WO2020235246A1 - 磁性部材形成用樹脂組成物、及び磁性部材の製造方法 - Google Patents

磁性部材形成用樹脂組成物、及び磁性部材の製造方法 Download PDF

Info

Publication number
WO2020235246A1
WO2020235246A1 PCT/JP2020/015869 JP2020015869W WO2020235246A1 WO 2020235246 A1 WO2020235246 A1 WO 2020235246A1 JP 2020015869 W JP2020015869 W JP 2020015869W WO 2020235246 A1 WO2020235246 A1 WO 2020235246A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
magnetic member
forming
magnetic
particles
Prior art date
Application number
PCT/JP2020/015869
Other languages
English (en)
French (fr)
Inventor
将人 吉田
若菜 野辺
賢祐 野津
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP20810152.7A priority Critical patent/EP3971922A4/en
Priority to JP2021520646A priority patent/JP7533451B2/ja
Priority to CN202080036702.9A priority patent/CN113841207A/zh
Priority to US17/611,687 priority patent/US11987695B2/en
Publication of WO2020235246A1 publication Critical patent/WO2020235246A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/08Transition metals
    • B29K2505/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating

Definitions

  • the present invention relates to a resin composition for forming a magnetic member and a method for manufacturing the magnetic member.
  • Patent Document 1 describes that an organic resin is mixed with a magnetic powder, and the obtained mixture is injection-molded or transfer-molded (claims 1 and 11 of Patent Document 1 and the like).
  • transfer molding is generally used as a method for molding a resin composition for forming a magnetic member containing magnetic particles and a thermosetting resin.
  • material loss occurs in transfer molding, it is necessary to consider other molding means.
  • compression molding is known as another molding means. Since high pressure is generally required for compression molding, it has been considered difficult to use it in the technical field of a resin composition for forming a magnetic member. Therefore, in the technical field of the resin composition for forming a magnetic member, sufficient studies have not been made on compression molding.
  • a resin composition for forming a magnetic member used for compression molding Thermosetting resin and With magnetic particles Non-magnetic particles having a smaller specific gravity and a cumulative 50% particle diameter D 50 smaller than those of the magnetic particles.
  • a resin composition for forming a magnetic member, which is solid at 25 ° C., is provided.
  • a method for manufacturing a magnetic member wherein the resin composition for forming a magnetic member is placed in a mold by using a compression molding apparatus, and a magnetic member obtained by curing the resin composition for forming a magnetic member is obtained.
  • a resin composition for forming a magnetic member in which resin burrs are suppressed during compression molding and a method for manufacturing a magnetic member using the same.
  • the term "abbreviation” means to include a range in consideration of manufacturing tolerances, assembly variations, etc., unless otherwise specified explicitly.
  • the notation of "a to b" in the description of the numerical range means a or more and b or less unless otherwise specified.
  • “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
  • the notation that does not indicate whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the term "organic group” as used herein means an atomic group obtained by removing one or more hydrogen atoms from an organic compound.
  • the "monovalent organic group” represents an atomic group obtained by removing one hydrogen atom from an arbitrary organic compound.
  • the resin composition for forming a magnetic member of the present embodiment is a resin composition for forming a magnetic member used for compression molding, and has a smaller specific gravity than a thermosetting resin, magnetic particles, and magnetic particles. In addition, non-magnetic particles having a small cumulative 50% particle diameter D 50 are included.
  • the resin composition for forming a magnetic member is solid at 25 ° C.
  • the specific gravity is small, and, by 50% cumulative particle diameter D 50 in combination a small non-magnetic particles, a resin burr can be suppressed at the time of compression molding Therefore, a resin composition for forming a magnetic member suitable for compression molding can be realized.
  • non-magnetic particles with low specific gravity and small particle size flow out from the mold toward the vent more easily than the magnetic particles during compression molding, so they are contained in the melt during the vent.
  • Non-magnetic particles are appropriately dispersed. It is considered that the melt in which the non-magnetic particles are dispersed has high viscosity and thixotropy, which makes it difficult for the melt to flow out from the vent, and thus resin burrs are suppressed.
  • the magnetic particles remain in the melt in the mold, it is considered that the magnetic member composed of the cured product can sufficiently obtain magnetic properties such as iron loss and relative magnetic permeability.
  • the resin composition for forming a magnetic member of the present embodiment By using the resin composition for forming a magnetic member of the present embodiment, the generation of resin burrs during compression molding can be suppressed. By reducing resin burrs, it is possible to improve continuous moldability. In addition, a magnetic member having excellent magnetic characteristics can be molded.
  • the magnetic member of the present embodiment can be used for various purposes, and can be suitably used as, for example, a magnetic component in an electric / electronic device. More specifically, it is preferably used as a magnetic core of a coil or the like.
  • the resin composition contains a thermosetting resin and a magnetic powder.
  • thermosetting resin examples include epoxy resin, phenol resin, polyimide resin, bismaleimide resin, urea (urea) resin, melamine resin, polyurethane resin, cyanate ester resin, silicone resin, oxetane resin (oxetan compound), and ( Meta) acrylate resin, unsaturated polyester resin, diallyl phthalate resin, benzoxazine resin and the like can be mentioned. These may be used alone or in combination of two or more. From the viewpoint of heat resistance, for example, an epoxy resin may be used.
  • the resin composition of the present embodiment may contain an epoxy resin.
  • the epoxy resin may be any as long as it contains an epoxy group.
  • examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, and bisphenol P type epoxy resin.
  • Bisphenol type epoxy resin such as bisphenol Z type epoxy resin
  • Novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin
  • Biphenyl type epoxy resin biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, naphthalene type Epoxy resins such as epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantan type epoxy resin, fluorene type epoxy resin, and trisphenylmethane type epoxy resin
  • the epoxy resin may be semi-cured (solid) at room temperature (25 ° C.).
  • the epoxy resin may include a polyfunctional epoxy resin having three or more epoxy groups in the molecule and / or a low viscosity epoxy resin having an ICI viscosity of 0.1 to 50 mPa ⁇ s at 150 ° C.
  • the epoxy resin preferably contains at least one selected from the group consisting of an epoxy resin containing a triphenylmethane structure as an example of a polyfunctional epoxy resin and an epoxy resin containing a bisphenol structure as an example of a low-viscosity epoxy resin. .. It is considered that the appropriate rigidity of the structure of these epoxy resins makes it easier to make the curing behavior more appropriate, which in turn can further improve the moldability.
  • Epoxy resin (A1) The resin composition of the present embodiment may contain an epoxy resin (A1) having a triarylmethane skeleton (also simply referred to as “epoxy resin (A1)”). "Having a triarylmethane skeleton” specifically includes a partial structure in which three of the four hydrogen atoms of methane (CH 4 ) are substituted with aromatic rings.
  • the "aromatic ring” here may be a benzene-based aromatic ring such as a benzene ring or a naphthalene ring, or a heteroaromatic ring such as furan, thiophene, pyrrole, pyrazole, imidazole, pyridine, pyridazine, pyrimidine, or pyrazine.
  • the three aromatic rings may be the same or different.
  • the aromatic ring is preferably a benzene-based aromatic ring such as a benzene ring or a naphthalene ring.
  • it is preferable that the three aromatic rings are the same.
  • the epoxy resin (A1) preferably has a structural unit represented by the following general formula (a1).
  • a triarylmethane skeleton (triphenylmethane skeleton) is formed by connecting two or more structural units represented by the general formula (a1).
  • R 11 independently represents a monovalent substituent when there are a plurality of them.
  • R 12 each independently represents a monovalent substituent, and represents a monovalent substituent.
  • i is an integer from 0 to 3 and j is an integer from 0 to 4.
  • Examples of the monovalent substituent of R 11 and R 12 include a monovalent organic group, a halogen atom, a hydroxy group, and a cyano group.
  • Examples of the monovalent organic group include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkalil group, a cycloalkyl group, an alkoxy group, a heterocyclic group and a carboxyl group. ..
  • the monovalent organic group has, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group and heptyl group. , Octyl group, nonyl group, decyl group and the like.
  • alkenyl group include an allyl group, a pentenyl group, a vinyl group and the like.
  • alkynyl group include an ethynyl group and the like.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a tolyl group, a xsilyl group, a phenyl group, a naphthyl group, and an anthrasenyl group.
  • Examples of the aralkyl group include a benzyl group, a phenethyl group and the like.
  • Examples of the alkaline group include a tolyl group, a xylyl group and the like.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • alkoxy groups include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, s-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group and neopentyloxy group. , N-hexyloxy group and the like.
  • Examples of the heterocyclic group include an epoxy group, an oxetanyl group and the like.
  • i and j are independently, preferably 0 to 2, and more preferably 0-1. In one aspect, both i and j are 0. That is, as one aspect, all of the benzene rings in the general formula (a1) do not have a substituent other than the specified glycidyloxy group as a monovalent substituent.
  • the number average molecular weight of the epoxy resin (A1) is not particularly limited, but is typically about 200 to 700.
  • the number average molecular weight can usually be obtained as a standard polystyrene-equivalent value by gel permeation chromatography (GPC).
  • Epoxy resin (A2) The resin composition of the present embodiment is composed of a group consisting of an epoxy resin having a structural unit represented by the following general formula (a2-1) and a bisphenol type epoxy resin having a structure represented by the following general formula (a2-2). It may contain at least one selected epoxy resin (A2) (also simply referred to as “epoxy resin (A2)").
  • Cy represents a divalent organic group containing an alicyclic structure.
  • R 21 independently represents a monovalent substituent when there are a plurality of R 21 .
  • l is an integer of 0 to 3.
  • R 22 independently represents a monovalent substituent when there are a plurality of them.
  • R 23 each independently represents a monovalent substituent.
  • p and q are independently integers from 0 to 4.
  • the alicyclic structure contained in Cy in the general formula (a2-1) is not particularly limited, and may be a monocyclic structure or a polycyclic structure. It is preferable to include a polycyclic structure from the viewpoints of appropriate viscosity at the time of melting and mechanical properties of the obtained magnetic member.
  • the carbon number of Cy is typically 5 to 20, preferably 6 to 18, and more preferably 6 to 15.
  • alicyclic examples include a monocyclic alicyclic such as a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclododecane ring (a cycloalkane ring having 3 to 15 members, preferably about 5 to 6 members). Can be done.
  • a monocyclic alicyclic such as a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclododecane ring (a cycloalkane ring having 3 to 15 members, preferably about 5 to 6 members). Can be done.
  • a decalin ring perhydronaphthalene ring
  • a perhydroindene ring bicyclo [4.3.0] nonane ring
  • a perhydroanthracene ring a perhydrofluorene ring
  • a perhydrophenanthrene ring a perhydroacenaften ring
  • a par Hydrophenanthrene ring norbornane ring (bicyclo [2.2.1] heptane ring)
  • isobornane ring isobornane ring, adamantane ring, bicyclo [3.3.0] octane ring, tricyclo [5.2.1.0 2,6 ]
  • Polycyclic adipose rings bridged carbon rings
  • decane rings and tricyclo [6.2.1.0 2,7 ] undecane rings can also be mentioned.
  • the term "polycyclic" preferably means about 2 to 4 rings.
  • Cy can be, for example, a divalent
  • the alicyclic structure contained in Cy may or may not have a substituent.
  • one or more hydrogen atoms in the alicyclic structure may be substituted with any substituent.
  • the substituent include those described as monovalent substituents of R 11 and R 12 in the general formula (a1).
  • Cy may have an alicyclic structure itself, or may have an alicyclic structure and other structures.
  • the alicyclic structure may be directly attached to the benzene ring (by a single bond) or may be attached to the benzene ring via any linking group.
  • the -Cy- portion of the general formula (a2-1) can be expressed as -Cy'-L-.
  • Cy' is an alicyclic (specific example, the above-mentioned monocyclic or polycyclic alicyclic), and L is a divalent linking group.
  • Examples of the divalent linking group of L include an alkylene group (for example, 1 to 6 carbon atoms), a cycloalkylene group, an ether group, a carbonyl group, an ester group, and a group in which two or more of these are linked.
  • Specific examples of the monovalent substituent of R 21 in the general formula (a2-1) include those similar to those described as the monovalent substituent of R 11 and R 12 in the general formula (a1). Can be done.
  • l is preferably 0 to 2, more preferably 0-1. In one aspect, l is 0. That is, as one aspect, the benzene ring in the general formula (a2-1) does not have a substituent other than the specified glycidyloxy group as a monovalent substituent.
  • monovalent substituents of R 22 and R 23 in the general formula (a2-2) are the same as those described as the monovalent substituents of R 11 and R 12 in the general formula (a1). Can be mentioned.
  • the monovalent substituent of R 22 and R 23 an alkyl group is preferable, a linear or branched alkyl group having 1 to 6 carbon atoms is more preferable, and a methyl group is particularly preferable.
  • P and q in the general formula (a2-2) are independently, preferably 0 to 3, more preferably 0 to 2, respectively. From the viewpoint of appropriate fluidity at the time of melting, p and q are preferably 0 when the two Rs are methyl groups, and p and when the two Rs are hydrogen atoms. q is preferably 1 or 2.
  • the number average molecular weight (standard polystyrene conversion value measured by GPC) of the epoxy resin having the structural unit represented by the general formula (a2-1) is not particularly limited, but is, for example, 200 to 400.
  • the epoxy resin containing a biphenyl structure is specifically an epoxy resin containing a structure in which two benzene rings are connected by a single bond.
  • the benzene ring here may or may not have a substituent.
  • the epoxy resin containing a biphenyl structure has a partial structure represented by the following general formula (BP).
  • R a and R b are monovalent organic groups, hydroxyl groups or halogen atoms independently of each other when there are a plurality of them. r and s are independently 0-4, respectively. * Indicates that it is connected to another atomic group.
  • R a and R b include those listed as the monovalent organic groups of R 1 , R 2 and R 3 in the general formula (AM) described later.
  • r and s are independently, preferably 0 to 2, and more preferably 0-1. In one aspect, both r and s are 0.
  • the epoxy resin containing a biphenyl structure has a structural unit represented by the following general formula (BP1).
  • R a and R b are the same as those of the general formula (BP).
  • the definitions and preferred ranges of r and s are similar to the general formula (BP).
  • R c is a monovalent organic group, a hydroxyl group or a halogen atom independently of each other when there are a plurality of them.
  • t is an integer of 0 to 3.
  • R c examples include those listed as the monovalent organic groups of R 1 , R 2 and R 3 in the general formula (AM) described later.
  • t is preferably 0 to 2, and more preferably 0 to 1.
  • the resin composition of the present embodiment may contain an epoxy resin having a low ICI viscosity at 150 ° C.
  • the resin composition may contain an epoxy resin having an ICI viscosity at 150 ° C. of more preferably 0.1 to 50 mPa ⁇ s, still more preferably 0.5 to 45 mPa ⁇ s, and particularly preferably 1 to 40 mPa ⁇ s. ..
  • An epoxy resin (A2) is used as an epoxy resin having an ICI viscosity in such a numerical range. These may be used alone or in combination of two or more.
  • ICI viscosity measuring device M. S. tea.
  • An ICI cone plate viscometer from Engineering Co., Ltd. can be used.
  • the molecular weight (number average molecular weight) of the epoxy resin is not particularly limited, but is, for example, 100 to 3,000, preferably 100 to 2,000, and more preferably about 100 to 1,000.
  • the resin composition of the present embodiment may contain only one type of epoxy resin, or may contain two or more types of epoxy resin. Further, even if the epoxy resins of the same type are used, those having different weight average molecular weights may be used in combination.
  • the amount of the epoxy resin in the resin composition is, for example, 0.1 to 20% by mass, preferably 0.5 to 10% by mass, based on the entire resin composition.
  • the content of the epoxy resin is, for example, 1 to 30% by volume, preferably 5 to 25% by volume, based on the entire resin composition.
  • the number of moles of epoxy groups with epoxy resin (A1) is a M 1
  • the value of M 1 / M 2 is For example, it is 0.2 to 1.8, preferably 0.5 to 1.5, more preferably 0.6 to 1.4, and even more preferably 0.8 to 1.2.
  • the value of M 1 / M 2 can be obtained by molar calculation from the molecular weights and epoxy equivalents of the epoxy resin (A1) and the epoxy resin (A2).
  • M 1 is the number of moles of the epoxy group of the polyfunctional epoxy resin and M 2 is the bisphenol type epoxy in the above M 1 / M 2.
  • the number of moles of epoxy groups contained in the resin may be used.
  • the total amount of the epoxy resin (A1) and the epoxy resin (A2) in the resin composition is, for example, 0.1 to 20% by mass, preferably 0.5 to 10% by mass, based on the entire resin composition. Is.
  • the total amount of the epoxy resin (A1) and the epoxy resin (A2) in the resin composition is, for example, 1 to 30% by volume, preferably 5 to 25% by volume, based on the entire resin composition.
  • the resin composition of the present embodiment may contain a curing agent.
  • the curing agent is not particularly limited as long as it reacts with the thermosetting resin.
  • an epoxy resin for example, a phenol resin or an aromatic diamine may be used as the curing agent.
  • the resin composition of the present embodiment may contain a phenolic curing agent.
  • the phenolic curing agent is not particularly limited as long as it contains a phenolic hydroxy group and can react with the epoxy resin (A1) and / or the epoxy resin (A2).
  • the phenolic curing agent may be low molecular weight or high molecular weight.
  • the resin composition of the present embodiment comprises an epoxy resin (A1) having a triarylmethane skeleton, an epoxy resin having a structural unit represented by the general formula (a2-1), and the general formula (a2-2). It may contain at least one epoxy resin (A2) selected from the group consisting of epoxy resins having the structure represented, and a phenolic curing agent (B).
  • the phenolic curing agent preferably contains any skeleton selected from the group consisting of a biphenyl skeleton, a novolak skeleton, and a triphenylmethane skeleton.
  • the heat resistance of the magnetic member can be particularly enhanced.
  • Biphenyl skeleton refers to a skeleton in which two benzene rings are linked via a single bond. More specifically, it is a skeleton represented by the following general formula (BP).
  • R 1 and R 2 each independently represent a monovalent substituent when there are a plurality of them. r and s are independently 0-4, respectively. * Indicates that it is connected to another atomic group.
  • R 1 and R 2 include those similar to those described as the monovalent substituents of R 11 and R 12 in the general formula (a1).
  • r and s are independently, preferably 0 to 2, and more preferably 0-1. In one aspect, both r and s are 0.
  • phenolic curing agent having a biphenyl skeleton examples include those having a structural unit represented by the following general formula (BP1).
  • R 1 and R 2 are the same as those of the general formula (BP).
  • the definitions and preferred ranges of r and s are similar to the general formula (BP).
  • R 3 is, when a plurality of independently denote a monovalent substituent, t is an integer of 0 to 3.
  • t is preferably 0 to 2, and more preferably 0 to 1.
  • phenolic curing agent having a novolak skeleton examples include those having a structural unit represented by the following general formula (N).
  • R 4 represents a monovalent substituent and represents u is an integer from 0 to 3.
  • u is preferably 0 to 2, more preferably 0 to 1, and even more preferably 0.
  • the number average molecular weight of the phenol-based curing agent is not particularly limited, but is, for example, about 200 to 800.
  • the content of the phenolic curing agent in the resin composition is, for example, 0.1 to 20% by mass, preferably 0.5 to 10% by mass, based on the entire resin composition.
