WO2020235491A1 - 複合伝熱部材、及び、複合伝熱部材の製造方法 - Google Patents

複合伝熱部材、及び、複合伝熱部材の製造方法 Download PDF

Info

Publication number
WO2020235491A1
WO2020235491A1 PCT/JP2020/019477 JP2020019477W WO2020235491A1 WO 2020235491 A1 WO2020235491 A1 WO 2020235491A1 JP 2020019477 W JP2020019477 W JP 2020019477W WO 2020235491 A1 WO2020235491 A1 WO 2020235491A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat transfer
transfer member
composite heat
molded body
Prior art date
Application number
PCT/JP2020/019477
Other languages
English (en)
French (fr)
Inventor
前川 敬
進 山嶋
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US17/601,717 priority Critical patent/US20220174844A1/en
Priority to CN202080035828.4A priority patent/CN113874203A/zh
Priority to EP20809336.9A priority patent/EP3943286A4/en
Publication of WO2020235491A1 publication Critical patent/WO2020235491A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/20Particles characterised by shape
    • B32B2264/201Flat or platelet-shaped particles, e.g. flakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials

Definitions

  • the present invention relates to a composite heat transfer member and a method for manufacturing the composite heat transfer member. More specifically, the present invention relates to, for example, a composite heat transfer member capable of efficiently transferring heat from a heating element and particularly suitable as a heat conductive member, and a method for manufacturing the composite heat transfer member.
  • the present application claims priority based on Japanese Patent Application No. 2019-093718 filed in Japan on May 17, 2019, the contents of which are incorporated herein by reference.
  • a copper plate and a carbonaceous material in which graphene and graphite particles are laminated in one direction are used.
  • the carbonaceous material has a higher thermal conductivity and a lower specific gravity than the copper plate, and is therefore useful as a heat spreader in that it can be made smaller and lighter.
  • the above-mentioned carbonaceous material is generally brittle, it may be damaged by stress when it is brought into contact with a heat source such as an electronic component or an electronic device or attached to another member. Therefore, for example, as shown in Patent Documents 1 and 2, a composite heat transfer member in which the above-mentioned carbonaceous material is coated with a metal such as copper, nickel, or aluminum to increase the overall strength is used.
  • Patent Documents 1 and 2 described above when a metal layer is formed on the surface of a carbonaceous material, a titanium layer is formed on the surface of the carbonaceous material, and a nickel layer or a copper layer is formed on the titanium layer. Is forming. That is, the bonding strength between the carbonaceous material and the metal layer is ensured by interposing a titanium layer which is an active metal.
  • titanium since titanium has a relatively low thermal conductivity of 17 W / (m ⁇ K), the titanium layer interposed between the carbonaceous material and the metal layer becomes thermal resistance, and heat is efficiently conducted in the thickness direction. There was a risk that it could not be done.
  • the present invention has been made in view of the above-mentioned circumstances, and a plate of a carbonaceous material made of a composite containing graphene and graphite particles and a metal cast molded body are strongly adhered to each other to efficiently conduct heat. It is an object of the present invention to provide a composite heat transfer member capable of forming a composite heat transfer member and a method for manufacturing the composite heat transfer member.
  • the composite heat transfer member of the present invention comprises a plate and a cast metal body covering the surface of the plate. It is characterized in that it is composed of a carbonaceous material composed of a composite containing graphene aggregates formed by depositing single-layer or multi-layer graphene and graphite particles.
  • the surface of the plate made of a carbonaceous material composed of a graphene aggregate formed by depositing single-layer or multi-layer graphene and a composite containing graphite particles is a cast metal body. Since it is coated with, the cast molded body comes into surface contact with the surface of the plate, and the cast molded body presses the surface of the plate due to the difference in the amount of shrinkage between the cast molded body and the plate when the cast molded body is formed. As a result, the cast molded body is strongly adhered to the surface of the plate. Therefore, the thermal resistance at the junction interface between the cast molded body and the plate is reduced, and the thermal conductivity of the composite heat transfer member can be improved.
  • the carbonaceous material contains graphene aggregates formed by depositing single-layer or multi-layer graphene and flat graphite particles, and the flat graphite particles are formed. It is preferable that the graphene aggregates are laminated as a binder so that the basal surfaces are folded over, and the flat-shaped basal surfaces of the graphite particles are oriented in one direction.
  • the carbonaceous material since the carbonaceous material has a structure in which graphene aggregates and graphite particles are laminated as described above, the thermal conductivity in the direction in which the basal surface of the graphite particles spreads becomes high, and heat is efficiently applied. It becomes possible to transmit to.
  • the plate is provided with a through hole and a part of the cast molded body is filled in the through hole.
  • the through hole is filled with a part of the cast molded body, the plate and the cast molded body can be joined more firmly. Further, the cast molded body filled in the through hole makes it possible to transfer heat more efficiently in the thickness direction of the plate.
  • the plate may be housed in a metal tray, and the cast molded body may cover at least the exposed surface of the plate.
  • the plate made of the carbonaceous material since the plate made of the carbonaceous material is housed in the tray, it is possible to prevent the relatively brittle plate from being damaged during handling. Further, since at least the exposed surface of the plate is covered with the cast molded body, the cast molded body is strongly adhered to the surface of the plate, the thermal resistance at the bonding interface between the cast molded body and the plate is reduced, and the composite heat transfer is performed. The thermal conductivity of the thermal member can be improved.
  • the plate is provided with a through hole
  • the tray is provided with an opening communicating with the through hole of the plate
  • a part of the cast molded body is provided.
  • the opening and the through hole are filled. In this case, since a part of the cast molded body is filled in the opening of the tray and the through hole of the plate, the tray, the plate, and the cast molded body can be joined more firmly.
  • the tray and the cast molded body may be made of the same metal.
  • the tray and the cast molded body are integrated, and the plate made of the carbonaceous material can be reliably covered.
  • fins may be provided in the cast molded body. In this case, it is possible to improve the heat dissipation characteristics by providing fins in the cast molded body coated on the surface of the plate.
  • the cast molded body may be made of pure magnesium, magnesium alloy, pure aluminum or aluminum alloy.
  • pure magnesium, magnesium alloy, pure aluminum or aluminum alloy has a small specific gravity and excellent thermal conductivity, it is possible to reduce the weight of the composite heat transfer member and improve the thermal conductivity. Become.
  • the carbonaceous material constituting the plate has a structure in which the graphite particles and the graphene aggregate are laminated in a direction orthogonal to the thickness direction of the plate. It may have been done.
  • the thermal conductivity in the thickness direction of the plate is particularly excellent, and heat can be efficiently transferred from one surface to the other surface of the plate.
  • the plate is made of a carbonaceous material having a structure in which the graphite particles and the graphene aggregate are laminated in a first direction orthogonal to the thickness direction of the plate.
  • the first laminated body and the second laminated body may be in contact with each other in the first direction and the third direction orthogonal to the second direction. In this case, since the direction in which the thermal conductivity is high differs between the first laminated body and the second laminated body, heat can be spread over the entire surface, and heat dissipation characteristics can be further improved.
  • the composite heat transfer member of the present invention has a third laminated body made of a carbonaceous material having a structure in which the graphite particles and the graphene aggregate are laminated in the third direction, and the cast molded body. Covers the surface of the third laminate, and the third laminate is in contact with the first laminate and rises from the first laminate in the second direction. You may. In this case, heat can be efficiently transferred from the first laminated body to the second laminated body via the third laminated body.
  • the method for producing a composite heat transfer member of the present invention is a plate made of a carbonaceous material composed of a composite containing graphene aggregates and graphite particles formed by depositing single-layer or multi-layer graphene in a mold cavity.
  • the step of arranging the metal, and the step of forming a cast molded body of the metal by supplying a molten or semi-melted metal into the cavity and coating the surface of the plate with the cast molded body. It is characterized by having.
