WO2020235148A1 - 半導体装置及び電子機器 - Google Patents

半導体装置及び電子機器 Download PDF

Info

Publication number
WO2020235148A1
WO2020235148A1 PCT/JP2020/004823 JP2020004823W WO2020235148A1 WO 2020235148 A1 WO2020235148 A1 WO 2020235148A1 JP 2020004823 W JP2020004823 W JP 2020004823W WO 2020235148 A1 WO2020235148 A1 WO 2020235148A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
guard ring
semiconductor device
substrate
conductive material
Prior art date
Application number
PCT/JP2020/004823
Other languages
English (en)
French (fr)
Inventor
仁志 岡野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/609,906 priority Critical patent/US11961783B2/en
Publication of WO2020235148A1 publication Critical patent/WO2020235148A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/585Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries comprising conductive layers or plates or strips or rods or rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/0361Physical or chemical etching
    • H01L2224/03616Chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0605Shape
    • H01L2224/06051Bonding areas having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/065Material
    • H01L2224/06505Bonding areas having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/0805Shape
    • H01L2224/08057Shape in side view
    • H01L2224/08058Shape in side view being non uniform along the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/08146Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bonding area connecting to a via connection in the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • H01L2224/091Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • H01L2224/0951Function
    • H01L2224/09515Bonding areas having different functions
    • H01L2224/09519Bonding areas having different functions including bonding areas providing primarily thermal dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8034Bonding interfaces of the bonding area
    • H01L2224/80357Bonding interfaces of the bonding area being flush with the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06589Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • This technology relates to semiconductor devices and electronic devices.
  • Patent Document 1 may not be able to further improve the efficiency of heat dissipation in the semiconductor device.
  • this technology was made in view of such a situation, and provides a semiconductor device capable of further improving the efficiency of heat dissipation and an electronic device equipped with the semiconductor device. Is the main purpose.
  • the present inventors have succeeded in further improving the efficiency of heat dissipation in the semiconductor device, and have completed the present technology.
  • a substrate, a plurality of chips laminated on the substrate, and A plurality of guard rings formed on the outer periphery of each of the plurality of chips so as to surround each of the plurality of chips are provided.
  • a semiconductor device in which at least a part of at least two of the plurality of guard rings is connected to each other via a heat conductive material.
  • the heat conductive material may be formed on the substrate.
  • a nitride film may be arranged between at least two of the plurality of chips adjacent to each other.
  • the heat conductive material may be connected to a dummy wiring formed on the chip surrounded by the guard ring of at least one of the at least two guard rings.
  • the heat conductive material may be connected to the dummy wiring formed on the substrate.
  • the heat conductive material may be connected to the metal wiring formed on the substrate.
  • At least a part of the at least two guard rings may be connected to each other via a penetrating via penetrating the substrate.
  • the penetrating via may include the heat conductive material.
  • at least a part of the at least two guard rings may be connected to each other via a heat conductive material and bumps.
  • each of the plurality of chips may have a semiconductor substrate. The semiconductor substrate may be connected to the guard ring.
  • the thermal conductive material may be composed of at least one selected from carbon nanotubes, diamond, silver, copper, gold, aluminum, silicon, carbon and aluminum nitride.
  • the substrate may include an image pickup device that generates a pixel signal in pixel units.
  • At least one of the plurality of chips may include a signal processing circuit necessary for signal processing of the pixel signal.
  • the substrate may include a signal processing circuit.
  • At least one of the plurality of chips may include a signal processing circuit.
  • the plurality of chips may be composed of a first chip and a second chip.
  • the plurality of guard rings may be composed of a first guard ring and a second guard ring.
  • the first guard ring may be formed on the outer peripheral portion of the first chip so as to surround the first chip.
  • the second guard ring may be formed on the outer peripheral portion of the second chip so as to surround the second chip.
  • the first guard ring and the second guard ring may be connected via a heat conductive material.
  • the plurality of chips may be composed of a first chip, a second chip, and a third chip.
  • the plurality of guard rings may be composed of a first guard ring, a second guard ring, and a third guard ring.
  • the first guard ring may be formed on the outer peripheral portion of the first chip so as to surround the first chip.
  • the second guard ring may be formed on the outer peripheral portion of the second chip so as to surround the second chip.
  • the third guard ring may be formed on the outer peripheral portion of the third chip so as to surround the third chip.
  • the first guard ring and the second guard ring may be connected via a first heat conductive material.
  • the second guard ring and the third guard ring may be connected via a second heat conductive material.
  • Each one of the sensor chip and the logic chip (in the present technology, the chip is not limited to the logic chip as long as it includes a signal processing circuit; the same applies hereinafter), for example, copper (Cu). )
  • This logic chip is equipped with various circuits such as signal processing from the sensor chip, memory and analog.
  • As another device there is also a structure in which a plurality of logic chips are mounted on a one-chip sensor chip by a Bump connection, but this bump connection has a wide pitch, which hinders miniaturization. ing. In the future, it is expected that multiple chip connections will be replaced from bump to copper by taking advantage of the features of both devices.
  • the characteristics of the imager sensor that handles the amount of electrons are sensitive to temperature. For example, if the temperature inside the chip differs by several degrees Celsius, the image will be non-uniform.
  • the amount of heat generated by a logic chip differs depending on the mounted circuit and operating speed. For example, a logic chip having a power of 2 W at an ambient temperature of 45 ° C. may rise to 59 ° C.
  • a logic chip having a power of 2 W at an ambient temperature of 45 ° C. may rise to 59 ° C.
  • the chip to be connected is separated by dicing (blade, laser, etc.)
  • the surface of the chip end becomes uneven, so that the (high) heat conductive material comes into contact with the chip.
  • Thermal conductive layer needs to be formed thick.
  • the chip thickness for example, the substrate thickness of the semiconductor substrate
  • the thin semiconductor substrate (Si layer) and the (high) heat conductive material are used. The contact area may become small and the heat conduction efficiency may deteriorate.
  • a guard ring formed on the outer periphery of the chip is used so as to surround the chip.
  • the guard ring is mounted in a structure like a continuous wall from a semiconductor substrate (for example, a Si substrate) to BEOL when viewed from the chip end in order to reduce damage during dicing and prevent moisture from entering from the surroundings.
  • a heat conductive material to conduct heat, the heat conductivity between the chips (for example, between the first chip and the second chip) is improved, and the temperature difference between the chips is reduced. Therefore, it is possible to achieve uniform temperature of each of the plurality of chips (for example, the first chip and the second chip).
  • the present technology comprises a substrate, a plurality of chips laminated on the substrate, and a plurality of guard rings formed on the outer periphery of each of the plurality of chips so as to surround each of the plurality of chips.
  • the present invention relates to a semiconductor device, wherein at least a part of at least two guard rings among a plurality of guard rings are connected to each other via a heat conductive material.
  • at least two of the plurality of chips can be thermally connected.
  • the fact that the two chips can be thermally connected means that heat can be exchanged between the two chips via a heat conductive material and a guard ring.
  • the substrate constituting the semiconductor device according to the present technology may be a substrate including an image pickup element that generates a pixel signal in pixel units, or includes a signal processing circuit (logic circuit, MEMS circuit, memory circuit, CPU circuit, etc.). It may be a substrate, a substrate including a MEMS element, or a substrate including a thermoelectric / power generation element.
  • the chip constituting the semiconductor device according to the present technology may be a chip including an image pickup element that generates a pixel signal in pixel units, or a signal processing circuit (logic circuit, DSP circuit, memory circuit, CPU circuit, etc.). It may be a chip including a chip, a chip including a MEMS element, or a chip including a thermoelectric / power generation element.
  • the material constituting the heat conductive material may be any material as long as it has heat conductivity, and may be, for example, a conductive material or a non-conductive material.
  • the thermal resistance of a solid-state imaging device having a laminated structure of one substrate and a plurality of chips is a solid-state imaging having a laminated structure of one chip (or a laminated structure of one chip and one substrate).
  • the guard ring mounted on the chip it can be connected at a shorter distance than the distance between the wiring in the chip, and the thermal resistance can be further reduced, and the guard ring is usually used.
  • the contact area from the semiconductor substrate (Si substrate) to BEOL is large, and the thermal resistance can be further reduced.
  • FIG. 1 is a diagram showing a configuration example of a semiconductor device according to the present technology.
  • FIG. 1A is a top view (planar layout view of the first chip 20-1a and the second chip 30-1a) of the semiconductor device 1-1a for which the illustration of the substrate is omitted
  • FIG. (B) is a cross-sectional view of a semiconductor device 1-1b based on the line A1-B1 shown in FIG. 1 (a), in which the substrate is not shown.
  • the semiconductor device 1-1a includes the first chip 20-1a (left side in FIG. 1A) and the second chip 30-1a (right side in FIG. 1A).
  • the first guard ring 2-1a is formed on the outer peripheral portion of the first chip 20-1a so as to surround the first chip 20-1a, and surrounds the second chip 30-1a.
  • a second guard ring 3-1a is formed on the outer peripheral portion of the second chip 30-1a.
  • the right side of the first guard ring 2-1a (on the right side in FIG. 1A and adjacent to the second guard ring 3-1a) and the left side of the second guard ring 3-1a (in FIG. 1A). On the left side, the side adjacent to the first guard ring 2-1a) is connected via a heat conductive material 4-1a.
  • a first guard ring 2-1b is laminated on a semiconductor substrate 21-1b on the outer peripheral portion of the first chip 20-1b constituting the semiconductor device 1-1b.
  • the semiconductor substrate 21-1b and the first guard ring 2-1b are connected.
  • a second guard ring 3-1b is laminated on the semiconductor substrate 31-1b on the outer peripheral portion of the second chip 30-1b constituting the semiconductor device 1-1b, and the semiconductor substrate 31-1b and the second guard are laminated.
  • the ring 3-1b is connected.
  • the first guard ring 2-1b has a tungsten via 7-1 and a metal 5-1 from the laminated surface (connection surface) of the semiconductor substrate 21-1b and the first guard ring 2-1b.
  • the via 6-1 is repeated three times, and the metal 5-1 is laminated in this order.
  • the second guard ring 3-1b has a tungsten via 7-2, a metal 5-2, and a via 6-2 3 from the laminated surface (connection surface) of the semiconductor substrate 31-1b and the first guard ring 3-1b. It is constructed by laminating in the order of repeating the times and metal 5-2.
  • a part of the uppermost metal 5-1 of the first guard ring 2-1b and a part of the uppermost metal 5-2 of the second guard ring 3-1b are thermally generated. It is connected via a conductive material 4-1b. It should be noted that the entire area in the left-right direction in FIG.
  • FIG. 1 (b) of the uppermost layer metal 5-1 of the first guard ring 2-1b and FIG. 1 (b) of the uppermost layer metal 5-2 of the second guard ring 3-1b. ) May be connected to the entire area in the left-right direction via the heat conductive material 4-1b.
  • FIG. 2 is a diagram showing a configuration example of a semiconductor device according to the present technology.
  • FIG. 2A is a top view (planar layout of the first chip 20-2a and the second chip 30-2a) of the solid-state image sensor 1-2a which is an example of the semiconductor device whose substrate is not shown.
  • FIG. 2B is a cross-sectional perspective view of a solid-state image sensor 1-2b which is an example of a semiconductor device in the P2 portion based on the arrows A2 and B2 shown in FIG. 2A.
  • the semiconductor device 1-2a includes the first chip 20-2a (left side in FIG. 2A) and the second chip 30-2a (right side in FIG. 2A).
  • the first guard ring 2-2a is formed on the outer peripheral portion of the first chip 20-2a so as to surround the first chip 20-2a, and surrounds the second chip 30-2a.
  • a second guard ring 3-2a is formed on the outer peripheral portion of the second chip 30-2a.
  • the right side of the first guard ring 2-2a (on the right side in FIG. 2A and adjacent to the second guard ring 3-2a) and the left side of the second guard ring 3-2a (in FIG. 2A). On the left side, the side adjacent to the first guard ring 2-2a) is connected via a heat conductive material 4-2a.
  • the solid-state image sensor 1-2b is a first chip 20 laminated on the substrate 100-2b and the substrate 100-2b (laminated downward in FIG. 2B).
  • -2b the left chip in FIG. 2B
  • the second chip 30-2b the right chip in FIG. 2B
  • the substrate 100-2b includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup device 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 2b and a wiring layer 160-2b. A color filter and an on-chip lens 8-2b are formed on the solid-state image sensor 150-2b.
  • the first chip 20-2b has a semiconductor substrate 21-2b and a wiring layer 22-2b, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 21-2b.
  • the second chip 30-2b has a semiconductor substrate 31-2b and a wiring layer 32-2b, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 31-2b.
  • the first chip 20-2b and the second chip 30-2b are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-2b, and the wiring layer 22-2b.
  • (Vertical length in FIG. 2B) and the thickness of the wiring layer 32-2b (vertical length in FIG. 2B) are substantially the same
  • the semiconductor substrate 21-2b (Vertical length in FIG. 2B) and the thickness of the semiconductor substrate 31-2b (vertical length in FIG. 2B) are substantially the same.
  • a support substrate 200-2b is laminated below the first chip 20-2b and the second chip 30-2b (lower side in FIG. 2B).
  • a nitride film is formed between the first chip 20-2b and the second chip 30-2b, and between the first chip 20-2b and the second chip 30-2b and the support substrate 200-2b. 300-2b is arranged.
  • the substrate 100-2b, the first chip 20-2b, and the second chip 30-2b are the wiring layer 160-2b constituting the substrate 100-2b and the wiring layer 22-2b constituting the first chip 20-2b. And the wiring layer 32-2b constituting the second chip 30-2b are laminated so as to face each other.
  • a thermal conductive material 4-2b made of, for example, copper (Cu) is formed on the wiring layer 160-2b constituting the substrate 100-2b.
  • the first guard ring 2-2b is formed on the outside of the wiring layer 22-2b (the right end in FIG. 2B) constituting the first chip 20-2b (note that in FIG. 2B). Only a part of the first guard ring 2-2b is shown), and the first guard ring 2-2b is connected to the semiconductor substrate 21-2b.
  • a second guard ring 3-2b is formed on the outside of the wiring layer 32-2b (the left end in FIG. 2B) constituting the second chip 30-2b (note that FIG. 2B). Only a part of the second guard ring 3-2b is shown inside), and the second guard ring 3-2b is connected to the semiconductor substrate 31-2b.
  • the first guard ring 2-2b and the second guard ring 3-2b, which are adjacent to each other, are connected to each other via a heat conductive material 4-2b. Therefore, the semiconductor substrate 21-2b, the first guard ring 2-2b, the heat conductive material 4-2b, the second guard ring 3-2b, and the semiconductor substrate 31-2b are connected to form, for example, a logic circuit.
  • the heat generated by the second chip 30-2b having a heat transfer length (the length of heat transfer from the heat generation source) t ⁇ m in the direction of arrow Q2 is transferred to, for example, the first chip 20-2b having a memory circuit.
  • the difference between the temperature of the first chip 20-2b and the temperature of the second chip 30-2b can be reduced.
  • FIG. 16 is a diagram for explaining one of the effects of the present technology.
  • FIG. 16A is a cross-sectional perspective view showing a configuration example of a solid-state image sensor which is an example of a semiconductor device according to the present technology
  • FIG. 16B is a cross-sectional view showing a configuration example of a solid-state image sensor.
  • It is a perspective view.
  • 16 (c) shows a total of three types of the solid-state imaging device shown in FIG. 16 (a), the solid-state imaging device according to the present technology (not shown), and the solid-state imaging device shown in FIG. 16 (b). It is a figure which shows the comparison result of the thermal resistance (k / W) of a solid-state image pickup apparatus.
  • the solid-state image sensor 1-16a is a first chip 20 laminated on the substrate 100-16a and the substrate 100-16a (laminated downward in FIG. 16A).
  • -16a the left chip in FIG. 16A
  • the second chip 30-16a the right chip in FIG. 16A
  • the substrate 100-16a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 16a and a wiring layer 160-16a. A color filter and an on-chip lens 8-16a are formed on the solid-state image sensor 150-16a.
  • the first chip 20-16a has a semiconductor substrate 21-16a and a wiring layer 22-16a, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 21-16a.
  • the second chip 30-16a has a semiconductor substrate 31-16a and a wiring layer 32-16a, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 31-16a.
  • the first chip 20-16a and the second chip 30-16a are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-16a, and the wiring layer 22-16a is formed.
  • (Vertical length in FIG. 16A) and the thickness of the wiring layer 32-16a are substantially the same
  • the semiconductor substrate 21-16a (Vertical length in FIG. 16A) and the thickness of the semiconductor substrate 31-16a (vertical length in FIG. 16A) are substantially the same.
  • a support substrate 200-16a is laminated below the first chip 20-16a and the second chip 30-16a (lower side in FIG. 16A).
  • a nitride film is formed between the first chip 20-16a and the second chip 30-16a, and between the first chip 20-16a and the second chip 30-16a and the support substrate 200-16a. 300-16a are arranged.
  • the substrate 100-16a, the first chip 20-16a, and the second chip 30-16a are the wiring layer 160-16a constituting the substrate 100-16a and the wiring layer 22-16a constituting the first chip 20-16a. And the wiring layers 32-16a constituting the second chip 30-16a are laminated so as to face each other.
  • a thermal conductive material 4-16a made of, for example, copper (Cu) is formed on the wiring layer 160-16a constituting the substrate 100-16a.
  • a first guard ring 2-16a is formed on the outside (right end in FIG. 16A) of the wiring layer 22-16a constituting the first chip 20-16a (note that in FIG. 16A). Only a part of the first guard ring 2-16a is shown), and the first guard ring 2-16a is connected to the semiconductor substrate 21-16a.
  • a second guard ring 3-16a is formed on the outside (left end in FIG. 16A) of the wiring layer 32-16a constituting the second chip 30-16a (note that FIG. 16A). Only a part of the second guard ring 3-16a is shown), and the second guard ring 3-16a is connected to the semiconductor substrate 31-16a.
  • the first guard ring 2-16a and the second guard ring 3-16a that are adjacent to each other are connected via a heat conductive material 4-16a. Therefore, the semiconductor substrate 21-16a, the first guard ring 2-16a, the heat conductive material 4-16a, the second guard ring 3-16a, and the semiconductor substrate 31-16a are connected to form a logic circuit, for example.
  • the heat generated by the second chip 30-16a having a heat transfer length (the length of heat transfer from the heat generation source) t ⁇ m in the direction of the arrow Q16a is transferred to, for example, the first chip 20-16a having a memory circuit.
  • the difference between the temperature of the first chip 20-16a and the temperature of the second chip 30-16a can be reduced.
  • the solid-state image sensor 1-16b is laminated on the substrate 100-16b (may be a chip 100-16b; the same applies hereinafter) and the substrate 100-16b (in FIG. 16B).
  • the chips 20-16b are laminated downward).
  • the substrate 100-16b includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 16b and a wiring layer 160-16b. A color filter and an on-chip lens 8-16b are formed on the solid-state image sensor 150-16b.
  • the chip 20-16b has a semiconductor substrate 21-16b and a wiring layer 22-16b, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-16b.
  • the substrate 100-16b and the chip 20-16b are laminated with the wiring layer 160-16b constituting the substrate 100-16b and the wiring layer 22-16b constituting the chip 20-16b facing each other.
  • the heat generated by the second chip 30-16b having a logic circuit is transferred into the chip 20-16b in the direction of arrow Q16b with a heat transfer length (length of heat transfer from the heat generation source) t ⁇ m.
  • the thermal resistance (k / W) of the solid-state image sensor 1-16a is a ⁇ m (thickness of the heat conductive material (for example, Cu) 4-16a) ⁇ L ⁇ m (solid-state image sensor 1-16a).
  • the contact area of the width is 7.1E-3 ⁇ t / L.
  • the thermal resistance (k / W) of the solid-state imaging device having a laminated structure substantially equivalent to that of the solid-state imaging device 1-16a using the heat conductive material (Cu) and the metal wiring connected to the heat conductive material is 3.86a ⁇ m (thickness of heat conductive material (for example, Cu) + thickness of metal wiring) x L ⁇ m (width of solid-state imaging device (depth length from front to back of solid-state imaging device)), 1 .9E-3 ⁇ t / L.
  • the thermal resistance (k / W) of the solid-state image sensor 1-16b is b ⁇ m (thickness of the semiconductor substrate 21-6b) ⁇ L ⁇ m (width of the solid-state image sensor 1-16b (from the front surface to the back surface in FIG. 16 (b)).
  • the contact area of the depth)) is 2.0E-3 ⁇ t / L.
  • FIG. 3 is a diagram showing a configuration example of the semiconductor device of the first embodiment according to the present technology, and in detail, FIG. 3A is based on the A3-B3 line shown in FIG. 3B. It is sectional drawing of the solid-state image sensor 1-3a which is an example of the semiconductor device of 1st Embodiment which concerns on this technology, and FIG. 3 (b) shows the substrate 100-3a shown in FIG. 3 (a). It is a top view (plan layout view of the first chip 20-3b and the second chip 30-3b) of the solid-state image pickup device 1-3b which is an example of the semiconductor device.
  • the solid-state image sensor 1-3a includes a substrate 100-3a, a first chip 20-3a and a second chip 30-3a laminated on the substrate 100-3a (laminated downward in FIG. 3A). It has.
  • the substrate 100-3a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup device 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 3a and a wiring layer 160-3a. A color filter and an on-chip lens 8-3a are formed on the solid-state image sensor 150-3a.
  • the first chip 20-3a has a semiconductor substrate 21-3a and a wiring layer 22-3a, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-3a.
  • the second chip 30-3a has a semiconductor substrate 31-3a and a wiring layer 32-3a, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-3a.
  • the first chip 20-3a and the second chip 30-3a are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-3a, and the wiring layer 22-3a is formed.
  • the semiconductor substrate 21-3a (Vertical length in FIG. 3A) and the thickness of the semiconductor substrate 31-3a (vertical length in FIG. 3A) are substantially the same.
  • the element 77 formed on the semiconductor substrates 21-3a and 31-3a represents, for example, a transistor (hereinafter, the same applies to drawings other than FIG. 3A).
  • the substrate 100-3a, the first chip 20-3a, and the second chip 30-3a are the wiring layer 160-3a constituting the substrate 100-3a and the wiring layer 22-3a constituting the first chip 20-3a. And the wiring layer 32-3a constituting the second chip 30-3a are laminated so as to face each other.
  • a thermal conductive material 4-3a made of, for example, copper (Cu) is formed on the wiring layer 160-3a constituting the substrate 100-3a.
  • a first guard ring 2-3a is formed on the outside (left and right ends in FIG. 3A) of the wiring layer 22-3a constituting the first chip 20-3a, and the first guard ring 2-3a is formed. , Is connected to the semiconductor substrate 21-3a.
  • a second guard ring 3-3a is formed on the outside (left and right ends in FIG. 3A) of the wiring layer 32-3a constituting the second chip 30-3a, and the second guard ring 3-3a is formed.
  • 3a is connected to the semiconductor substrate 31-3a.
  • the first guard ring 2-3a formed on the side adjacent to the second chip 30-3a in the first chip 20-3a (the right side in FIG. 3A) and the first guard ring 2-3a in the second chip 30-3a.
  • the second guard ring 3-3a formed on the side adjacent to the chip 20-3a (the left side in FIG. 3A) is connected to the second guard ring 3-3a via a heat conductive material 4-3a.
  • the semiconductor substrate 21-3a, the first guard ring 2-3a, the heat conductive material 4-3a, the second guard ring 3-3a, and the semiconductor substrate 31-3a are connected to each other, and the first chip 20 The difference between the temperature of -3a and the temperature of the second chip 30-3a can be reduced.
  • the solid-state imaging device 1-3b includes the first chip 20-3b (left side in FIG. 3B) and the second chip 30-3b (in FIG. 3B).
  • the first guard ring 2-3b is formed on the outer peripheral portion of the first chip 20-3b so as to surround the first chip 20-3b so as to surround the second chip 30-3b.
  • a second guard ring 3-3b is formed on the outer peripheral portion of the second chip 30-3b.
  • the right side of the first guard ring 2-3b (on the right side in FIG. 3B, adjacent to the second guard ring 3-3b) and the left side of the second guard ring 3-3b (in FIG. 3B).
  • the side adjacent to the first guard ring 2-3b is connected via the heat conductive material 4-3b. That is, in FIG. 3B, the heat conductive material 4-3b is joined (contacted) to the full length area on the right side of the first guard ring 2-3b and the full length area on the left side of the second guard ring 3-3b. ..
  • FIG. 12 is a diagram showing an example of a heat conductive material included in the semiconductor device of the first embodiment according to the present technology.
  • FIG. 12 shows the semiconductor device of the first embodiment according to the present technology. Specific materials of the heat conductive material used and the thermal conductivity of the material / Wm -1 K -1 are shown.