  • the content of the phenolic curing agent in the resin composition is, for example, 1 to 30% by volume, preferably 5 to 25% by volume, based on the entire resin composition.
  • the resin composition of the present embodiment may contain an aromatic diamine.
  • aromatic diamine any compound having one or more aromatic ring structures and two amino groups (-NH 2 ) in one molecule can be used without particular limitation.
  • the aromatic diamine preferably has a structure in which an amino group is directly linked to an aromatic ring.
  • the melting point can be used as a reference when selecting an aromatic diamine.
  • an aromatic diamine having an appropriate melting point the aromatic diamine is appropriately melted during kneading / molding of the resin composition.
  • the fluidity can be improved.
  • the resin composition can be kneaded more uniformly, it is considered that the heat resistance and mechanical properties (strength, etc.) of the finally obtained cured product (magnetic member) can be improved.
  • the melting point of the aromatic diamine is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, still more preferably 140 ° C. or lower.
  • the melting point of the aromatic diamine is preferably 60 ° C. or higher, preferably 70 ° C. or higher, and more preferably 80 ° C. or higher.
  • the catalog value can be adopted for the melting point.
  • the aromatic diamine is preferably a solid at room temperature (25 ° C.) and not a liquid.
  • the resin composition of the present embodiment may contain an amine compound other than the aromatic diamine, but the amine compound is also preferably a solid at room temperature (25 ° C.) and not a liquid.
  • the resin composition of the present embodiment is typically prepared in the form of granules or tablets.
  • Aromatic diamines (and, in some cases, amine compounds other than aromatic diamines) are solid at room temperature from the viewpoint of ease of preparation and the handleability of the granular or tablet-like resin composition obtained by the preparation. Is preferable.
  • the resin composition preferably contains a compound represented by the following general formula (AM) as an aromatic diamine.
  • AM general formula
  • Xs are independently selected from the group consisting of a single bond, a linear or branched alkylene group, an ether group, a carbonyl group, an ester group, and a group in which two or more of these are linked.
  • Y is any group selected from the group consisting of single bond, linear or branched alkylene groups, ether groups, carbonyl groups, ester groups and groups in which two or more of these are linked.
  • R 1 , R 2 and R 3 are monovalent organic groups, hydroxyl groups or halogen atoms, respectively, when they are present in a plurality.
  • k, l and m are independently integers from 0 to 4, respectively.
  • n is an integer greater than or equal to 0.
  • linear or branched alkylene group of X and Y those having 1 to 6 carbon atoms are preferable, and those having 1 to 3 carbon atoms are more preferable. Since a part or all of X and Y are branched alkylene groups, the skeleton of the aromatic diamine can be appropriately made rigid. This is considered to be related to making the above-mentioned "melting point" appropriate. Further, it is considered that the effect of further improving the heat resistance of the cured product (magnetic member) and improving the mechanical strength can be obtained because the skeleton of the aromatic diamine is appropriately rigid.
  • the monovalent organic groups of R 1 , R 2 and R 3 include alkyl groups, alkenyl groups, alkynyl groups, alkylidene groups, aryl groups, aralkyl groups, alkaline groups, cycloalkyl groups, alkoxy groups, heterocyclic groups and carboxyl groups.
  • the group can be mentioned.
  • Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group and heptyl group.
  • Examples thereof include an octyl group, a nonyl group and a decyl group.
  • Examples of the alkenyl group include an allyl group, a pentenyl group, a vinyl group and the like.
  • Examples of the alkynyl group include an ethynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a tolyl group, a xsilyl group, a phenyl group, a naphthyl group, and an anthrasenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaline group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an isobutoxy group, a t-butoxy group, an n-pentyloxy group and a neopentyloxy group. , N-hexyloxy group and the like.
  • heterocyclic group examples include an epoxy group and an oxetanyl group.
  • the total carbon number of the monovalent organic groups of R 1 , R 2 and R 3 is, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 10, and particularly preferably 1 to 6, respectively.
  • k, l and m are independently, preferably integers of 0 or 1. In one aspect, k, l and m are all 0. That is, in one aspect, all of the benzene rings in the general formula (AM) are not substituted with atomic groups other than the amino group.
  • n is preferably 0 to 3, more preferably 0 to 2.
  • aromatic diamines are shown below.
  • the aromatic diamine is not limited to the following.
  • 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene and 2,2'-bis [4- (4-aminophenoxy) used in the examples described later ) Phenyl] Propane, 1,3-bis (4-aminophenoxy) benzene and the like can also be mentioned.
  • Aromatic diamine a commercially available product may be used.
  • Aromatic diamines can be obtained from, for example, Seika Co., Ltd., Mitsui Chemicals Fine Co., Ltd., Fujifilm Wako Pure Chemical Industries, Ltd., and the like.
  • the resin composition of the present embodiment may contain only one type of aromatic diamine, or may contain two or more types of aromatic diamines.
  • the amount of aromatic diamine in the resin composition is, for example, 0.1 to 20% by mass, preferably 0.5 to 10% by mass, based on the entire resin composition.
  • the amount of aromatic diamine in the resin composition is, for example, 1 to 30% by volume, preferably 5 to 25% by volume, based on the entire resin composition.
  • the amount of aromatic diamine in the composition is preferably adjusted appropriately in relation to the epoxy resin.
  • the ratio of the number of moles of epoxy groups of the epoxy resin to the number of moles of amino groups of the aromatic diamine (that is, the number of moles of epoxy groups of the epoxy resin / the number of moles of amino groups of the aromatic diamine).
  • the number is preferably 1 to 3, more preferably 1.5 to 2.5, and even more preferably 1.7 to 2.3.
  • One amino group (-NH 2 ) can react with two epoxy groups. Therefore, it is considered that the crosslinked structure of the amino group and the epoxy group at the time of curing can be made denser by adjusting the amount ratio of the epoxy resin and the aromatic diamine so that the above ratio is around 2.
  • the glass transition temperature of the cured product can be raised to improve the heat resistance.
  • the above ratio is calculated from the epoxy equivalent or epoxy value of the epoxy resin contained in the composition, the molecular weight of the epoxy resin (these are usually shown in the epoxy resin catalog), the molecular weight of the aromatic diamine, and the like. Can be obtained.
  • the resin composition of the present embodiment contains magnetic particles.
  • any particles can be used as long as the molded product produced by using the resin composition of the present embodiment exhibits magnetism.
  • the magnetic particles preferably contain one or more elements selected from the group consisting of Fe, Cr, Co, Ni, Ag and Mn. By selecting any of these magnetic particles, the magnetic properties can be further enhanced. In particular, the magnetic properties can be further enhanced by using particles containing 85% by mass or more of Fe as the magnetic particles.
  • the magnetic particles include iron-based particles.
  • the iron-based particles are particles containing an iron atom as a main component (the content mass of the iron atom is the largest in the chemical composition), and more specifically, the content mass of the iron atom is one in the chemical composition. It refers to the most common iron alloy.
  • the iron-based particles may be any as long as they contain iron-based amorphous particles, and may be composed of only iron-based amorphous particles, but may also contain iron-based amorphous particles and iron-based crystal particles. Further, as the iron-based particles, those having one kind of chemical composition may be used, or two or more kinds having different chemical compositions may be used in combination.
  • the iron-based particles particles showing soft magnetism and having an iron atom (Fe) content of 85% by mass or more (soft magnetic iron high content particles) can be used.
  • soft magnetism refers to ferromagnetism having a small coercive force, and generally, ferromagnetism having a coercive force of 800 A / m or less is referred to as soft magnetism.
  • the constituent material of such particles include a metal-containing material having an iron content of 85% by mass or more as a constituent element.
  • the metal material having a high iron content as a constituent element exhibits soft magnetism having relatively good magnetic properties such as magnetic permeability and magnetic flux density. Therefore, a resin composition capable of exhibiting good magnetic properties when molded can be obtained.
  • Examples of the form of the above-mentioned metal-containing material include simple substances, solid solutions, eutectic, alloys such as intermetallic compounds, and the like.
  • By using the particles made of such a metal material it is possible to obtain a resin composition having excellent magnetic properties derived from iron, that is, magnetic properties such as high magnetic permeability and high magnetic flux density.
  • the above metal-containing material may contain an element other than iron as a constituent element.
  • Elements other than iron include, for example, B, C, N, O, Al, Si, P, S, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Cd. , In, Sn and the like, and one or a combination of two or more of these is used.
  • metal-containing materials include, for example, pure iron, silicon steel, iron-cobalt alloy, iron-nickel alloy, iron-chromium alloy, iron-aluminum alloy, carbonyl iron, stainless steel, or any of these.
  • examples thereof include composite materials containing one type or two or more types. Silicon steel powder can be preferably used from the viewpoint of availability, magnetic properties and the like.
  • the magnetic particles may be other particles.
  • it may be a magnetic particle containing Ni-based soft magnetic particles, Co-based soft magnetic particles, and the like.
  • the magnetic particles may be surface-treated.
  • the surface may be treated with a coupling agent or treated with plasma.
  • a functional group can cover part or all of the surface of these particles.
  • a functional group represented by the following general formula (1) can be used. * -OXR ... (1) [In the formula, R represents an organic group, X is Si, Ti, Al, or Zr, and * is one of the atoms constituting the magnetic particles. ]
  • the functional group is a residue formed by surface treatment with a known coupling agent such as a silane-based coupling agent, a titanium-based coupling agent, an aluminum-based coupling agent, or a zirconium-based coupling agent. It is preferably a residue of a coupling agent selected from the group consisting of a silane-based coupling agent and a titanium-based coupling agent.
  • examples thereof include a method of immersing the magnetic particles in a diluted solution of the coupling agent or a method of directly spraying the coupling agent onto the magnetic particles.
  • the amount of the coupling agent used is preferably, for example, 0.01 to 1 part by mass, and more preferably 0.05 to 0.5 part by mass with respect to 100 parts by mass of the magnetic particles.
  • the solvent for reacting the coupling agent with the magnetic particles include methanol, ethanol, isopropyl alcohol and the like.
  • the amount of the coupling agent used at this time is preferably 0.1 to 2 parts by mass, and more preferably 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the solvent.
  • the reaction time between the coupling agent and the magnetic particles is preferably 1 to 24 hours.
  • plasma treatment may be performed in advance as a part of the surface treatment on the magnetic particles.
  • oxygen plasma treatment OH groups are generated on the surface of the magnetic particles, and the bonding between the magnetic particles and the residue of the coupling agent via oxygen atoms becomes easy. As a result, the functional group can be bonded more firmly.
  • the plasma treatment here is preferably oxygen plasma treatment.
  • the pressure of the oxygen plasma treatment is not particularly limited, but is preferably 100 to 200 Pa, and more preferably 120 to 180 Pa.
  • the flow rate of the processing gas in the oxygen plasma treatment is not particularly limited, but is preferably 1000 to 5000 mL / min, and more preferably 2000 to 4000 mL / min.
  • the output of the oxygen plasma treatment is not particularly limited, but is preferably 100 to 500 W, and more preferably 200 to 400 W.
  • the treatment time of the oxygen plasma treatment is appropriately set according to the various conditions described above, but is preferably 5 to 60 minutes, more preferably 10 to 40 minutes.
  • the argon plasma treatment may be further performed before the oxygen plasma treatment is performed.
  • active sites for modifying the OH group can be formed on the surface of the magnetic particles, so that the modification of the OH group can be performed more efficiently.
  • the pressure of the argon plasma treatment is not particularly limited, but is preferably 10 to 100 Pa, and more preferably 15 to 80 Pa.
  • the flow rate of the processing gas in the argon plasma treatment is not particularly limited, but is preferably 10 to 100 mL / min, and more preferably 20 to 80 mL / min.
  • the output of the argon plasma treatment is preferably 100 to 500 W, more preferably 200 to 400 W.
  • the treatment time of the argon plasma treatment is preferably 5 to 60 minutes, more preferably 10 to 40 minutes.
  • the magnetic particles and the residues of the coupling agent are bonded via oxygen atoms.
  • the surface treatment as described above may be applied to all the particles contained in the resin composition, or may be applied to only some of the particles.
  • another coating treatment may be applied to the base of the surface treatment described above.
  • a coating treatment include a phosphoric acid coating, a silica coating, and the like, in addition to a resin coating such as a silicone resin.
  • a resin coating such as a silicone resin.
  • Such a coating treatment may be applied as needed or may be omitted. This coating treatment may be applied alone, not as a base for the surface treatment described above.
  • the magnetic particles preferably have a shape close to a perfect circle (true sphere). It is considered that this reduces the friction between the particles and further enhances the fluidity.
  • the "roundness" defined below is obtained for any 10 or more (preferably 50 or more) magnetic particles, and the average roundness obtained by averaging the values is obtained. It is preferably 0.60 or more, and more preferably 0.75 or more. Definition of roundness: When the contour of a magnetic particle is observed with a scanning electron microscope, the equivalent area circle diameter obtained from the contour is Req, and the radius of the circle circumscribing the contour is Rc. The value of Req / Rc.
  • the median diameter D 50 (average particle diameter) of the iron-based particles on a volume basis is, for example, 0.5 to 100 ⁇ m or less, preferably 1.0 to 75 ⁇ m, and more preferably 3.1 to 60 ⁇ m.
  • the average particle size of the iron-based amorphous particles may also be within the above numerical range of the average particle size of the iron-based particles. From the viewpoint of good fluidity and improvement of magnetic performance due to high filling, it is preferable to appropriately adjust the particle size of the magnetic particles.
  • the resin composition of the present embodiment may contain two or more types of iron-based particles having different average particle diameters. This makes it possible to increase the filling of iron-based particles, and enhance the magnetic properties and mechanical strength.
  • the resin composition of the present embodiment may contain two or more types of iron-based particles having different average particle diameters.
  • the magnetic characteristics can be further improved.
  • ferrous base particles having a D 50 of 30 ⁇ m or more and 100 ⁇ m or less and ferric base particles having a D 50 of more than 3.0 ⁇ m and less than 30 ⁇ m may be used in combination.
  • the median diameter D 50 can be obtained by, for example, a laser diffraction / scattering type particle size distribution measuring device. Specifically, a particle size distribution curve is obtained by measuring magnetic particles in a dry manner with a particle size distribution measuring device "LA-950" manufactured by HORIBA, and D 50 is obtained by analyzing this distribution curve. be able to.
  • the content of iron-based particles (magnetic material particles) in the resin composition is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 93% by mass or more, based on the entire resin composition. Is.
  • the upper limit of the content of iron-based particles (magnetic material particles) in the resin composition is, for example, 99% by mass or less from the viewpoint of practically ensuring the fluidity of the resin composition. By sufficiently increasing the content of iron-based particles, magnetic performance (permeability, iron loss, etc.) can be improved.
  • the content of the magnetic particles in the resin composition is preferably 60% by volume or more, more preferably 70% by volume or more, still more preferably 80% by volume or more, based on the entire resin composition. is there.
  • the upper limit of this is, for example, 95% by volume or less from the viewpoint of practically ensuring the fluidity of the resin composition.
  • Non-magnetic particles The resin composition of the present embodiment may contain non-magnetic particles exhibiting non-magnetism from the viewpoint of adjusting fluidity and the like.
  • non-magnetic particles particles having a smaller specific gravity and a cumulative 50% particle diameter D 50 smaller than those of the magnetic particles are used.
  • non-magnetism means having no ferromagnetism.
  • the resin composition contains non-magnetic particles, the generation of resin burrs during compression molding is suppressed. Therefore, the continuous moldability of the resin composition becomes better. Therefore, a molded product with few molding defects can be obtained.
  • the constituent materials of the non-magnetic particles include ceramic materials and glass materials. Of these, those containing a ceramic material are preferably used. Since such non-magnetic particles have a high affinity with the thermosetting resin, the fluidity of the resin composition can be maintained.
  • the ceramic material examples include oxide-based ceramic materials such as silica, alumina, zirconia, titania, magnesia, and calcia, nitride-based ceramic materials such as silicon nitride and aluminum nitride, and carbide-based materials such as silicon carbide and boron carbide. Examples include ceramic materials. These may be used alone or in combination of two or more. Among these, the non-magnetic particles may include silica particles and alumina particles.
  • the ceramic material preferably contains silica.
  • Silica has a high affinity with a thermosetting resin and a high insulating property, and is therefore useful as a constituent particle of non-magnetic particles. Therefore, the non-magnetic particles may contain silica particles.
  • the specific gravity of the non-magnetic particles is preferably 1.5 to 6.0, more preferably 1.7 to 5.0, and even more preferably 1.8 to 4.5. Since such non-magnetic particles have a small specific gravity, they easily flow together with the melt of the resin composition. Therefore, when the melt of the resin composition flows toward the gaps of the molding mold during molding, the non-magnetic particles easily flow together with the melt.
  • the specific gravity of magnetic particles and non-magnetic particles can be measured using a powder densitometer by the vapor phase substitution method.
  • the lower limit of the cumulative 50% particle diameter D 50 (median diameter) of the non-magnetic particles in the volume-based particle diameter distribution curve is, for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, more preferably 0.15 ⁇ m. That is all. As a result, an increase in the viscosity of the resin composition can be suppressed.
  • the upper limit of the particle diameter D 50 of the non-magnetic particles is, for example, 3.0 ⁇ m or less, preferably 2.5 ⁇ m or less, and more preferably 2.0 ⁇ m or less. As a result, resin burrs can be suppressed.
  • the above-mentioned particle size is a particle size preferable for preventing the above-mentioned "bleeding out", and is a particle size that easily flows together with the melt of the resin composition.
  • the cumulative 50% particle diameter D 50 value of the non-magnetic particles in the volume-based particle diameter distribution curve is preferably 3.0 ⁇ m or less and smaller than the D 50 of the magnetic particles, but the difference is 1 It is more preferably 0.0 ⁇ m or more, further preferably 1.5 ⁇ m or more, and particularly preferably 2.0 ⁇ m or more.
  • non-magnetic particles of various shapes can be used, it is preferable to use spherical particles from the viewpoint of suppressing an increase in the viscosity of the resin composition.
  • the average roundness of the non-magnetic particles (this definition is the same as that of the magnetic particles) is not particularly limited, but is preferably 0.50 to 1, preferably 0.75 to 1. Is more preferable.
  • the fluidity of the resin composition can be ensured by utilizing the rolling of the non-magnetic particles themselves, while the non-magnetic particles are easily clogged in gaps and the like, and the thermosetting resin It becomes easier to suppress exudation. That is, it is possible to achieve both the fluidity of the resin composition and the suppression of exudation of the thermosetting resin.
