WO2020235040A1 - インピーダンス変換器 - Google Patents

インピーダンス変換器 Download PDF

Info

Publication number
WO2020235040A1
WO2020235040A1 PCT/JP2019/020251 JP2019020251W WO2020235040A1 WO 2020235040 A1 WO2020235040 A1 WO 2020235040A1 JP 2019020251 W JP2019020251 W JP 2019020251W WO 2020235040 A1 WO2020235040 A1 WO 2020235040A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance converter
line
impedance
signal line
lines
Prior art date
Application number
PCT/JP2019/020251
Other languages
English (en)
French (fr)
Inventor
美和 武藤
松崎 秀昭
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021519973A priority Critical patent/JP7160191B2/ja
Priority to PCT/JP2019/020251 priority patent/WO2020235040A1/ja
Priority to US17/611,820 priority patent/US20220247059A1/en
Publication of WO2020235040A1 publication Critical patent/WO2020235040A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/088Stacked transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0215Grounding of printed circuits by connection to external grounding means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09727Varying width along a single conductor; Conductors or pads having different widths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09736Varying thickness of a single conductor; Conductors in the same plane having different thicknesses

Definitions

  • the present invention relates to an impedance converter in a semiconductor high frequency module.
  • a microstrip line is used as a transmission line used in a high frequency circuit.
  • the microstrip line forms a transmission line by forming a ground surface of a flat conductor layer on one surface of the dielectric substrate and forming a band-shaped line on the other surface of the dielectric substrate.
  • the characteristic impedance of this microstrip line is determined by the width and thickness of the strip line and the dielectric constant and thickness of the dielectric substrate.
  • the characteristic impedance of the high-frequency circuit and the load circuit or signal source is matched in order to efficiently transmit power and signals at the connection portion. I need to let you.
  • an impedance converter formed so that the characteristic impedance is different at both ends of the microstrip line is used (see Non-Patent Document 1).
  • FIG. 9A is a plan view showing the structure of a conventional impedance converter
  • FIG. 9B is a sectional view taken along line AA'of the impedance converter of FIG. 9A
  • FIG. 9C is a sectional view taken along line BB'of the impedance converter of FIG. 9A.
  • the impedance converter using a transmission line is a microstrip line by gradually changing the width of the signal line 102 as shown in FIGS. 9A to 9C in order to prevent deterioration of transmission characteristics due to a sudden impedance change in a high frequency band.
  • the characteristic impedance of the above was converted into a desired impedance.
  • 100 is a dielectric substrate and 101 is a ground layer.
  • the line width is gradually changed in a tapered shape.
  • FIG. 10A when trying to secure a sufficient distance between the signal lines 102, there is a problem that the distance d1 of the substrate connection pad 103 also becomes large and the size of the impedance converter becomes large.
  • FIG. 10B when the width of the signal line 102 becomes large and the interval d2 of the signal line 102 becomes small, there is a problem that the crosstalk noise between the signal lines 102 becomes large.
  • the cross talk noise between the signal lines 102 is generated by shifting the electrons of the other signal line 102 when the signal pulse is transmitted by one signal line 102. Therefore, the smaller the interval between the signal lines 102, the larger the amount of electron displacement of the other signal line 102, and the larger the crosstalk noise.
  • the conventional impedance converter it is difficult to achieve both improvement of line density and reduction of crosstalk noise between lines, and it is difficult to apply it to high-density mounting.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an impedance converter capable of achieving both improvement of line density and reduction of crosstalk noise between lines.
  • the impedance converter of the present invention comprises a dielectric substrate, a ground layer formed on the back surface of the dielectric substrate, a layer from the inside to the front surface of the dielectric substrate, and the ground layer along a signal propagation direction. It is characterized by including a signal line formed so that the distance between the two is gradually changed.
  • a desired characteristic impedance value is set by providing a signal line in the layer from the inside to the surface of the dielectric substrate so that the distance from the ground layer gradually changes along the signal propagation direction. It is possible to realize an impedance converter in which the characteristic impedance on the input side and the characteristic impedance on the output side are different. Further, in the present invention, crosstalk noise between lines can be reduced. As a result, in the present invention, it is possible to reduce the interval between signal lines (interval between adjacent substrate connection pads) while suppressing crosstalk noise to the same amount as in the conventional case, and improve the line density and between the lines. Since it is possible to achieve both reduction of crosstalk noise, it is possible to realize an impedance converter applicable to high-density mounting.