  • the specific material of the heat conductive material shown in FIG. 12 may be used in the semiconductor device of the second to ninth embodiments according to the present technology described later, unless there is a particular technical contradiction.
  • heat conductive material examples include carbon nanotubes (C), diamond (C), silver (Ag), copper (Cu), gold (Au), aluminum (Al), and silicon. (Si), carbon (C) (artificial graphite, carbon) and aluminum nitride (AlN) are mentioned. Then, as shown in FIG.
  • the thermal conductivity of the carbon nanotube (C) / Wm -1 K -1 is 3000 to 5500, and the thermal conductivity of the diamond (C) / Wm -1 K -1 is , 1000-2000, the thermal conductivity of silver (Ag) / Wm -1 K -1 is 420, the thermal conductivity of copper (Cu) / Wm -1 K -1 is 398, and gold.
  • the thermal conductivity of (Au) / Wm -1 K -1 is 320
  • the thermal conductivity of gold (Au) / Wm -1 K -1 is 320
  • the thermal conductivity of aluminum (Al) / Wm -1 K -1 is 236, the thermal conductivity / Wm -1 K -1 of silicon (Si) is 168
  • the thermal conductivity of carbon (C) (artificial graphite, carbon) / wm - 1 K -1 is 100 to 250
  • the thermal conductivity of aluminum nitride (AlN) / Wm -1 K -1 is 150 to 250.
  • the material of the heat conductive material is selected according to the purpose and application, for example, in consideration of the magnitude of thermal conductivity, the presence or absence of conductivity, and the like.
  • FIGS. 13 to 15 are diagrams for explaining a method of manufacturing a semiconductor device of the first embodiment (example 1 of a semiconductor device) according to the present technology. More specifically, FIGS. 13 to 15 are diagrams for explaining a manufacturing method of the solid-state image sensor 1-15, which is an example of the semiconductor device of the first embodiment according to the present technology.
  • the guard ring 220-13a and the wiring 620-13 are formed on the interlayer insulating film 160-13a on the semiconductor substrate 150-13a in the BEOL process.
  • a heat conductive material (heat conductive film) AIN (aluminum nitride) 4-13b is formed on the formed interlayer insulating film 160-13b.
  • the heat conductive material (heat conductive film) AIN (aluminum nitride) 4-13c is patterned by the lithography method and / or the dry etching method, and is shown in FIG. 13 (d).
  • the interlayer insulating film 160-13d is formed so as to embed the heat conductive material (heat conductive film) AIN (aluminum nitride) 4-13d.
  • the via V1 is formed in the region above the guard ring 220-14a, and the via V2 is formed in the region above the wiring 620-14a.
  • Copper (Cu) 280 is embedded as shown in FIG. 14 (b) and CMP polished to form a guard ring 221-14c with a Cu pad as shown in FIG. 14 (c).
  • the wiring 621-14c having a pad is formed, and the heat conductive material (heat conductive film) AIN (aluminum nitride) 4-14c is exposed.
  • the semiconductor substrate (silicon substrate) 150-14d on the back surface side is polished by turning it upside down.
  • the solid-state image sensor 1-15 includes a substrate 100-15 and a first chip 20-15 and a second chip 30-15 laminated on the substrate 100-15 (laminated downward in FIG. 15). There is.
  • the substrate 100-15 includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 15 and a wiring layer 160-15. A color filter and an on-chip lens 8-15 are formed on the solid-state image sensor 150-15.
  • the first chip 20-15 has a semiconductor substrate 21-15 and a wiring layer 22-15, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-15.
  • the second chip 30-15 has a semiconductor substrate 31-15 and a wiring layer 32-15, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-15.
  • a signal processing circuit for example, a memory circuit is formed on the semiconductor substrate 31-15.
  • the first chip 20-15 and the second chip 30-15 are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-15, and the thickness of the wiring layer 22-15 (the thickness of the wiring layer 22-15).
  • the vertical length in FIG. 15) and the thickness of the wiring layer 32-15 are substantially the same, and the thickness of the semiconductor substrate 21-15 (vertical direction in FIG. 15).
  • the length of the semiconductor substrate 31-15 is substantially the same.
  • the substrate 100-15, the first chip 20-15, and the second chip 30-15 are the wiring layer 160-15 constituting the substrate 100-15 and the wiring layer 22-15 constituting the first chip 20-15. And the wiring layers 32-15 constituting the second chip 30-15 are laminated so as to face each other.
  • a thermal conductive material 4-15 made of, for example, copper (Cu) is formed on the wiring layer 160-15 constituting the substrate 100-15.
  • a first guard ring 2-15 is formed on the outside (left and right ends in FIG. 3A) of the wiring layer 22-15 constituting the first chip 20-15, and the first guard ring 2-15 is formed. , Is connected to the semiconductor substrate 21-15. Further, a second guard ring 3-15 is formed on the outside (left and right ends in FIG.
  • the 15 of the wiring layer 32-15 constituting the second chip 30-15, and the second guard ring 3-15 is formed. It is connected to the semiconductor substrate 31-15.
  • the second guard ring 3-15 formed on the side adjacent to 15 (on the left side in FIG. 15) is connected to the second guard ring 3-15 via a heat conductive material 4-15.
  • the semiconductor substrate 21-15, the first guard ring 2-15, the heat conductive material 4-15, the second guard ring 3-15, and the semiconductor substrate 31-15 are connected to each other, and the first chip 20 The difference between the temperature of -15 and the temperature of the second chip 30-15 can be reduced.
  • the semiconductor device of the first embodiment according to the present technology is the semiconductor of the second to ninth embodiments according to the present technology, which will be described later, unless there is a technical contradiction.
  • the contents described in the column of the imaging device can be applied as they are.
  • FIG. 4 is a diagram showing a configuration example of the semiconductor device of the second embodiment according to the present technology, and in detail, FIG. 4A is based on the A4-B4 line shown in FIG. 4B. It is sectional drawing of the solid-state image sensor 1-4a which is an example of the semiconductor device of 2nd Embodiment which concerns on this technology, and FIG. 4 (b) shows the substrate 100-4a shown in FIG. 4 (a). It is a top view (plan layout view of the first chip 20-4b and the second chip 30-4b) of the solid-state image sensor 1-4b which is an example of a semiconductor device.
  • the solid-state image sensor 1-4a includes a substrate 100-4a, a first chip 20-4a and a second chip 30-4a laminated on the substrate 100-4a (laminated downward in FIG. 4A). It has.
  • the substrate 100-4a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup device 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 4a and a wiring layer 160-4a. A color filter and an on-chip lens 8-4a are formed on the solid-state image sensor 150-4a.
  • the first chip 20-4a includes a semiconductor substrate 21-4a and a wiring layer 22-4a, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-4a.
  • the second chip 30-4a has a semiconductor substrate 31-4a and a wiring layer 32-4a, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-4a.
  • the first chip 20-4a and the second chip 30-4a are formed of substantially the same layer (position at the same height) in the downward direction of the substrate 100-4a, and the wiring layer 22-
  • the thickness of 4a (the length in the vertical direction in FIG. 4A) and the thickness of the wiring layer 32-4a (the length in the vertical direction in FIG. 4A) are substantially the same, and the semiconductor substrate 21-
  • the thickness of 4a (the vertical length in FIG. 4A) and the thickness of the semiconductor substrate 31-3a (the vertical length in FIG. 4A) are substantially the same.
  • the substrate 100-4a, the first chip 20-4a, and the second chip 30-4a are the wiring layer 160-4a constituting the substrate 100-4a and the wiring layer 22-4a constituting the first chip 20-4a. And the wiring layer 32-4a constituting the second chip 30-4a are laminated so as to face each other.
  • a thermal conductive material 4-4a made of, for example, copper (Cu) is formed on the wiring layer 160-4a constituting the substrate 100-4a.
  • a first guard ring 2-4a is formed on the outside (left and right ends in FIG. 4A) of the wiring layer 22-4a constituting the first chip 20-4a, and the first guard ring 2-4a is formed. , Is connected to the semiconductor substrate 21-4a.
  • a second guard ring 3-4a is formed on the outside (left and right ends in FIG. 4A) of the wiring layer 32-4a constituting the second chip 30-4a, and the second guard ring 3- 4a is connected to the semiconductor substrate 31-4a.
  • the first guard ring 2-4a formed on the side adjacent to the second chip 30-4a in the first chip 20-4a (right side in FIG. 4A) and the first guard ring 2-4a in the second chip 30-4a.
  • the second guard ring 3-4a formed on the side adjacent to the chip 20-4a (the left side in FIG. 4A) is connected to the second guard ring 3-4a via a heat conductive material 4-4a.
  • the semiconductor substrate 21-4a, the first guard ring 2-4a, the heat conductive material 4-4a, the second guard ring 3-4a, and the semiconductor substrate 31-4a are connected to each other, and the first chip 20 The difference between the temperature of -3a and the temperature of the second chip 30-3a can be reduced.
  • the solid-state image sensor 1-4b includes the first chip 20-4b (left side in FIG. 4B) and the second chip 30-4b (in FIG. 4B).
  • the first guard ring 2-4b is formed on the outer peripheral portion of the first chip 20-4b so as to surround the first chip 20-4b so as to surround the second chip 30-4b.
  • a second guard ring 3-4b is formed on the outer peripheral portion of the second chip 30-4b. The right side of the first guard ring 2-4b (on the right side in FIG. 4B, adjacent to the second guard ring 3-4b) and the left side of the second guard ring 3-4b (in FIG. 4B).
  • the side adjacent to the first guard ring 2-4b is connected via a heat conductive material 4-4b. That is, in FIG. 4B, the heat conductive material 4-4b is joined (contacted) to a part of the right side of the first guard ring 2-4b and a part of the left side of the second guard ring 3-4b. ing.
  • the semiconductor device of the second embodiment according to the present technology is described in the column of the semiconductor device of the first embodiment according to the present technology, unless there is a technical contradiction.
  • the contents described in the above section and the contents described in the column of the semiconductor device of the third to ninth embodiments according to the present technology described later can be applied as they are.
  • FIG. 5 is a diagram showing a configuration example of a semiconductor device according to a third embodiment according to the present technology.
  • FIG. 5A is based on line A5-B5 shown in FIG. 5B.
  • FIG. 5 (b) shows the substrate 100-5a shown in FIG. 5 (a).
  • FIG. 5 (a) It is a top view (plan layout view of the first chip 20-5b and the second chip 30-5b) of the solid-state image sensor 1-5b which is an example of a semiconductor device.
  • the solid-state image sensor 1-5a includes a substrate 100-5a, a first chip 20-5a and a second chip 30-5a laminated on the substrate 100-5a (laminated downward in FIG. 5A). It has.
  • the substrate 100-5a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup device 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 5a and a wiring layer 160-5a. A color filter and an on-chip lens 8-5a are formed on the solid-state image sensor 150-5a.
  • the first chip 20-5a has a semiconductor substrate 21-5a and a wiring layer 22-5a, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-5a.
  • the second chip 30-5a has a semiconductor substrate 31-5a and a wiring layer 32-5a, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-5a.
  • the first chip 20-3a and the second chip 30-3a are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-3a, but the wiring layer 22
  • the thickness of the semiconductor substrate 21-5a is different from the thickness of -5a (length in the vertical direction in FIG. 5 (a)) and the thickness of the wiring layer 32-5a (length in the vertical direction in FIG. 5 (a)).
  • the thickness (length in the vertical direction in FIG. 5A) and the thickness of the semiconductor substrate 31-5a (length in the vertical direction in FIG. 5A) are different. That is, in FIG.
  • the thickness d1 of the semiconductor substrate 21-5a is thicker than the thickness d2 of the semiconductor substrate 31-5a
  • the thickness of the wiring layer 32-5a is the difference between the thicknesses of the semiconductor substrates. It is thicker than the thickness of the wiring layer 22-5a.
  • the number of wiring layers of the wiring layer 32-5a is larger than the number of wiring layers of the wiring layer 22-5a.
  • the substrate 100-5a, the first chip 20-5a, and the second chip 30-5a are the wiring layer 160-5a constituting the substrate 100-5a and the wiring layer 22-5a constituting the first chip 20-5a. And the wiring layer 32-5a constituting the second chip 30-5a are laminated so as to face each other.
  • a thermal conductive material 4-5a made of, for example, copper (Cu) is formed on the wiring layer 160-5a constituting the substrate 100-5a.
  • a first guard ring 2-5a is formed on the outside (left and right ends in FIG. 5A) of the wiring layer 22-5a constituting the first chip 20-5a, and the first guard ring 2-5a is formed. , Is connected to the semiconductor substrate 21-5a.
  • a second guard ring 3-5a is formed on the outside (left and right ends in FIG. 5A) of the wiring layer 32-5a constituting the second chip 30-5a, and the second guard ring 3-5a is formed.
  • 5a is connected to the semiconductor substrate 31-5a.
  • the second guard ring 3-5a formed on the side adjacent to the chip 20-5a (the left side in FIG. 5A) is connected to the second guard ring 3-5a via a heat conductive material 4-5a.
  • the semiconductor substrate 21-5a, the first guard ring 2-5a, the heat conductive material 4-5a, the second guard ring 3-5a, and the semiconductor substrate 31-5a are connected to each other, and the first chip 20 The difference between the temperature of -5a and the temperature of the second chip 30-5a can be reduced.
  • the solid-state image sensor 1-5b includes a first chip 20-5b (left side in FIG. 5 (b)) and a second chip 30-5b (in FIG. 5 (b)).
  • the first guard ring 2-5b is formed on the outer peripheral portion of the first chip 20-5b so as to surround the first chip 20-5b, and surrounds the second chip 30-5b.
  • a second guard ring 3-5b is formed on the outer peripheral portion of the second chip 30-5b.
  • the right side of the first guard ring 2-5b (on the right side in FIG. 5B, adjacent to the second guard ring 3-5b) and the left side of the second guard ring 3-5b (in FIG. 5B).
  • the side adjacent to the first guard ring 2-5b is connected via a heat conductive material 4-5b. That is, in FIG. 5B, the heat conductive material 4-5b is joined (contacted) to a part of the right side of the first guard ring 2-5b and a part of the left side of the second guard ring 3-5b. ing.
  • the semiconductor device according to the third embodiment according to the present technology is the semiconductor device according to the first and second embodiments according to the present technology, unless there is a technical contradiction.
  • the contents described in the column of and the contents described in the column of the semiconductor device of the fourth to ninth embodiments according to the present technology described later can be applied as they are.
  • FIG. 6 is a diagram showing a configuration example of a semiconductor device according to a fourth embodiment according to the present technology.
  • FIG. 6A is based on the lines A6-B6 shown in FIG. 6B.
  • FIG. 6 (b) shows the substrate 100-6a shown in FIG. 6 (a).
  • the solid-state image sensor 1-6a includes a substrate 100-6a, a first chip 20-6a, a second chip 30-6a, and a second chip 30-6a laminated on the substrate 100-6a (laminated downward in FIG. 6A). It is equipped with three chips 40-6a.
  • the substrate 100-6a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 6a and a wiring layer 160-6a. A color filter and an on-chip lens 8-6a are formed on the solid-state image sensor 150-6a.
  • the first chip 20-6a has a semiconductor substrate 21-6a and a wiring layer 22-6a, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-6a.
  • the second chip 30-6a has a semiconductor substrate 31-6a and a wiring layer 32-6a, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-6a.
  • the third chip 40-6a has a semiconductor substrate 41-6a and a wiring layer 42-6a, and a signal processing circuit, for example, a CPU circuit is formed on the semiconductor substrate 41-6a.
  • the first chip 20-6a, the second chip 30-6a, and the third chip 40-6a are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-6a.
  • the thickness of the wiring layer 22-6a (the length in the vertical direction in FIG. 6A), the thickness of the wiring layer 32-6a (the length in the vertical direction in FIG. 6A), and the wiring layer 42- The thickness of 6a (the length in the vertical direction in FIG.
  • 6A is substantially the same as the thickness of the semiconductor substrate 21-6a (the length in the vertical direction in FIG. 6A) and the semiconductor substrate 31-.
  • the thickness of 6a (the length in the vertical direction in FIG. 6A) and the thickness of the semiconductor substrate 41-6a (the length in the vertical direction in FIG. 6A) are substantially the same.
  • the substrate 100-6a, the first chip 20-6a, the second chip 30-6a, and the third chip 40-6a form the wiring layer 160-6a and the first chip 20-6a constituting the substrate 100-6a.
  • the wiring layers 22-6a, the wiring layers 32-6a forming the second chip 30-6a, and the wiring layers 42-6a forming the third chip 40-6a are laminated so as to face each other.
  • a heat conductive material 4-6a-1 and a heat conductive material 4-6a-2 made of, for example, copper (Cu) are formed in the wiring layer 160-6a constituting the substrate 100-6a.
  • a first guard ring 2-6a is formed on the outside (left and right ends in FIG.
  • the third guard ring 23-6a formed on the side adjacent to the chip 20-6a (the left side in FIG. 6A) is connected to the third guard ring 23-6a via a heat conductive material 4-6a-1.
  • the second guard ring 3-6a formed on the side adjacent to the third chip 40-6a in the second chip 30-6a (the left side in FIG. 6A) and the third chip 40-6a.
  • the 6A is connected to the third guard ring 23-6a via a heat conductive material 4-6a-2. .. Therefore, the semiconductor substrate 21-6a, the first guard ring 2-6a, the heat conductive material 4-6a-1, the third guard ring 23-6a, and the semiconductor substrate 41-6a are connected, and the semiconductor is also connected.
  • the substrate 41-6a, the third guard ring 23-6a, the heat conductive material 4-6a-2, the second guard ring 3-6a, and the semiconductor substrate 31-6a are connected to each other, and the first chip 20- The difference between the temperature of the 6a, the temperature of the second chip 30-6a, and the temperature of the third chip 40-6a can be reduced.
  • the solid-state image sensor 1-6b includes the first chip 20-6b (left side in FIG. 6B) and the second chip 30-6b (in FIG. 6B).
  • a third chip 40-6b between the right side) and the first chip 20-6b and the second chip 30-6b is provided, and the first chip 20-6b surrounds the first chip 20-6b.
  • the first guard ring 2-6b is formed on the outer peripheral portion
  • the second guard ring 3-6b is formed on the outer peripheral portion of the second chip 30-6b so as to surround the second chip 30-6b
  • the third chip 40- A third guard ring 23-6b is formed on the outer peripheral portion of the third chip 40-6b so as to surround 6b.
  • the right side of the first guard ring 2-6b (on the right side in FIG. 6B, adjacent to the third guard ring 23-6b) and the left side of the third guard ring 23-6b (in FIG. 6B).
  • the side adjacent to the first guard ring 2-6b) is connected via the heat conductive materials 4-6b-1, 4-6b-3 and 4-6b-4. That is, in FIG. 6B, a substantially square heat conductive material 4-6b-1 is formed in a part of the right side of the first guard ring 2-6b and a part of the left side of the third guard ring 23-6b.
  • the right side of the third guard ring 23-6b (on the right side in FIG. 6B, adjacent to the second guard ring 3-6b) and the left side of the second guard ring 3-6b (in FIG. 6B). On the left side, the side adjacent to the third guard ring 23-6b) is connected via the heat conductive materials 4-6b-2, 4-6b-5 and 4-6b-6. That is, in FIG. 6B, a substantially square heat conductive material 4-6b-2 is formed in a part of the right side of the third guard ring 23-6b and a part of the left side of the second guard ring 2-6b.
  • the semiconductor device according to the fourth embodiment according to the present technology is the semiconductor device according to the first to third embodiments according to the present technology, unless there is a technical contradiction in addition to the contents described above.
  • the contents described in the column of and the contents described in the column of the semiconductor device of the fifth to ninth embodiments related to the present technology described later can be applied as they are.
  • FIG. 7 is a diagram showing a configuration example of a semiconductor device according to a fifth embodiment according to the present technology.
  • FIG. 7A is based on the lines A7-B7 shown in FIG. 7B.
  • FIG. 7 (b) shows the substrate 100-7a shown in FIG. 7 (a).
  • the solid-state image sensor 1-7a includes a substrate 100-7a, a first chip 20-7a, a second chip 30-7a, and a second chip 30-7a laminated on the substrate 100-7a (laminated downward in FIG. 7A). It includes three chips (not shown in FIG. 7A).
  • the substrate 100-7a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 7a and a wiring layer 160-7a. A color filter and an on-chip lens 8-7a are formed on the solid-state image sensor 150-7a.
  • the first chip 20-7a has a semiconductor substrate 21-7a and a wiring layer 22-7a, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-7a.
  • the second chip 30-7a has a semiconductor substrate 31-7a and a wiring layer 32-7a, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-7a.
  • the first chip 20-7a, the second chip 30-7a, and the third chip are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-7a, and are wired.
  • the thickness of the layer 22-7a (length in the vertical direction in FIG. 7A), the thickness of the wiring layer 32-7a (the length in the vertical direction in FIG. 7A), and the wiring layer of the third chip.
  • the thickness (length in the vertical direction in FIG. 7A) is substantially the same as the thickness of the semiconductor substrate 21-7a (length in the vertical direction in FIG. 7A) and the semiconductor substrate 31-7a.
  • the thickness (length in the vertical direction in FIG. 7A) and the thickness of the semiconductor substrate of the third chip (length in the vertical direction in FIG. 7A) are substantially the same.
  • the substrate 100-7a, the first chip 20-7a, the second chip 30-7a, and the third chip are the wiring layer 160-7a constituting the substrate 100-7a and the first chip 20-7a.
  • the wiring layer 22-7a constituting the above, the wiring layer 32-7a constituting the second chip 30-7a, and the wiring layer constituting the third chip are laminated so as to face each other.
  • Thermal conductive materials 4-7a-1 to 4-7a-5 made of, for example, copper (Cu) are formed on the wiring layer 160-7a constituting the substrate 100-7a.
  • the first guard ring 2-7a is formed, and the first guard ring 2-7a is connected to the semiconductor substrate 21-7a. Further, the outer side (left and right ends in FIG. 7A) of the wiring layer 32-7a constituting the second chip 30-7a and the laminated (bonding) interface with the substrate 100-7a (the upper part in FIG. 7A). A second guard ring 3-7a is formed, and the second guard ring 3-7a is connected to the semiconductor substrate 31-7a.
  • the first guard ring 2-7a formed on the side adjacent to the second chip 30-7a in the first chip 20-7a (the right side in FIG. 7A) and the first guard ring 2-7a in the second chip 30-7a.
  • the second guard ring 3-7a formed on the side adjacent to the chip 20-7a is connected to the second guard ring 3-7a via a heat conductive material 4-7a-3.
  • the guard ring 2-7a and the guard ring of the third chip are connected via the heat conductive materials 4-7a-1 and 4-7a-2, and the heat conductive material 4-7a-.
  • the guard ring 3-7a and the guard ring of the third chip are connected to each other via 4 and 4-7a-5. Therefore, the semiconductor substrate 21-7a, the first guard ring 2-7a, the heat conductive materials 4-7a-1 to 4-7a-5, the second guard ring 3-7a, the semiconductor substrate 31-7a, and the like.
  • the semiconductor substrate of the third chip and the guard ring can be connected to reduce the difference between the temperature of the first chip 20-7a, the temperature of the second chip 30-7a, and the temperature of the third chip.
  • the solid-state image sensor 1-7b includes the first chip 20-7b (left side in FIG. 7 (b)) and the second chip 30-7b (in FIG. 7 (b)). (Right side) and the third chip 50-7b in the upward direction (upper side in FIG. 3B) of the first chip 20-7b and the second chip 30-7b, and surrounds the first chip 20-7b.
  • the first guard ring 2-7b is formed on the outer peripheral portion of the first chip 20-7b
  • the second guard ring 3-7b is formed on the outer peripheral portion of the second chip 30-7b so as to surround the second chip 30-7b.
  • a third guard ring 32-7b is formed on the outer peripheral portion of the third chip 50-7b so as to surround the third chip 50-7b.
  • the right side of the first guard ring 2-7b (on the right side in FIG. 7B, adjacent to the second guard ring 3-7b) and the left side of the second guard ring 3-7b (in FIG. 7B).
  • the side adjacent to the first guard ring 2-7b) is connected via a heat conductive material 4-7b-3. That is, in FIG. 7B, a substantially square heat conductive material 4-7b-3 is formed in a part of the right side of the first guard ring 2-7b and a part of the left side of the second guard ring 3-7b. Are joined (contacted).
  • the upper side of the first guard ring 2-7b (on the upper side in FIG.
  • FIG. 7B a substantially square heat conductive material 4-7b-1 is formed in a part of the upper side of the first guard ring 2-7b and a part of the lower side of the third guard ring 32-7b. Joined (contacted), and a substantially rectangular heat conductive material 4-7b-2 joined (contacted) a part of the upper side of the first guard ring 2-7b and a part of the lower side of the third guard ring 32-7b.
  • a substantially rectangular heat conductive material 4-7b-6 is joined (contacted) to a part of the upper side of the first guard ring 2-7b and a part of the lower side of the third guard ring 32-7b. ing. Further, in FIG. 7B, of the above-mentioned three joint (contact) areas, the heat conductive material 4-7b-1 and the upper side of the first guard ring 2-7b and the third guard ring 32-7b. It has the largest joint (contact) area with the lower side and has the highest thermal conductivity.
  • the upper side of the second guard ring 3-7b (on the upper side in FIG. 7 (b) and adjacent to the third guard ring 32-7b) and the lower side of the third guard ring 32-7b (in FIG. 7 (b)).
  • the side adjacent to the second guard ring 3-7b) is connected via the heat conductive materials 4-7b-5, 4-7b-4 and 4-7b-7. That is, in FIG. 7B, a substantially square heat conductive material 4-7b-5 is formed in a part of the upper side of the second guard ring 3-7b and a part of the lower side of the third guard ring 32-7b.
  • the semiconductor device according to the fifth embodiment according to the present technology is the semiconductor device according to the first to fourth embodiments according to the present technology, unless there is a technical contradiction in addition to the contents described above.
  • the contents described in the column of and the contents described in the column of the semiconductor device of the sixth to ninth embodiments according to the present technology described later can be applied as they are.
  • FIG. 8 is a diagram showing a configuration example of a semiconductor device according to a sixth embodiment according to the present technology.
  • FIG. 8A is based on the lines A8-B8 shown in FIG. 8B.