  • the non-magnetic particles may be surface-treated.
  • a method of treating the surface with a coupling agent may be used.
  • a coupling agent for example, a known coupling agent such as a silane-based coupling agent, a titanium-based coupling agent, an aluminum-based coupling agent, or a zirconium-based coupling agent may be used.
  • a silane-based coupling agent or a titanium-based coupling agent may be used.
  • the content of the non-magnetic particles is appropriately selected according to the specific gravity, but is preferably 0.1 to 5.0% by mass, preferably 0.5 to 5.0% by mass, based on the entire resin composition. 3.0% by mass is more preferable. As a result, deterioration of magnetic properties and generation of resin burrs can be suppressed.
  • the lower limit of the content of the non-magnetic particles is, for example, 1% by volume or more, preferably 1.5% by volume or more, more preferably 2 in the total 100% by volume of the non-magnetic particles and the magnetic particles in terms of volume. It is more than% by volume. As a result, the generation of resin burrs can be suppressed.
  • the lower limit of the content of the non-magnetic particles is, for example, 10% by volume or less, preferably 7% by volume or less, more preferably 7% by volume or less, based on 100% by volume of the total of the non-magnetic particles and the magnetic particles in terms of volume. It is 5% by volume or less. As a result, deterioration of magnetic characteristics can be suppressed.
  • the lower limit of the content of the non-magnetic particles and the magnetic particles is, in terms of volume, 60% by volume or more, preferably 70% by volume or more, more preferably 75% by volume or more in 100% by volume of the resin composition. Is. Thereby, the magnetic characteristics can be improved.
  • the upper limit of the contents of the non-magnetic particles and the magnetic particles is, in terms of volume, 95% by volume or less, preferably 85% by volume or less, more preferably 83% by volume in 100% by volume of the resin composition. It is as follows. As a result, the fluidity of the resin composition can be ensured, and a good molded product can be obtained.
  • the resin composition of the present embodiment may contain any component other than the thermosetting resin, the curing agent, the magnetic particles and the magnetic particles.
  • the optional components will be described.
  • the resin composition of the present embodiment may contain a mold release agent. Thereby, the releasability of the resin composition at the time of molding can be improved.
  • the release agent include natural waxes such as carnauba wax, synthetic waxes such as montanic acid ester wax and polyethylene oxide wax, higher fatty acids such as zinc stearate and their metal salts, and paraffin and the like. These may be used alone or in combination of two or more.
  • the content thereof is preferably 0.01 to 3% by mass, more preferably 0.05 to 2% by mass, based on the entire resin composition. As a result, the effect of improving the releasability can be surely obtained.
  • the resin composition of the present embodiment may contain a curing catalyst. Thereby, the curability of the resin composition can be improved.
  • any catalyst can be used as long as it accelerates the curing reaction of the epoxy resin.
  • a known epoxy curing catalyst can be used.
  • phosphorus atom-containing compounds such as organic phosphine, tetra-substituted phosphonium compound, phosphobetaine compound, adduct of phosphine compound and quinone compound, adduct of phosphonium compound and silane compound; imidazole such as 2-methylimidazole.
  • imidazole such as 2-methylimidazole.
  • kind imidazole-based curing catalyst
  • 1,8-diazabicyclo [5.4.0] Undecene-7, benzyldimethylamine and the like are exemplified.
  • Amidine and tertiary amine, and nitrogen atom-containing such as quaternary salt of amidine and amine. Compounds and the like can be mentioned.
  • a curing catalyst When a curing catalyst is used, only one type may be used, or two or more types may be used. When a curing catalyst is used, its content is preferably 0.01 to 1% by mass, more preferably 0.03 to 0.5% by mass, based on the entire resin composition. By setting such a numerical range, the effect of sufficiently improving the curability can be obtained.
  • the resin composition of the present embodiment may contain a thermoplastic resin from the viewpoint of adjusting fluidity and moldability.
  • thermoplastic resin examples include acrylic resin, polyamide resin (for example, nylon), thermoplastic urethane resin, polyolefin resin (for example, polyethylene, polypropylene, etc.), polycarbonate, polyester resin (for example, polyethylene terephthalate, polybutylene). (Telephthalate, etc.), polyacetal, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, fluororesin (for example, polytetrafluoroethylene, polyvinylidene fluoride, etc.), modified polyphenylene ether, polysulfone, polyether sulfone, polyarylate, polyamideimide, poly Examples thereof include etherimide and thermoplastic polypropylene.
  • thermoplastic resin When a thermoplastic resin is used, one type may be used alone, or two or more different types may be used in combination. Further, even if the same type of resin is used, two or more types having different weight average molecular weights may be used in combination. Further, a certain resin and its prepolymer may be used in combination. When a thermoplastic resin is used, the amount thereof is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on the entire resin composition. As a result, it is considered that the effect of adjusting the fluidity and moldability can be sufficiently obtained.
  • the resin composition of the present embodiment may contain components other than the above-mentioned components.
  • the resin composition of the present embodiment may contain a low stress agent, a coupling agent, an adhesion aid, a colorant, an antioxidant, an anticorrosion, a dye, a pigment, a flame retardant and the like.
  • low stress agent examples include silicone compounds such as polybutadiene compounds, acrylonitrile butadiene copolymer compounds, silicone oils, and silicone rubbers. When a low stress agent is used, only one type may be used, or two or more types may be used in combination.
  • the above-mentioned coupling agent used for surface treatment of magnetic particles can be used.
  • a silane-based coupling agent, a titanium-based coupling agent, a zirconia-based coupling agent, an aluminum-based coupling agent, and the like can be mentioned.
  • a coupling agent only one type may be used, or two or more types may be used in combination.
  • the minimum melt viscosity of the resin composition for forming a magnetic member when measured in the range of 80 ° C. to 250 ° C. is, for example, 50 Pa ⁇ s or more and 500 Pa ⁇ s or less, preferably 60 Pa ⁇ s or more and 450 Pa ⁇ s or less, preferably 70 Pa ⁇ s or more. -S or more and 400 Pa ⁇ s or less.
  • the melt viscosity By setting the melt viscosity to the above upper limit value or less, the fluidity can be enhanced and excellent moldability can be realized. Further, by setting the melt viscosity to the above lower limit value or more, it is possible to suppress the occurrence of resin leakage from the mold during compression molding, and it is possible to suppress the precipitation of the magnetic powder in the resin composition during compression molding. ..
  • the temperature at which the melt viscosity of the resin composition for forming a magnetic member is minimized when measured in the range of 80 ° C. to 250 ° C. is, for example, 100 ° C. or higher and 150 ° C. or lower, preferably 105 ° C. or higher and 145 ° C. or lower, more preferably. It is in the range of 110 ° C. or higher and 140 ° C. or lower. By setting it within such a range, it is possible to appropriately control the viscosity at the time of compression molding.
  • the resin composition of the present embodiment is solid at room temperature of 25 ° C.
  • the properties of the resin composition of this embodiment can be powdery, granular or the like.
  • each component is first mixed using a mixer, (2) then a kneaded product is obtained using a roll, and (3) the obtained kneaded product is cooled. It can be produced by post-crushing. (From the above, a powdery resin composition can be obtained.)
  • the resin composition of the present embodiment is molded into a desired shape by a compression molding method.
  • a compression molding apparatus the above-mentioned resin composition can be placed in a mold to obtain a cured magnetic member.
  • the molded product can be suitably used as a magnetic component or the like in an electric / electronic device. More specifically, the molded product is preferably used as a magnetic core of a coil (also called a reactor or an inductor depending on the application or purpose).
  • the preheating temperature is 60 to 100 ° C.
  • the heating temperature for melting is 150 to 200 ° C.
  • the mold temperature is 150 to 200 ° C.
  • the pressure for injecting the melt of the resin composition into the mold is 1 to 1 to 1. It can be adjusted appropriately between 20 MPa.
  • a magnetic member formed by the resin composition of the present embodiment (a magnetic member formed by curing the resin composition of the present embodiment) and a coil including the magnetic member as a magnetic core or an exterior member will be described. ..
  • FIG. 1A and 1 (b) are diagrams schematically showing a coil 100 (reactor) including a magnetic core composed of a cured product of the resin composition of the present embodiment.
  • FIG. 1A shows an outline of the coil 100 as viewed from above.
  • FIG. 1B shows a cross-sectional view taken along the line AA'in FIG. 1A.
  • the coil 100 can include a winding 10 and a magnetic core 20 as shown in FIG.
  • the magnetic core 20 is filled inside the winding 10 which is an air-core coil.
  • the pair of windings 10 shown in FIG. 1A are connected in parallel.
  • the annular magnetic core 20 has a structure that penetrates the inside of the pair of windings 10 shown in FIG. 1 (b).
  • These magnetic cores 20 and windings 10 can have an integrated structure.
  • the coil 100 may have a structure in which an insulator (not shown) is interposed between the winding 10 and the magnetic core 20 from the viewpoint of ensuring these insulations.
  • the winding 10 and the magnetic core 20 may be sealed by the exterior member 30 (sealing member).
  • the winding 10 and the magnetic core 20 are housed in a housing, a liquid resin is introduced therein, and the liquid resin is cured as necessary to surround the winding 10 and the magnetic core 20.
  • the exterior member 30 may be formed.
  • the winding 10 may have a drawing portion (not shown) in which the end portion of the winding is pulled out to the outside of the exterior member 30.
  • the winding 10 is usually configured by winding a winding having an insulating coating on the surface of a metal wire.
  • the metal wire preferably has high conductivity, and copper and copper alloys can be preferably used.
  • the insulating coating a coating such as enamel can be used. Examples of the cross-sectional shape of the winding include a circular shape, a rectangular shape, and a hexagonal shape.
  • the cross-sectional shape of the magnetic core 20 is not particularly limited, but for example, in cross-sectional view, it can be a circular shape or a polygonal shape such as a quadrangle or a hexagon.
  • a magnetic core 20 having excellent moldability and magnetic properties can be realized. That is, the coil 100 provided with the magnetic core 20 is expected to have good mass production suitability and a small iron loss. Further, since the magnetic core 20 having excellent mechanical properties can be realized, it is possible to improve the durability, reliability, and manufacturing stability of the coil 100. Therefore, the coil 100 can be used as a reactor for a booster circuit or a large current.
  • FIG. 2A shows an outline of the coil as seen from the upper surface of the coil 100B.
  • FIG. 2B shows a cross-sectional view taken along the line BB'in FIG. 2A.
  • the coil 100B may include a winding 10B and a magnetic core 20B, as shown in FIG.
  • the magnetic core 20B is filled inside the winding 10B which is an air-core coil.
  • the pair of windings 10B shown in FIG. 2A are connected in parallel.
  • the annular magnetic core 20B has a structure that penetrates the inside of the pair of windings 10B shown in FIG. 2B.
  • These magnetic cores 20B and windings 10B can be individually produced and have a combined structure in combination.
  • the coil 100B may have a structure in which an insulator (not shown) is interposed between the winding 10B and the magnetic core 20B from the viewpoint of ensuring these insulations.
  • the winding 10B and the magnetic core 20B are sealed by the exterior member 30B (sealing member).
  • the magnetic core 20B filled in the winding 10B is placed in a mold, and the resin composition of the present embodiment is used to mold the resin composition by compression molding or the like to cure the resin composition.
  • the exterior member 30B can be formed around the winding 10B and the magnetic core 20B.
  • the winding 10B may have a drawing portion (not shown) in which the end portion of the winding is pulled out to the outside of the exterior member 30B.
  • the winding 10B is usually composed of a structure in which a lead wire having an insulating coating on the surface of a metal wire is wound.
  • the metal wire preferably has high conductivity, and copper and copper alloys can be preferably used.
  • the insulating coating a coating such as enamel can be used. Examples of the cross-sectional shape of the winding 10B include a circular shape, a rectangular shape, and a hexagonal shape.
  • the cross-sectional shape of the magnetic core 20B is not particularly limited, but for example, in cross-sectional view, it can be a circular shape or a polygonal shape such as a quadrangle or a hexagon.
  • a powder iron core composed of a magnetic powder and a binder can be used.
  • the exterior member 30B having excellent moldability and magnetic properties can be realized, so that a low magnetic loss is expected in the coil 100B provided with the magnetic core 20B. Further, since the exterior member 30B having excellent mechanical characteristics can be realized, the durability, reliability, and manufacturing stability of the coil 100B can be improved.
  • FIG. 3A shows an outline of the structure seen from the upper surface of the integrated inductor 100C.
  • FIG. 3B shows a cross-sectional view taken along the line CC'in FIG. 3A.
  • the integrated inductor 100C can include a winding 10C and a magnetic core 20C.
  • the magnetic core 20C is filled inside C of the winding 10 which is an air-core coil.
  • the winding 10C and the magnetic core 20C are sealed by the exterior member 30C (sealing member).
  • the magnetic core 20C and the exterior member 30C can be made of a cured product of the resin composition of the present embodiment.
  • the magnetic core 20C and the exterior member 30C may be formed as seamless integral members.
  • the winding 10C is arranged in a mold, and the resin composition of the present embodiment is used to perform mold molding such as compression molding. Thereby, the resin composition can be cured to integrally form the magnetic core 20C filled in the winding 10C and the exterior member 30C around them.
  • the winding 10C may have a drawing portion (not shown) in which the end portion of the winding is pulled out to the outside of the exterior member 30C.
  • the winding 10C is usually composed of a structure in which a lead wire having an insulating coating on the surface of a metal wire is wound.
  • the metal wire preferably has high conductivity, and copper and copper alloys can be preferably used.
  • the insulating coating a coating such as enamel can be used. Examples of the cross-sectional shape of the winding 10C include a circular shape, a rectangular shape, and a hexagonal shape.
  • the cross-sectional shape of the magnetic core 20C is not particularly limited, but for example, in cross-sectional view, it can be a circular shape or a polygonal shape such as a quadrangle or a hexagon. Since the magnetic core 20C is composed of a compression molded product of the resin composition of the present embodiment, it can have a desired shape.
  • a magnetic core 20C and an exterior member 30C having excellent moldability and magnetic properties can be realized. Therefore, a low magnetic loss is expected in the integrated inductor 100C having these.
  • the exterior member 30C having excellent mechanical characteristics can be realized, it is possible to improve the durability, reliability, and manufacturing stability of the integrated inductor 100C. Therefore, the integrated inductor 100C can be used as an inductor for a booster circuit or a large current.
  • ⁇ Preparation of resin composition The magnetic particles were added to the non-magnetic particles and mixed, and the other components shown in Table 1 were mixed using a mixer according to the compounding ratio in Table 1 to obtain a mixture. The obtained mixture was roll-kneaded, and the obtained kneaded product was pulverized to obtain a powdery and granular resin composition.
  • the amount of each component shown in Table 1 is by mass. Specifically, the raw material components shown in Table 1 are as follows.
  • Epoxy resin 1 Epoxy resin represented by the following chemical formula (manufactured by Mitsubishi Chemical Corporation, product number E1032H60, solid at 25 ° C, ICI viscosity at 150 ° C: 650 mPa ⁇ s)
  • Epoxy resin 2 Epoxy resin represented by the following chemical formula (manufactured by Mitsubishi Chemical Corporation, product number YL6810, solid at 25 ° C, ICI viscosity at 150 ° C: 15 mPa ⁇ s)
  • (Curing catalyst) -Curing catalyst 1 Imidazole-based curing catalyst (Curesol 2PZ-PW, manufactured by Shikoku Chemicals Corporation)
  • Magnetic particles -Magnetic particle 1: Amorphous magnetic powder (manufactured by Epson Atmix Co., Ltd., KUAMET6B2, median diameter D 50 : 50 ⁇ m, Fe: 88% by mass, specific gravity: 6.9)
  • -Magnetic particle 2 Amorphous magnetic powder (manufactured by Epson Atmix Co., Ltd., AW2-08, median diameter D 50 : 3.4 ⁇ m, Fe: 88% by mass, specific gravity: 6.9)
  • Non-magnetic particles -Silica particles 1: Fine powder silica (spherical, fused silica, median diameter D 50 : 0.5 ⁇ m, specific gravity: 2.2) -Silica particles 2: Fine powder silica (spherical, fused silica, median diameter D 50 : 1.5 ⁇ m, specific gravity: 2.2) -Silica particles 3: Fine powder silica (spherical, fused silica, median diameter D 50 : 0.2 ⁇ m, specific gravity: 2.2) -Alumina particles 1: Fine powder alumina (spherical, median diameter D 50 : 0.2 ⁇ m, specific gravity: 3.7)
  • the median diameter of the particles was measured using a laser diffraction / scattering type particle size distribution measuring device.
  • the specific gravity was measured using a powder density meter by the vapor phase substitution method.
  • ⁇ Performance evaluation> The following evaluations were carried out for each resin composition.
  • compression moldability The obtained resin composition was subjected to a mold temperature of 175 ° C., a molding pressure of 9 MPa, and a curing time of 180 seconds using a compression molding machine (manufactured by TOWA Corporation, PMC1040) to obtain a substrate of length: 62 mm ⁇ width: 220 mm.
  • the molded product was taken out from the mold, and the state of the resin burrs flowing out from the end surface on the side surface side of the substrate was visually observed.
  • the case where no resin burr of 4 mm or more was generated was evaluated as ⁇ , and the case where resin burr of 4 mm or more was generated was evaluated as x.
  • the obtained resin composition was injection-molded using a low-pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds.
  • KTS-30 low-pressure transfer molding machine
  • a columnar molded product having a diameter of 16 mm and a height of 32 mm was obtained.
  • the obtained molded product was post-cured at 175 ° C. for 4 hours to prepare a test piece for evaluating the saturation magnetic flux density.
  • the obtained resin composition was injection-molded using a low-pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds.
  • KTS-30 low-pressure transfer molding machine
  • a columnar molded product having a diameter of 16 mm and a height of 32 mm was obtained.
  • the obtained molded product was post-cured at 175 ° C. for 4 hours to prepare a test piece for evaluating specific magnetic permeability.
  • the obtained resin composition was injection-molded using a low-pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds.
  • KTS-30 low-pressure transfer molding machine
  • a ring-shaped molded product having a diameter of 27 mm ⁇ , an inner diameter of 15 mm ⁇ and a thickness of 3 mm was obtained.
  • the obtained molded product was post-cured at 175 ° C. for 4 hours to prepare a ring-shaped test piece.
  • the obtained ring-shaped test piece was subjected to hysteresis loss Wh (kW / m 3 ) and eddy current loss We (kW / m 3 ) at an excitation magnetic flux density Bm: 50 mT and a measurement frequency: 20 kHz.
  • the measurement was performed, and the hysteresis loss Wh + the eddy current loss We was calculated as the iron loss (kW / m 3 ).
  • Example 1 (Minimum melt viscosity) The resin composition of Example 1 was melted at 80 ° C. to 250 ° C. under the conditions of a heating rate of 10 ° C./min and a frequency of 1 Hz using a rheometer (“HAAKEMARS III” manufactured by Thermo Fisher Scientific Co., Ltd.). The viscosity (Pa ⁇ s) was measured. As a result, the minimum melt viscosity of Example 1 was 150 Pa ⁇ s at 136 ° C.
  • the resin compositions of Examples 1 to 3 showed results that the generation of resin burrs during compression molding could be suppressed as compared with Comparative Example 1, it was found that they are suitably used for compression molding. Further, the molded product obtained by compression molding the resin compositions of Examples 1 to 3 exhibited a relative magnetic permeability and iron loss at a level that would not cause any problem in practical use, and thus can be used as a magnetic member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Soft Magnetic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明の磁性部材形成用樹脂組成物は、25℃で固体であり、圧縮成形に用いる磁性部材形成用樹脂組成物であって、熱硬化性樹脂と、磁性体粒子と、当該磁性体粒子に比べて、比重が小さく、かつ、累積50%粒子径D50が小さい非磁性体粒子と、を含むものである。