  • FIG. 1A-1B are a plan view and a cross-sectional view of the impedance converter of the present invention.
  • 2A-2C are cross-sectional views of the impedance converter of the present invention.
  • FIG. 3 is a diagram showing the characteristic impedance of the impedance converter and the conventional impedance converter according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating the distance between the signal line and the ground layer of the impedance converter according to the embodiment of the present invention and the distance between the lines.
  • FIG. 5 is a diagram showing the relationship between the characteristic impedance of the impedance converter according to the embodiment of the present invention, the distance between the signal line and the ground layer, and the thickness of the signal line.
  • FIGS. 6A-6D are diagrams showing a model of a microstrip line by an electromagnetic field simulator.
  • FIG. 7 is a diagram showing the simulation results of backward crosstalk of the impedance converter and the conventional impedance converter according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing a simulation result of forward crosstalk of the impedance converter and the conventional impedance converter according to the embodiment of the present invention.
  • 9A-9C are a plan view and a cross-sectional view showing the structure of a conventional impedance converter.
  • 10A-10B are plan views illustrating problems with conventional impedance converters.
  • FIG. 1A is a plan view of the impedance converter of the present invention
  • FIG. 1B is a sectional view taken along line AA'of the impedance converter of FIG. 1A
  • 2A is a sectional view taken along line BB'of the impedance converter of FIG. 1A
  • FIG. 2B is a sectional view taken along the line CC'of the impedance converter of FIG. 1A
  • FIG. It is a line sectional view.
  • the signal propagation direction (FIG. 1A, FIG. 1A, is shown) in the dielectric substrate 10, the ground layer 11 formed on the back surface of the dielectric substrate 10, and the layer from the inside to the surface of the dielectric substrate 10.
  • a plurality of signal lines 20 formed so that the distance from the ground layer 11 gradually changes along the left-right direction of 1B) are connected to the end of the signal line 20 on the surface of the dielectric substrate 10. It includes the formed substrate connection pads 16 and 17.
  • Each signal line 20 is arranged so as to be separated in a direction orthogonal to the signal propagation direction.
  • Each signal line 20 is formed from a plurality of lines 12 to 15 laminated on a layer from the inside to the surface of the dielectric substrate 10 so that the distance from the ground layer 11 gradually changes along the signal propagation direction. Become.
  • the plurality of lines 12 to 15 are laminated so that either one end (output side in this embodiment) of the signal input side or the output side is aligned, and the lengths from one end to the other end are different from each other.
  • the thickness of the signal line 20 is increased by a1, a2, a3 (a1 ⁇ a2 ⁇ a3) by stacking a plurality of lines 12 to 15 in order and changing the length of the lines 12 to 15. ) And so on.
  • a1 is the total thickness of the lines
  • a2 is the total thickness of the lines 14 and
  • a3 is the total thickness of the lines 12 to 15.
  • the present invention has a form in which the distance between the signal line 20 and the ground layer 11 is gradually changed to h1, h2, h3 (h1> h2> h3).
  • h1 is the distance between the line 15 and the ground layer 11
  • h2 is the distance between the line 14 and the ground layer 11
  • h3 is the distance between the line 12 and the ground layer 11.
  • the present invention makes it possible to continuously change the characteristic impedance while maintaining the line width W and the line spacing I by gradually changing the distance between the signal line 20 and the ground layer 11. It is a thing.
  • the characteristic impedance becomes smaller as the distance between the signal line and the ground layer becomes smaller. Further, as the line thickness increases, the characteristic impedance decreases.
  • the characteristic impedance and the output portion of the input portion of the microstrip line are not increased without increasing the line width W and the substantial line-to-line distance (W + I) seen from the upper surface. It is possible to realize an impedance converter having a different characteristic impedance.
  • the line spacing becomes smaller as the line width becomes larger.
  • the characteristic in-edance can be adjusted without changing the line width W and the line spacing I, crosstalk noise can be reduced.
  • the effect of reducing the crosstalk noise between the lines can be obtained at the same time as the impedance conversion function and without lowering the line density.
  • the impedance converter described in JP2013-251863 has a three-dimensional structure in which the ground layer is inclined, the manufacturing process is actually difficult and it is difficult to put it into practical use.