  • FIG. 8 (b) shows the substrate 100-8a shown in FIG. 8 (a).
  • the solid-state image sensor 1-8a includes a substrate 100-8a, a first chip 20-8a and a second chip 30-8a laminated on the substrate 100-8a (laminated downward in FIG. 8A). It has.
  • the substrate 100-8a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 8a and a wiring layer 160-8a. A color filter and an on-chip lens 8-8a are formed on the solid-state image sensor 150-8a.
  • the first chip 20-8a has a semiconductor substrate 21-8a and a wiring layer 22-8a, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-8a.
  • the second chip 30-8a has a semiconductor substrate 31-8a and a wiring layer 32-8a, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-8a.
  • the first chip 20-8a and the second chip 30-8a are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-8a, and the wiring layer 22-8a is formed.
  • the semiconductor substrate 21-8a (Vertical length in FIG. 3A) and the thickness of the semiconductor substrate 31-8a (vertical length in FIG. 3A) are substantially the same.
  • the substrate 100-8a, the first chip 20-8a, and the second chip 30-8a are the wiring layer 160-8a constituting the substrate 100-8a and the wiring layer 22-8a constituting the first chip 20-8a. And the wiring layer 32-8a constituting the second chip 30-8a are laminated so as to face each other.
  • Thermal conductive materials 4-8a to 4-8a-3 made of, for example, copper (Cu) are formed on the wiring layer 160-8a constituting the substrate 100-8a.
  • a first guard ring 2-8a is formed on the outside (left and right ends in FIG. 8A) of the wiring layer 22-8a constituting the first chip 20-8a, and the first guard ring 2-8a is formed. , Is connected to the semiconductor substrate 21-8a.
  • a second guard ring 3-8a is formed on the outside (left and right ends in FIG. 8A) of the wiring layer 32-8a constituting the second chip 30-8a, and the second guard ring 3-8a is formed. 8a is connected to the semiconductor substrate 31-8a.
  • the second guard ring 3-8a formed on the side adjacent to the chip 20-8a (the left side in FIG. 8A) is connected to the second guard ring 3-8a via a heat conductive material 4-8a-2.
  • the semiconductor substrate 21-8a, the first guard ring 2-8a, the heat conductive material 4-8a, the second guard ring 3-8a, and the semiconductor substrate 31-8a are connected to each other, and the first chip 20
  • the difference between the temperature of -8a and the temperature of the second chip 30-8a can be reduced.
  • the heat conductive material 4-8a-1 is connected to the dummy wirings 29-8a-1 and 29-8a-2 formed on the first chip 20-8a, and the heat conductive material 4-8a-3 is formed.
  • the temperature difference between the chips is further reduced.
  • the solid-state image sensor 1-8b includes a first chip 20-8b (left side in FIG. 8 (b)) and a second chip 30-8 b (in FIG. 8 (b)).
  • the first guard ring 2-8b is formed on the outer peripheral portion of the first chip 20-8b so as to surround the first chip 20-8b, and surrounds the second chip 30-8b.
  • a second guard ring 3-8b is formed on the outer peripheral portion of the second chip 30-8b.
  • Dummy wirings 29-8b-1 and 29-8b-2 are formed in the first chip 20-8b, and dummy wirings 39-8b-1 and 39-8b are formed in the second chip 30-8b. -2 is formed.
  • the right side of the first guard ring 2-8b (on the right side in FIG. 8B, adjacent to the second guard ring 3-8b) and the left side of the second guard ring 3-8b (in FIG. 8B).
  • the side adjacent to the first guard ring 2-8b) is connected via the heat conductive materials 4-8b-2, 4-8b-4 and 4-8b-5. That is, in FIG. 8B, a substantially square heat conductive material 4-8b-2 is formed in a part of the right side of the first guard ring 2-8b and a part of the left side of the second guard ring 3-8b.
  • the dummy wiring 29-8b-1, the heat conductive material 4-8b-1, and the dummy wiring 29-8b-2 are connected in this order. Further, the dummy wiring 39-8b-2, the heat conductive material 4-8b-3, the dummy wiring 39-8b-1, and the heat conductive material 4-8b-2 are connected in this order, and are connected from the second chip 30-8b. There is heat conduction to the first chip 20-8b.
  • the semiconductor device according to the sixth embodiment according to the present technology is the semiconductor device according to the first to fifth embodiments according to the present technology, unless there is a technical contradiction in addition to the contents described above.
  • the contents described in the column of and the contents described in the column of the semiconductor device of the seventh to ninth embodiments according to the present technology described later can be applied as they are.
  • FIG. 9 is a diagram showing a configuration example of the semiconductor device of the seventh embodiment according to the present technology, and more specifically, FIG. 9 is a solid-state imaging which is an example of the semiconductor device of the seventh embodiment according to the present technology. It is sectional drawing of apparatus 1-9.
  • the solid-state image sensor 1-9 includes a substrate 100-9 and a first chip 20-9 and a second chip 30-9 laminated on the substrate 100-9 (laminated downward in FIG. 9). There is.
  • the substrate 100-9a includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 9 and a wiring layer 160-9. A color filter and an on-chip lens 8-9 are formed on the solid-state image sensor 150-9.
  • the first chip 20-9 has a semiconductor substrate 21-9 and a wiring layer 22-9, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-9.
  • the second chip 30-9 has a semiconductor substrate 31-9 and a wiring layer 32-9, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-9.
  • a signal processing circuit for example, a memory circuit is formed on the semiconductor substrate 31-9.
  • the first chip 20-9 and the second chip 30-9 are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-9, and the thickness of the wiring layer 22-9 (the thickness of the wiring layer 22-9).
  • the vertical length in FIG. 9) and the thickness of the wiring layer 32-9 are substantially the same, and the thickness of the semiconductor substrate 21-9 (vertical direction in FIG. 9).
  • the thickness of the semiconductor substrate 31-9 is substantially the same.
  • the substrate 100-9, the first chip 20-9, and the second chip 30-9 are the wiring layer 160-9 constituting the substrate 100-9 and the wiring layer 22-9 constituting the first chip 20-9. And the wiring layers 32-9 constituting the second chip 30-9 are laminated so as to face each other.
  • a thermal conductive material 4-9-1 made of, for example, copper (Cu) is formed on the wiring layer 160-9 constituting the substrate 100-9.
  • a first guard ring 2-9 is formed on the outside (left and right ends in FIG. 9) of the wiring layer 22-9 constituting the first chip 20-9, and the first guard ring 2-9 is a semiconductor substrate. It is connected to 21-9. Further, a second guard ring 3-9 is formed on the outside (left and right ends in FIG.
  • the second guard ring 3-9 formed on the side adjacent to 9 (the left side in FIG. 8A) is connected to the second guard ring 3-9 via a heat conductive material 4-9.1. Therefore, the semiconductor substrate 21-9, the first guard ring 2-9, the heat conductive material 4-9-1, the second guard ring 3-9, and the semiconductor substrate 31-9 are connected to each other, and the first one is connected.
  • the difference between the temperature of the chip 20-9 and the temperature of the second chip 30-9 can be reduced. Further, the heat conductive material 4-9-1 is connected to the metal wiring 440 formed on the substrate 100-9 (wiring layer 160-9) via vias 777-1 to 777-2, and is connected between the chips. We are trying to reduce the temperature difference.
  • the semiconductor device according to the seventh embodiment according to the present technology is the semiconductor device according to the first to sixth embodiments according to the present technology, unless there is a technical contradiction in addition to the contents described above.
  • the contents described in the column of and the contents described in the column of the semiconductor device of the eighth to ninth embodiments related to the present technology described later can be applied as they are.
  • FIG. 10 is a diagram showing a configuration example of the semiconductor device of the eighth embodiment according to the present technology, and more specifically, FIG. 10 is a solid-state imaging which is an example of the semiconductor device of the eighth embodiment according to the present technology. It is sectional drawing of apparatus 1-10.
  • the solid-state image sensor 1-10 includes a substrate 100-10 and a first chip 20-10 and a second chip 30-10 laminated on the substrate 100-10 (laminated downward in FIG. 10). There is.
  • the substrate 100-10 includes an image pickup element that generates a pixel signal in pixel units, and specifically, a solid-state image pickup element 150- having a semiconductor substrate and a photoelectric conversion unit (not shown) formed on the semiconductor substrate. It has 10 and a wiring layer 160-10. A color filter and an on-chip lens 8-10 are formed on the solid-state image sensor 150-10.
  • the first chip 20-10 has a semiconductor substrate 21-10 and a wiring layer 22-10, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-10.
  • the second chip 30-10 has a semiconductor substrate 31-10 and a wiring layer 32-10, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-10. In FIG.
  • the first chip 20-10 and the second chip 30-10 are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-10, and the thickness of the wiring layer 22-10 (the thickness of the wiring layer 22-10).
  • the vertical length in FIG. 10) and the thickness of the wiring layer 32-10 are substantially the same, and the thickness of the semiconductor substrate 21-10 (vertical direction in FIG. 10).
  • the thickness of the semiconductor substrate 31-10 is substantially the same.
  • the substrate 100-10, the first chip 20-10, and the second chip 30-10 are the wiring layer 160-10 constituting the substrate 100-10 and the wiring layer 22-10 constituting the first chip 20-10. And the wiring layers 32-10 constituting the second chip 30-10 are laminated so as to face each other.
  • Penetrating vias 778-1 and 778-2 penetrating the substrate 100-10 are formed on the substrate 100-10, and the penetrating vias 778-1 and 778-2 are heat conductive, for example, made of copper (Cu).
  • a first guard ring 2-10 is formed on the outside (left and right ends in FIG. 10) of the wiring layer 22-10 constituting the first chip 20-10, and the first guard ring 2-10 is a semiconductor substrate. It is connected to 21-10.
  • a second guard ring 3-10 is formed on the outside (left and right ends in FIG. 10) of the wiring layer 32-10 constituting the second chip 30-10, and the second guard ring 3-10 is formed. It is connected to the semiconductor substrate 31-10.
  • the first guard ring 2-10 formed on the side adjacent to the second chip 30-10 in the first chip 20-10 (on the right side in FIG. 10) and the first chip 20- in the second chip 30-10.
  • the second guard ring 3-10 formed on the side adjacent to 10 (the left side in FIG. 8A) is connected to the through vias 778-1 and 778-2 containing the heat conductive material. ing.
  • the through vias 778-1 and 778-2 are connected to the wiring 450 having thermal conductivity.
  • the difference between the temperature of the first chip 20-10 and the temperature of the second chip 30-10 can be reduced.
  • the semiconductor device according to the eighth embodiment according to the present technology is the semiconductor device according to the first to seventh embodiments according to the present technology, unless there is a technical contradiction in addition to the contents described above.
  • the contents described in the column of and the contents described in the column of the semiconductor device of the ninth embodiment according to the present technology described later can be applied as they are.
  • FIG. 11 is a diagram showing a configuration example of the semiconductor device according to the ninth embodiment according to the present technology. Specifically, FIG. 11 is a cross section of the semiconductor device 1-11 according to the ninth embodiment according to the present technology. It is a figure.
  • the semiconductor device 1-11 includes a substrate 100-11, a first chip 20-11 and a second chip 30-11 laminated on the substrate 100-11 (laminated downward in FIG. 9), and a substrate 100-11. It is provided with a substrate 110-11 laminated (laminated upward in FIG. 9). That is, in the semiconductor device 1-11, the substrate 110-11, the substrate 100-11, and the first chip 20-11 and the second chip 30-11 are arranged in this order from the upper side of FIG. ..
  • the substrate 100-11 includes a signal processing circuit, specifically, a semiconductor substrate 150-11 on which a signal processing circuit, for example, a logic circuit is formed, and a wiring layer 160 formed on the semiconductor substrate 150-11. It has -11.
  • a semiconductor substrate 170-11 constituting the substrate 110-11 is formed on the wiring layer 160-11, and a wiring layer 180-11 constituting the substrate 110-11 is formed on the semiconductor substrate 170. ..
  • a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 170-11.
  • the first chip 20-11 has a semiconductor substrate 21-11 and a wiring layer 22-11, and a signal processing circuit, for example, a logic circuit is formed on the semiconductor substrate 21-11.
  • the second chip 30-11 has a semiconductor substrate 31-11 and a wiring layer 32-11, and a signal processing circuit, for example, a memory circuit is formed on the semiconductor substrate 31-11.
  • the first chip 20-11 and the second chip 30-11 are formed in substantially the same layer (same height position) in the downward direction of the substrate 100-11, and the thickness of the wiring layer 22-11 (the thickness of the wiring layer 22-11).
  • the vertical length in FIG. 11) and the thickness of the wiring layer 32-11 are substantially the same, and the thickness of the semiconductor substrate 21-11 (vertical direction in FIG. 11).
  • the length of the semiconductor substrate 31-11 is substantially the same.
  • a thermal conductive material 4-11 made of, for example, copper (Cu) is formed on the wiring layer 160-11 constituting the substrate 100-11.
  • a first guard ring 2-11 is formed on the outside (left and right ends in FIG. 11) of the wiring layer 22-11 constituting the first chip 20-11, and the first guard ring 2-11 is a semiconductor substrate. It is connected to 21-11.
  • a second guard ring 3-11 is formed on the outer side (left and right ends in FIG. 11) of the wiring layer 32-11 constituting the second chip 30-11, and the second guard ring 3-11 is formed. It is connected to the semiconductor substrate 31-11.
  • the first guard ring 2-11 formed on the side adjacent to the second chip 30-11 in the first chip 20-11 (on the right side in FIG.
  • the second guard ring 3-11 formed on the side adjacent to 11 is connected to the second guard ring 3-11 via the heat conductive material 4-11. That is, as shown in FIG. 11, the first guard ring 2-11 on the right side in FIG. 11, which is adjacent to the second chip 30-11, the bump 470-1 having thermal conductivity, and the via 779. -1 and the heat conductive material 4-11 are connected in this order, and have heat conductivity with the second guard ring 3-11 on the left side in FIG. 11 which is adjacent to the first chip 20-11.
  • the bump 470-2, the via 779-2, and the heat conductive material 4-11 are connected in this order.
  • the semiconductor substrate 21-11, the first guard ring 2-11, the heat conductive material 4-11-1, the second guard ring 3-11, and the semiconductor substrate 31-11 are the bumps 470-1 and Connected via 470-2 and vias 779-1 and 779-2, the difference between the temperature of the first chip 20-11 and the temperature of the second chip 30-11 can be reduced.
  • the semiconductor device according to the ninth embodiment according to the present technology is the semiconductor device according to the first to eighth embodiments according to the present technology, unless there is a technical contradiction in addition to the contents described above.
  • the contents described in the column of can be applied as they are.
  • the electronic device of the tenth embodiment according to the present technology is any one of the semiconductor devices of the first embodiment to the ninth embodiment according to the present technology. It is an electronic device equipped with the semiconductor device of one embodiment.
  • FIG. 17 is a diagram showing an example of using the semiconductor device of the first to ninth embodiments according to the present technology as an image sensor (solid-state image sensor) which is an example of the semiconductor device.
  • the semiconductor devices of the first to ninth embodiments described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray, as described below. .. That is, as shown in FIG. 17, for example, the field of appreciation for taking an image to be used for appreciation, the field of transportation, the field of home appliances, the field of medical / healthcare, the field of security, the field of beauty, and sports.
  • the semiconductor device of any one of the first to ninth embodiments can be used for the device (for example, the electronic device of the tenth embodiment described above) used in the field of the above, the field of agriculture, and the like. it can.
  • the first to ninth implementations are applied to devices for taking images to be used for appreciation, such as digital cameras, smartphones, and mobile phones with a camera function.
  • the semiconductor device of any one of the embodiments can be used.
  • in-vehicle sensors that photograph the front, rear, surroundings, inside of a vehicle, etc., and monitor traveling vehicles and roads for safe driving such as automatic stop and recognition of the driver's condition.
  • the semiconductor device of any one of the first to ninth embodiments is used for a device used for traffic such as a monitoring camera and a distance measuring sensor for measuring distance between vehicles. Can be done.
  • devices used in home appliances such as television receivers, refrigerators, and air conditioners in order to photograph a user's gesture and operate the device according to the gesture.
  • a semiconductor device according to any one of the ninth embodiments can be used.
  • the first to ninth implementations are applied to devices used for medical care and healthcare, such as endoscopes and devices that perform angiography by receiving infrared light.
  • the semiconductor device of any one of the embodiments can be used.
  • a device used for security such as a surveillance camera for crime prevention and a camera for personal authentication is used as a semiconductor according to any one of the first to ninth embodiments.
  • the device can be used.
  • a device used for cosmetology such as a skin measuring device for photographing the skin and a microscope for photographing the scalp, an embodiment of any one of the first to ninth embodiments.
  • a form of semiconductor device can be used.
  • a semiconductor device In the field of sports, for example, a semiconductor device according to any one of the first to ninth embodiments is used for a device used for sports such as an action camera and a wearable camera for sports applications. can do.
  • a device used for agriculture such as a camera for monitoring the state of a field or a crop
  • a semiconductor device according to any one of the first to ninth embodiments. Can be used.
  • the semiconductor device of any one of the first to ninth embodiments described above is used as a solid-state image sensor.
  • the solid-state imaging device 101 can be applied to all types of electronic devices having an imaging function, such as camera systems such as digital still cameras and video cameras, and mobile phones having an imaging function.
  • FIG. 18 shows a schematic configuration of the electronic device 102 (camera) as an example.
  • the electronic device 102 is, for example, a video camera capable of capturing a still image or a moving image, and drives a solid-state image sensor 101, an optical system (optical lens) 310, a shutter device 311 and a solid-state image sensor 101 and a shutter device 311. It has a drive unit 313 and a signal processing unit 312.
  • the optical system 310 guides the image light (incident light) from the subject to the pixel portion 101a of the solid-state image sensor 101.
  • the optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls the light irradiation period and the light blocking period of the solid-state image sensor 101.
  • the drive unit 313 controls the transfer operation of the solid-state image sensor 101 and the shutter operation of the shutter device 311.
  • the signal processing unit 312 performs various signal processing on the signal output from the solid-state image sensor 101.
  • the video signal Dout after signal processing is stored in a storage medium such as a memory, or is output to a monitor or the like.
  • FIG. 19 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
  • FIG. 19 illustrates how the surgeon (doctor) 11131 is performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. Good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101 to be an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
  • CCU Camera Control Unit
  • the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processes on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for ablation of tissue, incision, sealing of blood vessels, and the like.
  • the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator. Is sent.
  • the recorder 11207 is a device capable of recording various information related to surgery.
  • the printer 11208 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-divided manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to support each of RGB. It is also possible to capture the image in a time-divided manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of the change of the light intensity to acquire an image in time division and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the mucosal surface layer.
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is photographed with high contrast.
  • fluorescence observation in which an image is obtained by fluorescence generated by irradiating with excitation light may be performed.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 20 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicably connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup unit 11402 is composed of an image pickup element.
  • the image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the imaging unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the image pickup unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and the focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition.
  • the above-mentioned imaging conditions such as frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. Good.
  • the endoscope 11100 is equipped with a so-called AE (Auto Exposure) function, an AF (Auto Focus) function, and an AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape and color of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the operation support information and presenting it to the operator 11131, it is possible to reduce the burden on the operator 11131 and to allow the operator 11131 to proceed with the operation reliably.
  • the transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
  • the communication was performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
  • the above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the endoscope 11100, the camera head 11102 (imaging unit 11402), and the like among the configurations described above.
  • the solid-state image sensor which is an example of the semiconductor device according to the present technology, can be applied to, for example, the image pickup unit 10402.
  • the technique according to the present disclosure to the endoscope 11100, the camera head 11102 (imaging unit 11402), etc.
  • the quality and reliability of the endoscope 11100, the camera head 11102 (imaging unit 11402), etc. can be improved. It is possible to improve.
  • the endoscopic surgery system has been described as an example, but the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 21 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the imaging unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger or the outside of the vehicle of the information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 22 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting the preceding vehicle, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 22 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure (the present technology) can be applied.
  • the technique according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the solid-state image sensor which is an example of the semiconductor device according to the present technology, can be applied to the image pickup unit 12031.
  • the present technology can also have the following configurations.
  • a substrate, a plurality of chips laminated on the substrate, and A plurality of guard rings formed on the outer periphery of each of the plurality of chips so as to surround each of the plurality of chips are provided.
  • a nitride film is arranged between at least two adjacent chips among the plurality of chips.
  • the semiconductor device according to any one of [1] to [6], wherein the penetrating via contains the heat conductive material.
  • the semiconductor device according to any one of [1] to [7], wherein at least a part of the at least two guard rings is connected to each other via a heat conductive material and bumps.
  • Each of the plurality of chips has a semiconductor substrate and has a semiconductor substrate.
  • the semiconductor device according to any one of [1] to [8], wherein the semiconductor substrate is connected to the guard ring.
  • the thermal conductive material is composed of at least one selected from carbon nanotubes, diamond, silver, copper, gold, aluminum, silicon, carbon and aluminum nitride. Semiconductor equipment.
  • the substrate includes an image sensor that generates a pixel signal on a pixel-by-pixel basis.
  • the substrate comprises a signal processing circuit.
  • the plurality of chips are composed of a first chip and a second chip.
  • the plurality of guard rings are composed of a first guard ring and a second guard ring.
  • the first guard ring is formed on the outer peripheral portion of the first chip so as to surround the first chip.
  • the second guard ring is formed on the outer peripheral portion of the second chip so as to surround the second chip.
  • the semiconductor device according to any one of [1] to [12], wherein the first guard ring and the second guard ring are connected via a heat conductive material.
  • the plurality of chips are composed of a first chip, a second chip, and a third chip.
  • the plurality of guard rings are composed of a first guard ring, a second guard ring, and a third guard ring.
  • the first guard ring is formed on the outer peripheral portion of the first chip so as to surround the first chip.
  • the second guard ring is formed on the outer peripheral portion of the second chip so as to surround the second chip.
  • the third guard ring is formed on the outer peripheral portion of the third chip so as to surround the third chip.
  • the first guard ring and the second guard ring are connected via a first heat conductive material, and the first guard ring and the second guard ring are connected via a first heat conductive material.
  • 2nd guard ring 4 (4-1a, 4-1b, 4-2a, 4-2b, 4-3a, 4-3b, 4-4a, 4-4b, 4-5a, 4-5b, 4-6a-1, 4- 6a-2, 4-6b-1, 4-6b-2, 4-6b-3, 4-6b-4, 4-6b-5, 4-6b-6, 4-7a-1, 4-7a- 2, 4-7a-3, 4-7a-4, 4-7a-5, 4-7b-1, 4-7b-2, 4-7b-3, 4-7b-4, 4-7b-5, 4-8a-1, 4-8a-2, 4-8a-3, 4-8b-1, 4-8b-3, 4-8b-3, 4-8b-3, 4-9-1, 4-11, 4-13, 4-14, 4-15, 4-16a) ...
  • Thermal conductive material 20 (20-1a, 20-1b, 20-2a, 20-2b, 20-3a, 20-3b, 20-4a, 20-4b, 20-5a, 20-5b, 20-6a, 20-6b, 20-7a, 20-7b, 20-8a, 20-8b, 20-9, 20-10, 20-11, 20-15, 20-16a) ... 1st chip, 23 (23-6a, 23-6b), 32 (32-7b) ...
  • 2nd guard ring 30 (30-1a, 30-1b, 30-2a, 30-2b, 30-3a, 30-3b, 30-4a, 30-4b, 30-5a, 30-5b, 30-6a, 30-6b, 30-7a, 30-7b, 30-8a, 30-8b, 30-9, 30-10, 30-11, 30-15, 30-16a) ... 2nd chip, 40 (40-6a, 40-6b), 50 (50-7b), ... 3rd chip, 100 (100-2b, 100-3a, 100-4a, 100-5a, 100-6a, 100-7a, 100-8a, 100-9, 100-10, 100-11, 100-15, 100-16a) ⁇ substrate, 778 (778-1, 778-2) ... Penetration via (heat conductive material).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