  • the cast molded body comes into surface contact with the surface of the plate, and the cast molded body becomes a plate due to the difference in the amount of shrinkage between the cast molded body and the plate when the cast molded body is formed. Press on the surface of. As a result, the cast body is strongly adhered to the surface of the plate. Therefore, the thermal resistance at the bonding interface between the cast and molded body and the plate is reduced, and the thermal conductivity of the composite heat transfer member can be improved.
  • the carbonaceous material contains graphene aggregates formed by depositing single-layer or multi-layer graphene and flat graphite particles, and has the flat shape. It is preferable that the graphite particles have a structure in which the graphene aggregates are laminated as a binder so that the basal surfaces of the graphite particles overlap, and the basal surfaces of the flat-shaped graphite particles are oriented in one direction.
  • the carbonaceous material since the carbonaceous material has a structure in which graphene aggregates and graphite particles are laminated as described above, the thermal conductivity in the direction in which the basal surface of the graphite particles spreads becomes high, and heat is efficiently applied. It becomes possible to transmit to.
  • the plate in the step of arranging the plate in the cavity, the plate is arranged in the cavity with the plate housed in a metal tray, and the casting is performed.
  • the step of covering the surface of the plate with the molded body the upper surface of the plate and the outer surface of the tray may be covered with the cast molded body.
  • the plate made of the carbonaceous material since the plate made of the carbonaceous material is housed in the tray, it is possible to prevent the relatively brittle plate from being damaged during manufacturing.
  • a composite heat transfer member capable of efficiently conducting heat by strongly adhering a plate of a carbonaceous material made of a composite containing graphene and graphite particles and a metal casting molded body, and , It becomes possible to provide a method for manufacturing a composite heat transfer member.
  • FIG. 1A It is a perspective view explaining the composite heat transfer member which is 1st Embodiment of this invention. It is sectional drawing of the composite heat transfer member shown in FIG. 1A. It is an enlarged sectional view of 1C part of FIG. 1B. It is an enlarged sectional view of the 1D part of FIG. 1B. It is an enlarged explanatory view of the carbonaceous member which constitutes a plate in the composite heat transfer member shown in FIG. 1A. It is explanatory drawing which shows a part of the manufacturing method of the composite heat transfer member shown in FIG. 1A. It is explanatory drawing which shows a part of the manufacturing method of the composite heat transfer member shown in FIG. 1A.
  • FIG. 8A It is an enlarged sectional view of 8C part of FIG. 8A.
  • FIG. 5 is an enlarged cross-sectional view of an 8D portion of FIG. 8A.
  • the composite heat transfer member according to the present embodiment includes a copper water-cooled jacket and cooling water piping for heat-generating parts such as a server CPU (Central Processing Unit), a base substrate for a power module, and an aluminum automobile. It is applied to heat sinks for LED head lamps, heat sinks for mobile phone base stations, and the like.
  • a server CPU Central Processing Unit
  • base substrate for a power module
  • aluminum automobile It is applied to heat sinks for LED head lamps, heat sinks for mobile phone base stations, and the like.
  • the composite heat transfer member 1 according to the first embodiment of the present invention includes a plate 10 made of a carbonaceous material, a metal casting molded body 20 covering the surface of the plate 10, and a metal casting molded body 20. have.
  • the carbonaceous material constituting the plate 10 is made of a composite containing graphene aggregates formed by depositing single-layer or multi-layer graphene and graphite particles.
  • a graphene aggregate formed by depositing single-layer or multi-layer graphene and flat graphite particles are included, and the flat graphite particles are such that their basal surfaces are folded.
  • the structure is laminated with graphene aggregates as binders.
  • the flat graphite particles have a basal surface on which a carbon hexagonal network surface appears and an edge surface on which an end portion of the carbon hexagonal network surface appears.
  • the flat graphite particles scaly graphite, scaly graphite, earthy graphite, flaky graphite, kiss graphite, pyrolytic graphite, highly oriented pyrolytic graphite and the like can be used.
  • the average particle size of the graphite particles as seen from the basal surface is preferably in the range of 10 ⁇ m or more and 1000 ⁇ m or less, and more preferably in the range of 50 ⁇ m or more and 800 ⁇ m or less.
  • the thickness of the graphite particles is preferably in the range of 1 ⁇ m or more and 50 ⁇ m or less, and more preferably in the range of 1 ⁇ m or more and 20 ⁇ m or less.
  • the orientation of the graphite particles is appropriately adjusted.
  • the thickness of the graphite particles within the range of 1/1000 to 1/2 of the particle size seen from the basal surface, excellent thermal conductivity and orientation of the graphite particles are appropriately adjusted.
  • the graphene aggregate is a deposit of single-layer or multi-layer graphene, and the number of multi-layer graphene layers is, for example, 100 layers or less, preferably 50 layers or less.
  • This graphene aggregate can be produced, for example, by dropping a graphene dispersion in which single-layer or multi-layer graphene is dispersed in a solvent containing a lower alcohol or water onto a filter paper and depositing the graphene while separating the solvent. It is possible.
  • the average particle size of the graphene aggregate is preferably in the range of 1 ⁇ m or more and 1000 ⁇ m or less. By keeping the average particle size of the graphene aggregate within the above range, the thermal conductivity is improved.
  • the thickness of the graphene aggregate is preferably in the range of 0.05 ⁇ m or more and less than 50 ⁇ m. By keeping the thickness of the graphene aggregate within the above range, the strength of the carbonaceous member is ensured.
  • the plate 10 is laminated with graphite particles and graphene aggregates in a direction orthogonal to the thickness direction (Z direction in FIGS. 1A and 1B), and the laminated graphite is laminated.
  • the basal surfaces of the particles are arranged so as to extend in the thickness direction of the plate 10. Therefore, the edge surface of the graphite particles faces the main surface of the plate 10.
  • the edge surface of the graphite particles faces the main surface of the plate 10.
  • the basal surface of the laminated graphite particles is arranged so as to extend in the thickness direction of the plate 10, it is excellent in thermal conductivity in the thickness direction.
  • the cast molded body 20 is formed by casting and wrapping the surface of the plate 10 with metal.
  • the metal constituting the cast molded body 20 is not particularly limited, but it is preferably a pure magnesium, magnesium alloy, pure aluminum or aluminum alloy having a small specific gravity and excellent thermal conductivity, and in the present embodiment. , Composed of magnesium alloy.
  • the cast molded body 20 enters the unevenness formed on the main surface of the plate 10 to form a plate. 10 and the cast molded body 20 are firmly joined. That is, the magnesium alloy constituting the cast molded body 20 shrinks when the temperature drops from the solidification temperature to room temperature. On the other hand, the carbonaceous material constituting the plate 10 hardly shrinks or expands slightly at this time. As described above, the difference in the amount of shrinkage between the cast molded body 20 and the plate 10 due to the difference in the coefficient of thermal expansion causes the cast molded body 20 to press the surface of the plate 10. As a result, the plate 10 and the cast body 20 are in strong contact with each other. In addition, in FIGS. 1C and 1D, the arrow indicates that the cast body 20 is pressing the surface of the plate 10.
  • FIGS. 3A to 3E a method for manufacturing the composite heat transfer member 1 according to the present embodiment will be described with reference to FIGS. 3A to 3E.
  • fixtures 55 are attached to both ends of the plate 10 and these are placed in the cavity 52 of the mold 51.
  • the molten or semi-molten metal 20a is poured into the cavity 52 of the mold 51.
  • the temperature of the metal 20a constituting the cast molding body 20 is lowered to about room temperature to cover the surface of the plate 10 other than the portion to which the fixture 55 is attached. To form.
  • the cast molded body 20 presses the surface of the plate 10 due to the difference in the amount of shrinkage between the cast molded body 20 and the plate 10 caused by the difference in the coefficient of thermal expansion between the cast molded body 20 and the plate 10.
  • the cast molded body 20 enters the unevenness formed on the main surface of the plate 10.
  • the arrow indicates that the cast body 20 is pressing the surface of the plate 10.
  • the composite heat transfer member 1 according to the present embodiment is manufactured by finishing the composite heat transfer member 1 to a predetermined size by machining or the like.
  • the graphene aggregate and the graphite particles formed by depositing single-layer or multi-layer graphene are formed. Since the surface of the plate 10 made of a carbonaceous material composed of the containing composite is coated with the metal casting molded body 20, the casting molding body 20 comes into surface contact with the surface of the plate 10 and the casting molded body 20 is formed. The cast molded body 20 presses the surface of the plate due to the difference in the amount of shrinkage between the cast molded body 20 and the plate 10 when the metal constituting the above solidifies. As a result, the cast body 20 is strongly adhered to the surface of the plate 10. Therefore, the thermal resistance at the junction interface between the cast molded body 20 and the plate 10 is reduced, and the thermal conductivity of the composite heat transfer member 1 can be improved.
