度の最高値を、約76℃低減できることが分かった。
 さらに、実施例2の移動焼入れ装置1は、比較例の移動焼入れ装置1Aに比べて、小径部53で800℃以上に加熱できる深さを1.3mm深くでき、かつ、移動焼入れ時における軸状体51の温度の最高値を、約153℃低減できることが分かった。
 本発明によれば、様々な形状(外径)を有する軸状体に対応可能であって且つ2次コイルの交換容易性が高い2次コイルモジュールと、その2次コイルモジュールを備えた移動焼入れ装置と、その移動焼入れ装置によって実現可能な移動焼入れ方法とを提供することが可能である。よって、産業上の利用可能性は大である。
 100、300 円弧形コイル
 200 2次コイルモジュール
 310 冷媒導入口
 320 冷媒排出口
 410 冷媒導入管、冷却治具
 420 冷媒排出管、冷却治具
 430 第1接続部品、冷却治具
 440 第2接続部品、冷却治具
 450 冷媒供給管、冷却治具
 460 冷媒回収管、冷却治具
 500 グリップ部品
 1 移動焼入れ装置
 11 1次コイル部材
 16A,16B 2次第1コイル部材
 17A,17B 2次第2コイル部材
 51 軸状体
 52 本体部
 53 小径部

Claims (8)