放熱の効率化の更なる向上を実現することができる半導体装置を提供すること、及びその半導体装置が搭載された電子機器を提供すること。 基板と、該基板に積層された複数のチップと、該複数のチップのそれぞれを囲むように該第複数のチップのそれぞれの外周部に形成された複数のガードリングと、を備え、該複数のガードリングのうち、少なくとも2つの該ガードリングの少なくとも一部同士が熱伝導材を介して接続されている、半導体装置を提供する。さらに、その半導体装置が搭載された電子機器を提供する。

Description

半導体装置及び電子機器
 本技術は、半導体装置及び電子機器に関する。
 近年、半導体装置(例えば、固体撮像装置)の小型化・高密度化を実現するための技術開発が盛んに行われている。この技術開発の状況下において、半導体装置(例えば、固体撮像装置)が備える信号処理回路等の動作中に発生する熱の放熱性に関する技術が提案されている(例えば、特許文献1を参照。)。
特開2012-156316号公報
 しかしながら、特許文献1で提案された技術では、半導体装置における放熱の効率化を更に向上させることができないおそれがある。
 そこで、本技術は、このような状況に鑑みてなされたものであり、放熱の効率化の更なる向上を実現することができる半導体装置、及びその半導体装置が搭載された電子機器を提供することを主目的とする。
 本発明者らは、上述の目的を解決するために鋭意研究を行った結果、半導体装置における放熱の効率化の更なる向上に成功し、本技術を完成するに至った。
 すなわち、本技術では、基板と、該基板に積層された複数のチップと、
 該複数のチップのそれぞれを囲むように該複数のチップのそれぞれの外周部に形成された複数のガードリングと、を備え、
 該複数のガードリングのうち、少なくとも2つの該ガードリングの少なくとも一部同士が熱伝導材を介して接続されている、半導体装置を提供する。
 本技術に係る半導体装置において、前記熱伝導材が前記基板に形成されていてよい。
 本技術に係る半導体装置において、前記複数のチップのうち、少なくとも2つの互いに隣接する前記チップの間に窒化膜が配されていてよい。
 本技術に係る半導体装置において、前記熱伝導材が、前記少なくとも2つのガードリングのうち少なくともどちらか一方の前記ガードリングが囲っている前記チップに形成されているダミー配線と接続されていてよい。
 本技術に係る半導体装置において、前記熱伝導材が、前記基板に形成されているダミー配線と接続されていてよい。
 本技術に係る半導体装置において、前記熱伝導材が、前記基板に形成されているメタル配線に接続されていてよい。
 本技術に係る半導体装置において、前記少なくとも2つのガードリングの少なくとも一部同士が、前記基板を貫通する貫通ビアを介して接続されいてよく、
 該貫通ビアが前記熱伝導材を含んでよい。
 本技術に係る半導体装置において、前記少なくとも2つのガードリングの少なくとも一部同士が熱伝導材とバンプとを介して接続されていてよい。
 本技術に係る半導体装置において、前記複数のチップのそれぞれは半導体基板を有してよく、
 該半導体基板は、前記ガードリングと接続されていてよい。
 本技術に係る半導体装置において、前記熱伝導材が、カーボンナノチューブ、ダイヤモンド、銀、銅、金、アルミニウム、シリコン、炭素及び窒化アルミニウムの選ばれる少なくとも1種から構成されていてよい。
 本技術に係る半導体装置において、前記基板が、画素単位で画素信号を生成する撮像素子を含んでよく、
 前記複数のチップのうち少なくとも1つのチップは、該画素信号の信号処理に必要な信号処理回路を含んでよい。
 本技術に係る半導体装置において、前記基板が、信号処理回路を含んでよく、
 前記複数のチップのうち少なくとも1つのチップは信号処理回路を含んでよい。
 本技術に係る半導体装置において、前記複数のチップが、第1チップと、第2チップと、から構成されていてよく、
 前記複数のガードリングが、第1ガードリングと、第2ガードリングと、から構成されていてよく、
 該第1ガードリングが、該第1チップを囲むように該第1チップの外周部に形成されていてよく、
 該第2ガードリングが、該第2チップを囲むように該第2チップの外周部に形成されていてよく、
 該第1ガードリングと該第2ガードリングとが、熱伝導材を介して接続されていてよい。
 本技術に係る半導体装置において、前記複数のチップが、第1チップと、第2チップと、第3チップと、から構成されていてよく、
 前記複数のガードリングが、第1ガードリングと、第2ガードリングと、第3ガードリングと、から構成されていてよく、
 該第1ガードリングが、該第1チップを囲むように該第1チップの外周部に形成されていてよく、
 該第2ガードリングが、該第2チップを囲むように該第2チップの外周部に形成されていてよく、
 該第3ガードリングが、該第3チップを囲むように該第3チップの外周部に形成されていてよく、
 該第1ガードリングと該第2ガードリングとが、第1熱伝導材を介して接続されていてよく、
 該第2ガードリングと該第3ガードリングとが、第2熱伝導材を介して接続されていてよい。
 また、本技術では、
 本技術に係る半導体装置が搭載された、電子機器を提供する。
 本技術によれば、半導体装置の放熱の効率化を更に向上させることができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した半導体装置の構成例を示す図である。 本技術を適用した半導体装置の構成例を示す図である。 本技術を適用した第1の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第2の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第3の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第4の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第5の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第6の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第7の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第8の実施形態の半導体装置の構成例を示す図である。 本技術を適用した第9の実施形態の半導体装置の構成例を示す図である。 本技術を適用した半導体装置が有する熱伝導材の一例を示す図である。 本技術を適用した半導体装置の製造方法を説明するための図である。 本技術を適用した半導体装置の製造方法を説明するための図である。 本技術を適用した半導体装置の製造方法を説明するための図である。 本技術の効果の一つを説明するための図である。 本技術を適用した第1~第9の実施形態の半導体装置の使用例を示す図である。 本技術を適用した第10の実施形態に係る電子機器の一例の機能ブロック図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、特に断りがない限り、図面において、「上」とは図中の上方向又は上側を意味し、「下」とは、図中の下方向又は下側を意味し、「左」とは図中の左方向又は左側を意味し、「右」とは図中の右方向又は右側を意味する。また、図面については、同一又は同等の要素又は部材には同一の符号を付し、重複する説明は省略する。
 説明は以下の順序で行う。
 1.本技術の概要
 2.第1の実施形態(半導体装置の例1)
 3.第2の実施形態(半導体装置の例2)
 4.第3の実施形態(半導体装置の例3)
 5.第4の実施形態(半導体装置の例4)
 6.第5の実施形態(半導体装置の例5)
 7.第6の実施形態(半導体装置の例6)
 8.第7の実施形態(半導体装置の例7)
 9.第8の実施形態(半導体装置の例8)
 10.第9の実施形態(半導体装置の例9)
 11.第10の実施形態(電子機器の例)
 12.本技術を適用した半導体装置の使用例
 13.内視鏡手術システムへの応用例
 14.移動体への応用例
<1.本技術の概要>
 まず、本技術の概要について説明をする。
 センサーチップとロジック(Logic)チップ(なお、本技術では、信号処理回路を含むチップであれば、ロジックチップに限定されない。以下、同じ。)とのそれぞれの1チップ同士を、例えば、銅(Cu)で接続したイメージセンサ―デバイスの普及が始まっている。このロジックチップには、センサーチップからの信号処理、メモリやアナログなど様々な回路が搭載されている。また別なデバイスとして、1チップのセンサーチップに複数のロジック(Logic)チップをBump接続で搭載している構造もあるが、このバンプ(Bump)接続はピッチが広いため微細化の阻害要因となっている。今後、両デバイスの特徴を生かし複数のチップ接続がバンプ(Bump)から銅(Cu)へ置き換わっていくことが予想されている。しかし、バンプ(Bump)接続の様に複数のロジック(Logic)チップを貼る場合、1つのロジック(Logic)チップの半導体基板(Si基板)で均等化されていた回路動作時の発熱は個々のチップで分断され、異なるチップ温度となり接続されているセンサーチップ側の特性に影響を与えることが懸念される。
 例えば、チップ間の放熱効率化に関する技術がある。この技術はダイシング後の個片化されたチップ間に充填した熱伝導率の高い物質を媒介として温度差を軽減することができる。また、一般的に使われている樹脂系の充填剤や接着材を用いる方法もあるが、多数チップ積層プロセス中の熱処理などとの親和性が懸念される。
 電子量を扱うイメージャセンサーの特性は温度に敏感であり、例えば、チップ内の温度が数℃異なると不均一な画像になってしまう。ロジック(Logic)チップは搭載回路や動作速度により発熱量が異なるが、例えば、周囲温度45℃でパワー2Wのロジック(Logic)チップは59℃に上昇する可能性がある。センサーチップに複数のロジック(Logic)チップを貼り付ける場合、この様に十数℃温度上昇するチップが存在する可能性あり、チップ間の温度差を軽減する対策が必要となる。対策として、例えば、上述した技術のように、接続するチップがダイシング(ブレード、レーザー等)により個片化される際、チップ端部の表面が凹凸となるためチップに接する(高)熱伝導材(熱伝導層)は厚く形成する必要がある。しかし、このチップ間の隙間はデッドスペースとなるため、狭くしたい場合の妨げになる。さらに、この端面は通常のSiと異なる熱伝導率となるため、効率が悪くなる可能性もある。また、チップ間の隙間を埋めたい場合など、チップ厚(例えば、半導体基板の基板厚)は薄い方が好ましく、この場合、薄い厚の半導体基板(Si層)と(高)熱伝導材との接触面積が小さくなり熱伝導効率が悪くなるおそれがある。
 本技術は上記の事情を鑑みてなされたものである。
 本技術では、チップを囲むようにチップの外周部に形成されるガードリングを用いる。ガードリングはダイシング時のダメージ軽減及び周囲からの水分侵入防止として、チップ端から見た場合、半導体基板(例えばSi基板)からBEOLまで連続した壁の様な構造で搭載されている。このガードリングを熱伝導材とで接続して熱伝導させることで、チップ間(例えば第1チップと第2チップとの間)の熱伝導性が向上して、チップ間の温度差が軽減されて、複数チップ(例えば第1チップと第2チップ)のそれぞれの温度の均一化を達成することができる。
 そして、本技術は、主として半導体装置に関する。詳しくは、本技術は、基板と、基板に積層された複数のチップと、複数のチップのそれぞれを囲むように該第複数のチップのそれぞれの外周部に形成された複数のガードリングと、を備え、複数のガードリングのうち、少なくとも2つのガードリングの少なくとも一部同士が熱伝導材を介して接続されている、半導体装置に関する。本技術に係る半導体装置において、複数のチップのうち少なくとも2つのチップは、熱的に接続され得る。ここで、2つのチップが熱的に接続され得るとは、熱伝導材及びガードリングを介して、2つのチップ間で熱の授受が可能であることをいう。
 なお、本技術に係る半導体装置を構成する基板は、画素単位で画素信号を生成する撮像素子を含む基板でもよいし、信号処理回路(ロジック回路、DSP回路、メモリ回路、CPU回路等)を含む基板でもよいし、MEMS素子を含む基板でもよいし、熱電・発電素子を含む基板でもよい。同様に、本技術に係る半導体装置を構成するチップは、画素単位で画素信号を生成する撮像素子を含むチップでもよいし、信号処理回路(ロジック回路、DSP回路、メモリ回路、CPU回路等)を含むチップでもよいし、MEMS素子を含むチップでもよいし、熱電・発電素子を含むチップでもよい。また、熱伝導材を構成する材料は、熱伝導性を有すれば、随意の材料でよく、例えば、導電性の材料でもよいし、非導電性材料でもよい。
 本技術によれば、1つの基板と複数チップの積層構造を有する固体撮像装置の熱抵抗は、1つのチップ同士の積層構造(又は1つのチップと1つの基板との積層構造)を有する固体撮像装置の熱抵抗に対して略同等の性能を得ることができ、ガードリングと熱伝導材とは電流が流れないため、電界・磁界によるセンサ特性に影響が無くシールドが不要であり、隣接チップ端に搭載されるガードリングを接続するため、チップ内の配線同士で接続する距離と比較して短い距離で接続することができて、熱抵抗をより低減することができ、また、ガードリングは通常配線に比べて、半導体基板(Si基板)からBEOLまでの接触面積が大きく、熱抵抗をより下げることができる。
 次に、本技術に係る半導体装置について、図1~2及び図16を用いて、具体的に説明をする。
 図1は、本技術に係る半導体装置の構成例を示す図である。詳しくは、図1(a)は、基板の図示を省略している半導体装置1-1aの上面図(第1チップ20-1a及び第2チップ30-1aの平面レイアウト図)であり、図1(b)は、図1(a)に示されるA1-B1線に基づく、基板の図示を省略している半導体装置1-1bの断面図である。
 図1(a)に示されるように、半導体装置1-1aは、第1チップ20-1a(図1(a)中の左側)と第2チップ30-1a(図1(a)中の右側)とを備えて構成されて、第1チップ20-1aを囲むように第1チップ20-1aの外周部に第1ガードリング2-1aが形成され、第2チップ30-1aを囲むように第2チップ30-1aの外周部に第2ガードリング3-1aが形成されている。第1ガードリング2-1aの右辺(図1(a)中の右側で、第2ガードリング3-1aとの隣接側)と第2ガードリング3-1aの左辺(図1(a)中の左側で、第1ガードリング2-1aとの隣接側)とは、熱伝導材4-1aを介して接続されている。
 図1(b)に示されるように、半導体装置1-1bを構成する第1チップ20-1bの外周部には、半導体基板21-1b上に第1ガードリング2-1bが積層されて、半導体基板21-1bと第1ガードリング2-1bとが接続されている。また、半導体装置1-1bを構成する第2チップ30-1bの外周部には、半導体基板31-1b上に第2ガードリング3-1bが積層されて、半導体基板31-1bと第2ガードリング3-1bとが接続されている。図1(b)では、第1ガードリング2-1bは、半導体基板21-1bと第1ガードリング2-1bとの積層面(接続面)から、タングステンビア7-1と、メタル5-1及びビア6-1の3回の繰り返しと、メタル5-1と、の順で積層されて構成されている。第2ガードリング3-1bは、半導体基板31-1bと第1ガードリング3-1bとの積層面(接続面)から、タングステンビア7-2と、メタル5-2及びビア6-2の3回の繰り返しと、メタル5-2と、の順で積層されて構成されている。図1(b)では、第1ガードリング2-1bの最上層のメタル5-1の一部域と第2ガードリング3-1bの最上層のメタル5-2の一部域とが、熱伝導材4-1bを介して接続されている。なお、第1ガードリング2-1bの最上層のメタル5-1の図1(b)中の左右方向の全域と第2ガードリング3-1bの最上層のメタル5-2の図1(b)中の左右方向の全域とが、熱伝導材4-1bを介して接続されていてもよい。
 図2は、本技術に係る半導体装置の構成例を示す図である。詳しくは、図2(a)は、基板の図示を省略している半導体装置の一例である固体撮像装置1-2aの上面図(第1チップ20-2a及び第2チップ30-2aの平面レイアウト図)であり、図2(b)は、図2(a)に示さ矢印A2及び矢印B2に基づいたP2部分における、半導体装置の一例である固体撮像装置1-2bの断面斜視図である。
 図2(a)に示されるように、半導体装置1-2aは、第1チップ20-2a(図2(a)中の左側)と第2チップ30-2a(図2(a)中の右側)とを備えて構成されて、第1チップ20-2aを囲むように第1チップ20-2aの外周部に第1ガードリング2-2aが形成され、第2チップ30-2aを囲むように第2チップ30-2aの外周部に第2ガードリング3-2aが形成されている。第1ガードリング2-2aの右辺(図2(a)中の右側で、第2ガードリング3-2aとの隣接側)と第2ガードリング3-2aの左辺(図2(a)中の左側で、第1ガードリング2-2aとの隣接側)とは、熱伝導材4-2aを介して接続されている。
 図2(b)に示されるように、固体撮像装置1-2bは、基板100-2bと、基板100-2bに積層(図2(b)中の下方向に積層)された第1チップ20-2b(図2(b)中の左側のチップ)及び第2チップ30-2b(図2(b)中の右側のチップ)と、を備えている。
 基板100-2bは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-2bと、配線層160-2bとを有する。そして、固体撮像素子150-2b上には、カラーフィルタ及びオンチップレンズ8-2bが形成されている。第1チップ20-2bは、半導体基板21-2bと、配線層22-2bと、を有し、半導体基板21-2bには、信号処理回路、例えばメモリ回路が形成されている。そして、第2チップ30-2bは、半導体基板31-2bと、配線層32-2bと、を有し、半導体基板31-2bには、信号処理回路、例えばロジック回路が形成されている。図2(b)では、第1チップ20-2bと第2チップ30-2bとは、基板100-2bの下方向に略同一層(同一高さ位置)で形成されて、配線層22-2bの厚み(図2(b)中の上下方向の長さ)と配線層32-2bの厚み(図2(b)中の上下方向の長さ)とは略同一であり、半導体基板21-2bの厚み(図2(b)中の上下方向の長さ)と半導体基板31-2bの厚み(図2(b)中の上下方向の長さ)とは略同一である。第1チップ20-2bと第2チップ30-2bの下方には(図2(b)中の下側)、支持基板200-2bが積層されている。腐植防止のため、第1チップ20-2bと第2チップ30-2bとの間と、第1チップ20-2b及び第2チップ30-2bと、支持基板200-2bとの間には窒化膜300-2bが配されている。
 基板100-2bと、第1チップ20-2b及び第2チップ30-2bとは、基板100-2bを構成する配線層160-2bと、第1チップ20-2bを構成する配線層22-2b及び第2チップ30-2bを構成する配線層32-2bと、を対向させて積層されている。基板100-2bを構成する配線層160-2bには、例えば銅(Cu)で構成された熱伝導材4-2bが形成されている。第1チップ20-2bを構成する配線層22-2bの外側(図2(b)中の右端)には、第1ガードリング2-2bが形成されて(なお、図2(b)中では第1ガードリング2-2bの一部のみを図示)、第1ガードリング2-2bは、半導体基板21-2bと接続している。また、第2チップ30-2bを構成する配線層32-2bの外側(図2(b)中の左端)には、第2ガードリング3-2bが形成されて(なお、図2(b)中では第2ガードリング3-2bの一部のみを図示)、第2ガードリング3-2bは、半導体基板31-2bと接続している。互いに隣接している第1ガードリング2-2bと、第2ガードリング3-2bとは、熱伝導材4-2bを介して接続されている。したがって、半導体基板21-2bと、第1ガードリング2-2bと、熱伝導材4-2bと、第2ガードリング3-2bと、半導体基板31-2bとは接続されて、例えばロジック回路を有する第2チップ30-2bで発生した熱が、矢印Q2方向に、熱伝達長(熱の発生源から熱が伝わる長さ)tμmで、例えばメモリ回路を有する第1チップ20-2bに伝わり、第1チップ20-2bの温度と第2チップ30-2bの温度との差が軽減され得る。
 図16は、本技術の効果の一つを説明するための図である。詳しくは、図16(a)は、本技術に係る半導体装置の一例である固体撮像装置の構成例を示す断面斜視図であり、図16(b)は、固体撮像装置の構成例を示す断面斜視図である。そして、図16(c)は、図16(a)に示される固体撮像装置、図示はされていない本技術に係る固体撮像装置及び図16(b)に示される固体撮像装置、計3種の固体撮像装置の熱抵抗(k/W)の比較結果を示す図である。
 図16(a)に示されるように、固体撮像装置1-16aは、基板100-16aと、基板100-16aに積層(図16(a)中の下方向に積層)された第1チップ20-16a(図16(a)中の左側のチップ)及び第2チップ30-16a(図16(a)中の右側のチップ)と、を備えている。
 基板100-16aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-16aと、配線層160-16aとを有する。そして、固体撮像素子150-16a上には、カラーフィルタ及びオンチップレンズ8-16aが形成されている。第1チップ20-16aは、半導体基板21-16aと、配線層22-16aと、を有し、半導体基板21-16aには、信号処理回路、例えばメモリ回路が形成されている。そして、第2チップ30-16aは、半導体基板31-16aと、配線層32-16aと、を有し、半導体基板31-16aには、信号処理回路、例えばロジック回路が形成されている。図16(a)では、第1チップ20-16aと第2チップ30-16aとは、基板100-16aの下方向に略同一層(同一高さ位置)で形成されて、配線層22-16aの厚み(図16(a)中の上下方向の長さ)と配線層32-16aの厚み(図16(a)中の上下方向の長さ)とは略同一であり、半導体基板21-16aの厚み(図16(a)中の上下方向の長さ)と半導体基板31-16aの厚み(図16(a)中の上下方向の長さ)とは略同一である。第1チップ20-16aと第2チップ30-16aの下方には(図16(a)中の下側)、支持基板200-16aが積層されている。腐植防止のため、第1チップ20-16aと第2チップ30-16aとの間と、第1チップ20-16a及び第2チップ30-16aと、支持基板200-16aとの間には窒化膜300-16aが配されている。