  • the carbonaceous member constituting the plate 10 contains a graphene aggregate formed by depositing single-layer or multi-layer graphene and flat graphite particles, and the flat graphite particles are the same.
  • the graphene aggregates are laminated as a binder so that the basal surfaces are folded over, and the flat-shaped basal surfaces of the graphite particles are oriented in one direction. Therefore, the heat in the direction in which the basal surfaces of the graphite particles spread. The conductivity becomes high, and heat can be transferred efficiently.
  • the plate when the carbonaceous material constituting the plate 10 has a structure in which graphite particles and graphene aggregates are laminated in a direction orthogonal to the thickness direction of the plate 10, the plate is used.
  • the heat conductivity in the thickness direction of 10 is particularly excellent, and heat can be efficiently transferred from one surface of the plate 10 to the other surface.
  • the cast molded body 20 when the cast molded body 20 is made of pure magnesium, magnesium alloy, pure aluminum or aluminum alloy, the weight of the composite heat transfer member 1 is reduced and the thermal conductivity is improved. Is possible.
  • the plate 10 is provided with a through hole 15, and a part of the cast molded body 20 is filled in the through hole 15. May be good.
  • the cast molded body 20 enters the unevenness formed on the main surface of the plate 10, and a part of the cast molded body 20 has a through hole. 15 is filled.
  • the arrow indicates that the cast body 20 is pressing the surface of the plate 10.
  • the composite heat transfer member 101 is a plate of a carbonaceous material composed of a composite containing graphene aggregates formed by depositing single-layer or multi-layer graphene and graphite particles. It has a tray 10, a tray 30 accommodating the plate 10, and a metal casting molded body 20 covering the surface of the tray 30 accommodating the plate 10.
  • the present embodiment as shown in FIG.
  • the carbonaceous member constituting the plate 10 includes a graphene aggregate formed by depositing single-layer or multi-layer graphene and flat graphite particles, and has a flat shape.
  • the graphite particles of No. 1 have a structure in which graphene aggregates are used as a binder so as to fold the basal surfaces thereof.
  • FIG. 5B in the cast molded body 20, the plate 10 and the cast molded body 20 are firmly joined by entering the unevenness formed on the main surface of the plate 10.
  • the arrow indicates that the cast body 20 is pressing the surface of the plate 10.
  • the tray 30 is a bottomed metal container having an open top surface. Further, a recess 36 is provided on the lower side of the outer surface of the tray 30.
  • the metal constituting the tray 30 is not particularly limited, but pure magnesium, magnesium alloy, pure aluminum or aluminum alloy can be applied.
  • the tray 30 is made of a magnesium alloy containing aluminum and zinc and having a thermal conductivity of 51 to 100 W / (m ⁇ K).
  • the cast molded body 20 is configured to cover at least the exposed surface of the plate 10.
  • the cast body 20 is configured to cover the exposed surface of the plate 10 and the outer surface of the tray 30. Then, as shown in FIG. 5A, the convex portion 26 of the cast molded body 20 is fitted into the concave portion 36 formed on the lower side of the outer surface of the tray 30.
  • FIGS. 7A to 7E a method for manufacturing the composite heat transfer member 101 according to the present embodiment will be described with reference to FIGS. 7A to 7E.
  • the tray 30 containing the plate 10 is arranged in the cavity 62 of the mold 61 of the casting apparatus.
  • FIG. 7B the molten or semi-molten metal 20a is poured into the cavity 62 of the mold 61.
  • the metal 20a is press-fitted into the cavity 62 of the mold 61 by the thixomolding method. Subsequently, as shown in FIG.
  • the temperature of the metal constituting the cast molding body 20 is lowered to about room temperature, and the exposed surface of the plate 10 and the outer surface of the tray 30 are housed in the tray 30. 20 is formed to cover the casting molded body 20.
  • the cast molded body 20 presses the surface (exposed surface) of the plate 10 due to the difference in the amount of shrinkage between the cast molded body 20 and the plate 10 caused by the difference in the coefficient of thermal expansion between the cast molded body 20 and the plate 10.
  • the cast molded body 20 enters the unevenness formed on the exposed surface of the plate 10.
  • the arrow indicates that the cast body 20 is pressing the surface of the plate 10.
  • the difference in thermal expansion coefficient between the cast body 20 and the tray 30 is small. Therefore, as shown in FIG. 7E, the convex portion 26 of the cast molded body 20 does not press the concave portion 36 of the tray 30. Then, the composite heat transfer member 101 according to the present embodiment is manufactured by finishing the composite heat transfer member 101 to a predetermined size by machining or the like.
  • the graphene aggregate and the graphite particles formed by depositing single-layer or multi-layer graphene are formed.
  • a plate 10 made of a carbonaceous material composed of a composite containing the mixture is housed in a metal tray 30, and the exposed surface of the plate 10 and the side surface of the tray 30 are covered with a metal casting molded body 20.
  • the 20 comes into surface contact with the surface of the plate 10, and the cast 20 presses the surface of the plate due to the difference in the amount of shrinkage between the cast 20 and the plate 10 when the metal constituting the cast 20 solidifies. ..
  • the cast molded body 20 is strongly adhered to the surface of the plate 10, the thermal resistance at the bonding interface between the cast molded body 20 and the plate 10 is reduced, and the thermal conductivity of the composite heat transfer member 101 is improved. Can be made to.
  • the carbonaceous member constituting the plate 10 contains a graphene aggregate formed by depositing single-layer or multi-layer graphene and flat graphite particles, and the flat graphite particles are the same.
  • the graphene aggregates are laminated as a binder so that the basal surfaces are folded over, and the flat-shaped basal surfaces of the graphite particles are oriented in one direction. Therefore, the heat in the direction in which the basal surfaces of the graphite particles spread. The conductivity becomes high, and heat can be transferred efficiently.
  • the plate 10 made of a carbonaceous material is housed in the metal tray 30, it is possible to prevent the relatively brittle plate 10 from being damaged during handling. Therefore, the composite heat transfer member 101 of the present embodiment can be stably manufactured. Further, in the present embodiment, since the concave portion 36 of the tray 30 and the convex portion 26 of the cast molded body 20 are fitted, it is possible to prevent the cast molded body 20 from coming off the tray 30.
  • the plate 10 is provided with a through hole 15, and the tray 30 is provided with an opening 35 communicating with the through hole 15 of the plate 10 for casting.
  • a structure in which a part of the molded body 20 is filled in the through hole 15 and the opening 35 may be used. With such a configuration, the plate 10 and the tray 30 and the cast molded body 20 can be joined more firmly. Further, heat is efficiently transferred in the thickness direction of the plate 10 by the cast molded body 20 filled in the through hole 15 and the opening 35.
  • the opening area of the opening 35 of the tray 30 is larger than the area of the through hole 15 of the plate 10.
  • the back surface side of the through hole 15 has an undercut shape (retaining shape).
  • the cast molded body 20 is filled around the through hole 15, and the adhesion between the cast molded body 20 and the plate 10 is further improved. It will improve.
  • the arrow indicates that the cast molded body 20 is pressing the surface of the plate 10.
  • the plate 210 shown in FIG. 9 has a first laminated body 211 made of a carbonaceous material having a structure in which graphite particles and graphene aggregates are laminated in a first direction orthogonal to the thickness direction of the plate 210.
  • the structure is such that the first laminated body 211 and the second laminated body 212 are in contact with each other in the third direction orthogonal to the second direction.
  • this plate 210 as shown in FIG. 9, heat is efficiently transferred in the X direction in the region composed of the first laminated body 211, and in the Y direction in the region composed of the second laminated body 212. Heat will be transferred efficiently. This makes it possible to control the heat transfer direction from the heating element mounted on the composite heat transfer member.
  • the fins 27 may be provided in the cast molded body 20 as in the composite heat transfer member 301 shown in FIG. In this case, by providing the fins 27 on the cast molded body 20 coated on the surface of the plate, it is possible to improve the heat dissipation characteristics.
  • the plate 210 has the above-mentioned first laminated body 211 and the second laminated body 212, and carbon having a structure in which graphite particles and graphene aggregates are laminated in the third direction.
  • the third laminated body 213 may be used as the internal structure of the fins 27 so as to stand up from the laminated body 211 of 1.
  • a composite heat transfer member capable of efficiently conducting heat by strongly adhering a plate of a carbonaceous material made of a composite containing graphene and graphite particles and a metal casting molded body, and , It becomes possible to provide a method for manufacturing a composite heat transfer member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