  • the impedance converter of the present invention since impedance conversion can be realized only by stacking two-dimensional structures, the manufacturing process is simple, and practical use and cost reduction are possible.
  • the present invention it is possible to adjust the characteristic impedance of the microstrip line without changing the width of the strip line, and the pad spacing is made finer, the line density is improved, and the crosstalk noise between the lines is reduced. It is possible to form an impedance converter applicable to high-density mounting that achieves both reduction and reduction.
  • one surface (back surface) of the dielectric substrate 10 made of benzocyclobutene (BCB) or the like has a plate-shaped ground layer 11 made of a conductor member such as Au. Is formed.
  • a band-shaped signal line made of a conductor member such as Au so that the distance from the ground layer 11 gradually changes along the signal propagation direction in the layer from the inside of the dielectric substrate 10 to the other surface (surface). 20 is formed. As described above, the signal line 20 is composed of a plurality of stacked lines 12 to 15.
  • substrate connection pads 16 and 17 made of conductor members such as Au formed so as to be electrically connected to both ends of the signal line 20 are formed.
  • the connection pads 16 and 17 are also electrically connected to the lines 12 to 14.
  • the side surfaces of the lines 12 to 14 and the lower surfaces of the board connection pads 16 and 17 are electrically connected.
  • Vias 18 and 19 are provided. In the example of FIG. 1B, the side surfaces of the lines 12 to 14 and the lower surface of the substrate connection pad 17 are electrically connected by the via 19.
  • the vias 18 and 19 are not essential constituent requirements in the present invention, and a structure without the vias 18 and 19 may be used.
  • one end (input side) of the impedance converter of this embodiment has an input impedance Zi and the other end (output side) has an output impedance Zo (Zi> Zo).
  • the left end is the input side and the right end is the output side.
  • the electric field (electric field) between the plates can be regarded as uniform.
  • the parallel capacitance C is proportional to the plate area S and inversely proportional to the plate spacing d.
  • ⁇ in equation (1) is the permittivity.
  • the parallel capacitance C becomes larger than the value defined by the equation (1).
  • the electric resistance R of the conductor is inversely proportional to the cross-sectional area A [m 2 ] of the conductor, and is proportional to the length L [m] of the conductor and the resistivity ⁇ [ ⁇ m].
  • the electrical resistance R of the signal line becomes smaller than the value specified by the equation (2).
  • the characteristic impedance Z 0 of the microstrip line is represented by the equation (3).
  • R is the series resistance ( ⁇ ) per unit length of the signal line
  • L is the series inductance (H) per unit length of the signal line
  • G is the parallel conductance (S) per unit length of the signal line
  • C is It is the parallel capacitance (F) per unit length of the signal line.
  • Impedance conversion with a line length of 300 ⁇ m using Au (gold) as the material for the lines 12 to 15 and the ground layer 11 and a benzocyclobutene (BCB) substrate (dielectric constant ⁇ r 2.7) as the dielectric substrate 10.
  • the characteristic impedance Z 0 on the output side of the device is shown in FIG. 300 in FIG. 3 shows the characteristic impedance Z 0 on the output side of the conventional impedance converter shown in FIGS. 9A to 9C, 10A, and 10B, and 301 is the characteristic impedance on the output side of the impedance converter of this embodiment. It shows Z 0 .
  • the line width on the input side of the conventional impedance converter is fixed at 4 ⁇ m, and the line width on the output side is set to W ⁇ m.
  • the width of the signal line 20 of the impedance converter of this embodiment was fixed to 4 ⁇ m on both the input side and the output side, and the line spacing I was fixed to 4 ⁇ m.
  • the distance between the signal line 102 of the conventional impedance converter and the ground layer 101 is 7 ⁇ m
  • the thickness of the signal line 102 is 2 ⁇ m.
  • the distance h between the signal line 20 and the ground layer 11 of the impedance converter of this embodiment is used as a parameter. Further, the line width W and the substantial line-to-line distance W + I are used as indicators of the effect on the vertical axis of FIG.
  • the characteristic impedance on the output side is reduced from 80 ⁇ to 48 ⁇ .
  • the characteristic impedance on the output side can be changed without changing the line width or the distance between lines.
  • the characteristic impedance value is 80 ⁇
  • the distance h 7 ⁇ m
  • the characteristic impedance value is 43 ⁇
  • FIG. 5 shows the relationship between the characteristic impedance Z 0 of the impedance converter of this embodiment, the distance h between the signal line 20 and the ground layer 11, and the thickness a of the signal line 20. From FIG. 5, it can be seen that when the distance h changes from 7 ⁇ m to 3 ⁇ m (the thickness a of the signal line 20 changes from 2 ⁇ m to 6 ⁇ m), the characteristic impedance Z 0 of the impedance converter changes from 80 ⁇ to 43 ⁇ .