 基板100-16aと、第1チップ20-16a及び第2チップ30-16aとは、基板100-16aを構成する配線層160-16aと、第1チップ20-16aを構成する配線層22-16a及び第2チップ30-16aを構成する配線層32-16aと、を対向させて積層されている。基板100-16aを構成する配線層160-16aには、例えば銅(Cu)で構成された熱伝導材4-16aが形成されている。第1チップ20-16aを構成する配線層22-16aの外側(図16(a)中の右端)には、第1ガードリング2-16aが形成されて(なお、図16(a)中では第1ガードリング2-16aの一部のみを図示)、第1ガードリング2-16aは、半導体基板21-16aと接続している。また、第2チップ30-16aを構成する配線層32-16aの外側(図16(a)中の左端)には、第2ガードリング3-16aが形成されて(なお、図16(a)中では第2ガードリング3-16aの一部のみを図示)、第2ガードリング3-16aは、半導体基板31-16aと接続している。互いに隣接している第1ガードリング2-16aと、第2ガードリング3-16aとは、熱伝導材4-16aを介して接続されている。したがって、半導体基板21-16aと、第1ガードリング2-16aと、熱伝導材4-16aと、第2ガードリング3-16aと、半導体基板31-16aとは接続されて、例えばロジック回路を有する第2チップ30-16aで発生した熱が、矢印Q16a方向に、熱伝達長(熱の発生源から熱が伝わる長さ)tμmで、例えばメモリ回路を有する第1チップ20-16aに伝わり、第1チップ20-16aの温度と第2チップ30-16aの温度との差が軽減され得る。
 図16(b)に示されるように、固体撮像装置1-16bは、基板100-16b(チップ100-16bでもよい。以下同じ。)と、基板100-16bに積層(図16(b)中の下方向に積層)されたチップ20-16bと、を備えている。
 基板100-16bは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-16bと、配線層160-16bとを有する。そして、固体撮像素子150-16b上には、カラーフィルタ及びオンチップレンズ8-16bが形成されている。チップ20-16bは、半導体基板21-16bと、配線層22-16bと、を有し、半導体基板21-16bには、信号処理回路、例えばロジック回路が形成されている。
 基板100-16bと、チップ20-16bとは、基板100-16bを構成する配線層160-16bと、チップ20-16bを構成する配線層22-16bと、を対向させて積層されている。例えばロジック回路を有する第2チップ30-16bで発生した熱が、矢印Q16b方向に、熱伝達長(熱の発生源から熱が伝わる長さ)tμmで、チップ20-16b内に伝わる。
 図16(c)に示されるよう、固体撮像装置1-16aの熱抵抗(k/W)は、aμm(熱伝導材(例えばCu)4-16aの厚み)×Lμm(固体撮像装置1-16aの幅(図16(a)では表面から裏面までの奥行の長さ))の接触面積で、7.1E-3×t/Lである。図示はされていないが、熱伝導材(Cu)と熱伝導材に接続メタル配線を用いた固体撮像装置1-16aと略同等の積層構造を有する固体撮像装置の熱抵抗(k/W)は、3.86aμm(熱伝導材(例えばCu)の厚み+メタル配線の厚み)×Lμm(固体撮像装置の幅(固体撮像装置の表面から裏面までの奥行の長さ))の接触面積で、1.9E-3×t/Lである。そして、固体撮像装置1-16bの熱抵抗(k/W)は、bμm(半導体基板21-6bの厚み)×Lμm(固体撮像装置1-16bの幅(図16(b)では表面から裏面までの奥行の長さ))の接触面積で、2.0E-3×t/Lである。この結果から、1つの基板と複数チップ(図16(a)では2チップ)の積層構造を有する固体撮像装置の熱抵抗は、1つのチップ同士の積層構造(又は1つのチップと1つの基板との積層構造)を有する固体撮像装置の熱抵抗に対して略同等であることが理解できる。
 以下に、本技術に係る実施の形態について詳細に説明をする。
<2.第1の実施形態(半導体装置の例1)>
 本技術に係る第1の実施形態(半導体装置の例1)の半導体装置について、図3及び図12~図14を用いて、説明をする。図3は、本技術に係る第1の実施形態の半導体装置の構成例を示す図であり、詳しくは、図3(a)は、図3(b)に示されるA3-B3線に基づく、本技術に係る第1の実施形態の半導体装置の一例である固体撮像装置1-3aの断面図であり、図3(b)は、図3(a)に示される基板100-3aを図示していない、半導体装置の一例である固体撮像装置1-3bの上面図(第1チップ20-3b及び第2チップ30-3bの平面レイアウト図)である。
 まず、図3(a)を用いて説明をする。固体撮像装置1-3aは、基板100-3aと、基板100-3aに積層(図3(a)中の下方向に積層)された第1チップ20-3a及び第2チップ30-3aと、を備えている。
 基板100-3aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-3aと、配線層160-3aとを有する。そして、固体撮像素子150-3a上には、カラーフィルタ及びオンチップレンズ8-3aが形成されている。第1チップ20-3aは、半導体基板21-3aと、配線層22-3aと、を有し、半導体基板21-3aには、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-3aは、半導体基板31-3aと、配線層32-3aと、を有し、半導体基板31-3aには、信号処理回路、例えばメモリ回路が形成されている。図3(a)では、第1チップ20-3aと第2チップ30-3aとは、基板100-3aの下方向に略同一層(同一高さ位置)で形成されて、配線層22-3aの厚み(図3(a)中の上下方向の長さ)と配線層32-3aの厚み(図3(a)中の上下方向の長さ)とは略同一であり、半導体基板21-3aの厚み(図3(a)中の上下方向の長さ)と半導体基板31-3aの厚み(図3(a)中の上下方向の長さ)とは略同一である。半導体基板21-3a及び31-3aに形成されている素子77は、例えばトランジスタを表す(以下、図3(a)以外の図面においても同様である。)。
 基板100-3aと、第1チップ20-3a及び第2チップ30-3aとは、基板100-3aを構成する配線層160-3aと、第1チップ20-3aを構成する配線層22-3a及び第2チップ30-3aを構成する配線層32-3aと、を対向させて積層されている。基板100-3aを構成する配線層160-3aには、例えば銅(Cu)で構成された熱伝導材4-3aが形成されている。第1チップ20-3aを構成する配線層22-3aの外側(図3(a)中の左右端)には、第1ガードリング2-3aが形成されて、第1ガードリング2-3aは、半導体基板21-3aと接続している。また、第2チップ30-3aを構成する配線層32-3aの外側(図3(a)中の左右端)には、第2ガードリング3-3aが形成されて、第2ガードリング3-3aは、半導体基板31-3aと接続している。第1チップ20-3aにおける第2チップ30-3aと隣接する側(図3(a)中では右側)に形成されている第1ガードリング2-3aと、第2チップ30-3aにおける第1チップ20-3aと隣接する側(図3(a)中では左側)に形成されている第2ガードリング3-3aとは、熱伝導材4-3aを介して接続されている。したがって、半導体基板21-3aと、第1ガードリング2-3aと、熱伝導材4-3aと、第2ガードリング3-3aと、半導体基板31-3aとは接続されて、第1チップ20-3aの温度と第2チップ30-3aの温度との差が軽減され得る。
 図3(b)を用いて説明をする。図3(b)に示されるように、固体撮像装置1-3bは、第1チップ20-3b(図3(b)中の左側)と第2チップ30-3b(図3(b)中の右側)とを備えて構成されて、第1チップ20-3bを囲むように第1チップ20-3bの外周部に第1ガードリング2-3bが形成され、第2チップ30-3bを囲むように第2チップ30-3bの外周部に第2ガードリング3-3bが形成されている。第1ガードリング2-3bの右辺(図3(b)中の右側で、第2ガードリング3-3bとの隣接側)と第2ガードリング3-3bの左辺(図3(b)中の左側で、第1ガードリング2-3bとの隣接側)とは、熱伝導材4-3bを介して接続されている。すなわち、図3(b)においては、第1ガードリング2-3bの右辺の全長域及び第2ガードリング3-3bの左辺の全長域に熱伝導材4-3bが接合(接触)している。
 次に、図12を用いて、本技術に係る第1の実施形態(半導体装置の例1)の半導体装置について説明をする。図12は、本技術に係る第1の実施形態の半導体装置が有する熱伝導材の一例を示す図であり、詳しくは、図12には、本技術に係る第1の実施形態の半導体装置において用いられる熱伝導材の具体的な材料とその材料の熱伝導率/Wm-1-1が示されている。なお、図12に示される熱伝導材の具体的な材料は、特に技術的な矛盾がない限り、後述する本技術に係る第2~第9の実施形態の半導体装置において用いられてもよい。
 図12に示されるように、熱伝導材の具体的な材料として、カーボンナノチューブ(C)、ダイヤモンド(C)、銀(Ag)、銅(Cu)、金(Au)、アルミニウム(Al)、シリコン(Si)、炭素(C)(人造黒鉛、カーボン)及び窒化アルミニウム(AlN)が挙げられている。そして、図12に示されるように、カーボンナノチューブ(C)の熱伝導率/Wm-1-1は、3000~5500であり、ダイヤモンド(C)の熱伝導率/Wm-1-1は、1000~2000であり、銀(Ag)の熱伝導率/Wm-1-1は、420であり、銅(Cu)の熱伝導率/Wm-1-1は、398であり、金(Au)の熱伝導率/Wm-1-1は、320であり、金(Au)の熱伝導率/Wm-1-1は、320であり、アルミニウム(Al)の熱伝導率/Wm-1-1は、236であり、シリコン(Si)の熱伝導率/Wm-1-1は、168であり、炭素(C)(人造黒鉛、カーボン)の熱伝導率/Wm-1-1は、100~250であり、窒化アルミニウム(AlN)の熱伝導率/Wm-1-1は、150~250である。熱伝導材の材料の選択は、例えば、熱伝導率の大きさ、導電性の有無等を考慮して、目的及び用途に応じて行われる。
 図13~15は、本技術に係る第1の実施形態(半導体装置の例1)の半導体装置の製造方法を説明するための図である。詳しくは、図13~図15は、本技術に係る第1の実施形態の半導体装置の一例である固体撮像装置1-15の製造方法を説明するための図である。
 まず、図13を用いて説明をする。図13(a)に示されるように、BEOL工程で、半導体基板150-13a上の層間絶縁膜160-13aにガードリング220-13a及び配線620-13が形成される。図13(b)に示されるように、形成された層間絶縁膜160-13b上に熱伝導材(熱伝導膜)AIN(窒化アルミニウム)4-13bが形成される。
 図13(c)に示されるように、リソグラフィー法及び/又はドライエッチング方法により、熱伝導材(熱伝導膜)AIN(窒化アルミニウム)4-13cがパターン形成され、図13(d)に示されるように、熱伝導材(熱伝導膜)AIN(窒化アルミニウム)4-13dを埋め込むように層間絶縁膜160-13dが形成される。
 図14を用いて説明をする。図14(a)に示されるように、ガードリング220-14aの上方の領域にビアV1が形成され、配線620-14aの上方の領域にビアV2が形成される。図14(b)に示されるように、銅(Cu)280が埋め込められ、図14(c)に示されるように、CMP研磨されて、Cuパッドを有するガードリング221-14cが形成され、Cuパッドを有する配線621-14cが形成されて、熱伝導材(熱伝導膜)AIN(窒化アルミニウム)4-14cが露出する。
 図14(d)に示されるように、表裏反転されて、裏面側(図14(d)中の上側)の半導体基板(シリコン基板)150-14dが研磨される。
 以上より、図15に示されるように、固体撮像装置1-15が得られる。固体撮像装置1-15は、基板100-15と、基板100-15に積層(図15中の下方向に積層)された第1チップ20-15及び第2チップ30-15と、を備えている。
 基板100-15は、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-15と、配線層160-15とを有する。そして、固体撮像素子150-15上には、カラーフィルタ及びオンチップレンズ8-15が形成されている。第1チップ20-15は、半導体基板21-15と、配線層22-15と、を有し、半導体基板21-15には、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-15は、半導体基板31-15と、配線層32-15と、を有し、半導体基板31-15には、信号処理回路、例えばメモリ回路が形成されている。図15では、第1チップ20-15と第2チップ30-15とは、基板100-15の下方向に略同一層(同一高さ位置)で形成されて、配線層22-15の厚み(図15中の上下方向の長さ)と配線層32-15の厚み(図15中の上下方向の長さ)とは略同一であり、半導体基板21-15の厚み(図15中の上下方向の長さ)と半導体基板31-15の厚み(図15中の上下方向の長さ)とは略同一である。
 基板100-15と、第1チップ20-15及び第2チップ30-15とは、基板100-15を構成する配線層160-15と、第1チップ20-15を構成する配線層22-15及び第2チップ30-15を構成する配線層32-15と、を対向させて積層されている。基板100-15を構成する配線層160-15には、例えば銅(Cu)で構成された熱伝導材4-15が形成されている。第1チップ20-15を構成する配線層22-15の外側(図3(a)中の左右端)には、第1ガードリング2-15が形成されて、第1ガードリング2-15は、半導体基板21-15と接続している。また、第2チップ30-15を構成する配線層32-15の外側(図15中の左右端)には、第2ガードリング3-15が形成されて、第2ガードリング3-15は、半導体基板31-15と接続している。第1チップ20-15における第2チップ30-15と隣接する側(図15中では右側)に形成されている第1ガードリング2-15と、第2チップ30-15における第1チップ20-15と隣接する側(図15中では左側)に形成されている第2ガードリング3-15とは、熱伝導材4-15を介して接続されている。したがって、半導体基板21-15と、第1ガードリング2-15と、熱伝導材4-15と、第2ガードリング3-15と、半導体基板31-15とは接続されて、第1チップ20-15の温度と第2チップ30-15の温度との差が軽減され得る。
 以上、図13~図15を用いて説明した内容(半導体装置の製造方法)は、特に技術的な矛盾がない限り、後述する本技術に係る第2~第9の実施形態の半導体装置を製造するための製造方法に適用することができる。
 なお、本技術に係る第1の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、後述する本技術に係る第2~第9の実施形態の半導体撮像装置の欄で述べる内容がそのまま適用することができる。
<3.第2の実施形態(半導体装置の例2)>
 本技術に係る第2の実施形態(半導体装置の例2)の半導体装置について、図4を用いて、説明をする。図4は、本技術に係る第2の実施形態の半導体装置の構成例を示す図であり、詳しくは、図4(a)は、図4(b)に示されるA4-B4線に基づく、本技術に係る第2の実施形態の半導体装置の一例である固体撮像装置1-4aの断面図であり、図4(b)は、図4(a)に示される基板100-4aを図示していない、半導体装置の一例である固体撮像装置1-4bの上面図(第1チップ20-4b及び第2チップ30-4bの平面レイアウト図)である。
 まず、図4(a)を用いて説明をする。固体撮像装置1-4aは、基板100-4aと、基板100-4aに積層(図4(a)中の下方向に積層)された第1チップ20-4a及び第2チップ30-4aと、を備えている。
 基板100-4aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-4aと、配線層160-4aとを有する。そして、固体撮像素子150-4a上には、カラーフィルタ及びオンチップレンズ8-4aが形成されている。第1チップ20-4aは、半導体基板21-4aと、配線層22-4aと、を有し、半導体基板21-4aには、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-4aは、半導体基板31-4aと、配線層32-4aと、を有し、半導体基板31-4aには、信号処理回路、例えばメモリ回路が形成されている。図4(a)では、第1チップ20-4aと第2チップ30-4aとは、基板100-4aの下方向に略同一層(同一高さの位置)で形成されて、配線層22-4aの厚み(図4(a)中の上下方向の長さ)と配線層32-4aの厚み(図4(a)中の上下方向の長さ)とは略同一であり、半導体基板21-4aの厚み(図4(a)中の上下方向の長さ)と半導体基板31-3aの厚み(図4(a)中の上下方向の長さ)とは略同一である。
 基板100-4aと、第1チップ20-4a及び第2チップ30-4aとは、基板100-4aを構成する配線層160-4aと、第1チップ20-4aを構成する配線層22-4a及び第2チップ30-4aを構成する配線層32-4aと、を対向させて積層されている。基板100-4aを構成する配線層160-4aには、例えば銅(Cu)で構成された熱伝導材4-4aが形成されている。第1チップ20-4aを構成する配線層22-4aの外側(図4(a)中の左右端)には、第1ガードリング2-4aが形成されて、第1ガードリング2-4aは、半導体基板21-4aと接続している。また、第2チップ30-4aを構成する配線層32-4aの外側(図4(a)中の左右端)には、第2ガードリング3-4aが形成されて、第2ガードリング3-4aは、半導体基板31-4aと接続している。第1チップ20-4aにおける第2チップ30-4aと隣接する側(図4(a)中では右側)に形成されている第1ガードリング2-4aと、第2チップ30-4aにおける第1チップ20-4aと隣接する側(図4(a)中では左側)に形成されている第2ガードリング3-4aとは、熱伝導材4-4aを介して接続されている。したがって、半導体基板21-4aと、第1ガードリング2-4aと、熱伝導材4-4aと、第2ガードリング3-4aと、半導体基板31-4aとは接続されて、第1チップ20-3aの温度と第2チップ30-3aの温度との差が軽減され得る。
 図4(b)を用いて説明をする。図4(b)に示されるように、固体撮像装置1-4bは、第1チップ20-4b(図4(b)中の左側)と第2チップ30-4b(図4(b)中の右側)とを備えて構成されて、第1チップ20-4bを囲むように第1チップ20-4bの外周部に第1ガードリング2-4bが形成され、第2チップ30-4bを囲むように第2チップ30-4bの外周部に第2ガードリング3-4bが形成されている。第1ガードリング2-4bの右辺(図4(b)中の右側で、第2ガードリング3-4bとの隣接側)と第2ガードリング3-4bの左辺(図4(b)中の左側で、第1ガードリング2-4bとの隣接側)とは、熱伝導材4-4bを介して接続されている。すなわち、図4(b)においては、第1ガードリング2-4bの右辺の一部域及び第2ガードリング3-4bの左辺の一部域に熱伝導材4-4bが接合(接触)している。
 なお、本技術に係る第2の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1の実施形態の半導体装置の欄で述べた内容及び後述する本技術に係る第3~第9の実施形態の半導体装置の欄で述べる内容がそのまま適用することができる。
<4.第3の実施形態(半導体装置の例3)>
 本技術に係る第3の実施形態(半導体装置の例3)の半導体装置について、図5を用いて、説明をする。図5は、本技術に係る第3の実施形態の半導体装置の構成例を示す図であり、詳しくは、図5(a)は、図5(b)に示されるA5-B5線に基づく、本技術に係る第3の実施形態の半導体装置の一例である固体撮像装置1-5aの断面図であり、図5(b)は、図5(a)に示される基板100-5aを図示していない、半導体装置の一例である固体撮像装置1-5bの上面図(第1チップ20-5b及び第2チップ30-5bの平面レイアウト図)である。
 まず、図5(a)を用いて説明をする。固体撮像装置1-5aは、基板100-5aと、基板100-5aに積層(図5(a)中の下方向に積層)された第1チップ20-5a及び第2チップ30-5aと、を備えている。
 基板100-5aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-5aと、配線層160-5aとを有する。そして、固体撮像素子150-5a上には、カラーフィルタ及びオンチップレンズ8-5aが形成されている。第1チップ20-5aは、半導体基板21-5aと、配線層22-5aと、を有し、半導体基板21-5aには、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-5aは、半導体基板31-5aと、配線層32-5aと、を有し、半導体基板31-5aには、信号処理回路、例えばメモリ回路が形成されている。図5(a)では、第1チップ20-3aと第2チップ30-3aとは、基板100-3aの下方向に略同一層(同一高さ位置)で形成されているが、配線層22-5aの厚み(図5(a)中の上下方向の長さ)と配線層32-5aの厚み(図5(a)中の上下方向の長さ)とは異なり、半導体基板21-5aの厚み(図5(a)中の上下方向の長さ)と半導体基板31-5aの厚み(図5(a)中の上下方向の長さ)とは異なる。すなわち、図5(a)中では、半導体基板21-5aの厚みd1は、半導体基板31-5aの厚みd2より厚く、半導体基板の厚さのその差分で、配線層32-5aの厚みは、配線層22-5aの厚みより厚くなる。配線層32-5a及び配線層22-5aが多層配線層の場合は、配線層32-5aの配線層数は、配線層22-5aの配線層数よりも多くなる。
 基板100-5aと、第1チップ20-5a及び第2チップ30-5aとは、基板100-5aを構成する配線層160-5aと、第1チップ20-5aを構成する配線層22-5a及び第2チップ30-5aを構成する配線層32-5aと、を対向させて積層されている。基板100-5aを構成する配線層160-5aには、例えば銅(Cu)で構成された熱伝導材4-5aが形成されている。第1チップ20-5aを構成する配線層22-5aの外側(図5(a)中の左右端)には、第1ガードリング2-5aが形成されて、第1ガードリング2-5aは、半導体基板21-5aと接続している。また、第2チップ30-5aを構成する配線層32-5aの外側(図5(a)中の左右端)には、第2ガードリング3-5aが形成されて、第2ガードリング3-5aは、半導体基板31-5aと接続している。第1チップ20-5aにおける第2チップ30-5aと隣接する側(図5(a)中では右側)に形成されている第1ガードリング2-5aと、第2チップ30-5aにおける第1チップ20-5aと隣接する側(図5(a)中では左側)に形成されている第2ガードリング3-5aとは、熱伝導材4-5aを介して接続されている。したがって、半導体基板21-5aと、第1ガードリング2-5aと、熱伝導材4-5aと、第2ガードリング3-5aと、半導体基板31-5aとは接続されて、第1チップ20-5aの温度と第2チップ30-5aの温度との差が軽減され得る。
 図5(b)を用いて説明をする。図5(b)に示されるように、固体撮像装置1-5bは、第1チップ20-5b(図5(b)中の左側)と第2チップ30-5b(図5(b)中の右側)とを備えて構成されて、第1チップ20-5bを囲むように第1チップ20-5bの外周部に第1ガードリング2-5bが形成され、第2チップ30-5bを囲むように第2チップ30-5bの外周部に第2ガードリング3-5bが形成されている。第1ガードリング2-5bの右辺(図5(b)中の右側で、第2ガードリング3-5bとの隣接側)と第2ガードリング3-5bの左辺(図5(b)中の左側で、第1ガードリング2-5bとの隣接側)とは、熱伝導材4-5bを介して接続されている。すなわち、図5(b)においては、第1ガードリング2-5bの右辺の一部域及び第2ガードリング3-5bの左辺の一部域に熱伝導材4-5bが接合(接触)している。