この複合伝熱部材(1)では、プレート(10)と、このプレートの表面を被覆する金属の鋳造成型体(20)と、を有し、プレート(10)は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料で構成されていることを特徴とする。

Description

複合伝熱部材、及び、複合伝熱部材の製造方法
 本発明は、複合伝熱部材、及び、複合伝熱部材の製造方法に関する。さらに詳しくは、本発明は、例えば、発熱体からの熱を効率良く伝達させることができ、熱伝導部材として特に適した複合伝熱部材、及び複合伝熱部材の製造方法に関する。
 本願は、2019年5月17日に、日本に出願された特願2019-093718号に基づき優先権を主張し、その内容をここに援用する。
 電子部品や電子機器から発生した熱を移動させるヒートスプレッダとして、銅プレートや、グラフェン及び黒鉛粒子を一方向に積層した炭素質材料(以下、炭素質材料を称す)が使用されている。
 これらのうち、炭素質材料は、銅プレートよりも熱伝導率が高く、しかも比重が小さいので、小型化及び軽量化が可能であるという点でヒートスプレッダとして有用である。
 ところで、上述の炭素質材料は、一般に脆いため、電子部品や電子機器のような熱源に接触させたり、他部材に取り付けたりする際の応力で破損するおそれがあった。
 このため、例えば特許文献1,2に示すように、上述の炭素質材料を銅、ニッケル、アルミニウム等の金属で被覆して全体の強度を高めた複合伝熱部材が使用されている。
特開2011-023670号公報 特開2012-238733号公報
 ところで、上述の特許文献1,2においては、炭素質材料の表面に金属層を形成する際には、炭素質材料の表面にチタン層を形成し、このチタン層の上にニッケル層や銅層を形成している。すなわち、活性金属であるチタン層を介在させることによって、炭素質材料と金属層との接合強度を確保しているのである。
 しかしながら、チタンは、熱伝導率が17W/(m・K)と比較的低いため炭素質材料と金属層との間に介在するチタン層が熱抵抗となり、熱を効率良く厚さ方向に伝導させることができないおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、グラフェン及び黒鉛粒子を含む複合体からなる炭素質材料のプレートと金属製の鋳造成型体とが強く密着し、熱を効率良く伝導することが可能な複合伝熱部材、及び、複合伝熱部材の製造方法を提供することを目的とする。
 このような課題を解決して、前記目的を達成するために、本発明の複合伝熱部材は、プレートと、このプレートの表面を被覆する金属の鋳造成型体と、を有し、前記プレートは、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料で構成されていることを特徴としている。
 この構成の複合伝熱部材によれば、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料からなるプレートの表面が、金属の鋳造成型体で被覆されているので、鋳造成型体がプレートの表面に面接触するとともに、鋳造成型体形成時の鋳造成型体とプレートとの収縮量の違いによって鋳造成型体がプレートの表面を押圧する。
 これにより、鋳造成型体がプレートの表面に強く密着する。このため、鋳造成型体とプレートとの接合界面における熱抵抗が低下して、複合伝熱部材の熱伝導率を向上させることができる。
 ここで、本発明の複合伝熱部材においては、前記炭素質材料は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体がバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされていることが好ましい。
 この場合、前記炭素質材料が、グラフェン集合体と黒鉛粒子とが上述のように積層した構造とされているので、黒鉛粒子のベーサル面が広がる方向における熱伝導率が高くなり、熱を効率的に伝達することが可能となる。
 また、本発明の複合伝熱部材においては、前記プレートには貫通孔が設けられ、前記鋳造成型体の一部が前記貫通孔に充填されていることが好ましい。
 この場合、貫通孔に鋳造成型体の一部が充填されているので、プレートと鋳造成型体とをさらに強固に接合させることが可能となる。また、貫通孔に充填された鋳造成型体によって、プレートの厚さ方向へさらに効率良く熱を伝達することが可能となる。
 さらに、本発明の複合伝熱部材においては、前記プレートが金属製のトレイに収容されており、前記鋳造成型体が、少なくとも前記プレートの露出面を被覆している構成としてもよい。
 この場合、炭素質材料で構成されたプレートがトレイに収容されているので、取り扱い時に、比較的脆いプレートが破損することを抑制できる。また、少なくとも前記プレートの露出面を鋳造成型体が被覆しているので、鋳造成型体がプレートの表面に強く密着し、鋳造成型体とプレートとの接合界面における熱抵抗が低下して、複合伝熱部材の熱伝導率を向上させることができる。
 また、本発明の複合伝熱部材においては、前記プレートには貫通孔が設けられ、前記トレイには、前記プレートの前記貫通孔と連通する開口部が設けられ、前記鋳造成型体の一部が、前記開口部及び前記貫通孔に充填されていることが好ましい。
 この場合、トレイの開口部及びプレートの貫通孔に鋳造成型体の一部が充填されているので、トレイとプレートと鋳造成型体とをさらに強固に接合させることが可能となる。
 さらに、本発明の複合伝熱部材においては、前記トレイと前記鋳造成型体とが、同じ金属で構成されていてもよい。
 この場合、トレイと鋳造成型体とが一体化し、炭素質材料で構成されたプレートを確実に被覆することができる。
 また、本発明の複合伝熱部材においては、前記鋳造成型体にフィンが設けられていてもよい。
 この場合、プレートの表面に被覆された鋳造成型体にフィンを設けることで、放熱特性を向上させることが可能となる。
 さらに、本発明の複合伝熱部材においては、前記鋳造成型体が、純マグネシウム、マグネシウム合金、純アルミニウムまたはアルミニウム合金で構成されていてもよい。
 この場合、純マグネシウム、マグネシウム合金、純アルミニウムまたはアルミニウム合金は、比重が小さく、かつ、熱伝導性に優れているので、複合伝熱部材の軽量化及び熱伝導性の向上を図ることが可能となる。
 また、本発明の複合伝熱部材においては、前記プレートを構成する前記炭素質材料は、前記プレートの厚さ方向に対して直交する方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造とされていてもよい。
 この場合、プレートの厚さ方向への熱伝導性に特に優れており、プレートの一面から他面側へと熱を効率良く伝達することができる。
 さらに、本発明の複合伝熱部材においては、前記プレートは、前記プレートの厚さ方向に対して直交する第1の方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造の炭素質材料からなる第1の積層体と、前記プレートの厚さ方向に平行な第2の方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造の炭素質材料からなる第2の積層体と、を有し、前記第1の方向及び前記第2の方向に直交する第3の方向において、前記第1の積層体と前記第2の積層体とが互いに接している構成としてもよい。
 この場合、第1の積層体と第2の積層体とで熱伝導率が高い方向が異なるため、面全体に熱を拡げることができ、放熱特性をさらに向上させることが可能となる。
 また、本発明の複合伝熱部材においては、前記第3の方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造の炭素質材料からなる第3の積層体を有し、前記鋳造成型体は、前記第3の積層体の表面を被覆し、前記第3の積層体は、前記第1の積層体に接するとともに、前記第1の積層体から前記第2の方向に立ち上がる構成とされていてもよい。
 この場合、第3の積層体を介して、第1の積層体から第2の積層体へと熱を効率良く伝達することが可能となる。
 本発明の複合伝熱部材の製造方法は、鋳型のキャビティ内に、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料で構成されたプレートを配置する工程と、前記キャビティ内に溶融状態又は半溶融状態の金属を供給することにより、前記金属の鋳造成型体を形成して、該鋳造成型体で前記プレートの表面を被覆する工程と、を有することを特徴としている。
 この構成の複合伝熱部材の製造方法によれば、鋳造成型体がプレートの表面に面接触するとともに、鋳造成型体形成時の鋳造成型体とプレートとの収縮量の違いによって鋳造成型体がプレートの表面を押圧する。これにより、鋳造成型体がプレートの表面に強く密着する。このため、鋳造成型体とプレートとの接合界面における熱抵抗が低下して、複合伝熱部材の熱伝導率を向上させることができる。
 ここで、本発明の複合伝熱部材の製造方法においては、前記炭素質材料は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体がバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされていることが好ましい。
 この場合、前記炭素質材料が、グラフェン集合体と黒鉛粒子とが上述のように積層した構造とされているので、黒鉛粒子のベーサル面が広がる方向における熱伝導率が高くなり、熱を効率的に伝達することが可能となる。
 また、本発明の複合伝熱部材の製造方法においては、前記キャビティ内に前記プレートを配置する工程では、金属のトレイに前記プレートを収容した状態で前記プレートを前記キャビティ内に配置し、前記鋳造成型体で前記プレートの表面を被覆する工程では、前記鋳造成型体で前記プレートの上面と、前記トレイの外側面とを被覆する構成としてもよい。