  1.  中空矩形断面を有する円弧形コイルと、
     前記円弧形コイルに対して着脱自在に構成された冷却治具と、
     を備え、
     前記円弧形コイルは、
      前記円弧形コイルの周方向一端部に設けた冷媒導入口と、
      前記円弧形コイルの周方向他端部に設けた冷媒排出口と、
     を有し、
     前記冷却治具は、
      前記冷媒導入口に対して篏合自在に構成された開口先端部を有する冷媒導入管と、
      前記冷媒排出口に対して篏合自在に構成された開口先端部を有する冷媒排出管と、
      前記冷媒導入管の前記開口先端部を前記冷媒導入口に対して着脱自在に接続する第1接続部品と、
      前記冷媒排出管の前記開口先端部を前記冷媒排出口に対して着脱自在に接続する第2接続部品と、
      前記円弧形コイルの半径方向外側に向かって延びるように前記冷媒導入管に接続された冷媒供給管と、
     前記円弧形コイルの前記半径方向外側に向かって延びるように前記冷媒排出管に接続された冷媒回収管と、
     を有する
    ことを特徴とする2次コイルモジュール。
  2.  中空矩形断面を有する円弧形コイルと、
     前記円弧形コイルに対して着脱自在に構成された冷却治具と、
     を備え、
     前記円弧形コイルは、
      前記円弧形コイルの周方向一端部において前記円弧形コイルの中心軸方向の一方側に向かって開口する冷媒導入口と、
      前記円弧形コイルの周方向他端部において前記冷媒導入口と同じ向きに開口する冷媒排出口と、
     を有し、
     前記冷却治具は、
      前記冷媒導入口に対して篏合自在に構成された開口先端部を有する冷媒導入管と、
      前記冷媒排出口に対して篏合自在に構成された開口先端部を有する冷媒排出管と、
      前記冷媒導入管の前記開口先端部が前記冷媒導入口に篏合し且つ前記冷媒導入管の長手方向が前記中心軸方向に平行となる状態で、前記冷媒導入管を前記円弧形コイルに着脱自在に接続する第1接続部品と、
      前記冷媒排出管の前記開口先端部が前記冷媒排出口に篏合し且つ前記冷媒排出管の長手方向が前記中心軸方向に平行となる状態で、前記冷媒排出管を前記円弧形コイルに着脱自在に接続する第2接続部品と、
      前記円弧形コイルの半径方向外側に向かって延びるように前記冷媒導入管に接続された冷媒供給管と、
      前記円弧形コイルの前記半径方向外側に向かって延びるように前記冷媒排出管に接続された冷媒回収管と、
     を有する
    ことを特徴とする2次コイルモジュール。
  3.  前記第1接続部品は、
      弾性材料によって構成され且つ前記中心軸方向に延びる第1アーム部と、
      前記第1アーム部の長手方向一端部を前記冷媒導入管に固定する第1固定部と、
      前記第1アーム部の長手方向他端部に設けられ且つ前記円弧形コイルの半径方向内側に向かって突出する第1爪部と、
     を有し、
     前記第2接続部品は、
      弾性材料によって構成され且つ前記中心軸方向に延びる第2アーム部と、
      前記第2アーム部の長手方向一端部を前記冷媒排出管に固定する第2固定部と、
      前記第2アーム部の長手方向他端部に設けられ且つ前記円弧形コイルの前記半径方向内側に向かって突出する第2爪部と、
     を有する
    ことを特徴とする請求項2に記載の2次コイルモジュール。
  4.  前記円弧形コイルに固定されたグリップ部品をさらに有し、
     前記グリップ部品は、
      前記円弧形コイルから前記中心軸方向の一方側へ延びる第1部位と、
      前記第1部位から前記円弧形コイルの前記半径方向外側へ延びる第2部位と、
     を有する
    ことを特徴とする請求項2または3に記載の2次コイルモジュール。
  5.  本体部と、前記本体部の軸線方向の中間部に設けられ前記本体部よりも径が小さい小径部と、を有する軸状体に、移動焼入れを行うための移動焼入れ装置であって、
     高周波電流が流され、内部に前記軸状体が挿入される環状の1次コイル部材と、
     請求項1~4のいずれか一項に記載の複数の2次コイルモジュールと、
     前記複数の2次コイルモジュールの前記円弧形コイルが、前記小径部の径方向外側において、周方向に互いに離間した状態で前記1次コイル部材内に配置されるように、前記複数の2次コイルモジュールの位置決めを行う位置決め装置と、
    を備えることを特徴とする移動焼入れ装置。
  6.  前記小径部の端部のうち、前記軸線方向の一方側に位置する端部を一方側端部とし、前記軸線方向の他方側に位置する端部を他方側端部としたとき、