 なお、本技術に係る第3の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1~2の実施形態の半導体装置の欄で述べた内容及び後述する本技術に係る第4~第9の実施形態の半導体装置の欄で述べる内容がそのまま適用することができる。
<5.第4の実施形態(半導体装置の例4)>
 本技術に係る第4の実施形態(半導体装置の例4)の半導体装置について、図6を用いて、説明をする。図6は、本技術に係る第4の実施形態の半導体装置の構成例を示す図であり、詳しくは、図6(a)は、図6(b)に示されるA6-B6線に基づく、本技術に係る第4の実施形態の半導体装置の一例である固体撮像装置1-6aの断面図であり、図6(b)は、図6(a)に示される基板100-6aを図示していない、半導体装置の一例である固体撮像装置1-6bの上面図(第1チップ20-6b及び第2チップ30-6b並びに第3チップ40-6bの平面レイアウト図)である。
 まず、図6(a)を用いて説明をする。固体撮像装置1-6aは、基板100-6aと、基板100-6aに積層(図6(a)中の下方向に積層)された第1チップ20-6a、第2チップ30-6a及び第3チップ40-6aと、を備えている。
 基板100-6aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-6aと、配線層160-6aとを有する。そして、固体撮像素子150-6a上には、カラーフィルタ及びオンチップレンズ8-6aが形成されている。第1チップ20-6aは、半導体基板21-6aと、配線層22-6aと、を有し、半導体基板21-6aには、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-6aは、半導体基板31-6aと、配線層32-6aと、を有し、半導体基板31-6aには、信号処理回路、例えばメモリ回路が形成されている。さらに、第3チップ40-6aは、半導体基板41-6aと、配線層42-6aと、を有し、半導体基板41-6aには、信号処理回路、例えばCPU回路が形成されている。図6(a)では、第1チップ20-6aと第2チップ30-6aと第3チップ40-6aとは、基板100-6aの下方向に略同一層(同一高さ位置)で形成されて、配線層22-6aの厚み(図6(a)中の上下方向の長さ)と配線層32-6aの厚み(図6(a)中の上下方向の長さ)と配線層42-6aの厚み(図6(a)中の上下方向の長さ)とは略同一であり、半導体基板21-6aの厚み(図6(a)中の上下方向の長さ)と半導体基板31-6aの厚み(図6(a)中の上下方向の長さ)と半導体基板41-6aの厚み(図6(a)中の上下方向の長さ)とは略同一である。
 基板100-6aと、第1チップ20-6a、第2チップ30-6a及び第3チップ40-6aとは、基板100-6aを構成する配線層160-6aと、第1チップ20-6aを構成する配線層22-6a、第2チップ30-6aを構成する配線層32-6a及び第3チップ40-6aを構成する配線層42-6aと、を対向させて積層されている。基板100-6aを構成する配線層160-6aには、例えば銅(Cu)で構成された熱伝導材4-6a-1及び熱伝導材4-6a-2が形成されている。第1チップ20-6aを構成する配線層22-6aの外側(図6(a)中の左右端)には、第1ガードリング2-6aが形成されて、第1ガードリング2-6aは、半導体基板21-6aと接続している。また、第2チップ30-6aを構成する配線層32-6aの外側(図6(a)中の左右端)には、第2ガードリング3-6aが形成されて、第2ガードリング3-6aは、半導体基板31-6aと接続している。さらに、第3チップ40-6aを構成する配線層42-6aの外側(図6(a)中の左右端)には、第3ガードリング23-6aが形成されて、第3ガードリング23-6aは、半導体基板41-6aと接続している。第1チップ20-6aにおける第3チップ40-6aと隣接する側(図6(a)中では右側)に形成されている第1ガードリング2-6aと、第3チップ40-6aにおける第1チップ20-6aと隣接する側(図6(a)中では左側)に形成されている第3ガードリング23-6aとは、熱伝導材4-6a-1を介して接続されている。また、第2チップ30-6aにおける第3チップ40-6aと隣接する側(図6(a)中では左側)に形成されている第2ガードリング3-6aと、第3チップ40-6aにおける第3チップ30-6aと隣接する側(図6(a)中では右側)に形成されている第3ガードリング23-6aとは、熱伝導材4-6a-2を介して接続されている。したがって、半導体基板21-6aと、第1ガードリング2-6aと、熱伝導材4-6a-1と、第3ガードリング23-6aと、半導体基板41-6aとは接続され、また、半導体基板41-6aと、第3ガードリング23-6aと、熱伝導材4-6a-2と、第2ガードリング3-6aと、半導体基板31-6aとは接続されて、第1チップ20-6aの温度と、第2チップ30-6aの温度と、第3チップ40-6aの温度との差が軽減され得る。
 図6(b)を用いて説明をする。図6(b)に示されるように、固体撮像装置1-6bは、第1チップ20-6b(図6(b)中の左側)と第2チップ30-6b(図6(b)中の右側)と第1チップ20-6bと第2チップ30-6bとの間の第3チップ40-6bを備えて構成されて、第1チップ20-6bを囲むように第1チップ20-6bの外周部に第1ガードリング2-6bが形成され、第2チップ30-6bを囲むように第2チップ30-6bの外周部に第2ガードリング3-6bが形成され、第3チップ40-6bを囲むように第3チップ40-6bの外周部に第3ガードリング23-6bが形成されている。第1ガードリング2-6bの右辺(図6(b)中の右側で、第3ガードリング23-6bとの隣接側)と第3ガードリング23-6bの左辺(図6(b)中の左側で、第1ガードリング2-6bとの隣接側)とは、熱伝導材4-6b-1、4-6b-3及び4-6b-4を介して接続されている。すなわち、図6(b)においては、第1ガードリング2-6bの右辺の一部域及び第3ガードリング23-6bの左辺の一部域に略正方形状の熱伝導材4-6b-1が接合(接触)し、第1ガードリング2-6bの右辺の一部域及び第3ガードリング23-6bの左辺の一部域に略矩形状の熱伝導材4-6b-3が接合(接触)し、第1ガードリング2-6bの右辺の一部域及び第3ガードリング23-6bの左辺の一部域に略矩形状の熱伝導材4-6b-4が接合(接触)している。また、図6(b)では、前述した3つの接合(接触)面積のうち、熱伝導材4-6b-1と、第1ガードリング2-6bの右辺及び第3ガードリング23-6bの左辺との接合(接触)面積が一番大きく、熱伝導性が一番高い。第3ガードリング23-6bの右辺(図6(b)中の右側で、第2ガードリング3-6bとの隣接側)と第2ガードリング3-6bの左辺(図6(b)中の左側で、第3ガードリング23-6bとの隣接側)とは、熱伝導材4-6b-2、4-6b-5及び4-6b-6を介して接続されている。すなわち、図6(b)においては、第3ガードリング23-6bの右辺の一部域及び第2ガードリング2-6bの左辺の一部域に略正方形状の熱伝導材4-6b-2が接合(接触)し、第3ガードリング23-6bの右辺の一部域及び第2ガードリング3-6bの左辺の一部域に略矩形状の熱伝導材4-6b-5が接合(接触)し、第3ガードリング23-6bの右辺の一部域及び第2ガードリング3-6bの左辺の一部域に略矩形状の熱伝導材4-6b-6が接合(接触)している。また、図6(b)では、前述した3つの接合(接触)面積のうち、熱伝導材4-6b-2と、第3ガードリング23-6bの右辺及び第2ガードリング3-6bの左辺との接合(接触)面積が一番大きく、熱伝導性が一番高い。
 なお、本技術に係る第4の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1~3の実施形態の半導体装置の欄で述べた内容及び後述する本技術に係る第5~第9の実施形態の半導体装置の欄で述べる内容がそのまま適用することができる。
<6.第5の実施形態(半導体装置の例5)>
 本技術に係る第5の実施形態(半導体装置の例5)の半導体装置について、図7を用いて、説明をする。図7は、本技術に係る第5の実施形態の半導体装置の構成例を示す図であり、詳しくは、図7(a)は、図7(b)に示されるA7-B7線に基づく、本技術に係る第5の実施形態の半導体装置の一例である固体撮像装置1-7aの断面図であり、図7(b)は、図7(a)に示される基板100-7aを図示していない、半導体装置の一例である固体撮像装置1-7bの上面図(第1チップ20-7b及び第2チップ30-7b並びに第3チップ50-7bの平面レイアウト図)である。
 まず、図7(a)を用いて説明をする。固体撮像装置1-7aは、基板100-7aと、基板100-7aに積層(図7(a)中の下方向に積層)された第1チップ20-7a、第2チップ30-7a及び第3チップ(図7(a)中では不図示)と、を備えている。
 基板100-7aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-7aと、配線層160-7aとを有する。そして、固体撮像素子150-7a上には、カラーフィルタ及びオンチップレンズ8-7aが形成されている。第1チップ20-7aは、半導体基板21-7aと、配線層22-7aと、を有し、半導体基板21-7aには、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-7aは、半導体基板31-7aと、配線層32-7aと、を有し、半導体基板31-7aには、信号処理回路、例えばメモリ回路が形成されている。さらに、図7(a)中では図示はされていないが、第1チップ20-7a及び第2チップ30-7aの裏側(紙面の裏側)で、基板100-7aに積層されている第3チップは、半導体基板と、配線層と、を有し、第3チップの半導体基板には、信号処理回路、例えばCPU回路が形成されている。図7(a)では、第1チップ20-7aと第2チップ30-7aと第3チップとは、基板100-7aの下方向に略同一層(同一高さ位置)で形成されて、配線層22-7aの厚み(図7(a)中の上下方向の長さ)と配線層32-7aの厚み(図7(a)中の上下方向の長さ)と第3チップの配線層の厚み(図7(a)中の上下方向の長さ)とは略同一であり、半導体基板21-7aの厚み(図7(a)中の上下方向の長さ)と半導体基板31-7aの厚み(図7(a)中の上下方向の長さ)と第3チップの半導体基板の厚み(図7(a)中の上下方向の長さ)とは略同一である。
 基板100-7aと、第1チップ20-7a、第2チップ30-7a及び第3チップ(不図示)とは、基板100-7aを構成する配線層160-7aと、第1チップ20-7aを構成する配線層22-7a、第2チップ30-7aを構成する配線層32-7a及び第3チップを構成する配線層と、を対向させて積層されている。基板100-7aを構成する配線層160-7aには、例えば銅(Cu)で構成された熱伝導材4-7a-1~4-7a-5が形成されている。第1チップ20-7aを構成する配線層22-7aの外側(図7(a)中の左右端)及び基板100-7aとの積層(接合)界面(図7(a)中の上部)には、第1ガードリング2-7aが形成されて、第1ガードリング2-7aは、半導体基板21-7aと接続している。また、第2チップ30-7aを構成する配線層32-7aの外側(図7(a)中の左右端)及び基板100-7aとの積層(接合)界面(図7(a)中の上部)には、第2ガードリング3-7aが形成されて、第2ガードリング3-7aは、半導体基板31-7aと接続している。第1チップ20-7aにおける第2チップ30-7aと隣接する側(図7(a)中では右側)に形成されている第1ガードリング2-7aと、第2チップ30-7aにおける第1チップ20-7aと隣接する側(図7(a)中では左側)に形成されている第2ガードリング3-7aとは、熱伝導材4-7a-3を介して接続されている。また、図示はされていないが、熱伝導材4-7a―1及び4-7a―2を介して、ガードリング2-7aと第3チップのガードリングは接続し、熱伝導材4-7a―4及び4-7a―5を介して、ガードリング3-7aと第3チップのガードリングとは接続している。したがって、半導体基板21-7aと、第1ガードリング2-7aと、熱伝導材4-7a-1~4-7a-5と、第2ガードリング3-7aと、半導体基板31-7aと、第3チップの半導体基板及びガードリングとが接続されて、第1チップ20-7aの温度と、第2チップ30-7aの温度と、第3チップの温度との差が軽減され得る。
 図7(b)を用いて説明をする。図7(b)に示されるように、固体撮像装置1-7bは、第1チップ20-7b(図7(b)中の左側)と第2チップ30-7b(図7(b)中の右側)と第1チップ20-7b及び2チップ30-7bの上方向(図3(b)中では上側)の第3チップ50-7bを備えて構成されて、第1チップ20-7bを囲むように第1チップ20-7bの外周部に第1ガードリング2-7bが形成され、第2チップ30-7bを囲むように第2チップ30-7bの外周部に第2ガードリング3-7bが形成され、第3チップ50-7bを囲むように第3チップ50-7bの外周部に第3ガードリング32-7bが形成されている。
 第1ガードリング2-7bの右辺(図7(b)中の右側で、第2ガードリング3-7bとの隣接側)と第2ガードリング3-7bの左辺(図7(b)中の左側で、第1ガードリング2-7bとの隣接側)とは、熱伝導材4-7b-3を介して接続されている。すなわち、図7(b)においては、第1ガードリング2-7bの右辺の一部域及び第2ガードリング3-7bの左辺の一部域に略正方形状の熱伝導材4-7b-3が接合(接触)している。第1ガードリング2-7bの上辺(図7(b)中の上側で、第3ガードリング32-7bとの隣接側)と第3ガードリング32-7bの下辺(図7(b)中の下側で、第1ガードリング2-7bとの隣接側)とは、熱伝導材4-7b-1、4-7b-2及び4-7b-6を介して接続されている。すなわち、図7(b)においては、第1ガードリング2-7bの上辺の一部域及び第3ガードリング32-7bの下辺の一部域に略正方形状の熱伝導材4-7b-1が接合(接触)し、第1ガードリング2-7bの上辺の一部域及び第3ガードリング32-7bの下辺の一部域に略矩形状の熱伝導材4-7b-2が接合(接触)し、第1ガードリング2-7bの上辺の一部域及び第3ガードリング32-7bの下辺の一部域に略矩形状の熱伝導材4-7b-6が接合(接触)している。また、図7(b)では、前述した3つの接合(接触)面積のうち、熱伝導材4-7b-1と、第1ガードリンング2-7bの上辺及び第3ガードリング32-7bの下辺との接合(接触)面積が一番大きく、熱伝導性が一番高い。
 第2ガードリング3-7bの上辺(図7(b)中の上側で、第3ガードリング32-7bとの隣接側)と第3ガードリング32-7bの下辺(図7(b)中の下側で、第2ガードリング3-7bとの隣接側)とは、熱伝導材4-7b-5、4-7b-4及び4-7b-7を介して接続されている。すなわち、図7(b)においては、第2ガードリング3-7bの上辺の一部域及び第3ガードリング32-7bの下辺の一部域に略正方形状の熱伝導材4-7b-5が接合(接触)し、第2ガードリング3-7bの上辺の一部域及び第3ガードリング32-7bの下辺の一部域に略矩形状の熱伝導材4-7b-4が接合(接触)し、第2ガードリング3-7bの上辺の一部域及び第3ガードリング32-7bの下辺の一部域に略矩形状の熱伝導材4-7b-7が接合(接触)している。また、図7(b)では、前述した3つの接合(接触)面積のうち、熱伝導材4-7b-5と、第2ガードリンング3-7bの上辺及び第3ガードリング32-7bの下辺との接合(接触)面積が一番大きく、熱伝導性が一番高い。
 なお、本技術に係る第5の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1~4の実施形態の半導体装置の欄で述べた内容及び後述する本技術に係る第6~第9の実施形態の半導体装置の欄で述べる内容がそのまま適用することができる。
<7.第6の実施形態(半導体装置の例6)>
 本技術に係る第6の実施形態(半導体装置の例6)の半導体装置について、図8を用いて、説明をする。図8は、本技術に係る第6の実施形態の半導体装置の構成例を示す図であり、詳しくは、図8(a)は、図8(b)に示されるA8-B8線に基づく、本技術に係る第6の実施形態の半導体装置の一例である固体撮像装置1-8aの断面図であり、図8(b)は、図8(a)に示される基板100-8aを図示していない、半導体装置の一例である固体撮像装置1-8bの上面図(第1チップ20-8b及び第2チップ30-8bの平面レイアウト図)である。
 まず、図8(a)を用いて説明をする。固体撮像装置1-8aは、基板100-8aと、基板100-8aに積層(図8(a)中の下方向に積層)された第1チップ20-8a及び第2チップ30-8aと、を備えている。
 基板100-8aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-8aと、配線層160-8aとを有する。そして、固体撮像素子150-8a上には、カラーフィルタ及びオンチップレンズ8-8aが形成されている。第1チップ20-8aは、半導体基板21-8aと、配線層22-8aと、を有し、半導体基板21-8aには、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-8aは、半導体基板31-8aと、配線層32-8aと、を有し、半導体基板31-8aには、信号処理回路、例えばメモリ回路が形成されている。図8(a)では、第1チップ20-8aと第2チップ30-8aとは、基板100-8aの下方向に略同一層(同一高さ位置)で形成されて、配線層22-8aの厚み(図3(a)中の上下方向の長さ)と配線層32-8aの厚み(図3(a)中の上下方向の長さ)とは略同一であり、半導体基板21-8aの厚み(図3(a)中の上下方向の長さ)と半導体基板31-8aの厚み(図3(a)中の上下方向の長さ)とは略同一である。
 基板100-8aと、第1チップ20-8a及び第2チップ30-8aとは、基板100-8aを構成する配線層160-8aと、第1チップ20-8aを構成する配線層22-8a及び第2チップ30-8aを構成する配線層32-8aと、を対向させて積層されている。基板100-8aを構成する配線層160-8aには、例えば銅(Cu)で構成された熱伝導材4-8a~4-8a-3が形成されている。第1チップ20-8aを構成する配線層22-8aの外側(図8(a)中の左右端)には、第1ガードリング2-8aが形成されて、第1ガードリング2-8aは、半導体基板21-8aと接続している。また、第2チップ30-8aを構成する配線層32-8aの外側(図8(a)中の左右端)には、第2ガードリング3-8aが形成されて、第2ガードリング3-8aは、半導体基板31-8aと接続している。第1チップ20-8aにおける第2チップ30-8aと隣接する側(図8(a)中では右側)に形成されている第1ガードリング2-8aと、第2チップ30-8aにおける第1チップ20-8aと隣接する側(図8(a)中では左側)に形成されている第2ガードリング3-8aとは、熱伝導材4-8a-2を介して接続されている。したがって、半導体基板21-8aと、第1ガードリング2-8aと、熱伝導材4-8aと、第2ガードリング3-8aと、半導体基板31-8aとは接続されて、第1チップ20-8aの温度と第2チップ30-8aの温度との差が軽減され得る。また、熱伝導材4-8a-1は、第1チップ20-8aに形成されているダミー配線29-8a-1及び29-8a-2と接続し、熱伝導材4-8a-3は、第1チップ30-8aに形成されているダミー配線39-8a-1及び39-8a-2と接続して、チップ間の温度差の軽減をより図っている。
 図8(b)を用いて説明をする。図8(b)に示されるように、固体撮像装置1-8bは、第1チップ20-8b(図8(b)中の左側)と第2チップ30-8b(図8(b)中の右側)とを備えて構成されて、第1チップ20-8bを囲むように第1チップ20-8bの外周部に第1ガードリング2-8bが形成され、第2チップ30-8bを囲むように第2チップ30-8bの外周部に第2ガードリング3-8bが形成されている。また、第1チップ20-8b内には、ダミー配線29-8b-1及び29-8b-2が形成され、第2チップ30-8b内には、ダミー配線39-8b-1及び39-8b-2が形成されている。第1ガードリング2-8bの右辺(図8(b)中の右側で、第2ガードリング3-8bとの隣接側)と第2ガードリング3-8bの左辺(図8(b)中の左側で、第1ガードリング2-8bとの隣接側)とは、熱伝導材4-8b-2、4-8b-4及び4-8b-5を介して接続されている。すなわち、図8(b)においては、第1ガードリング2-8bの右辺の一部域及び第2ガードリング3-8bの左辺の一部域に略正方形状の熱伝導材4-8b-2が接合(接触)し、第1ガードリング2-8bの右辺の一部域及び第2ガードリング3-8bの左辺の一部域に略矩形状の熱伝導材4-8b-4が接合(接触)し、第1ガードリング2-6bの右辺の一部域及び第2ガードリング3-8bの左辺の一部域に略矩形状の熱伝導材4-8b-5が接合(接触)している。また、図8(b)では、前述した3つの接合(接触)面積のうち、熱伝導材4-8b-2と、第1ガードリング2-8bの右辺及び第2ガードリング3-8bの左辺との接合(接触)面積が一番大きく、熱伝導性が一番高い。
 ダミー配線29-8b-1と熱伝導材4-8b―1とダミー配線29-8b-2とはこの順で接続している。また、ダミー配線39-8b-2と熱伝導材4-8b―3とダミー配線39-8b-1と熱伝導材4-8b-2とはこの順で接続し、第2チップ30-8bから第1チップ20-8bへは熱の伝導がある。
 なお、本技術に係る第6の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1~5の実施形態の半導体装置の欄で述べた内容及び後述する本技術に係る第7~第9の実施形態の半導体装置の欄で述べる内容がそのまま適用することができる。
<8.第7の実施形態(半導体装置の例7)>
 本技術に係る第7の実施形態(半導体装置の例7)の半導体装置について、図9を用いて、説明をする。図9は、本技術に係る第7の実施形態の半導体装置の構成例を示す図であり、詳しくは、図9は、本技術に係る第7の実施形態の半導体装置の一例である固体撮像装置1-9の断面図である。
 まず、図9を用いて説明をする。固体撮像装置1-9は、基板100-9と、基板100-9に積層(図9中の下方向に積層)された第1チップ20-9及び第2チップ30-9と、を備えている。
 基板100-9aは、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-9と、配線層160-9とを有する。そして、固体撮像素子150-9上には、カラーフィルタ及びオンチップレンズ8-9が形成されている。第1チップ20-9は、半導体基板21-9と、配線層22-9と、を有し、半導体基板21-9には、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-9は、半導体基板31-9と、配線層32-9と、を有し、半導体基板31-9には、信号処理回路、例えばメモリ回路が形成されている。図9では、第1チップ20-9と第2チップ30-9とは、基板100-9の下方向に略同一層(同一高さ位置)で形成されて、配線層22-9の厚み(図9中の上下方向の長さ)と配線層32-9の厚み(図9中の上下方向の長さ)とは略同一であり、半導体基板21-9の厚み(図9中の上下方向の長さ)と半導体基板31-9の厚み(図9中の上下方向の長さ)とは略同一である。