 この場合、炭素質材料で構成されたプレートがトレイに収容されているので、製造時に、比較的脆いプレートが破損することを抑制できる。
 本発明によれば、グラフェン及び黒鉛粒子を含む複合体からなる炭素質材料のプレートと金属製の鋳造成型体とが強く密着し、熱を効率良く伝導することが可能な複合伝熱部材、及び、複合伝熱部材の製造方法を提供することが可能となる。
本発明の第1実施形態である複合伝熱部材を説明する斜視図である。 図1Aに示す複合伝熱部材の断面図である。 図1Bの1C部分の拡大断面図である。 図1Bの1D部分の拡大断面図である。 図1Aに示す複合伝熱部材におけるプレートを構成する炭素質部材の拡大説明図である。 図1Aに示す複合伝熱部材の製造方法の一部を示す説明図である。 図1Aに示す複合伝熱部材の製造方法の一部を示す説明図である。 図1Aに示す複合伝熱部材の製造方法の一部を示す説明図である。 図3Cの3D部分の拡大断面図である。 図3Cの3E部分の拡大断面図である。 本発明の第1実施形態である複合伝熱部材の変形例を示す説明図である。 図4Aの4B部分の拡大断面図である。 図4Aの4C部分の拡大断面図である。 本発明の第2実施形態である複合伝熱部材の断面説明図である。 図5Aの5B部分の拡大断面図である。 図5Aに示す複合伝熱部材におけるトレイの概略説明図である。 図5Aに示す複合伝熱部材の製造方法の一部を示す説明図である。 図5Aに示す複合伝熱部材の製造方法の一部を示す説明図である。 図5Aに示す複合伝熱部材の製造方法の一部を示す説明図である。 図7Cの7D部分の拡大断面図である。 図7Cの7E部分の拡大断面図である。 本発明の第2実施形態である複合伝熱部材の変形例を示す説明図である。 図8Aの8B部分の拡大断面図である。 図8Aの8C部分の拡大断面図である。 図8Aの8D部分の拡大断面図である。 図8Aの8E部分の拡大断面図である。 本発明の他の実施形態である複合伝熱部材におけるプレートの説明図である。 本発明の他の実施形態である複合伝熱部材の説明図である。 本発明の他の実施形態である複合伝熱部材におけるプレートの説明図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
 なお、本実施形態である複合伝熱部材は、サーバのCPU(Central Processing Unit)等の発熱部品用の銅製の水冷ジャケツト及び冷却水の配管や、パワーモジュール用のベース基板、アルミニウム製の自動車用LEDヘッドランプのヒートシンクや、携帯電話機基地局用のヒートシンク等に適用されるものである。
(第1実施形態)
 まず、本発明の第1実施形態である複合伝熱部材1について説明する。
 本発明の実施形態である複合伝熱部材1は、図1A及び図1Bに示すように、炭素質材料からなるプレート10と、このプレート10の表面を被覆する金属製の鋳造成型体20と、を有している。
 プレート10を構成する炭素質材料は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなるものとされている。本実施形態では、図2に示すように、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の黒鉛粒子が、そのベーサル面が折り重なるように、グラフェン集合体をバインダーとして積層された構造とされている。
 扁平形状の黒鉛粒子は、炭素六角網面が現れるベーサル面と、炭素六角網面の端部が現れるエッジ面と、を有するものである。この扁平形状の黒鉛粒子としては、鱗片状黒鉛、鱗状黒鉛、土状黒鉛、薄片状黒鉛、キッシュグラファイト、熱分解黒鉛、高配向熱分解黒鉛等を用いることができる。
 ここで、黒鉛粒子のベーサル面から見た平均粒径は、10μm以上1000μm以下の範囲内であることが好ましく、50μm以上800μm以下の範囲内であることがさらに好ましい。黒鉛粒子の平均粒径を上述の範囲内とすることで、熱伝導性が向上する。
 さらに、黒鉛粒子の厚さは、1μm以上50μm以下の範囲内であることが好ましく、1μm以上20μm以下の範囲内であることがさらに好ましい。黒鉛粒子の厚さを上述の範囲内とすることで、黒鉛粒子の配向性が適度に調整される。
 また、黒鉛粒子の厚さがベーサル面から見た粒径の1/1000~1/2の範囲内とすることによって、優れた熱伝導性と黒鉛粒子の配向性が適度に調整される。
 グラフェン集合体は、単層又は多層のグラフェンが堆積したものであり、多層のグラフェンの積層数は、例えば100層以下、好ましくは50層以下とされている。このグラフェン集合体は、例えば、単層又は多層のグラフェンが低級アルコールや水を含む溶媒に分散されたグラフェン分散液を、ろ紙上に滴下し、溶媒を分離しながら堆積させることによって製造することが可能である。
 ここで、グラフェン集合体の平均粒径は、1μm以上1000μm以下の範囲内であることが好ましい。グラフェン集合体の平均粒径を上述の範囲内とすることで、熱伝導性が向上する。
 さらに、グラフェン集合体の厚さは、0.05μm以上50μm未満の範囲内であることが好ましい。グラフェン集合体の厚さを上述の範囲内とすることで、炭素質部材の強度が確保される。
 ここで、本実施形態においては、プレート10は、その厚さ方向(図1A及び図1BにおいてZ方向)に対して直交する方向に黒鉛粒子及びグラフェン集合体が積層されており、積層された黒鉛粒子のベーサル面がプレート10の厚さ方向に延在するように配置されている。このため、プレート10の主面には、黒鉛粒子のエッジ面が向くことになる。
 このように、プレート10の主面に黒鉛粒子のエッジ面が向くことによって、プレート10の主面には比較的大きな凹凸が形成されることになる。
 また、上述のように、積層された黒鉛粒子のベーサル面がプレート10の厚さ方向に延在するように配置されているので、厚さ方向への熱伝導性に優れている。
 鋳造成型体20は、後述するように、プレート10の表面を金属で鋳包むことによって形成されるものである。
 ここで、鋳造成型体20を構成する金属は特に限定されないが、比重が小さく、かつ、熱伝導性に優れた純マグネシウム、マグネシウム合金、純アルミニウムまたはアルミニウム合金とすることが好ましく、本実施形態では、マグネシウム合金で構成されている。
 そして、本実施形態である複合伝熱部材1においては、図1B、図1C及び図1Dに示すように、プレート10の主面に形成された凹凸に、鋳造成型体20が入り込むことによって、プレート10と鋳造成型体20とが強固に接合されることになる。
 すなわち、鋳造成型体20を構成するマグネシウム合金は、凝固温度から室温に温度が下がるときに収縮する。一方、プレート10を構成する炭素質材料は、このときに殆ど収縮しないか、あるいは僅かに膨張する。
 このように、熱膨張率の相違によって鋳造成型体20とプレート10との間に収縮量の違いが生じることにより、鋳造成型体20がプレート10の表面を押圧する。これにより、プレート10と鋳造成型体20とが強く密着することになる。なお、図1C及び図1Dにおいて、矢印は、鋳造成型体20がプレート10の表面を押圧していることを示す。
 以下に、本実施形態である複合伝熱部材1の製造方法について、図3A~図3Eを用いて説明する。
 まず、図3Aに示すように、プレート10の両端部に固定具55を取り付け、これらを鋳型51のキャビティ52内に設置する。
 次に、図3Bに示すように、溶融又は半溶融した金属20aを、鋳型51のキャビティ52内に注ぎ込む。
 続いて、図3Cに示すように、鋳造成型体20を構成する金属20aの温度を室温程度まで下げて、固定具55が取り付けられている部分以外のプレート10の表面を被覆する鋳造成型体20を形成する。このときの鋳造成型体20とプレート10の熱膨張率の相違によって生じる鋳造成型体20とプレート10との間に収縮量の違いにより、鋳造成型体20がプレート10の表面を押圧する。これによって、図3D及び図3Eに示すように、プレート10の主面に形成された凹凸に鋳造成型体20が入り込む。なお、図3D及び図3Eにおいて、矢印は、鋳造成型体20がプレート10の表面を押圧していることを示す。
 そして、機械加工等によって所定の寸法に仕上げることにより、本実施形態である複合伝熱部材1が製造されることになる。
 以上のような構成とされた本実施形態である複合伝熱部材1及び複合伝熱部材1の製造方法によれば、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料で構成されたプレート10の表面が、金属の鋳造成型体20で被覆されているので、鋳造成型体20がプレート10の表面に面接触するとともに、鋳造成型体20を構成する金属が凝固する際の鋳造成型体20とプレート10との収縮量の違いによって鋳造成型体20がプレートの表面を押圧する。
 これにより、鋳造成型体20がプレート10の表面に強く密着する。このため、鋳造成型体20とプレート10との接合界面における熱抵抗が低下して、複合伝熱部材1の熱伝導率を向上させることができる。
 そして、本実施形態では、プレート10を構成する炭素質部材が、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体がバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされているので、黒鉛粒子のベーサル面が広がる方向における熱伝導率が高くなり、熱を効率的に伝達することが可能となる。
 また、本実施形態において、プレート10を構成する炭素質材料が、プレート10の厚さ方向に対して直交する方向に黒鉛粒子及びグラフェン集合体が積層された構造とされている場合には、プレート10の厚さ方向への熱伝導性に特に優れており、プレート10の一面から他面側へと熱を効率良く伝達することが可能となる。