     前記複数の2次コイルモジュールとして、
      前記小径部の前記他方側端部の加熱に用いられる複数の2次第1コイルモジュールと、
      前記小径部の前記一方側端部の加熱に用いられる複数の2次第2コイルモジュールと、
    を備えることを特徴とする請求項5に記載の移動焼入れ装置。
  7.  本体部と、前記本体部の軸線方向の中間部に設けられ前記本体部よりも径が小さい小径部と、を有する軸状体に、移動焼入れを行うための移動焼入れ方法であって、
     請求項1~4のいずれか一項に記載の複数の2次コイルモジュールの前記円弧形コイルを、前記小径部の径に応じて取り換える取換工程と、
     前記取換工程によって取り換えられた前記円弧形コイルが、前記小径部の径方向外側において、周方向に互いに離間して配置されるように前記複数の2次コイルモジュールを位置決めする配置工程と、
     内部に前記軸状体が挿入された状態で高周波電流が流される環状の1次コイル部材を、前記小径部の前記軸線方向の一方側に位置する端部から、前記小径部の他方側に位置する端部に向かって前記軸線方向に移動させる際に、前記1次コイル部材内に前記複数の2次コイルモジュールの前記円弧形コイルの少なくとも一部を配置することで、誘導加熱により前記小径部を加熱する加熱工程と、
    を有することを特徴とする移動焼入れ方法。
  8.  前記小径部の一対の端部のうち、前記軸線方向の一方側に位置する前記端部を一方側端部とし、前記軸線方向の他方側に位置する前記端部を他方側端部としたとき、
     前記取換工程として、前記複数の2次コイルモジュールに含まれる複数の2次第1コイルモジュールの円弧形コイルを、前記小径部の前記他方側端部の径に応じて取り換える第1取換工程と、
     前記配置工程として、前記複数の2次第1コイルモジュールを、それらの円弧形コイルが、前記小径部の前記他方側端部の径方向外側において、周方向に互いに離間して配置されるように位置決めする第1配置工程と、
     前記加熱工程として、前記軸状体に対して前記軸線方向の一方側に相対的に移動する前記1次コイル部材内に前記複数の2次第1コイルモジュールの前記円弧形コイルの少なくとも一部が配置されたときに、前記小径部の前記他方側端部を加熱する第1加熱工程と、
     前記第1加熱工程の後で、前記1次コイル部材に対して前記複数の2次第1コイルモジュールを前記軸線方向の一方側に移動させた後、前記複数の2次第1コイルモジュールを前記小径部から前記径方向外側に移動させる離間工程と、
     前記取換工程として、前記複数の2次コイルモジュールに含まれる複数の2次第2コイルモジュールの円弧形コイルを、前記小径部の前記一方側端部の径に応じて取り換える第2取換工程と、
     前記配置工程として、前記複数の2次第2コイルモジュールを、それらの円弧形コイルが前記1次コイル部材の前記軸線方向の他方側から前記1次コイル部材内を通って前記小径部の前記一方側端部の径方向外側において周方向に互いに離間して配置されるように位置決めする第2配置工程と、
     前記加熱工程として、前記軸状体に対して前記軸線方向の一方側に相対的に移動する前記1次コイル部材内に前記複数の2次第2コイルモジュールの円弧形コイルの少なくとも一部が配置されたときに、前記小径部の前記一方側端部を加熱する第2加熱工程と、
    を行うことを特徴とする請求項7に記載の移動焼入れ方法。
PCT/JP2020/019965 2019-05-23 2020-05-20 2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法 WO2020235598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021520819A JP7226539B2 (ja) 2019-05-23 2020-05-20 2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法
CN202080038524.3A CN113891947B (zh) 2019-05-23 2020-05-20 次级线圈模块、移动淬火装置及移动淬火方法
EP20809447.4A EP3975664A4 (en) 2019-05-23 2020-05-20 SECONDARY COIL MODULE, CROSS-HARDENING APPARATUS, AND THROUGH-HARDENING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019096867 2019-05-23
JP2019-096867 2019-05-23