Description

磁性部材形成用樹脂組成物、及び磁性部材の製造方法
 本発明は、磁性部材形成用樹脂組成物、及び磁性部材の製造方法に関する。
 これまで磁性部材形成用樹脂組成物の成形方法について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、磁性粉末に有機樹脂を混合し、得られた混合物を射出成形またはトランスファー成形することが記載されている(特許文献1の請求項1,11など)。
特開2002-313632号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の磁性粉末と有機樹脂とを混合してなる組成物において、圧縮成形時における樹脂バリの点で改善の余地があることが判明した。
 磁性体粒子と熱硬化性樹脂とを含む磁性部材形成用樹脂組成物の成形方法としては、上述の通り、トランスファー成形が一般的である。
 ただし、トランスファー成形には材料ロスが生じるため、他の成形手段の検討が必要とされている。他の技術分野では、他の成形手段として圧縮成形が知られている。圧縮成形には、一般的に高い圧力が必要とされることが多いため、磁性部材形成用樹脂組成物の技術分野では使用は難しいと考えられてきた。このため、磁性部材形成用樹脂組成物の技術分野において、圧縮成形について十分な検討がなされていなかった。
 そこで、本発明者が圧縮成形の検討を進めた結果、実際には、それほど高い圧力を用いなくとも、トランスファー成形時と同程度の低い圧力を用いても、磁性部材形成用樹脂組成物の成形が可能であることが判明した。
 しかしながら、磁性体粒子と熱硬化性樹脂とを含む磁性部材形成用樹脂組成物を圧縮成形したときに、樹脂バリが発生することがあった。
 これに対して、本発明者はさらに検討したところ、磁性体粒子に比べて、比重が小さく、かつ、累積50%粒子径D50が小さい非磁性体粒子を併用することで、圧縮成形における樹脂バリを低減できるため、圧縮成形に好適な磁性部材形成用樹脂組成を実現できることを見出し、本発明を完成するに至った。
 本発明によれば、
 圧縮成形に用いる磁性部材形成用樹脂組成物であって、
 熱硬化性樹脂と、
 磁性体粒子と、
 前記磁性体粒子に比べて、比重が小さく、かつ、累積50%粒子径D50が小さい非磁性体粒子と、
を含み、
 25℃で固体である、磁性部材形成用樹脂組成物が提供される。
 また本発明によれば、
 圧縮成形装置を用いて、上記の磁性部材形成用樹脂組成物を金型中に配置し、前記磁性部材形成用樹脂組成物が硬化した磁性部材を得る、磁性部材の製造方法が提供される。
 本発明によれば、圧縮成形時における樹脂バリが抑制された磁性部材形成用樹脂組成物、及びそれを用いた磁性部材の製造方法が提供される。
磁性コアを備えるコイルを模式的に示す図である。 磁性コアを備えるコイル(図1のものとは別の態様)を模式的に示す図である。 一体型インダクタを模式的に示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
 本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。
 本実施形態の磁性部材形成用樹脂組成物の概要を説明する。
 本実施形態の磁性部材形成用樹脂組成物は、圧縮成形に用いる磁性部材形成用樹脂組成物であって、熱硬化性樹脂と、磁性体粒子と、磁性体粒子に比べて、比重が小さく、かつ、累積50%粒子径D50が小さい非磁性体粒子と、を含む。磁性部材形成用樹脂組成物は、25℃で固体である。
 本発明者の知見によれば、磁性体粒子に比べて、比重が小さく、かつ、累積50%粒子径D50が小さい非磁性体粒子を併用することによって、圧縮成形時における樹脂バリを抑制できるため、圧縮成形に好適な磁性部材形成用樹脂組成物を実現できる。
 詳細なメカニズムは定かでないが、低比重・小粒子径の非磁性体粒子は、圧縮成形時において、金型からベントに向かって、磁性体粒子に比べて流れ出やすいため、ベント中における溶融物中に非磁性体粒子が適度に分散される。非磁性体粒子が分散された溶融物は、粘度やチキソ性が高くなるため、ベントから流れ出に難くなるため樹脂バリが抑制されると、考えられる。一方で、磁性体粒子は金型中の溶融物に残存するため、その硬化物で構成された磁性部材において、鉄損や比透磁率などの磁気特性が十分に得られる、と考えられる。
 本実施形態の磁性部材形成用樹脂組成物を用いることによって、圧縮成形時における樹脂バリの発生を抑制できる。樹脂バリを低減することで、連続成形性を高めることが可能である。また、磁気特性に優れた磁性部材を成形できる。
 また、磁性部材の製造工程において、トランスファー成形と比べて、材料ロスを低減できる。また、圧縮成形による磁性部材の製造工程において、低圧成形が可能であり、磁性体粒子の高充填化が比較的に容易である。
 本実施形態の磁性部材は、各種用途に用いることができるが、たとえば、電気・電子デバイス中の磁性部品などとして好適に用いることができる。より具体的には、コイルの磁性コアなどとして好適に用いられる。
<樹脂組成物>
 本実施形態の樹脂組成物が含むことができる成分について説明する。
 樹脂組成物は、熱硬化性樹脂と磁性体粉末とを含む。
(熱硬化性樹脂)
 上記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ユリア(尿素)樹脂、メラミン樹脂、ポリウレタン樹脂、シアネートエステル樹脂、シリコーン樹脂、オキセタン樹脂(オキセタン化合物)、(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ベンゾオキサジン樹脂等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。耐熱性の観点から、例えば、エポキシ樹脂を用いてもよい。
(エポキシ樹脂)
 本実施形態の樹脂組成物は、エポキシ樹脂を含んでもよい。
 エポキシ樹脂は、エポキシ基を含む限り任意のものであってよい。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂等のエポキシ樹脂を挙げることができる。
 エポキシ樹脂は、室温(25℃)において半硬化(固形)状のものであってもよい。
 エポキシ樹脂は、分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂、及び/又は150℃のICI粘度が0.1~50mPa・sの低粘度エポキシ樹脂を含んでもよい。
 特に、エポキシ樹脂は、多官能エポキシ樹脂の一例としてトリスフェニルメタン構造を含むエポキシ樹脂および、低粘度エポキシ樹脂の一例としてビスフェノール構造を含むエポキシ樹脂からなる群より選ばれる少なくともいずれかを含むことが好ましい。これらエポキシ樹脂の構造の適度な剛直性により、硬化挙動をより適切なものとしやすく、ひいては成形性を一層向上できると考えられる。
(エポキシ樹脂(A1))
 本実施形態の樹脂組成物は、トリアリールメタン骨格を有するエポキシ樹脂(A1)(単に「エポキシ樹脂(A1)」とも表記する)を含んでもよい。
 「トリアリールメタン骨格を有する」とは、具体的には、メタン(CH)の4つの水素原子のうちの3つが芳香環で置換された部分構造を含む。ここでの「芳香環」は、ベンゼン環やナフタレン環などのベンゼン系芳香環であってもよいし、フラン、チオフェン、ピロール、ピラゾール、イミダゾール、ピリジン、ピリダジン、ピリミジン、ピラジン等の複素芳香環であってもよい。また、3つの芳香環は、同一のものであっても異なっていてもよい。
 ただし、コストの観点や、成形物(磁性部材)の機械特性などの観点からは、芳香環は、ベンゼン環やナフタレン環などのベンゼン系芳香環であることが好ましい。また、3つの芳香環は同一であることが好ましい。
 エポキシ樹脂(A1)は、好ましくは、以下一般式(a1)で表される構造単位を有する。一般式(a1)で表される構造単位が2つ以上連なることで、トリアリールメタン骨格(トリフェニルメタン骨格)が構成される。
 エポキシ樹脂(A1)として、一般式(a1)で表される構造単位を有するものを用いることで、特に、磁性部材を形成したときの良好な耐熱性の効果をより確実に得ることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(a1)において、
 R11は、複数ある場合はそれぞれ独立に、1価の置換基を表し、
 R12は、複数ある場合はそれぞれ独立に、1価の置換基を表し、
 iは、0~3の整数であり、
 jは、0~4の整数である。
 R11およびR12の1価の置換基としては、1価の有機基、ハロゲン原子、ヒドロキシ基、シアノ基等を挙げることができる。
 1価の有機基の例としては、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、アルコキシ基、ヘテロ環基、カルボキシル基などを挙げることができる。1価の有機基の炭素数は、例えば1~30、好ましくは1~20、より好ましくは1~10、更に好ましくは1~6である。
 アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。
 アルケニル基の例としては、アリル基、ペンテニル基、ビニル基などが挙げられる。
 アルキニル基の例としては、エチニル基などが挙げられる。
 アルキリデン基の例としては、メチリデン基、エチリデン基などが挙げられる。
 アリール基の例としては、トリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基が挙げられる。
 アラルキル基の例としては、ベンジル基、フェネチル基などが挙げられる。
 アルカリル基の例としては、トリル基、キシリル基などが挙げられる。
 シクロアルキル基の例としては、アダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。
 アルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。
 ヘテロ環基の例としては、エポキシ基、オキセタニル基などが挙げられる。
 iおよびjは、それぞれ独立に、好ましくは0~2であり、より好ましくは0~1である。
 一態様として、iおよびjはともに0である。つまり、一態様として、一般式(a1)中のベンゼン環の全ては、1価の置換基としては、明示されたグリシジルオキシ基以外の置換基を有しない。
 エポキシ樹脂(A1)の数平均分子量は、特に限定されないが、典型的には200~700程度である。なお、数平均分子量は、通常、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
(エポキシ樹脂(A2))
 本実施形態の樹脂組成物は、以下一般式(a2-1)で表される構造単位を有するエポキシ樹脂および以下一般式(a2-2)で表される構造のビスフェノール型エポキシ樹脂からなる群より選択される少なくとも一種のエポキシ樹脂(A2)(単に「エポキシ樹脂(A2)」とも表記する)を含んでもよい。
Figure JPOXMLDOC01-appb-C000002
 一般式(a2-1)中、
 Cyは脂環構造を含む2価の有機基を表し、
 R21は、複数ある場合はそれぞれ独立に、1価の置換基を表し、
 lは、0~3の整数である。
Figure JPOXMLDOC01-appb-C000003
 一般式(a2-2)中、
 2つのRはそれぞれ独立に、水素原子またはメチル基であり、
 R22は、複数ある場合はそれぞれ独立に、1価の置換基を表し、
 R23は、複数ある場合はそれぞれ独立に、1価の置換基を表し、
 pおよびqは、それぞれ独立に、0~4の整数である。
 一般式(a2-1)におけるCyが含む脂環構造は、特に限定されず、単環構造であっても多環構造であってもよい。溶融時の適度な粘度や、得られる磁性部材の機械物性などの観点からは、多環構造を含むことが好ましい。
 Cyの炭素数は、典型的には5~20、好ましくは6~18、より好ましくは6~15である。
 脂環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロドデカン環などの単環の脂環(3~15員、好ましくは5~6員程度のシクロアルカン環等)を挙げることができる。
 また、デカリン環(パーヒドロナフタレン環)、パーヒドロインデン環(ビシクロ[4.3.0]ノナン環)、パーヒドロアントラセン環、パーヒドロフルオレン環、パーヒドロフェナントレン環、パーヒドロアセナフテン環、パーヒドロフェナレン環、ノルボルナン環(ビシクロ[2.2.1]ヘプタン環)、イソボルナン環、アダマンタン環、ビシクロ[3.3.0]オクタン環、トリシクロ[5.2.1.02,6]デカン環、トリシクロ[6.2.1.02,7]ウンデカン環などの、多環の脂環(橋架け炭素環)も挙げることができる。なお、「多環」とは、好ましくは2~4環程度のことをいう。
 Cyは、例えばこれらの単環または多環の脂環から2つの水素原子を除いた2価の基であることができる。
 Cyが含む脂環構造は、置換基を有していてもいなくてもよい。例えば、脂環構造中の水素原子の1つ以上が、任意の置換基により置換されていてもよい。置換基としては、例えば、一般式(a1)におけるR11およびR12の1価の置換基として説明したものを挙げることができる。
 また、Cyは、カルボニル構造(=O)などを含んでいてもよい。
 なお、Cyは、脂環構造そのものであってもよいし、脂環構造とその他の構造を有していてもよい。例えば、脂環構造は、直接(単結合により)ベンゼン環に結合していてもよいし、任意の連結基を介してベンゼン環に結合していてもよい。
 後者の場合をより具体的に説明すると、一般式(a2-1)の-Cy-の部分は、-Cy'-L-と表すことができる。ここで、Cy'は脂環(具体例としては前掲の単環または多環の脂環)、Lは2価の連結基である。Lの2価の連結基としては、アルキレン基(例えば炭素数1~6)、シクロアルキレン基、エーテル基、カルボニル基、エステル基、これらの2つ以上が連結した基などを挙げることができる。
 一般式(a2-1)におけるR21の1価の置換基の具体例としては、一般式(a1)におけるR11およびR12の1価の置換基として説明したものと同様のものを挙げることができる。
 一般式(a2-1)において、lは、好ましくは0~2、より好ましくは0~1である。
 一態様として、lは0である。つまり、一態様として、一般式(a2-1)中のベンゼン環は、1価の置換基としては、明示されたグリシジルオキシ基以外の置換基を有しない。
 一般式(a2-2)におけるR22およびR23の1価の置換基の具体例としては、一般式(a1)におけるR11およびR12の1価の置換基として説明したものと同様のものを挙げることができる。ここで、R22およびR23の1価の置換基としては、アルキル基が好ましく、直鎖または分枝状の炭素数1~6のアルキル基がより好ましく、メチル基が特に好ましい。
 一般式(a2-2)におけるpおよびqは、それぞれ独立に、好ましくは0~3、より好ましくは0~2である。
 なお、溶融時の適度な流動性の観点などから、2つのRがメチル基である場合には、pおよびqは好ましくは0であり、2つのRが水素原子である場合には、pおよびqは好ましくは1または2である。
 一般式(a2-1)で表される構造単位を有するエポキシ樹脂の数平均分子量(GPC測定による標準ポリスチレン換算値)は、特に限定されないが、例えば200~400である。
 ビフェニル構造を含むエポキシ樹脂とは、具体的には、2つのベンゼン環が単結合で連結している構造を含むエポキシ樹脂のことである。ここでのベンゼン環は、置換基を有していてもいなくてもよい。
 具体的には、ビフェニル構造を含むエポキシ樹脂は、以下一般式(BP)で表される部分構造を有する。
Figure JPOXMLDOC01-appb-C000004
 一般式(BP)において、
 RおよびRは、複数ある場合はそれぞれ独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 rおよびsは、それぞれ独立に、0~4であり、
 *は、他の原子団と連結していることを表す。
 RおよびRの1価の有機基の具体例としては、後述の一般式(AM)におけるR、RおよびRの1価の有機基として列挙されているものを挙げることができる。
 rおよびsは、それぞれ独立に、好ましくは0~2であり、より好ましくは0~1である。一態様として、rおよびsはともに0である。
 より具体的には、ビフェニル構造を含むエポキシ樹脂は、以下一般式(BP1)で表される構造単位を有する。
Figure JPOXMLDOC01-appb-C000005