 基板100-9と、第1チップ20-9及び第2チップ30-9とは、基板100-9を構成する配線層160-9と、第1チップ20-9を構成する配線層22-9及び第2チップ30-9を構成する配線層32-9と、を対向させて積層されている。基板100-9を構成する配線層160-9には、例えば銅(Cu)で構成された熱伝導材4-9-1が形成されている。第1チップ20-9を構成する配線層22-9の外側(図9中の左右端)には、第1ガードリング2-9が形成されて、第1ガードリング2-9は、半導体基板21-9と接続している。また、第2チップ30-9を構成する配線層32-9の外側(図9中の左右端)には、第2ガードリング3-9が形成されて、第2ガードリング3-9は、半導体基板31-9と接続している。第1チップ20-9における第2チップ30-9と隣接する側(図9中では右側)に形成されている第1ガードリング2-9と、第2チップ30-9における第1チップ20-9と隣接する側(図8(a)中では左側)に形成されている第2ガードリング3-9とは、熱伝導材4-9-1を介して接続されている。したがって、半導体基板21-9と、第1ガードリング2-9と、熱伝導材4-9-1と、第2ガードリング3-9と、半導体基板31-9とは接続されて、第1チップ20-9の温度と第2チップ30-9の温度との差が軽減され得る。また、熱伝導材4-9-1は、基板100-9(配線層160-9)に形成されているメタル配線440と、ビア777-1~777-2を介して接続して、チップ間の温度差の軽減をより図っている。
 なお、本技術に係る第7の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1~6の実施形態の半導体装置の欄で述べた内容及び後述する本技術に係る第8~第9の実施形態の半導体装置の欄で述べる内容がそのまま適用することができる。
<9.第8の実施形態(半導体装置の例8)>
 本技術に係る第8の実施形態(半導体装置の例8)の半導体装置について、図10を用いて、説明をする。図10は、本技術に係る第8の実施形態の半導体装置の構成例を示す図であり、詳しくは、図10は、本技術に係る第8の実施形態の半導体装置の一例である固体撮像装置1-10の断面図である。
 まず、図10を用いて説明をする。固体撮像装置1-10は、基板100-10と、基板100-10に積層(図10中の下方向に積層)された第1チップ20-10及び第2チップ30-10と、を備えている。
 基板100-10は、画素単位で画素信号を生成する撮像素子を含んでおり、具体的には、半導体基板と半導体基板に形成された光電変換部(不図示)とを有する固体撮像素子150-10と、配線層160-10とを有する。そして、固体撮像素子150-10上には、カラーフィルタ及びオンチップレンズ8-10が形成されている。第1チップ20-10は、半導体基板21-10と、配線層22-10と、を有し、半導体基板21-10には、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-10は、半導体基板31-10と、配線層32-10と、を有し、半導体基板31-10には、信号処理回路、例えばメモリ回路が形成されている。図10では、第1チップ20-10と第2チップ30-10とは、基板100-10の下方向に略同一層(同一高さ位置)で形成されて、配線層22-10の厚み(図10中の上下方向の長さ)と配線層32-10の厚み(図10中の上下方向の長さ)とは略同一であり、半導体基板21-10の厚み(図10中の上下方向の長さ)と半導体基板31-10の厚み(図10中の上下方向の長さ)とは略同一である。
 基板100-10と、第1チップ20-10及び第2チップ30-10とは、基板100-10を構成する配線層160-10と、第1チップ20-10を構成する配線層22-10及び第2チップ30-10を構成する配線層32-10と、を対向させて積層されている。基板100-10には、基板100-10を貫通する貫通ビア778-1及び778-2が形成されて、貫通ビア778-1及び778-2は、例えば銅(Cu)で構成された熱伝導材を含んでいる。第1チップ20-10を構成する配線層22-10の外側(図10中の左右端)には、第1ガードリング2-10が形成されて、第1ガードリング2-10は、半導体基板21-10と接続している。また、第2チップ30-10を構成する配線層32-10の外側(図10中の左右端)には、第2ガードリング3-10が形成されて、第2ガードリング3-10は、半導体基板31-10と接続している。第1チップ20-10における第2チップ30-10と隣接する側(図10中では右側)に形成されている第1ガードリング2-10と、第2チップ30-10における第1チップ20-10と隣接する側(図8(a)中では左側)に形成されている第2ガードリング3-10とは、熱伝導材を含む貫通ビア778-1及び778-2とを介して接続されている。そして、貫通ビア778-1及び778-2は、熱伝導性を有する配線450と接続している。したがって、半導体基板21-10と、第1ガードリング2-10と、貫通ビア778-1と、配線450と、貫通ビア778-2と、第2ガードリング3-10と、半導体基板31-10とは接続されて、第1チップ20-10の温度と第2チップ30-10の温度との差が軽減され得る。
 なお、本技術に係る第8の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1~7の実施形態の半導体装置の欄で述べた内容及び後述する本技術に係る第9の実施形態の半導体装置の欄で述べる内容がそのまま適用することができる。
<10.第9の実施形態(半導体装置の例9)>
 本技術に係る第9の実施形態(半導体装置の例9)の半導体装置について、図11を用いて、説明をする。図11は、本技術に係る第9の実施形態の半導体装置の構成例を示す図であり、詳しくは、図11は、本技術に係る第9の実施形態である半導体装置1-11の断面図である。
 まず、図11を用いて説明をする。半導体装置1-11は、基板100-11と、基板100-11に積層(図9中の下方向に積層)された第1チップ20-11及び第2チップ30-11と、基板100-11に積層(図9中の上方向に積層)された、基板110-11とを備えている。すなわち、半導体装置1-11では、図11の上側から順に、基板110-11と、基板100-11と、第1チップ20-11及び第2チップ30-11とがこの順で配されている。
 基板100-11は、信号処理回路を含んでおり、具体的には、信号処理回路、例えばロジック回路が形成された半導体基板150-11と、半導体基板150-11上に形成された配線層160-11とを有する。そして、配線層160-11上には、基板110-11を構成する半導体基板170-11が形成され、半導体基板170上には基板110-11を構成する配線層180-11が形成されている。半導体基板170-11には信号処理回路、例えばメモリ回路が形成されている。第1チップ20-11は、半導体基板21-11と、配線層22-11と、を有し、半導体基板21-11には、信号処理回路、例えばロジック回路が形成されている。そして、第2チップ30-11は、半導体基板31-11と、配線層32-11と、を有し、半導体基板31-11には、信号処理回路、例えばメモリ回路が形成されている。図11では、第1チップ20-11と第2チップ30-11とは、基板100-11の下方向に略同一層(同一高さ位置)で形成されて、配線層22-11の厚み(図11中の上下方向の長さ)と配線層32-11の厚み(図11中の上下方向の長さ)とは略同一であり、半導体基板21-11の厚み(図11中の上下方向の長さ)と半導体基板31-11の厚み(図11中の上下方向の長さ)とは略同一である。
 基板100-11を構成する配線層160-11には、例えば銅(Cu)で構成された熱伝導材4-11が形成されている。第1チップ20-11を構成する配線層22-11の外側(図11中の左右端)には、第1ガードリング2-11が形成されて、第1ガードリング2-11は、半導体基板21-11と接続している。また、第2チップ30-11を構成する配線層32-11の外側(図11中の左右端)には、第2ガードリング3-11が形成されて、第2ガードリング3-11は、半導体基板31-11と接続している。第1チップ20-11における第2チップ30-11と隣接する側(図11中では右側)に形成されている第1ガードリング2-11と、第2チップ30-11における第1チップ20-11と隣接する側(図8(a)中では左側)に形成されている第2ガードリング3-11とは、熱伝導材4-11を介して接続されている。すなわち、図11に示されるように、第2チップ30-11との隣接側である図11中の右側の第1ガードリング2-11と、熱伝導性を有するバンプ470-1と、ビア779-1と熱伝導材4-11とはこの順で接続されて、第1チップ20-11との隣接側である図11中の左側の第2ガードリング3-11と、熱伝導性を有するバンプ470-2と、ビア779-2と熱伝導材4-11とはこの順で接続されている。したがって、半導体基板21-11と、第1ガードリング2-11と、熱伝導材4-11-1と、第2ガードリング3-11と、半導体基板31-11とは、バンプ470-1及び470-2並びにビア779-1及び779-2を介して接続されて、第1チップ20-11の温度と第2チップ30-11の温度との差が軽減され得る。
 なお、本技術に係る第9の実施形態の半導体装置は、上記で述べた内容の他に、特に技術的な矛盾がない限り、前述した本技術に係る第1~8の実施形態の半導体装置の欄で述べた内容がそのまま適用することができる。
<11.第10の実施形態(電子機器の例)> 本技術に係る第10の実施形態の電子機器は、本技術に係る第1の実施形態~第9の実施形態の半導体装置のうち、いずれか一つ実施形態の半導体装置が搭載された電子機器である。
<12.本技術を適用した半導体装置の使用例>
 図17は、半導体装置の一例であるイメージセンサ(固体撮像装置)としての本技術に係る第1~第9の実施形態の半導体装置の使用例を示す図である。
 上述した第1~第9の実施形態の半導体装置は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングするさまざまなケースに使用することができる。すなわち、図17に示すように、例えば、鑑賞の用に供される画像を撮影する鑑賞の分野、交通の分野、家電の分野、医療・ヘルスケアの分野、セキュリティの分野、美容の分野、スポーツの分野、農業の分野等において用いられる装置(例えば、上述した第10の実施形態の電子機器)に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 具体的には、鑑賞の分野においては、例えば、デジタルカメラやスマートフォン、カメラ機能付きの携帯電話機等の、鑑賞の用に供される画像を撮影するための装置に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 交通の分野においては、例えば、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 家電の分野においては、例えば、ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、テレビ受像機や冷蔵庫、エアーコンディショナ等の家電に供される装置で、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 医療・ヘルスケアの分野においては、例えば、内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 セキュリティの分野においては、例えば、防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 美容の分野においては、例えば、肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 スポーツの分野において、例えば、スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 農業の分野においては、例えば、畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置に、第1~第9の実施形態のいずれか1つの実施形態の半導体装置を使用することができる。
 次に、本技術に係る第1~第9の実施形態の半導体装置の使用例を具体的に説明する。例えば、上述で説明をした第1~第9の実施形態のいずれか1つの実施形態の半導体装置は、固体撮像装置として用いられる。具体的には、固体撮像装置101として、例えばデジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話など、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図18に、その一例として、電子機器102(カメラ)の概略構成を示す。この電子機器102は、例えば静止画または動画を撮影可能なビデオカメラであり、固体撮像装置101と、光学系(光学レンズ)310と、シャッタ装置311と、固体撮像装置101およびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。
 光学系310は、被写体からの像光(入射光)を固体撮像装置101の画素部101aへ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像装置101への光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像装置101の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像装置101から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリなどの記憶媒体に記憶されるか、あるいは、モニタ等に出力される。
<13.内視鏡手術システムへの応用例>
 本技術は、様々な製品へ応用することができる。例えば、本開示に係る技術(本技術)は、内視鏡手術システムに適用されてもよい。
 図19は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図19では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図20は、図19に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100や、カメラヘッド11102(の撮像部11402)等に適用され得る。具体的には、本技術に係る半導体装置の一例である固体撮像装置は、例えば、撮像部10402に適用することができる。内視鏡11100や、カメラヘッド11102(の撮像部11402)等に本開示に係る技術を適用することにより、内視鏡11100や、カメラヘッド11102(の撮像部11402)等の品質や信頼性を向上させることが可能となる。
 ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
<14.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図21は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図21に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図21の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図22は、撮像部12031の設置位置の例を示す図である。
 図22では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図22には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術(本技術)が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031等に適用され得る。具体的には、本技術に係る半導体装置の一例である固体撮像装置は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、撮像部12031の品質や信頼性を向上させることが可能となる。
 なお、本技術は、上述した実施形態及び使用例並びに応用例に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
 また、本技術は、以下のような構成も取ることができる。
[1]
 基板と、該基板に積層された複数のチップと、
 該複数のチップのそれぞれを囲むように該複数のチップのそれぞれの外周部に形成された複数のガードリングと、を備え、
 該複数のガードリングのうち、少なくとも2つの該ガードリングの少なくとも一部同士が熱伝導材を介して接続されている、半導体装置。
[2]
 前記熱伝導材が前記基板に形成されている、[1]に記載の半導体装置。
[3]
 前記複数のチップのうち、少なくとも2つの互いに隣接する前記チップの間に窒化膜が配されている、[1]又は[2]に記載の半導体装置。
[4]
 前記熱伝導材が、前記少なくとも2つのガードリングのうち少なくともどちらか一方の前記ガードリングが囲っている前記チップに形成されているダミー配線と接続されている、[1]から[3]のいずれか1つに記載の半導体装置。
[5]
 前記熱伝導材が、前記基板に形成されているダミー配線と接続されている、[1]から[4]のいずれか1つに記載の半導体装置。
[6]
 前記熱伝導材が、前記基板に形成されているメタル配線に接続されている、[1]から[5]のいずれか1つに記載の半導体装置。
[7]
 前記少なくとも2つのガードリングの少なくとも一部同士が、前記基板を貫通する貫通ビアを介して接続され、
 該貫通ビアが前記熱伝導材を含む、[1]から[6]のいずれか1つに記載の半導体装置。
[8]
 前記少なくとも2つのガードリングの少なくとも一部同士が熱伝導材とバンプとを介して接続されている、[1]から[7]のいずれか請求項1に記載の半導体装置。
[9]
 前記複数のチップのそれぞれは半導体基板を有し、
 該半導体基板は、前記ガードリングと接続されている、[1]から[8]のいずれか1つに記載の半導体装置。
[10]
 前記熱伝導材が、カーボンナノチューブ、ダイヤモンド、銀、銅、金、アルミニウム、シリコン、炭素及び窒化アルミニウムの選ばれる少なくとも1種から構成される、[1]から[9]のいずれか1つに記載の半導体装置。
[11]
 前記基板が、画素単位で画素信号を生成する撮像素子を含み、
 前記複数のチップのうち少なくとも1つのチップは、該画素信号の信号処理に必要な信号処理回路を含む、[1]から[10]のいずれか1つに記載の半導体装置。
[12]
 前記基板が、信号処理回路を含み、
 前記複数のチップのうち少なくとも1つのチップは信号処理回路を含む、[1]から[10]のいずれか1つに記載の半導体装置。
[13]
 前記複数のチップが、第1チップと、第2チップと、から構成され、
 前記複数のガードリングが、第1ガードリングと、第2ガードリングと、から構成され、
 該第1ガードリングが、該第1チップを囲むように該第1チップの外周部に形成され、
 該第2ガードリングが、該第2チップを囲むように該第2チップの外周部に形成され、
 該第1ガードリングと該第2ガードリングとが、熱伝導材を介して接続されている、[1]から[12]のいずれか1つに記載の半導体装置。
[14]
 前記複数のチップが、第1チップと、第2チップと、第3チップと、から構成され、
 前記複数のガードリングが、第1ガードリングと、第2ガードリングと、第3ガードリングと、から構成され、
 該第1ガードリングが、該第1チップを囲むように該第1チップの外周部に形成され、
 該第2ガードリングが、該第2チップを囲むように該第2チップの外周部に形成され、
 該第3ガードリングが、該第3チップを囲むように該第3チップの外周部に形成され、
 該第1ガードリングと該第2ガードリングとが、第1熱伝導材を介して接続され、
 該第2ガードリングと該第3ガードリングとが、第2熱伝導材を介して接続されている、[1]から[12]のいずれか1つに記載の半導体装置。
[15]
 [1]から[14]のいずれか1つに記載の半導体装置が搭載された、電子機器。
 1(1-1a、1-1b、1-2a、1-2b、1-3a、1-3b、1-4a、1-4b、1-5a、1-6a、1-6b、1-7a、1-7b、1-8a、1-8b、1-9、1-10、1-15、1-16a、1-16b)・・・半導体装置(固体撮像装置)、
 1(1-11)・・・半導体装置、
 2(2-1a、2-1b、2-2a、2-2b、2-3a、2-3b、2-4a、2-4b、2-5a、2-5b、2-6a、2-6b、2-7a、2-7b、2-8a、2-9、2-10、2-11、2-15)・・・第1ガードリング、
 3(3-1a、3-1b、3-2a、3-2b、3-3a、3-3b、3-4a、3-4b、3-5a、3-5b、3-6a、3-6b、3-7a、3-7b、3-8a、3-9、3-10、3-11、3-15)・・・第2ガードリング、
 4(4-1a、4-1b、4-2a、4-2b、4-3a、4-3b、4-4a、4-4b、4-5a、4-5b、4-6a―1、4-6a-2、4-6b―1、4-6b-2、4-6b―3、4-6b-4、4-6b―5、4-6b-6、4-7a-1、4-7a-2、4-7a-3、4-7a-4、4-7a―5、4-7b-1、4-7b-2、4-7b-3、4-7b-4、4-7b―5、4-8a-1、4-8a-2、4-8a-3、4-8b-1、4-8b-3、4-8b-3、4-9-1、4-11、4-13、4-14、4-15、4-16a)・・・熱伝導材、
 20(20-1a、20-1b、20-2a、20-2b、20-3a、20-3b、20-4a、20-4b、20-5a、20-5b、20-6a、20-6b、20-7a、20-7b、20-8a、20-8b、20-9、20-10、20-11、20-15、20-16a)・・・第1チップ、
23(23-6a、23-6b)、32(32-7b)・・・第2ガードリング、
 30(30-1a、30-1b、30-2a、30-2b、30-3a、30-3b、30-4a、30-4b、30-5a、30-5b、30-6a、30-6b、30-7a、30-7b、30-8a、30-8b、30-9、30-10、30-11、30-15、30-16a)・・・第2チップ、
 40(40-6a、40-6b)、50(50-7b)、・・・第3チップ、
 100(100-2b、100-3a、100-4a、100-5a、100-6a、100-7a、100-8a、100-9、100-10、100-11、100-15、100-16a)・・・基板、
 778(778-1、778-2)・・・貫通ビア(熱伝導材)。