Publications (1)

Publication Number Publication Date
WO2020235598A1 true WO2020235598A1 (ja) 2020-11-26

Family

ID=73458413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019965 WO2020235598A1 (ja) 2019-05-23 2020-05-20 2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法

Country Status (5)

Country Link
EP (1) EP3975664A4 (ja)
JP (1) JP7226539B2 (ja)
CN (1) CN113891947B (ja)
TW (1) TWI743799B (ja)
WO (1) WO2020235598A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3998360A4 (en) * 2019-07-09 2022-06-15 Nippon Steel Corporation MOBILE HARDENING DEVICE AND MOBILE HARDENING METHOD

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221215B2 (ja) 1971-09-17 1977-06-09
JP2000087134A (ja) 1998-09-08 2000-03-28 High Frequency Heattreat Co Ltd 段付き軸体の誘導加熱コイルおよび焼入装置
JP2007230845A (ja) * 2006-03-03 2007-09-13 Kyocera Corp 単結晶育成装置
CN203890388U (zh) * 2014-04-24 2014-10-22 中联重科股份有限公司 一种淬火感应器
JP2015060634A (ja) * 2013-09-17 2015-03-30 高周波熱錬株式会社 誘導加熱コイル及び誘導加熱装置並びに加熱方法
JP2015108188A (ja) 2013-10-25 2015-06-11 高周波熱錬株式会社 誘導加熱装置及び方法並びに熱処理装置及び方法
US20160183330A1 (en) * 2014-12-23 2016-06-23 Illinois Tool Works Inc. Systems and methods for interchangeable induction heating systems
JP2018041730A (ja) * 2017-09-11 2018-03-15 光洋サーモシステム株式会社 誘導加熱コイル
JP2019096867A (ja) 2017-11-17 2019-06-20 ベシ スウィッツァーランド エージーBesi Switzerland AG 部品を装着するボンディングヘッド及び該ボンディングヘッドを備えているダイボンダ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632106B2 (ja) * 1991-11-19 1997-07-23 富士電子工業株式会社 高周波加熱コイル
JP3059165B1 (ja) * 1999-08-04 2000-07-04 電気興業株式会社 外周面に開口部を有する円筒体の高周波焼入用加熱コイルと焼入冷却方法
JP5349941B2 (ja) * 2008-12-12 2013-11-20 富士電子工業株式会社 焼入方法及び焼入装置
CN104762448B (zh) * 2009-07-30 2017-09-01 高周波热练株式会社 感应加热淬火装置、感应加热淬火方法、感应加热线圈、热处理装置及热处理方法
CN108866279B (zh) * 2018-08-20 2024-03-08 邢台隆科机械有限公司 一种高频淬火装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221215B2 (ja) 1971-09-17 1977-06-09
JP2000087134A (ja) 1998-09-08 2000-03-28 High Frequency Heattreat Co Ltd 段付き軸体の誘導加熱コイルおよび焼入装置
JP2007230845A (ja) * 2006-03-03 2007-09-13 Kyocera Corp 単結晶育成装置
JP2015060634A (ja) * 2013-09-17 2015-03-30 高周波熱錬株式会社 誘導加熱コイル及び誘導加熱装置並びに加熱方法
JP2015108188A (ja) 2013-10-25 2015-06-11 高周波熱錬株式会社 誘導加熱装置及び方法並びに熱処理装置及び方法
CN203890388U (zh) * 2014-04-24 2014-10-22 中联重科股份有限公司 一种淬火感应器
US20160183330A1 (en) * 2014-12-23 2016-06-23 Illinois Tool Works Inc. Systems and methods for interchangeable induction heating systems
JP2018041730A (ja) * 2017-09-11 2018-03-15 光洋サーモシステム株式会社 誘導加熱コイル
JP2019096867A (ja) 2017-11-17 2019-06-20 ベシ スウィッツァーランド エージーBesi Switzerland AG 部品を装着するボンディングヘッド及び該ボンディングヘッドを備えているダイボンダ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3998360A4 (en) * 2019-07-09 2022-06-15 Nippon Steel Corporation MOBILE HARDENING DEVICE AND MOBILE HARDENING METHOD

Also Published As

Publication number Publication date
JPWO2020235598A1 (ja) 2020-11-26
JP7226539B2 (ja) 2023-02-21
TWI743799B (zh) 2021-10-21
CN113891947A (zh) 2022-01-04
EP3975664A1 (en) 2022-03-30
TW202106881A (zh) 2021-02-16
EP3975664A4 (en) 2022-07-13
CN113891947B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
JP6958725B2 (ja) 移動焼入れ装置及び移動焼入れ方法
JP4170171B2 (ja) 熱処理装置及び熱処理方法
CN113874530B (zh) 移动淬火装置及移动淬火方法
WO2020235598A1 (ja) 2次コイルモジュール、移動焼入れ装置及び移動焼入れ方法
CN114072529B (zh) 移动淬火装置及移动淬火方法
JP7311811B2 (ja) 移動焼入れ装置及び移動焼入れ方法
WO2017150627A1 (ja) 熱処理装置および熱処理方法
US20190098707A1 (en) Heating coil
JP5089109B2 (ja) クランクシャフトの高周波焼戻方法及びこの方法に用いる高周波誘導加熱装置
JP4658027B2 (ja) 軸状部材加熱用の高周波誘導加熱コイル
WO2024004142A1 (ja) 移動焼入れ装置
WO2019194035A1 (ja) 誘導加熱装置および誘導加熱方法
WO2024004027A1 (ja) 移動焼入れ装置及び移動焼入れ方法
JP6259198B2 (ja) 板ばねの製造方法
JP2022044338A (ja) 熱処理装置および熱処理方法
JP5667786B2 (ja) 誘導加熱装置及び誘導加熱方法
JP2019185881A (ja) 誘導加熱装置
JP2008274438A (ja) 軸状部材加熱用の高周波誘導加熱装置
US20200208231A1 (en) Heating method and heating apparatus for center pillar for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809447

Country of ref document: EP

Effective date: 20211223