 一般式(BP1)において、
 RおよびRの定義および具体的態様は、一般式(BP)と同様であり、
 rおよびsの定義および好ましい範囲は、一般式(BP)と同様であり、
 Rは、複数ある場合はそれぞれ独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 tは、0~3の整数である。
 Rの1価の有機基の具体例としては、後述の一般式(AM)におけるR、RおよびRの1価の有機基として列挙されているものを挙げることができる。
 tは、好ましくは0~2であり、より好ましくは0~1である。
 本実施形態の樹脂組成物は、エポキシ樹脂として150℃でのICI粘度が低いものを含んでもよい。
 樹脂組成物は、150℃でのICI粘度が、より好ましくは0.1~50mPa・s、さらに好ましくは0.5~45mPa・s、特に好ましくは1~40mPa・sのエポキシ樹脂を含んでもよい。このような数値範囲のICI粘度を有するエポキシ樹脂として、エポキシ樹脂(A2)が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 ICI粘度の測定装置としては、エム.エス.ティー.エンジニアリング株式会社などのICIコーンプレート粘度計を使用することができる。
 エポキシ樹脂の分子量(数平均分子量)は、特に限定されないが、例えば100~3,000、好ましくは100~2,000、より好ましくは100~1,000程度である。
 本実施形態の樹脂組成物は、エポキシ樹脂を1種のみ含んでもよいし、2種類以上含んでもよい。また、同種のエポキシ樹脂であっても異なる重量平均分子量のものを併用してもよい。
 樹脂組成物中のエポキシ樹脂の量は、樹脂組成物全体を基準として、例えば0.1~20質量%であり、好ましくは0.5~10質量%である。
 また、エポキシ樹脂の含有量は、樹脂組成物全体を基準として、例えば1~30体積%であり、好ましくは5~25体積%である。
 エポキシ樹脂(A1)とエポキシ樹脂(A2)の量比を適切に調整することで、耐熱性、成形性および耐ブロッキング性の鼎立をより高度なレベルで実現することができる。
 具体的には、エポキシ樹脂(A1)が有するエポキシ基のモル数をMとし、エポキシ樹脂(A2)が有するエポキシ基のモル数をMとしたとき、M/Mの値は、例えば、0.2~1.8、好ましくは0.5~1.5、より好ましくは0.6~1.4、さらに好ましくは0.8~1.2である。
 なお、M/Mの値は、エポキシ樹脂(A1)およびエポキシ樹脂(A2)の分子量やエポキシ当量などから、モル計算により求めることができる。
 また、樹脂組成物が多官能エポキシ樹脂及びビスフェノール型エポキシ樹脂を含む場合、上記M/M中、Mは多官能エポキシ樹脂が有するエポキシ基のモル数とし、Mは、ビスフェノール型エポキシ樹脂が有するエポキシ基のモル数としてよい。
 樹脂組成物中の、エポキシ樹脂(A1)およびエポキシ樹脂(A2)の合計量は、樹脂組成物全体を基準として、例えば0.1~20質量%であり、好ましくは0.5~10質量%である。
 樹脂組成物中の、エポキシ樹脂(A1)およびエポキシ樹脂(A2)の合計量は、樹脂組成物全体を基準として、例えば1~30体積%であり、好ましくは5~25体積%である。
 このような数値範囲とすることにより、成形性を一層向上させることができ、得られる硬化物(磁性部材)の機械特性や磁気特性を一層向上させることができる。
 本実施形態の樹脂組成物は、硬化剤を含んでもよい。硬化剤は、熱硬化性樹脂と反応するものであれば特に限定されない。熱硬化性樹脂としてエポキシ樹脂が用いられる場合、硬化剤は、たとえば、フェノール樹脂または芳香族ジアミンを用いてもよい。
(フェノール系硬化剤)
 本実施形態の樹脂組成物は、フェノール系硬化剤を含んでもよい。
 フェノール系硬化剤は、フェノール性ヒドロキシ基を含み、エポキシ樹脂(A1)および/またはエポキシ樹脂(A2)と反応しうるものである限り、特に限定されない。フェノール系硬化剤は、低分子であっても高分子であってもよい。
 本実施形態の樹脂組成物は、トリアリールメタン骨格を有するエポキシ樹脂(A1)と、上記一般式(a2-1)で表される構造単位を有するエポキシ樹脂および上記一般式(a2-2)で表される構造のエポキシ樹脂からなる群より選択される少なくとも一種のエポキシ樹脂(A2)と、フェノール系硬化剤(B)とを含んでもよい。
 フェノール系硬化剤は、好ましくは、ビフェニル骨格、ノボラック骨格、及びトリフェニルメタン骨格からなる群より選ばれるいずれかの骨格を含む。フェノール系硬化剤がこれらの骨格のいずれかを含むことで、特に磁性部材の耐熱性を高めることができる。
 「ビフェニル骨格」とは、2つのベンゼン環が単結合を介して連結された骨格のことを言う。より具体的には以下一般式(BP)で表される骨格である。
Figure JPOXMLDOC01-appb-C000006
 一般式(BP)において、
 RおよびRは、複数ある場合はそれぞれ独立に、1価の置換基を表し、
 rおよびsは、それぞれ独立に、0~4であり、
 *は、他の原子団と連結していることを表す。
 RおよびRの1価の置換基の具体例としては、一般式(a1)におけるR11およびR12の1価の置換基として説明したものと同様のものを挙げることができる。
 rおよびsは、それぞれ独立に、好ましくは0~2であり、より好ましくは0~1である。一態様として、rおよびsはともに0である。
 ビフェニル骨格を有するフェノール系硬化剤として、具体的には以下一般式(BP1)で表される構造単位を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-C000007
 一般式(BP1)において、
 RおよびRの定義および具体例は、一般式(BP)と同様であり、
 rおよびsの定義および好ましい範囲は、一般式(BP)と同様であり、
 Rは、複数ある場合はそれぞれ独立に、1価の置換基を表し、
 tは、0~3の整数である。
 Rの1価の置換基の具体例としては、一般式(a1)におけるR11およびR12の1価の置換基として説明したものと同様のものを挙げることができる。
 tは、好ましくは0~2であり、より好ましくは0~1である。
 ノボラック骨格を有するフェノール系硬化剤として、具体的には以下一般式(N)で表される構造単位を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 一般式(N)において、
 Rは、1価の置換基を表し、
 uは、0~3の整数である。
 Rの1価の置換基の具体例としては、一般式(a1)におけるR11およびR12の1価の置換基として説明したものと同様のものを挙げることができる。
 uは、好ましくは0~2であり、より好ましくは0~1であり、更に好ましくは0である。
 フェノール系硬化剤が高分子またはオリゴマーである場合、フェノール系硬化剤の数平均分子量(GPC測定による標準ポリスチレン換算値)は、特に限定されないが、例えば200~800程度である。
 樹脂組成物中のフェノール系硬化剤の含有量は、樹脂組成物全体を基準として、例えば0.1~20質量%、好ましくは0.5~10質量%である。
 また、樹脂組成物中のフェノール系硬化剤の含有量は、樹脂組成物全体を基準として、例えば、1~30体積%、好ましくは5~25体積%である。
 フェノール系硬化剤の量を適切に調整することにより、成形性を一層向上させることができ、得られる硬化物(磁性部材)の機械特性や磁気特性を向上させることができる。
(芳香族ジアミン)
 本実施形態の樹脂組成物は、芳香族ジアミンを含んでもよい。
 芳香族ジアミンとしては、一分子中に、1つ以上の芳香環構造と2つのアミノ基(-NH)を有する化合物であれば、特に限定なく用いることができる。芳香族ジアミンとして好ましくは、アミノ基が芳香環に直結している構造を有するものである。
 エポキシ樹脂と、芳香族ジアミンと、磁性体粒子とを含む樹脂組成物により、成形性と耐熱性の両方を良好とできる理由は、必ずしも明らかではないが、おそらくは、(1)エポキシ樹脂が有するエポキシ基と、芳香族ジアミンのアミノ基との反応速度が適当であることにより適度な流動性が得られることと、(2)溶融した樹脂組成物が硬化した後においては、エポキシ樹脂-芳香族ジアミンの架橋構造や芳香族ジアミン自体の剛直な芳香環骨格等によりガラス転移温度が高くなる(硬化物中の分子の熱運動が制限される)ことが関係していると推定される。
 なお、この推定により本発明が限定されるものではない。
 芳香族ジアミンの選択にあたっては、融点を1つの参考とすることができる。適当な融点の芳香族ジアミンを用いることで、樹脂組成物の混練/成形の際に、芳香族ジアミンが適切に溶融する。これにより、流動性をより良好とすることができる。また、樹脂組成物をより均一に混練できることとなるため、最終的に得られる硬化物(磁性部材)の耐熱性や機械物性(強度など)を高められるとも考えられる。
 具体的には、芳香族ジアミンの融点は、好ましくは160℃以下、より好ましくは150℃以下、さらに好ましくは140℃以下である。
 芳香族ジアミンの融点の下限値は特にないが、例えば60℃以上、好ましくは70℃以上、より好ましくは80℃以上である。
 なお、芳香族ジアミンとして市販品を用いる場合、融点についてはカタログ値を採用することができる。
 ちなみに、芳香族ジアミンは、常温(25℃)において固体であり、液体ではないことが好ましい。また、本実施形態の樹脂組成物は、芳香族ジアミン以外のアミン化合物を含んでもよいが、そのアミン化合物も、常温(25℃)においては固体であり、液体ではないことが好ましい。
 本実施形態の樹脂組成物は、典型的には粒状やタブレット状に調製される。その調製のやりやすさや、調製により得られた粒状またはタブレット状の樹脂組成物の取り扱い性の観点などから、芳香族ジアミン(および、場合によっては芳香族ジアミン以外のアミン化合物)は、常温で固体であることが好ましい。
 樹脂組成物は、芳香族ジアミンとして、以下一般式(AM)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(AM)において、
 Xは、複数存在する場合はそれぞれ独立に、単結合、直鎖または分岐のアルキレン基、エーテル基、カルボニル基、エステル基およびこれらのうち2以上が連結された基からなる群より選択されるいずれかの基であり、
 Yは、単結合、直鎖または分岐のアルキレン基、エーテル基、カルボニル基、エステル基およびこれらのうち2以上が連結された基からなる群より選択されるいずれかの基であり、
 R、RおよびRは、複数存在する場合はそれぞれ独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 k、lおよびmは、それぞれ独立に、0~4の整数であり、
 nは、0以上の整数である。
 XおよびYの直鎖または分岐のアルキレン基としては、炭素数1~6のものが好ましく、炭素数1~3のものがより好ましい。
 なお、XおよびYの一部または全部が分岐のアルキレン基であることにより、芳香族ジアミンの骨格を適度に剛直とすることができる。このことは、上述の「融点」を適切とすることとも関連すると考えられる。また、芳香族ジアミンの骨格が適度に剛直であることで、硬化物(磁性部材)の耐熱性の一層の向上、機械強度の向上などの効果も得られると考えられる。
 R、RおよびRの1価の有機基としては、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、アルコキシ基、ヘテロ環基、カルボキシル基などを挙げることができる。
 アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。
 アルケニル基としては、例えばアリル基、ペンテニル基、ビニル基などが挙げられる。
 アルキニル基としては、例えばエチニル基などが挙げられる。
 アルキリデン基としては、例えばメチリデン基、エチリデン基などが挙げられる。
 アリール基としては、例えばトリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基が挙げられる。
 アラルキル基としては、例えばベンジル基、フェネチル基などが挙げられる。
 アルカリル基としては、例えばトリル基、キシリル基などが挙げられる。
 シクロアルキル基としては、例えばアダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。
 ヘテロ環基としては、例えばエポキシ基、オキセタニル基などが挙げられる。
 R、RおよびRの1価の有機基の総炭素数は、それぞれ、例えば1~30、好ましくは1~20、より好ましくは1~10、特に好ましくは1~6である。
 k、lおよびmは、それぞれ独立に、好ましくは0または1の整数である。
 一態様として、k、lおよびmは、全て0である。つまり、一態様として、一般式(AM)中のベンゼン環の全ては、アミノ基以外の原子団により置換されていない。
 nは、好ましくは0~3、より好ましくは0~2である。
 芳香族ジアミンの具体例を以下に示す。なお、芳香族ジアミンは以下にのみ限定されるものではない。また、当然ながら、後述の実施例で用いられている1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼンなどを挙げることもできる。
Figure JPOXMLDOC01-appb-C000010
 芳香族ジアミンについては、市販品を用いてもよい。芳香族ジアミンは、例えば、セイカ株式会社、三井化学ファイン株式会社、富士フイルム和光純薬株式会社などから入手することができる。
 本実施形態の樹脂組成物は、芳香族ジアミンを1種のみ含んでもよいし、2種以上含んでもよい。
 樹脂組成物中の芳香族ジアミンの量は、樹脂組成物全体を基準として、例えば0.1~20質量%、好ましくは0.5~10質量%である。
 また、樹脂組成物中の芳香族ジアミンの量は、樹脂組成物全体を基準として、例えば1~30体積%、好ましくは5~25体積%である。このような数値範囲とすることにより、成形性および機械的特性を向上させることができる。
 なお、組成物中の芳香族ジアミンの量は、エポキシ樹脂との関係で適切に調整されることが好ましい。
 具体的には、芳香族ジアミンが有するアミノ基のモル数に対する、エポキシ樹脂が有するエポキシ基のモル数の比(つまり、エポキシ樹脂が有するエポキシ基のモル数/芳香族ジアミンが有するアミノ基のモル数)が、好ましくは1~3、より好ましくは1.5~2.5、さらに好ましくは1.7~2.3である。
 1つのアミノ基(-NH)は、2つのエポキシ基と反応しうる。よって、上述の比が2前後となるようにエポキシ樹脂と芳香族ジアミンの量比を調整することで、硬化時のアミノ基とエポキシ基の架橋構造がより密とすることができると考えられる。そして、硬化物(磁性部材)のガラス転移温度を高め、耐熱性を高めることができると考えられる。
 なお、上述の比は、組成物中に含まれるエポキシ樹脂のエポキシ当量またはエポキシ価、エポキシ樹脂の分子量(これらは通常エポキシ樹脂のカタログに示されている)、芳香族ジアミンの分子量などから計算して求めることができる。
(磁性体粒子)
 本実施形態の樹脂組成物は、磁性体粒子を含む。
 磁性体粒子としては、本実施形態の樹脂組成物を用いて作製した成形物が磁性を示す限りにおいて、任意のものを用いることができる。
 磁性体粒子は、好ましくは、Fe、Cr、Co、Ni、AgおよびMnからなる群より選択される1種または2種以上の元素を含む。これらの磁性体粒子のいずれかを選択することで、磁気特性をより高めることができる。
 特に、磁性体粒子としてFeを85質量%以上含むものを用いることで、磁気特性を一層高めることができる。
 本実施形態では、磁性体粒子は、鉄基粒子を含む。
 なお、鉄基粒子とは、鉄原子を主成分とする(化学組成において鉄原子の含有質量が一番多い)粒子のことを言い、より具体的には化学組成において鉄原子の含有質量が一番多い鉄合金のことをいう。
 鉄基粒子は、鉄基アモルファス粒子を含むものであればよく、鉄基アモルファス粒子のみで構成されてもよいが、鉄基アモルファス粒子および鉄基結晶粒子を含んでもよい。また、鉄基粒子としては、1種の化学組成からなるものを用いてもよいし、異なる化学組成のものを2種以上併用してもよい。
 鉄基粒子としてより具体的には、軟磁性を示し、鉄原子(Fe)の含有率が85質量%以上である粒子(軟磁性鉄高含有粒子)を用いることができる。なお、軟磁性とは、保磁力が小さい強磁性のことを指し、一般的には、保磁力が800A/m以下である強磁性のことを軟磁性という。