 さらに、本実施形態において、鋳造成型体20が、純マグネシウム、マグネシウム合金、純アルミニウムまたはアルミニウム合金で構成されている場合には、複合伝熱部材1の軽量化及び熱伝導性の向上を図ることが可能となる。
 なお、本実施形態である複合伝熱部材1においては、図4Aに示すように、プレート10に貫通孔15を設けて、鋳造成型体20の一部がこの貫通孔15に充填された構造としてもよい。この構成の複合伝熱部材1では、図4B及び図4Cに示すように、鋳造成型体20がプレート10の主面に形成された凹凸に入り込むとともに、鋳造成型体20の一部がこの貫通孔15に充填される。なお、図4B及び図4Cにおいて、矢印は、鋳造成型体20がプレート10の表面を押圧していることを示す。
 このような構成とすることで、プレート10と鋳造成型体20とをさらに強固に接合させることが可能となる。また、貫通孔15に充填された鋳造成型体20によってプレート10の厚さ方向へ効率良く熱が伝達されることになる。
(第2実施形態)
 次に、本発明の第2の実施形態について説明する。なお、第1の実施形態と同一の部材には、同じ符号を付して、詳細な説明を省略する。
 本発明の実施形態である複合伝熱部材101は、図5Aに示すように、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料のプレート10と、このプレート10を収容するトレイ30と、プレート10を収容したトレイ30の表面を被覆する金属の鋳造成型体20と、を有している。
 なお、本実施形態では、プレート10を構成する炭素質部材は、図2に示すように、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の黒鉛粒子が、そのベーサル面が折り重なるように、グラフェン集合体をバインダーとして積層された構造とされている。また、図5Bに示すように、鋳造成型体20は、プレート10の主面に形成された凹凸に入り込むことによって、プレート10と鋳造成型体20とが強固に接合されることになる。なお、図5Bにおいて、矢印は、鋳造成型体20がプレート10の表面を押圧していることを示す。
 トレイ30は、図6に示すように、上面が開口した有底の金属製容器である。また、トレイ30の外側面の下側には凹部36が設けられている。
 トレイ30を構成する金属は特に限定されないが、純マグネシウム、マグネシウム合金、純アルミニウムまたはアルミニウム合金を適用することができる。本実施形態では、トレイ30は、アルミニウムと亜鉛とを含み、熱伝導率が51~100W/(m・K)のマグネシウム合金で構成されたものとした。
 ここで、鋳造成型体20は、少なくともプレート10の露出面を被覆するように構成されている。
 本実施形態では、鋳造成型体20は、プレート10の露出面とトレイ30の外側面を被覆するように構成されている。そして、図5Aに示すように、トレイ30の外側面の下側に形成された凹部36に、鋳造成型体20の凸部26が嵌合した構造とされている。
 以下に、本実施形態である複合伝熱部材101の製造方法について、図7A~図7Eを用いて説明する。
 まず、図7Aに示すように、プレート10を収容したトレイ30を、鋳造装置の金型61のキャビティ62内に配置する。
 次に、図7Bに示すように、溶融又は半溶融させた金属20aを金型61のキャビティ62内に注ぎ込む。本実施形態では、チクソモールディング法によって金型61のキャビティ62内に金属20aを圧入する構成とされている。
 続いて、図7Cに示すように、鋳造成型体20を構成する金属の温度を室温程度まで下げて、プレート10がトレイ30に収容された状態で、プレート10の露出面及びトレイ30の外側面を被覆する鋳造成型体20を形成する。このときの鋳造成型体20とプレート10の熱膨張率の相違によって生じる鋳造成型体20とプレート10との間に収縮量の違いにより、鋳造成型体20がプレート10の表面(露出面)を押圧する。これによって、図7Dに示すように、プレート10の露出面に形成された凹凸に鋳造成型体20が入り込む。なお、図7Dにおいて、矢印は、鋳造成型体20がプレート10の表面を押圧していることを示す。一方、鋳造成型体20とトレイ30は熱膨張率の相違が小さい。このため、図7Eに示すように、鋳造成型体20の凸部26は、トレイ30の凹部36を押圧しない。
 そして、機械加工等によって所定の寸法に仕上げることにより、本実施形態である複合伝熱部材101が製造されることになる。
 以上のような構成とされた本実施形態である複合伝熱部材101及び複合伝熱部材101の製造方法によれば、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料のプレート10が、金属製のトレイ30に収容され、プレート10の露出面とトレイ30の側面が金属製の鋳造成型体20で被覆されているので、鋳造成型体20がプレート10の表面に面接触するとともに、鋳造成型体20を構成する金属が凝固する際の鋳造成型体20とプレート10との収縮量の違いによって鋳造成型体20がプレートの表面を押圧する。
 これにより、鋳造成型体20がプレート10の表面に強く密着することになり、鋳造成型体20とプレート10との接合界面における熱抵抗が低下して、複合伝熱部材101の熱伝導率を向上させることができる。
 そして、本実施形態では、プレート10を構成する炭素質部材が、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体がバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされているので、黒鉛粒子のベーサル面が広がる方向における熱伝導率が高くなり、熱を効率的に伝達することが可能となる。
 また、本実施形態においては、炭素質材料で構成されたプレート10が金属製のトレイ30に収容されているので、取り扱い時に、比較的脆いプレート10が破損することを抑制できる。よって、本実施形態である複合伝熱部材101を安定して製造することができる。
 さらに、本実施形態では、トレイ30の凹部36と鋳造成型体20の凸部26が嵌合しているので、鋳造成型体20がトレイ30から外れることを抑制できる。
 なお、本実施形態である複合伝熱部材においては、図8Aに示すように、プレート10に貫通孔15を設けるとともに、トレイ30にプレート10の貫通孔15と連通する開口部35を設け、鋳造成型体20の一部が貫通孔15及び開口部35に充填された構造としてもよい。
 このような構成とすることで、プレート10及びトレイ30と鋳造成型体20とをさらに強固に接合させることが可能となる。また、貫通孔15及び開口部35に充填された鋳造成型体20によってプレート10の厚さ方向へ効率良く熱が伝達されることになる。
 なお、図8Aに示すように、トレイ30の開口部35の開口面積をプレート10の貫通孔15の面積よりも大きくすることが好ましい。この場合、また、貫通孔15の裏面側はアンダーカット形状(抜け止め形状)になっていることが好ましい。この場合、図8B、図8C、図8D及び図8Eに示すように、貫通孔15の周辺に鋳造成型体20が充填されることになり、鋳造成型体20とプレート10との密着性がさらに向上することになる。なお、図8B、図8C、図8D及び図8Eにおいて、矢印は、鋳造成型体20がプレート10の表面を押圧していることを示す。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 本実施形態で説明したプレートの代わりに、黒鉛粒子及びグラフェンの積層方向が異なる領域を有するプレートを用いてもよい。例えば、図9に示すプレート210は、プレート210の厚さ方向に対して直交する第1の方向に黒鉛粒子及びグラフェン集合体が積層された構造の炭素質材料からなる第1の積層体211と、プレート210の厚さ方向に平行な第2の方向に黒鉛粒子及びグラフェン集合体が積層された構造の炭素質材料からなる第2の積層体212と、を有しており、第1の方向及び第2の方向に直交する第3の方向において、第1の積層体211と第2の積層体212とが互いに接した構造とされている。
 このプレート210においては、図9に示すように、第1の積層体211で構成された領域でX方向に熱が効率良く伝達され、第2の積層体212で構成された領域でY方向に熱が効率良く伝達されることになる。これにより、複合伝熱部材に載置された発熱体からの熱の伝達方向を制御することが可能となる。
 また、図10に示す複合伝熱部材301のように、鋳造成型体20にフィン27を設けてもよい。この場合、プレートの表面に被覆された鋳造成型体20にフィン27を設けることで、放熱特性を向上させることが可能となる。
 なお、図11に示すように、プレート210として、上述の第1の積層体211及び第2の積層体212を有するとともに、第3の方向に黒鉛粒子及びグラフェン集合体が積層された構造の炭素質材料からなる第3の積層体213を有し、鋳造成型体20が、第3の積層体213の表面を被覆し、第3の積層体213は、第1の積層体211に接するとともに第1の積層体211から立ち上がる構成とし、この第3の積層体213をフィン27の内部構造として利用してもよい。
 本発明によれば、グラフェン及び黒鉛粒子を含む複合体からなる炭素質材料のプレートと金属製の鋳造成型体とが強く密着し、熱を効率良く伝導することが可能な複合伝熱部材、及び、複合伝熱部材の製造方法を提供することが可能となる。
1,101,301 複合伝熱部材
10,210 プレート
15 貫通孔
20 鋳造成型体
26 凸部
27 フィン
30 トレイ
35 開口部
36 凹部
211 第1の積層体
212 第2の積層体
213 第3の積層体