Claims (15)

  1.  基板と、該基板に積層された複数のチップと、
     該複数のチップのそれぞれを囲むように該複数のチップのそれぞれの外周部に形成された複数のガードリングと、を備え、
     該複数のガードリングのうち、少なくとも2つの該ガードリングの少なくとも一部同士が熱伝導材を介して接続されている、半導体装置。
  2.  前記熱伝導材が前記基板に形成されている、請求項1に記載の半導体装置。
  3.  前記複数のチップのうち、少なくとも2つの互いに隣接する前記チップの間に窒化膜が配されている、請求項1に記載の半導体装置。
  4.  前記熱伝導材が、前記少なくとも2つのガードリングのうち少なくともどちらか一方の前記ガードリングが囲っている前記チップに形成されているダミー配線と接続されている、請求項1に記載の半導体装置。
  5.  前記熱伝導材が、前記基板に形成されているダミー配線と接続されている、請求項1に記載の半導体装置。
  6.  前記熱伝導材が、前記基板に形成されているメタル配線に接続されている、請求項1に記載の半導体装置。
  7.  前記少なくとも2つのガードリングの少なくとも一部同士が、前記基板を貫通する貫通ビアを介して接続され、
     該貫通ビアが前記熱伝導材を含む、請求項1に記載の半導体装置。
  8.  前記少なくとも2つのガードリングの少なくとも一部同士が熱伝導材とバンプとを介して接続されている、請求項1に記載の半導体装置。
  9.  前記複数のチップのそれぞれは半導体基板を有し、
     該半導体基板は、前記ガードリングと接続されている、請求項1に記載の半導体装置。
  10.  前記熱伝導材が、カーボンナノチューブ、ダイヤモンド、銀、銅、金、アルミニウム、シリコン、炭素及び窒化アルミニウムの選ばれる少なくとも1種から構成される、請求項1に記載の半導体装置。
  11.  前記基板が、画素単位で画素信号を生成する撮像素子を含み、
     前記複数のチップのうち少なくとも1つのチップは、該画素信号の信号処理に必要な信号処理回路を含む、請求項1に記載の半導体装置。
  12.  前記基板が、信号処理回路を含み、
     前記複数のチップのうち少なくとも1つのチップは信号処理回路を含む、請求項1に記載の半導体装置。
  13.  前記複数のチップが、第1チップと、第2チップと、から構成され、
     前記複数のガードリングが、第1ガードリングと、第2ガードリングと、から構成され、
     該第1ガードリングが、該第1チップを囲むように該第1チップの外周部に形成され、
     該第2ガードリングが、該第2チップを囲むように該第2チップの外周部に形成され、
     該第1ガードリングと該第2ガードリングとが、熱伝導材を介して接続されている、請求項1に記載の半導体装置。
  14.  前記複数のチップが、第1チップと、第2チップと、第3チップと、から構成され、
     前記複数のガードリングが、第1ガードリングと、第2ガードリングと、第3ガードリングと、から構成され、
     該第1ガードリングが、該第1チップを囲むように該第1チップの外周部に形成され、
     該第2ガードリングが、該第2チップを囲むように該第2チップの外周部に形成され、
     該第3ガードリングが、該第3チップを囲むように該第3チップの外周部に形成され、
     該第1ガードリングと該第2ガードリングとが、第1熱伝導材を介して接続され、
     該第2ガードリングと該第3ガードリングとが、第2熱伝導材を介して接続されている、請求項1に記載の半導体装置。
  15.  請求項1に記載の半導体装置が搭載された、電子機器。
PCT/JP2020/004823 2019-05-20 2020-02-07 半導体装置及び電子機器 WO2020235148A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/609,906 US11961783B2 (en) 2019-05-20 2020-02-07 Semiconductor apparatus and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-094760 2019-05-20
JP2019094760A JP2020191339A (ja) 2019-05-20 2019-05-20 半導体装置及び電子機器

Publications (1)

Publication Number Publication Date
WO2020235148A1 true WO2020235148A1 (ja) 2020-11-26

Family

ID=73454716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004823 WO2020235148A1 (ja) 2019-05-20 2020-02-07 半導体装置及び電子機器

Country Status (3)

Country Link
US (1) US11961783B2 (ja)
JP (1) JP2020191339A (ja)
WO (1) WO2020235148A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024127035A (ja) * 2023-03-08 2024-09-20 ソニーセミコンダクタソリューションズ株式会社 半導体装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072017A (ja) * 2002-08-09 2004-03-04 Ricoh Co Ltd 半導体集積回路装置及びその製造方法
JP2006120996A (ja) * 2004-10-25 2006-05-11 Murata Mfg Co Ltd 回路モジュール
JP2006140326A (ja) * 2004-11-12 2006-06-01 Toshiba Corp 半導体装置
JP2011091152A (ja) * 2009-10-21 2011-05-06 Daikin Industries Ltd パワーモジュール
JP2015185818A (ja) * 2014-03-26 2015-10-22 三菱電機株式会社 半導体装置及びその製造方法
JP2018101699A (ja) * 2016-12-20 2018-06-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、固体撮像装置の製造方法および電子機器
WO2019021705A1 (ja) * 2017-07-25 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
JP2019068049A (ja) * 2017-09-29 2019-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンシング装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716415B2 (ja) 2011-01-26 2015-05-13 富士通株式会社 半導体装置の製造方法
US11791222B2 (en) * 2013-03-12 2023-10-17 Monolithic 3D Inc. 3D semiconductor device and structure
JP2016058532A (ja) * 2014-09-09 2016-04-21 ソニー株式会社 固体撮像素子、並びに、電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072017A (ja) * 2002-08-09 2004-03-04 Ricoh Co Ltd 半導体集積回路装置及びその製造方法
JP2006120996A (ja) * 2004-10-25 2006-05-11 Murata Mfg Co Ltd 回路モジュール
JP2006140326A (ja) * 2004-11-12 2006-06-01 Toshiba Corp 半導体装置
JP2011091152A (ja) * 2009-10-21 2011-05-06 Daikin Industries Ltd パワーモジュール
JP2015185818A (ja) * 2014-03-26 2015-10-22 三菱電機株式会社 半導体装置及びその製造方法
JP2018101699A (ja) * 2016-12-20 2018-06-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、固体撮像装置の製造方法および電子機器
WO2019021705A1 (ja) * 2017-07-25 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
JP2019068049A (ja) * 2017-09-29 2019-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンシング装置及びその製造方法

Also Published As

Publication number Publication date
US20220208642A1 (en) 2022-06-30
JP2020191339A (ja) 2020-11-26
US11961783B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2019087764A1 (ja) 裏面照射型の固体撮像装置、および裏面照射型の固体撮像装置の製造方法、撮像装置、並びに電子機器
WO2021131388A1 (ja) 固体撮像装置及び固体撮像装置の製造方法、並びに電子機器
WO2018088284A1 (ja) 固体撮像素子および製造方法、並びに電子機器
JP2018064758A (ja) 半導体装置、製造方法、および電子機器
US11830898B2 (en) Wafer level lens
JP2023164552A (ja) 固体撮像装置及び電子機器
WO2022044804A1 (ja) センサデバイスおよび電子機器
WO2022102278A1 (ja) 固体撮像装置及び電子機器
US20230103730A1 (en) Solid-state imaging device
WO2020235148A1 (ja) 半導体装置及び電子機器
WO2021240982A1 (ja) 半導体装置とその製造方法、及び電子機器
WO2022050119A1 (ja) 半導体装置およびその製造方法、並びに電子機器
JP2020087962A (ja) 固体撮像装置及び電子機器
WO2021049302A1 (ja) 撮像装置、電子機器、製造方法
CN110998849A (zh) 成像装置、相机模块和电子设备
WO2021049142A1 (ja) 固体撮像装置
EP4307373A1 (en) Semiconductor device and imaging device
WO2023100492A1 (ja) 半導体装置及び電子機器
US20240297197A1 (en) Semiconductor device, solid-state imaging device, and method for manufacturing semiconductor device
US20230048188A1 (en) Light-receiving device
JPWO2019097949A1 (ja) 半導体装置および半導体の製造方法、並びに撮像装置
JP2019220499A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809806

Country of ref document: EP

Kind code of ref document: A1