 このような粒子の構成材料としては、構成元素としての鉄の含有率が85質量%以上である金属含有材料が挙げられる。このように構成元素としての鉄の含有率が高い金属材料は、透磁率や磁束密度等の磁気特性が比較的良好な軟磁性を示す。このため、成形されたとき、良好な磁気特性を示し得る樹脂組成物が得られる。
 上記の金属含有材料の形態としては、例えば、単体の他、固溶体、共晶、金属間化合物のような合金等が挙げられる。このような金属材料で構成された粒子を用いることにより、鉄に由来する優れた磁気特性、すなわち、高透磁率や高磁束密度等の磁気特性を有する樹脂組成物を得ることができる。
 また、上記の金属含有材料は、構成元素として鉄以外の元素を含んでいてもよい。鉄以外の元素としては、例えば、B、C、N、O、Al、Si、P、S、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Cd、In、Sn等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いられる。
 上記の金属含有材料の具体例としては、例えば、純鉄、ケイ素鋼、鉄-コバルト合金、鉄-ニッケル合金、鉄-クロム合金、鉄-アルミニウム合金、カルボニル鉄、ステンレス鋼、またはこれらのうちの1種もしくは2種以上を含む複合材料等が挙げられる。入手性、磁気特性などの観点からケイ素鋼粉末を好ましく用いることができる。
 上記では鉄基粒子を中心に説明したが、もちろん、磁性体粒子はそれ以外の粒子であってもよい。例えば、Ni基軟磁性粒子、Co基軟磁性粒子等を含む磁性体粒子であってもよい。
 また、磁性体粒子は、表面処理が施されていてもよい。例えば、表面をカップリング剤で処理したり、プラズマ処理したりすることが挙げられる。このような表面処理により、磁性体粒子の表面に官能基を結合させることが可能である。官能基は、これらの粒子表面の一部または全面を被覆することができる。
 このような官能基としては、下記一般式(1)で表される官能基を用いることができる。
  *-O-X-R  ・・・(1)
[式中、Rは、有機基を表し、Xは、Si、Ti、Al、またはZrであり、*は、磁性体粒子を構成する原子の1つである。]
 上記官能基は、例えば、シラン系カップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤、ジルコニウム系カップリング剤等の公知のカップリング剤による表面処理によって形成された残基であるが、シラン系カップリング剤およびチタン系カップリング剤からなる群より選択されるカップリング剤の残基であることが好ましい。これにより、磁性体粒子を樹脂組成物に配合して樹脂組成物としたとき、その流動性をより高めることができる。
 カップリング剤で表面処理する場合、その方法としては、磁性体粒子をカップリング剤の希釈溶液に浸漬したり、磁性体粒子にカップリング剤を直接噴霧したりする方法が挙げられる。
 カップリング剤の使用量は、磁性体粒子の100質量部に対して、例えば、0.01~1質量部であるのが好ましく、0.05~0.5質量部であるのがより好ましい。
 カップリング剤と磁性体粒子を反応させるときの溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール等が挙げられる。また、このときのカップリング剤の使用量は、溶媒100質量部に対して、0.1~2質量部であるのが好ましく、0.5~1.5質量部であるのがより好ましい。
 カップリング剤と磁性体粒子との反応時間(例えば希釈溶液への浸漬時間等)は、1~24時間であることが好ましい。
 また、上述したような官能基を結合させる際には、磁性体粒子に対する表面処理の一環として、あらかじめプラズマ処理を施してもよい。例えば、酸素プラズマ処理を施すことにより、磁性体粒子の表面にOH基が生じて、酸素原子を介した磁性体粒子とカップリング剤の残基との結合が容易になる。これにより、より強固に官能基を結合させることができる。
 ここでのプラズマ処理は、酸素プラズマ処理であるのが好ましい。これにより、磁性体粒子の表面に対して効率よくOH基を修飾することができる。
 酸素プラズマ処理の圧力は、特に限定されないが、100~200Paであることが好ましく、120~180Paであることがより好ましい。
 酸素プラズマ処理における処理ガスの流量は、特に限定されないが、1000~5000mL/分であることが好ましく、2000~4000mL/分であることがより好ましい。
 酸素プラズマ処理の出力は、特に限定されないが、100~500Wであることが好ましく、200~400Wであることがより好ましい。
 酸素プラズマ処理の処理時間は、上述の各種条件に応じて適宜設定されるが、5~60分であることが好ましく、10~40分であることがより好ましい。
 また、酸素プラズマ処理を施す前に、さらにアルゴンプラズマ処理を施すようにしてもよい。これにより、磁性体粒子の表面にOH基を修飾するための活性点を形成することができるので、OH基の修飾をより効率よく行うことができる。
 アルゴンプラズマ処理の圧力は、特に限定されないが、10~100Paであることが好ましく、15~80Paであることがより好ましい。
 アルゴンプラズマ処理における処理ガスの流量は、特に限定されないが、10~100mL/分であることが好ましく、20~80mL/分であることがより好ましい。
 アルゴンプラズマ処理の出力は、100~500Wであることが好ましく、200~400Wであることがより好ましい。
 アルゴンプラズマ処理の処理時間は、5~60分であることが好ましく、10~40分であることがより好ましい。
 なお、磁性体粒子とカップリング剤の残基とが酸素原子を介して結合していることは、例えばフーリエ変換赤外分光光度計によって確認することができる。
 また、上述したような表面処理は、樹脂組成物中に含まれるすべての粒子に施されてもよく、一部の粒子のみに施されてもよい。
 また、上述した表面処理の下地には、別のコート処理が施されてもよい。かかるコート処理としては、例えば、シリコーン樹脂のような樹脂コートの他、リン酸コート、シリカコート等が挙げられる。このようなコート処理が施されることにより、磁性体粒子の絶縁性をより高めることができる。このようなコート処理は、必要に応じて施されればよく、省略されてもよい。このコート処理は、上述した表面処理の下地としてではなく、単独で施されていてもよい。
 磁性体粒子は、別観点として、真円(真球)に近い形状であることが好ましい。これにより、粒子同士の摩擦が少なくなり、流動性を一層高めることができると考えられる。
 具体的には、以下で定義される「真円度」を、磁性体粒子の任意の10個以上(好ましくは50個以上)について求め、その値を平均することで求められる平均真円度が0.60以上であることが好ましく、0.75以上であることがより好ましい。
 真円度の定義:磁性体粒子の輪郭を走査型電子顕微鏡で観察したときの、当該輪郭から求められる等面積円相当径をReq、当該輪郭に外接する円の半径をRcとしたときの、Req/Rcの値。
 また、鉄基粒子の、体積基準におけるメジアン径D50(平均粒子径)は、たとえば、0.5~100μm以下、好ましくは1.0~75μm、より好ましくは3.1~60μmである。粒径(メジアン径)を適切に調整することで、成形時の流動性を更に良好にしたり、磁性性能を向上させたりすることができる。鉄基アモルファス粒子の平均粒子径も、鉄基粒子の平均粒子径の上記数値範囲内としてもよい。
 良好な流動性や、高充填による磁性性能の向上の観点などから、磁性体粒子の粒径は適宜調整されることが好ましい。
 本実施形態の樹脂組成物は、平均粒子径が異なる2種以上の鉄基粒子を含んでもよい。これにより、鉄基粒子の高充填化を図ることが可能になり、磁気特性や機械的強度を高められる。
 また、本実施形態の樹脂組成物は、平均粒子径が異なる2種以上の鉄基粒子を含んでもよい。これによって、さらに磁気特性を向上できる。たとえば、D50が30μm以上100μm以下の第一鉄基粒子と、D50が3.0μm超30μm未満の第二鉄基粒子とを併用してもよい。
 なお、メジアン径D50は、例えば、レーザ回折/散乱式粒子径分布測定装置により得ることができる。具体的には、HORIBA社製の粒子径分布測定装置「LA-950」により、磁性体粒子を乾式で測定することで粒子径分布曲線を得、この分布曲線を解析することでD50を求めることができる。
 樹脂組成物中の鉄基粒子(磁性体粒子)の含有量は、樹脂組成物全体を基準として、好ましくは85質量%以上であり、より好ましくは90質量%以上、さらに好ましくは93質量%以上である。樹脂組成物中の鉄基粒子(磁性体粒子)の含有量の上限については、現実的に樹脂組成物の流動性を確保する点などから、例えば99質量%以下である。鉄基粒子の含有量を十分多くすることで、磁気性能(透磁率や鉄損など)を向上させることができる。
 また、体積基準において、樹脂組成物中の磁性体粒子の含有量は、樹脂組成物全体を基準として、好ましくは60体積%以上、より好ましくは70体積%以上、さらに好ましくは80体積%以上である。これの上限については、現実的に樹脂組成物の流動性を確保する点などから、例えば95体積%以下である。
(非磁性体粒子)
 本実施形態の樹脂組成物は、流動性の調整などの観点で、非磁性を示す非磁性体粒子を含んでもよい。
 非磁性体粒子には、磁性体粒子に比べて、比重が小さく、かつ、累積50%粒子径D50が小さい粒子が用いられる。
 なお、本明細書において、非磁性とは、強磁性を有さないことを指す。
 樹脂組成物が非磁性体粒子を含むことで、圧縮成形時における樹脂バリの発生が抑制される。このため、樹脂組成物の連続成形性がより良好となる。したがって、成形不良の少ない成形体が得られる。
 非磁性体粒子の構成材料としては、例えば、セラミックス材料、ガラス材料等が挙げられる。このうち、セラミックス材料を含むものが好ましく用いられる。このような非磁性体粒子は、熱硬化性樹脂との親和性が高いため、樹脂組成物の流動性を維持することができる。
 セラミックス材料としては、例えば、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、カルシア等の酸化物系セラミックス材料、窒化ケイ素、窒化アルミニウムのような窒化物系セラミックス材料、炭化ケイ素、炭化ホウ素のような炭化物系セラミックス材料等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。この中でも、非磁性体粒子は、シリカ粒子やアルミナ粒子を含んでもよい。
 また、セラミックス材料は、シリカを含むのが好ましい。シリカは、熱硬化性樹脂との親和性が高く、絶縁性が高いため、非磁性体粒子の構成粒子として有用である。このため、非磁性体粒子はシリカ粒子を含んでもよい。
 非磁性体粒子の比重は、1.5~6.0であるのが好ましく、1.7~5.0であるのがより好ましく、1.8~4.5であるのがさらに好ましい。このような非磁性体粒子は、比重が小さいため、樹脂組成物の溶融物とともに流動し易い。このため、成形時において樹脂組成物の溶融物が成形型の隙間等に向かって流動するとき、その溶融物とともに非磁性体粒子が流れ易くなる。
 磁性体粒子や非磁性体粒子の比重は、気相置換法による粉体密度計を用いて測定できる。
 非磁性体粒子の、体積基準の粒子径分布曲線における累積50%の粒子径D50(メジアン径)の下限は、例えば、0.05μm以上、好ましくは0.1μm以上、より好ましくは0.15μm以上である。これにより、樹脂組成物の粘度の上昇を抑制できる。一方、上記非磁性体粒子の粒子径D50の上限は、例えば、3.0μm以下、好ましくは2.5μm以下、より好ましくは2.0μm以下である。これにより、樹脂バリを抑制できる。また、上記の粒子径は、前述の「染み出し」を防ぐのに好ましい粒子径であって、かつ、樹脂組成物の溶融物とともに流れ易い粒子径である。
 また、非磁性体粒子の、体積基準の粒子径分布曲線における累積50%粒子径D50値は、3.0μm以下であってかつ磁性体粒子のD50より小さければ好ましいが、その差が1.0μm以上であるとより好ましく、1.5μm以上であるのがさらに好ましく、2.0μm以上であるのが特に好ましい。
 非磁性体粒子は、各種の形状のものを使用できるが、樹脂組成物の粘度の上昇を抑制する観点から、球状のものを使用することが好ましい。
 また、非磁性粒子の平均真円度(この定義は、磁性体粒子におけるものと同じである)は特に限定されないが、0.50~1であるのが好ましく、0.75~1であるのがより好ましい。真円度がこの範囲内であることにより、非磁性体粒子自体の転がりを活かして樹脂組成物の流動性を確保できる一方、非磁性体粒子が隙間等に詰まり易くなって熱硬化性樹脂の染み出しを抑制し易くなる。すなわち、樹脂組成物の流動性と、熱硬化性樹脂の染み出しの抑制と、を両立させることができる。
 非磁性体粒子は、表面処理が施されていてもよい。例えば、表面をカップリング剤で処理する方法を用いてもよい。
 カップリング剤として、例えば、シラン系カップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤、ジルコニウム系カップリング剤等の公知のカップリング剤を用いてもよい。この中でも、シラン系カップリング剤、またはチタン系カップリング剤を用いてもよい。これにより、非磁性体粒子を樹脂組成物に配合して樹脂組成物としたとき、その流動性をより高めることができる。
 非磁性体粒子の含有量は、比重に応じて適切に選択されるが、樹脂組成物全体を基準として、質量換算で、例えば、0.1~5.0質量%が好ましく、0.5~3.0質量%がより好ましい。これにより、磁気特性の低下や樹脂バリの発生を抑制できる。
 非磁性体粒子の含有量の下限は、体積換算で、非磁性体粒子および磁性体粒子の合計100体積%中、例えば、1体積%以上、好ましくは1.5体積%以上、より好ましくは2体積%以上である。これにより、樹脂バリの発生を抑制できる。一方、上記非磁性体粒子の含有量の下限は、体積換算で、非磁性体粒子および磁性体粒子の合計100体積%中、例えば、10体積%以下、好ましくは7体積%以下、より好ましくは5体積%以下である。これにより、磁気特性の低下を抑制できる。
 また、非磁性体粒子および磁性体粒子の含有量の下限は、体積換算で、樹脂組成物100体積%中、例えば、60体積%以上、好ましくは70体積%以上、より好ましくは75体積%以上である。これにより、磁気特性を向上できる。一方、上記非磁性体粒子および磁性体粒子の含有量の上限は、体積換算で、樹脂組成物100体積%中、例えば、95体積%以下、好ましくは85体積%以下、より好ましくは83体積%以下である。これにより、樹脂組成物の流動性を確保でき、良好な成形品を得ることができる。
 本実施形態の樹脂組成物は、熱硬化性樹脂、硬化剤、磁性体粒子及び磁性体粒子以外の任意の成分を含んでもよい。以下、任意成分について説明する。
(離型剤)
 本実施形態の樹脂組成物は、離型剤を含んでもよい。これにより、成形時の樹脂組成物の離型性を高めることができる。
 離型剤としては、例えばカルナバワックス等の天然ワックス、モンタン酸エステルワックスや酸化ポリエチレンワックス等の合成ワックス、ステアリン酸亜鉛等の高級脂肪酸およびその金属塩類、ならびにパラフィン等が挙げられる。これらを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 離型剤を用いる場合、その含有量は、樹脂組成物全体を基準として、好ましくは0.01~3質量%であり、より好ましくは0.05~2質量%である。これにより、離型性向上の効果を確実に得ることができる。
(硬化触媒)
 本実施形態の樹脂組成物は、硬化触媒を含んでもよい。これにより、樹脂組成物の硬化性を向上させることができる。
 硬化触媒としては、エポキシ樹脂の硬化反応を促進させるものであれば任意のものを用いることができる。例えば、公知のエポキシ硬化触媒を用いることができる。
 具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;2-メチルイミダゾール等のイミダゾール類(イミダゾール系硬化触媒);1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等が例示されるアミジンや3級アミン、アミジンやアミンの4級塩等の窒素原子含有化合物などを挙げることができる。
 硬化触媒を用いる場合、1種のみを用いてもよいし、2種以上を用いてもよい。
 硬化触媒を用いる場合、その含有量は、樹脂組成物全体に対して、好ましくは0.01~1質量%、より好ましくは0.03~0.5質量%である。このような数値範囲とすることにより、十分に硬化性向上の効果が得られる。