Claims (14)

  1.  プレートと、このプレートの表面を被覆する金属の鋳造成型体と、を有し、
     前記プレートは、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料で構成されていることを特徴とする複合伝熱部材。
  2.  前記炭素質材料は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体がバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされていることを特徴とする請求項1に記載の複合伝熱部材。
  3.  前記プレートには貫通孔が設けられ、前記鋳造成型体の一部が前記貫通孔に充填されていることを特徴とする請求項1又は請求項2に記載の複合伝熱部材。
  4.  前記プレートが金属製のトレイに収容されており、前記鋳造成型体が、少なくとも前記プレートの露出面を被覆していることを特徴とする請求項1から請求項3のいずれか一項に記載の複合伝熱部材。
  5.  前記プレートには貫通孔が設けられ、前記トレイには、前記プレートの前記貫通孔と連通する開口部が設けられ、
     前記鋳造成型体の一部が、前記開口部及び前記貫通孔に充填されていることを特徴とする請求項4に記載の複合伝熱部材。
  6.  前記トレイと前記鋳造成型体とが、同じ金属で構成されていることを特徴とする請求項4又は請求項5に記載の複合伝熱部材。
  7.  前記鋳造成型体にフィンが設けられたことを特徴とする請求項1から請求項6のいずれか一項に記載の複合伝熱部材。
  8.  前記鋳造成型体が、純マグネシウム、マグネシウム合金、純アルミニウムまたはアルミニウム合金で構成されていることを特徴とする請求項1から請求項7のいずれか一項に記載の複合伝熱部材。
  9.  前記プレートを構成する前記炭素質材料は、前記プレートの厚さ方向に対して直交する方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造とされていることを特徴とする請求項1から請求項8のいずれか一項に記載の複合伝熱部材。
  10.  前記プレートは、前記プレートの厚さ方向に対して直交する第1の方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造の炭素質材料からなる第1の積層体と、前記プレートの厚さ方向に平行な第2の方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造の炭素質材料からなる第2の積層体と、を有し、
     前記第1の方向及び前記第2の方向に直交する第3の方向において、前記第1の積層体と前記第2の積層体とが互いに接していることを特徴とする請求項1から請求項8のいずれか一項に記載の複合伝熱部材。
  11.  前記第3の方向に前記黒鉛粒子及び前記グラフェン集合体が積層された構造の炭素質材料からなる第3の積層体を有し、前記鋳造成型体は、前記第3の積層体の表面を被覆し、前記第3の積層体は、前記第1の積層体に接するとともに、前記第1の積層体から前記第2の方向に立ち上がることを特徴とする請求項10に記載の複合伝熱部材。
  12.  鋳型のキャビティ内に、単層又は多層のグラフェンが堆積してなるグラフェン集合体と黒鉛粒子とを含む複合体からなる炭素質材料で構成されたプレートを配置する工程と、
     前記キャビティ内に溶融状態又は半溶融状態の金属を供給することにより、前記金属の鋳造成型体を形成して、該鋳造成型体で前記プレートの表面を被覆する工程と、
     を有することを特徴とする複合伝熱部材の製造方法。
  13.  前記炭素質材料は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体をバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされていることを特徴とする請求項12に記載の複合伝熱部材の製造方法。
  14.  前記キャビティ内に前記プレートを配置する工程では、金属のトレイに前記プレートを収容した状態で前記プレートを前記キャビティ内に配置し、
     前記鋳造成型体で前記プレートの表面を被覆する工程では、前記鋳造成型体で前記プレートの上面と、前記トレイの外側面とを被覆することを特徴とする請求項12又は請求項13に記載の複合伝熱部材の製造方法。
     