(熱可塑性樹脂)
 本実施形態の樹脂組成物は、流動性や成形性の調整の観点などから、熱可塑性樹脂を含んでもよい。
 熱可塑性樹脂としては、例えば、アクリル系樹脂、ポリアミド系樹脂(例えばナイロン等)、熱可塑性ウレタン系樹脂、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン等)、ポリカーボネート、ポリエステル系樹脂(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂(例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、変性ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等が挙げられる。
 熱可塑性樹脂を用いる場合は、1種を単独で用いてもよいし、異なる2種以上を併用してもよい。また、同種の樹脂であっても異なる重量平均分子量の2種以上を併用してもよい。さらに、ある樹脂と、そのプレポリマーとを併用してもよい。
 熱可塑性樹脂を用いる場合、その量は、樹脂組成物全体を基準として、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。これにより、流動性や成形性の調整効果を十分に得られると考えられる。
(その他の成分)
 本実施形態の樹脂組成物は、上述した成分以外の成分を含んでいてもよい。例えば、本実施形態の樹脂組成物は、低応力剤、カップリング剤、密着助剤、着色剤、酸化防止剤、耐食剤、染料、顔料、難燃剤等を含んでもよい。
 低応力剤としては、ポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物が挙げられる。低応力剤を用いる場合、1種のみを用いてもよいし2種以上を併用してもよい。
 カップリング剤としては、上述の、磁性体粒子の表面処理に用いられるカップリング剤を用いることができる。例えば、シラン系カップリング剤、チタン系カップリング剤、ジルコニア系カップリング剤、アルミニウム系カップリング剤等が挙げられる。カップリング剤を用いる場合、1種のみを用いてもよいし2種以上を併用してもよい。
 80℃~250℃の範囲で測定したときの磁性部材形成用樹脂組成物の最低溶融粘度は、例えば、50Pa・s以上500Pa・s以下、好ましくは60Pa・s以上450Pa・s以下、好ましくは70Pa・s以上400Pa・s以下である。溶融粘度を上記上限値以下とすることにより、流動性を高め、優れた成形性を実現することができる。また、溶融粘度を上記下限値以上とすることにより、圧縮成形時に金型から樹脂漏れが発生することを抑制でき、圧縮成形時に樹脂組成物中の磁性体粉末が沈降してしまうことを抑制できる。
 80℃~250℃の範囲で測定したときの磁性部材形成用樹脂組成物の溶融粘度が最小となる温度は、例えば、100℃以上150℃以下、好ましくは105℃以上145℃以下、より好ましくは110℃以上140℃以下の範囲内にある。このような範囲内とすることにより、圧縮成形時における粘度を適切に制御することが可能である。
(樹脂組成物の性状や製造方法など)
 本実施形態の樹脂組成物は、室温25℃において固形である。
 本実施形態の樹脂組成物の性状は、粉末状、または顆粒状等とすることができる。
 本実施形態の樹脂組成物は、例えば、まず(1)各成分をミキサーを用いて混合し、(2)その後、ロールを用いて混練物を得、(3)そして得られた混練物を冷却後粉砕することにより製造することができる。(以上により、粉末状の樹脂組成物を得ることができる。)
<磁性部材の製造方法>
 本実施形態の樹脂組成物は、圧縮成形法により、所望の形状に成形される。
 圧縮成形装置を用いて、上述の樹脂組成物を金型中に配置し、それが硬化した磁性部材を得ることができる。成形物は、電気・電子デバイス中の磁性部品などとして好適に用いることができる。より具体的には、成形物は、コイル(用途や目的により、リアクトルやインダクタなどとも呼ばれる)の磁性コアなどとして好適に用いられる。
 圧縮成形における各種条件は、任意に設定することができる。例えば、予熱の温度は60~100℃、溶融の際の加熱温度は150~200℃、金型温度は150~200℃、金型に樹脂組成物の溶融物を注入する際の圧力は1~20MPaの間で適宜調整することができる。
<磁性部材およびコイル>
 本実施形態の樹脂組成物により形成された磁性部材(本実施形態の樹脂組成物を硬化させて形成した磁性部材)、および、その磁性部材を磁性コアまたは外装部材として備えるコイルの態様について説明する。
(第1の態様)
 図1(a)および図1(b)は、本実施形態の樹脂組成物の硬化物で構成された磁性コアを備えるコイル100(リアクトル)を模式的に示した図である。
 図1(a)は、上面から見たコイル100の概要を示す。図1(b)は、図1(a)におけるA-A'断面視における断面図を示す。
 コイル100は、図1に示されるように、巻線10および磁性コア20を備えることができる。磁性コア20は、空芯コイルである巻線10の内部に充填されている。図1(a)に示す一対の巻線10は、並列した状態で連結されている。この場合、環状の磁性コア20は、図1(b)に示す1対の巻線10の内部を貫通する構造を有する。これらの磁性コア20と巻線10とは一体化した構造を有することができる。
 なお、コイル100は、巻線10と磁性コア20との間に、これらの絶縁を確保する観点から、不図示のインシュレータを介在させた構造としてもよい。
 コイル100において、巻線10および磁性コア20は、外装部材30(封止部材)で封止されていてもよい。例えば、筐体(ケース)中に巻線10および磁性コア20を収容し、そこに液状樹脂を導入し、必要に応じて液状樹脂を硬化することにより、巻線10および磁性コア20の周囲に外装部材30を形成してもよい。このとき巻線10は、巻線の端部を外装部材30の外部に引き出した不図示の引き出し部を有していてもよい。
 巻線10は、通常、金属線の表面に絶縁被覆を施した巻線を巻回した構造により構成される。金属線は、導電性の高いものが好ましく、銅、銅合金が好適に利用できる。また、絶縁被覆は、エナメルなどの被覆が利用できる。巻線の断面形状は、円形や矩形、六角形などが挙げられる。
 一方、磁性コア20の断面形状は、特に限定されないが、例えば、断面視において、円形形状や、四角形や六角形などの多角形状とすることができる。
 本実施形態の樹脂組成物の硬化物によれば、成形性および磁気特性に優れた磁性コア20を実現できる。すなわち、この磁性コア20を備えるコイル100は、量産適性が良好であり、また、鉄損が小さいことなどが期待される。また、機械的特性に優れた磁性コア20を実現できるため、コイル100の耐久性や信頼性、製造安定性を高めることが可能である。このため、コイル100は、昇圧回路用や大電流用のリアクトルとして用いることができる。
(第2の態様)
 上記のコイルとは別の態様として、本実施形態の樹脂組成物の硬化物で構成された外装部材を備えるコイル(インダクタ)の概要を、図2を参照しつつ説明する。
 図2(a)は、コイル100Bの上面からみたコイルの概要を示す。図2(b)は、図2(a)におけるB-B'断面視における断面図を示す。
 コイル100Bは、図2に示されるように、巻線10Bおよび磁性コア20Bを備えることができる。磁性コア20Bは、空芯コイルである巻線10Bの内部に充填されている。図2(a)に示される一対の巻線10Bは、並列した状態で連結されている。この場合、環状の磁性コア20Bは、図2(b)に示される1対の巻線10Bの内部を貫通する構造を有する。これらの磁性コア20Bと巻線10Bとは、それぞれ個別に作成し、組み合わせた組合せ構造を有することができる。
 なお、コイル100Bは、巻線10Bと磁性コア20Bとの間に、これらの絶縁を確保する観点から、不図示のインシュレータを介在させた構造としてもよい。
 コイル100Bにおいて、巻線10Bおよび磁性コア20Bは、外装部材30B(封止部材)で封止されている。例えば、巻線10Bに充填された磁性コア20Bを金型に配置し、本実施形態の樹脂組成物を用いて、圧縮成形等の金型成形することにより、当該樹脂組成物を硬化させて、巻線10Bおよび磁性コア20Bの周囲に外装部材30Bを形成することができる。このとき巻線10Bは、巻線の端部を外装部材30Bの外部に引き出した不図示の引き出し部を有してもよい。
 巻線10Bは、通常、金属線の表面に絶縁被覆を施した導線を巻回した構造により構成される。金属線は、導電性の高いものが好ましく、銅、銅合金が好適に利用できる。また、絶縁被覆は、エナメルなどの被覆が利用できる。巻線10Bの断面形状は、円形や矩形、六角形などが挙げられる。
 一方、磁性コア20Bの断面形状は、特に限定されないが、例えば、断面視において、円形形状や、四角形や六角形などの多角形状とすることができる。磁性コア20Bは、例えば、磁性粉とバインダーとで構成された圧粉鉄芯を用いることができる。
 本実施形態の樹脂組成物の硬化物によれば、成形性および磁気特性に優れた外装部材30Bを実現できるため、磁性コア20Bを備えるコイル100Bにおいては、低磁気損失が期待される。また、機械的特性に優れた外装部材30Bを実現できるため、コイル100Bの耐久性や信頼性、製造安定性を高めることが可能である。
(第3の態様)
 更に別の態様として、本実施形態の樹脂組成物の硬化物で構成された磁性コアと外装部材を備える一体型インダクタの概要を、図3を参照しつつ説明する。
 図3(a)は、一体型インダクタ100Cの上面からみた構造体の概要を示す。図3(b)は、図3(a)におけるC-C'断面視における断面図を示す。
 一体型インダクタ100Cは、図3に示されるように、巻線10Cおよび磁性コア20Cを備えることができる。磁性コア20Cは、空芯コイルである巻線10のC内部に充填されている。巻線10Cおよび磁性コア20Cは、外装部材30C(封止部材)で封止されている。磁性コア20Cおよび外装部材30Cは、本実施形態の樹脂組成物の硬化物で構成することができる。磁性コア20Cおよび外装部材30Cは、シームレスの一体部材として形成されていてもよい。
 一体型インダクタ100Cの製造方法としては、例えば、巻線10Cを金型に配置し、本実施形態の樹脂組成物を用いて、圧縮成形等の金型成形をする。これにより、樹脂組成物を硬化させて、巻線10C中に充填された磁性コア20Cおよびこれらの周囲に外装部材30Cを一体的に形成することができる。このとき、巻線10Cは、巻線の端部を外装部材30Cの外部に引き出した不図示の引き出し部を有してもよい。
 巻線10Cは、通常、金属線の表面に絶縁被覆を施した導線を巻回した構造により構成される。金属線は、導電性の高いものが好ましく、銅、銅合金が好適に利用できる。また、絶縁被覆は、エナメルなどの被覆が利用できる。巻線10Cの断面形状は、円形や矩形、六角形などが挙げられる。
 一方、磁性コア20Cの断面形状は、特に限定されないが、例えば、断面視において、円形形状や、四角形や六角形などの多角形状とすることができる。磁性コア20Cは、本実施形態の樹脂組成物の圧縮成形品で構成されるため、所望の形状を有することが可能である。
 本実施形態の樹脂組成物の硬化物によれば、成形性および磁気特性に優れた磁性コア20Cおよび外装部材30Cを実現できるため、これらを有する一体型インダクタ100Cにおいては、低磁気損失が期待される。また、機械的特性に優れた外装部材30Cを実現できるため、一体型インダクタ100Cの耐久性や信頼性、製造安定性を高めることが可能である。このため、一体型インダクタ100Cは、昇圧回路用や大電流用のインダクタとして用いることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<樹脂組成物の調製>
 非磁性体粒子に磁性体粒子を加えて混合し、その他の表1に示す各成分を、表1の配合比率に従ってミキサーを用いて混合して混合物を得た。得られた混合物をロール混練し、得られた混練物を粉砕して、粉粒状の樹脂組成物を得た。
 表1に記載の各成分の量は、質量部である。
 表1に記載の原料成分は、具体的には以下である。
(エポキシ樹脂)
・エポキシ樹脂1:以下化学式で表されるエポキシ樹脂(三菱ケミカル株式会社製、品番E1032H60、25℃で固形、150℃でのICI粘度:650mPa・s)
Figure JPOXMLDOC01-appb-C000011
・エポキシ樹脂2:以下化学式で表されるエポキシ樹脂(三菱ケミカル株式会社製、品番YL6810、25℃で固形、150℃でのICI粘度:15mPa・s)
Figure JPOXMLDOC01-appb-C000012
(フェノール系硬化剤)
・フェノール樹脂1:以下化学式で表されるノボラック型フェノール樹脂(住友ベークライト株式会社製、品番PR-HF-3、25℃で固形)
Figure JPOXMLDOC01-appb-C000013
(離型剤)
・離型剤1:合成ワックス(クラリアントケミカルズ株式会社製、WE-4)
(硬化触媒)
・硬化触媒1:イミダゾール系硬化触媒(四国化成工業株式会社製、キュアゾール2PZ-PW)
(磁性体粒子)
・磁性体粒子1:アモルファス磁性粉(エプソンアトミックス株式会社製、KUAMET6B2、メジアン径D50:50μm、Fe:88質量%、比重:6.9)
・磁性体粒子2:アモルファス磁性粉(エプソンアトミックス株式会社製、AW2-08、メジアン径D50:3.4μm、Fe:88質量%、比重:6.9)
(非磁性体粒子)
・シリカ粒子1:微粉シリカ(球状、溶融シリカ、メジアン径D50:0.5μm、比重:2.2)
・シリカ粒子2:微粉シリカ(球状、溶融シリカ、メジアン径D50:1.5μm、比重:2.2)
・シリカ粒子3:微粉シリカ(球状、溶融シリカ、メジアン径D50:0.2μm、比重:2.2)
・アルミナ粒子1:微粉アルミナ(球状、メジアン径D50:0.2μm、比重:3.7)
 粒子のメジアン径は、レーザ回折/散乱式粒子径分布測定装置を用いて測定した。比重は、気相置換法による粉体密度計を用いて測定した。
<性能評価>
 各樹脂組成物について、以下の評価を行った。
(圧縮成形性)
 得られた樹脂組成物を、圧縮成形機(TOWA株式会社製、PMC1040)を用いて、金型温度175℃、成形圧力9MPa、硬化時間180秒で行い、縦:62mm×横:220mmの基板の表面に、縦:54mm×横:214mm×厚み:3mmtの成形体(磁性部材)を形成した。
 圧縮成形後、金型から成形体を取り出し、基板の側面側の端面から流出している樹脂バリの状態について、目視で観察した。4mm以上の樹脂バリが発生していない場合を○、4mm超の樹脂バリ発生している場合を×と評価した。
(飽和磁束密度)
 得られた樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒間で注入成形し、直径16mmΦ、高さ32mmの円柱状成形品を得た。次いで、得られた成形品を175℃、4時間で後硬化して、飽和磁束密度評価用試験片を作製した。
 次いで、 室温(25℃)にて、交流直流磁化特性試験装置(メトロン技研株式会社製、MTR-3368)を用いて、上記成形品に、外部磁場100kA/mを印加した。これにより室温での飽和磁束密度(T)を測定した。
(比透磁率)
 得られた樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒間で注入成形し、直径16mmΦ、高さ32mmの円柱状成形品を得た。次いで、得られた成形品を175℃、4時間で後硬化して、比透磁率評価用試験片を作製した。得られた円柱状成形品に対して直流交流磁化特性試験装置(メトロン技研株式会社製「MTR-3368」)を用いて、B-H初磁化曲線をH=0~100kA/mの範囲で測定し、B-H初磁化曲線のH=5kA/mの値を比透磁率とした。
(鉄損(50mT,20kHz))
 得られた樹脂組成物を低圧トランスファー成形機(コータキ精機(株)製「KTS-30」)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒間で注入成形し、外径27mmΦ、内径15mmΦ、厚み3mmのリング状成形品を得た。次いで、得られた成形品を175℃、4時間で後硬化して、リング状試験片を作製した。得られたリング状試験片に対してBHカーブトレーサを用いて、励起磁束密度Bm:50mT、測定周波数:20kHzにおけるヒステリシス損Wh(kW/m)及び渦電流損We(kW/m)を測定し、ヒステリシス損Wh+渦電流損Weを鉄損(kW/m)として算出した。
 各樹脂組成物の組成と評価結果を下表にまとめて示す。
Figure JPOXMLDOC01-appb-T000014
 
(最低溶融粘度)
 実施例1の樹脂組成物について、レオメーター(サーモフィッシャーサイエンティフィック(株)製「HAAKEMARS III)を用いて、昇温速度10℃/分、周波数1Hzの条件下、80℃~250℃における溶融粘度(Pa・s)を測定した。結果、実施例1の最低溶融粘度は、136℃における150Pa・sであった。
 実施例1~3の樹脂組成物は、比較例1と比べて圧縮成形時における樹脂バリの発生を抑制できる結果を示したことから、圧縮成形に好適に用いられることが分かった。
 また、実施例1~3の樹脂組成物を圧縮成形することによって得られた成形体は、実用上に問題ないレベルの比透磁率および鉄損を示したため、磁性部材に用いることができる。
 この出願は、2019年5月17日に出願された日本出願特願2019-093896号、および、2019年11月1日に出願された日本出願特願2019-199674号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10   巻線
20   磁性コア
30   外装部材
100  コイル
10B  巻線
20B  磁性コア
30B  外装部材
100B コイル
10C  巻線
20C  磁性コア
30C  外装部材
100C 一体型インダクタ

Claims (22)

  1.  圧縮成形に用いる磁性部材形成用樹脂組成物であって、
     熱硬化性樹脂と、
     磁性体粒子と、
     前記磁性体粒子に比べて、比重が小さく、かつ、累積50%粒子径D50が小さい非磁性体粒子と、
    を含み、
     25℃で固体である、磁性部材形成用樹脂組成物。
  2.  請求項1に記載の磁性部材形成用樹脂組成物であって、
     前記非磁性体粒子が、シリカ粒子を含む、磁性部材形成用樹脂組成物。
  3.  請求項1又は2に記載の磁性部材形成用樹脂組成物であって、
     前記非磁性体粒子の比重が、1.5以上6.0以下である、磁性部材形成用樹脂組成物。
  4.  請求項1~3のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     前記非磁性体粒子の累積50%粒子径D50が、0.05μm以上3.0μm以下である、磁性部材形成用樹脂組成物。
  5.  請求項1~4のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     前記非磁性体粒子が表面処理されてなる、磁性部材形成用樹脂組成物。
  6.  請求項1~5のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     前記非磁性体粒子の含有量が、前記非磁性体粒子および前記磁性体粒子の合計100体積%中、体積換算で、1体積%以上10体積%以下である、磁性部材形成用樹脂組成物。
  7.  請求項1~6のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     前記磁性体粒子が、鉄基粒子を含む、磁性部材形成用樹脂組成物。
  8.  請求項7に記載の磁性部材形成用樹脂組成物であって、
     前記鉄基粒子が、鉄基アモルファス粒子を含む、磁性部材形成用樹脂組成物。
  9.  請求項7又は8に記載の磁性部材形成用樹脂組成物であって、
     前記鉄基粒子が、Feを85質量%以上有するものを含む、磁性部材形成用樹脂組成物。
  10.  請求項7~9のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     前記磁性体粒子が、平均粒子径が異なる2種以上の前記鉄基粒子を含む、磁性部材形成用樹脂組成物。
  11.  請求項1~10のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     前記磁性体粒子および前記磁性体粒子の含有量が、当該磁性部材形成用樹脂組成物の固形分100体積%中、体積換算で、60体積%以上95体積%以下である、磁性部材形成用樹脂組成物。
  12.  請求項1~11のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     前記熱硬化性樹脂が、エポキシ樹脂を含む、磁性部材形成用樹脂組成物。
  13.  請求項12に記載の磁性部材形成用樹脂組成物であって、
     前記エポキシ樹脂が、分子内に3個以上のエポキシ基を備える多官能エポキシ樹脂を含む、磁性部材形成用樹脂組成物。
  14.  請求項13に記載の磁性部材形成用樹脂組成物であって、
     前記エポキシ樹脂が、ビスフェノール型エポキシ樹脂を含む、磁性部材形成用樹脂組成物。
  15.  請求項14に記載の磁性部材形成用樹脂組成物であって、
     前記多官能エポキシ樹脂が有するエポキシ基のモル数をM1とし、前記ビスフェノール型エポキシ樹脂が有するエポキシ基のモル数をM2としたとき、M1/M2の値が、0.2以上1.8以下である、磁性部材形成用樹脂組成物。
  16.  請求項1~15のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     離型剤を含む、磁性部材形成用樹脂組成物。
  17.  請求項1~16のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     硬化剤を含む、磁性部材形成用樹脂組成物。
  18.  請求項1~17のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     硬化触媒を含む、磁性部材形成用樹脂組成物。
  19.  請求項1~18のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     粉末状、または顆粒状である、磁性部材形成用樹脂組成物。
  20.  請求項1~19のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     80℃~250℃の範囲で測定したときの当該磁性部材形成用樹脂組成物の最低溶融粘度が、50Pa・s以上500Pa・s以下である、磁性部材形成用樹脂組成物。
  21.  請求項1~20のいずれか一項に記載の磁性部材形成用樹脂組成物であって、
     80℃~250℃の範囲で測定したときの当該磁性部材形成用樹脂組成物の溶融粘度が最小となる温度が、100℃以上150℃以下の範囲内にある、磁性部材形成用樹脂組成物。
  22.  圧縮成形装置を用いて、請求項1~21のいずれか1項に記載の磁性部材形成用樹脂組成物を金型中に配置し、前記磁性部材形成用樹脂組成物が硬化した磁性部材を得る、磁性部材の製造方法。
PCT/JP2020/015869 2019-05-17 2020-04-08 磁性部材形成用樹脂組成物、及び磁性部材の製造方法 WO2020235246A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20810152.7A EP3971922A4 (en) 2019-05-17 2020-04-08 Resin composition for magnetic member formation and method for producing magnetic member
JP2021520646A JP7533451B2 (ja) 2019-05-17 2020-04-08 磁性部材形成用樹脂組成物、及び磁性部材の製造方法
CN202080036702.9A CN113841207A (zh) 2019-05-17 2020-04-08 磁性部件形成用树脂组合物和磁性部件的制造方法
US17/611,687 US11987695B2 (en) 2019-05-17 2020-04-08 Resin composition for forming magnetic member and method for manufacturing magnetic member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-093896 2019-05-17
JP2019093896 2019-05-17
JP2019-199674 2019-11-01
JP2019199674 2019-11-01

Publications (1)

Publication Number Publication Date
WO2020235246A1 true WO2020235246A1 (ja) 2020-11-26

Family

ID=73458552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015869 WO2020235246A1 (ja) 2019-05-17 2020-04-08 磁性部材形成用樹脂組成物、及び磁性部材の製造方法

Country Status (6)

Country Link
US (1) US11987695B2 (ja)
EP (1) EP3971922A4 (ja)
JP (1) JP7533451B2 (ja)
CN (1) CN113841207A (ja)
TW (1) TW202100652A (ja)
WO (1) WO2020235246A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040454A4 (en) * 2019-10-04 2023-11-01 Sumitomo Bakelite Co.Ltd. RESIN COMPOSITION AND MOLDED ARTICLE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824673B (zh) * 2022-08-22 2023-12-01 鴻達電能科技股份有限公司 低損耗之電感器及其製法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152004A (ja) * 1984-12-26 1986-07-10 Toshiba Corp 鉄心
JPH06333714A (ja) * 1993-05-19 1994-12-02 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石用組成物及び樹脂結合型磁石とその製造方法
JP2002313632A (ja) 2001-04-17 2002-10-25 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法
JP2009155554A (ja) * 2007-12-27 2009-07-16 Asahi Kasei E-Materials Corp 樹脂組成物
JP2016072406A (ja) * 2014-09-30 2016-05-09 日亜化学工業株式会社 ボンド磁石
JP2016174142A (ja) * 2016-01-20 2016-09-29 パナソニックIpマネジメント株式会社 樹脂シート、インダクタ部品
WO2019112002A1 (ja) * 2017-12-08 2019-06-13 パナソニックIpマネジメント株式会社 複合磁性粉末、磁性樹脂組成物、磁性樹脂ペースト、磁性樹脂粉末、磁性樹脂スラリー、磁性樹脂シート、金属箔付磁性樹脂シート、磁性プリプレグ及びインダクタ部品
JP2019093896A (ja) 2017-11-22 2019-06-20 日本電気株式会社 情報処理装置、分類方法およびコンピュータ・プログラム
JP2019199674A (ja) 2018-05-18 2019-11-21 株式会社クラレ ウェアラブル身体冷却装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541640A1 (en) * 2003-12-05 2005-06-15 Rohm and Haas Company Induction cured power coatings for temperature sensitive substrates
TWI445668B (zh) * 2010-09-09 2014-07-21 Murata Manufacturing Co Resin and electronic parts containing magnetite
JP5617461B2 (ja) * 2010-09-13 2014-11-05 住友電気工業株式会社 リアクトル、およびリアクトルの製造方法
JP5804067B2 (ja) * 2012-04-26 2015-11-04 株式会社村田製作所 磁性金属含有樹脂組成物、ならびにそれを用いたコイル部品および電子部品
JP6098786B2 (ja) * 2012-09-21 2017-03-22 住友電気工業株式会社 複合材料、リアクトル、コンバータ、及び電力変換装置
JP6450106B2 (ja) * 2014-08-01 2019-01-09 株式会社アドマテックス 圧粉磁芯用粉末
JP2016108561A (ja) * 2014-12-04 2016-06-20 日東電工株式会社 軟磁性樹脂組成物および軟磁性フィルム
JP6403093B2 (ja) * 2015-02-04 2018-10-10 住友電気工業株式会社 複合材料、磁気部品用の磁性コア、リアクトル、コンバータ、及び電力変換装置
JP6474051B2 (ja) * 2016-01-07 2019-02-27 株式会社オートネットワーク技術研究所 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
JP6780342B2 (ja) * 2016-07-25 2020-11-04 Tdk株式会社 軟磁性金属圧粉磁心及び軟磁性金属圧粉磁心を用いたリアクトル
CA3106959C (en) * 2018-07-31 2023-01-24 Jfe Steel Corporation Soft magnetic powder, fe-based nanocrystalline alloy powder, magnetic component, and dust core

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152004A (ja) * 1984-12-26 1986-07-10 Toshiba Corp 鉄心
JPH06333714A (ja) * 1993-05-19 1994-12-02 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石用組成物及び樹脂結合型磁石とその製造方法
JP2002313632A (ja) 2001-04-17 2002-10-25 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法
JP2009155554A (ja) * 2007-12-27 2009-07-16 Asahi Kasei E-Materials Corp 樹脂組成物
JP2016072406A (ja) * 2014-09-30 2016-05-09 日亜化学工業株式会社 ボンド磁石
JP2016174142A (ja) * 2016-01-20 2016-09-29 パナソニックIpマネジメント株式会社 樹脂シート、インダクタ部品
JP2019093896A (ja) 2017-11-22 2019-06-20 日本電気株式会社 情報処理装置、分類方法およびコンピュータ・プログラム
WO2019112002A1 (ja) * 2017-12-08 2019-06-13 パナソニックIpマネジメント株式会社 複合磁性粉末、磁性樹脂組成物、磁性樹脂ペースト、磁性樹脂粉末、磁性樹脂スラリー、磁性樹脂シート、金属箔付磁性樹脂シート、磁性プリプレグ及びインダクタ部品
JP2019199674A (ja) 2018-05-18 2019-11-21 株式会社クラレ ウェアラブル身体冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971922A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040454A4 (en) * 2019-10-04 2023-11-01 Sumitomo Bakelite Co.Ltd. RESIN COMPOSITION AND MOLDED ARTICLE

Also Published As

Publication number Publication date
JP7533451B2 (ja) 2024-08-14
US20220213312A1 (en) 2022-07-07
US11987695B2 (en) 2024-05-21
EP3971922A4 (en) 2023-06-28
JPWO2020235246A1 (ja) 2020-11-26
TW202100652A (zh) 2021-01-01
CN113841207A (zh) 2021-12-24
EP3971922A1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP2023111957A (ja) 熱硬化性樹脂組成物、磁性コアおよび/または外装部材を備えるコイルおよび成形品の製造方法
JP7511322B2 (ja) 磁性コア形成用樹脂組成物および構造体
JP7435693B2 (ja) 溶融成形用の樹脂組成物、磁性部材、磁性部材を備えるコイル、磁性部材の製造方法
JP7511324B2 (ja) インダクタ成形用樹脂組成物および一体型インダクタ
WO2020235246A1 (ja) 磁性部材形成用樹脂組成物、及び磁性部材の製造方法
JP7243035B2 (ja) トランスファー成形用の樹脂組成物、当該樹脂組成物の成形物を備える電気・電子デバイス、および、当該樹脂組成物を用いた成形物の製造方法
JP2021036013A (ja) 樹脂組成物および成形品
JP7127366B2 (ja) 磁性部材成形用の樹脂組成物、磁性部材、コイル、磁性部材の製造方法および磁性部材成形用キット
JP7511323B2 (ja) 外装部材形成用樹脂組成物および構造体
JP2022180555A (ja) 樹脂組成物および成形品
WO2020213500A1 (ja) 磁性部材形成用樹脂組成物および磁性部材の製造方法
JP2019212664A (ja) 磁性部材成形用の樹脂組成物、磁性部材、コイル、磁性部材の製造方法および磁性部材成形用キット
JP2021123721A (ja) 樹脂成形材料、成形体、コイルおよび成形体の製造方法
CN116348516B (zh) 树脂成形材料、成形体和该成形体的制造方法
JP7168131B2 (ja) 樹脂成形材料、成形体および当該成形体の製造方法
WO2021132434A1 (ja) 固体状樹脂成形材料、成形品および成形品の製造方法
JP2023108807A (ja) 樹脂成形材料、成形品および当該成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020810152

Country of ref document: EP