PCT/JP2020/019477 2019-05-17 2020-05-15 複合伝熱部材、及び、複合伝熱部材の製造方法 WO2020235491A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/601,717 US20220174844A1 (en) 2019-05-17 2020-05-15 Composite heat transfer member and method for manufacturing composite heat transfer member
CN202080035828.4A CN113874203A (zh) 2019-05-17 2020-05-15 复合传热部件及复合传热部件的制造方法
EP20809336.9A EP3943286A4 (en) 2019-05-17 2020-05-15 COMPOSITE HEAT TRANSFER ELEMENT AND METHOD OF MAKING COMPOSITE HEAT TRANSFER ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019093718A JP2020188235A (ja) 2019-05-17 2019-05-17 複合伝熱部材、及び、複合伝熱部材の製造方法
JP2019-093718 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235491A1 true WO2020235491A1 (ja) 2020-11-26

Family

ID=73222086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019477 WO2020235491A1 (ja) 2019-05-17 2020-05-15 複合伝熱部材、及び、複合伝熱部材の製造方法

Country Status (5)

Country Link
US (1) US20220174844A1 (ja)
EP (1) EP3943286A4 (ja)
JP (1) JP2020188235A (ja)
CN (1) CN113874203A (ja)
WO (1) WO2020235491A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166714A1 (ja) * 2020-02-18 2021-08-26 三菱マテリアル株式会社 複合伝熱部材、及び、複合伝熱部材の製造方法
WO2023027661A1 (en) * 2021-08-25 2023-03-02 Ondokuz Mayis Universitesi Rektorlugu New generation hybrid composite heat sink with monolithic metal foam form

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149802A1 (ja) * 2020-01-24 2021-07-29 三菱マテリアル株式会社 銅/グラフェン接合体とその製造方法、および銅/グラフェン接合構造

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078086A (ja) * 2001-09-04 2003-03-14 Kubota Corp 半導体素子モジュール基板の積層構造
JP2011023670A (ja) 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd 異方性熱伝導素子及びその製造方法
JP2012238733A (ja) 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd 異方性熱伝導素子及びその製造方法
JP2018006673A (ja) * 2016-07-07 2018-01-11 昭和電工株式会社 冷却器及びその製造方法
WO2018074493A1 (ja) * 2016-10-19 2018-04-26 株式会社インキュベーション・アライアンス 黒鉛/グラフェン複合材、集熱体、伝熱体、放熱体および放熱システム
JP2019093718A (ja) 2019-01-18 2019-06-20 三星ダイヤモンド工業株式会社 ブレイク装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI113020B (fi) * 2001-12-28 2004-02-27 Outokumpu Oy Muotti metallinauhojen jatkuvavaluun
JP4378334B2 (ja) * 2005-09-09 2009-12-02 日本碍子株式会社 ヒートスプレッダモジュール及びその製造方法
US9835390B2 (en) * 2013-01-07 2017-12-05 Nanotek Instruments, Inc. Unitary graphene material-based integrated finned heat sink
CN104754913B (zh) * 2013-12-27 2018-06-05 华为技术有限公司 导热复合材料片及其制作方法
JP2016035945A (ja) * 2014-08-01 2016-03-17 株式会社日立製作所 パワーモジュールおよび熱拡散板
WO2016186985A1 (en) * 2015-05-15 2016-11-24 Momentive Performance Materials Inc. Light emitting diode assembly using thermal pyrolytic graphite for thermal management

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078086A (ja) * 2001-09-04 2003-03-14 Kubota Corp 半導体素子モジュール基板の積層構造
JP2011023670A (ja) 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd 異方性熱伝導素子及びその製造方法
JP2012238733A (ja) 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd 異方性熱伝導素子及びその製造方法
JP2018006673A (ja) * 2016-07-07 2018-01-11 昭和電工株式会社 冷却器及びその製造方法
WO2018074493A1 (ja) * 2016-10-19 2018-04-26 株式会社インキュベーション・アライアンス 黒鉛/グラフェン複合材、集熱体、伝熱体、放熱体および放熱システム
JP2019093718A (ja) 2019-01-18 2019-06-20 三星ダイヤモンド工業株式会社 ブレイク装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943286A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166714A1 (ja) * 2020-02-18 2021-08-26 三菱マテリアル株式会社 複合伝熱部材、及び、複合伝熱部材の製造方法
JP2021132072A (ja) * 2020-02-18 2021-09-09 三菱マテリアル株式会社 複合伝熱部材、及び、複合伝熱部材の製造方法
WO2023027661A1 (en) * 2021-08-25 2023-03-02 Ondokuz Mayis Universitesi Rektorlugu New generation hybrid composite heat sink with monolithic metal foam form

Also Published As

Publication number Publication date
EP3943286A1 (en) 2022-01-26
CN113874203A (zh) 2021-12-31
US20220174844A1 (en) 2022-06-02
EP3943286A4 (en) 2023-04-05
JP2020188235A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2020235491A1 (ja) 複合伝熱部材、及び、複合伝熱部材の製造方法
EP3327766B1 (en) Microelectronic modules with sinter-bonded heat dissipation structures and methods for the fabrication thereof
US9347120B2 (en) Composite member including substrate made of composite material
US8877318B2 (en) Graphite structure, and electronic device using the same
JP6580385B2 (ja) アルミニウムと炭素粒子との複合体及びその製造方法
US20110061848A1 (en) Heat Dissipation Module and the Manufacturing Method Thereof
KR102437007B1 (ko) 금속층 형성 탄소질 부재, 및, 열전도판
JP7119671B2 (ja) 複合伝熱部材、及び複合伝熱部材の製造方法
CN110498384A (zh) 包括热延伸层的微电子模块和其制造方法
US20150118514A1 (en) High Performance Thermal Interface System With Improved Heat Spreading and CTE Compliance
KR20100105641A (ko) 열분해 흑연-매설형 히트싱크의 형성 방법
CN109027963A (zh) 一种led灯散热灯罩及其制作方法
WO2013130221A1 (en) System including thermal interface material
WO2021166714A1 (ja) 複合伝熱部材、及び、複合伝熱部材の製造方法
JP4416362B2 (ja) 半導体素子用放熱性部品及び半導体装置
CN109788631A (zh) 电路板及其制作方法
JP2023124244A (ja) 複合伝熱部材
TW201219131A (en) comprising multiple stacked and bonded composite bodies each of which is formed by using a metal substrate to enclose a single layer of planar arrangement of diamond particles
JP5467782B2 (ja) 電気絶縁性を有する放熱基板の製造方法
JP6383670B2 (ja) アルミニウムと炭素粒子との複合材の製造方法及び絶縁基板の製造方法
JP4788703B2 (ja) サーマルインターフェース材、およびサーマルインターフェース材の製造方法
CN209845582U (zh) 一种多层导热件
US10462940B2 (en) Thermal management device for heat generating power electronics incorporating high thermal conductivity pyrolytic graphite and cooling tubes
JP6498040B2 (ja) アルミニウムと炭素粒子との複合体及び絶縁基板
JP2022032627A (ja) 熱伝導部材およびそれを備える電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809336

Country of ref document: EP

Effective date: 20211021