  • 6A-6D are diagrams showing a model of a microstrip line by the electromagnetic field simulator Sonnet®.
  • 6A is a cross-sectional view of a conventional impedance converter model
  • FIG. 6B is a perspective view of a conventional impedance converter model
  • FIG. 6C is a cross-sectional view of the impedance converter model of the present embodiment
  • FIG. 6D is the present embodiment. It is a perspective view of the model of the impedance converter of.
  • the substantial distance between lines W + I was fixed at 11.5 ⁇ m and the characteristic impedance Z 0 was adjusted to 48.5 ⁇ in both the conventional and the present embodiments.
  • the width W of the signal line 102 of the conventional impedance converter shown in FIGS. 6A and 6B is 7.5 ⁇ m
  • the thickness a of the signal line 102 is 1 ⁇ m
  • the line spacing I is 4 ⁇ m
  • the distance h was set to 3 ⁇ m.
  • 6C and 6D is 2 ⁇ m, the thickness a of the signal line 20 is 3 ⁇ m, the line spacing I is 9.5 ⁇ m, and the signal line 20 and the ground.
  • the distance h between the layers 11 was set to 1 ⁇ m. The simulation is carried out with two impedance converter lines for simplification of calculation.
  • port p1 is the input port of one signal line 102
  • port p2 is the output port of one signal line 102
  • port p3 is the other signal.
  • the input port and port p4 of the line 102 are the output ports of the other signal line 102.
  • the port number setting is the same for the two signal lines 20 provided in parallel in the impedance converter of this embodiment.
  • S31 is the voltage ratio between port p1 and port p3 when a signal is given to port p1, and represents backward (near end) crosstalk.
  • S41 is a voltage ratio between port p1 and port p4, and represents forward (far end) crosstalk.
  • 7 and 8 are diagrams showing the simulation results of S31 and S41, respectively, and are displayed in decibels in order to make the difference easy to understand.
  • 70 in FIG. 7 shows the backward crosstalk of the conventional impedance converter
  • 71 shows the backward crosstalk of the impedance converter of this embodiment.
  • 80 in FIG. 8 shows the forward crosstalk of the conventional impedance converter
  • 81 shows the forward crosstalk of the impedance converter of this embodiment.
  • the backward crosstalk of the impedance converter of this embodiment is smaller than the backward crosstalk of the conventional impedance converter, and is particularly smaller by 15 dB or more in a wide range of 20 GHz to 100 GHz.
  • the forward crosstalk of the impedance converter of this embodiment is smaller than the forward crosstalk of the conventional impedance converter, and is particularly smaller by about 15 dB in a wide range of 40 GHz to 100 GHz.
  • the distance and the signal between the signal line 20 and the ground layer 11 are obtained by gradually superimposing the plurality of lines 12 to 15 without changing the line width and the line spacing. It takes the form of gradually changing the thickness of the line 20.
  • the distance between the signal line 20 and the ground layer 11 can be gradually changed, so that a desired characteristic impedance value can be set, and the characteristic impedance on the input side and the characteristic impedance on the output side can be set. Can realize different impedance converters.
  • the crosstalk noise between the lines can be reduced by bringing the signal line 20 closer to the ground layer 11.
  • this embodiment it is possible to reduce the interval between signal lines (interval between adjacent board connection pads) while suppressing crosstalk noise to the same amount as in the conventional case, and improve the line density. Since it is possible to achieve both reduction of crosstalk noise between lines, it is possible to realize an impedance converter applicable to high-density mounting.
  • the characteristic impedance on the output side of the impedance converter is reduced, but it is also possible to form an impedance converter in which the characteristic impedance on the input side is reduced.
  • the right end may be the input side and the left end may be the output side in FIGS. 1A and 1B.
  • the number of lines to be stacked is four layers, but the number is not limited to this, and at least two layers of lines may be laminated.
  • the cross-sectional shape of the signal line in the direction perpendicular to the signal propagation direction is rectangular, but the cross-sectional shape may be trapezoidal.
  • the upper base may be trapezoidal shorter than the lower base, or the upper base may be trapezoidal longer than the lower base.
  • FIGS. 1A, 1B, and 2A to 2C the case where the number of signal lines 20 provided in parallel is three has been described, but the present invention is not limited to this, and the number of signal lines is two or four or more. Needless to say, it may be a multi-lane.
  • This embodiment can be applied to a technique for converting impedance in a semiconductor high frequency module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguides (AREA)

Abstract

インピーダンス変換器は、誘電体基板(10)と、誘電体基板(10)の裏面に形成されたグランド層(11)と、誘電体基板(10)の内部から表面までの層に、信号伝搬方向に沿ってグランド層(11)との距離が徐々に変化するように形成された信号線路(20)とを備える。信号線路(20)は、誘電体基板(10)の内部から表面までの層に、信号伝搬方向に沿ってグランド層(11)との距離が徐々に変化するように積層された複数の線路(12~15)からなる。

Description

インピーダンス変換器
 本発明は、半導体高周波モジュールにおけるインピーダンス変換器に関するものである。
 高周波回路に用いられる伝送線路として、マイクロストリップ線路が使用されている。マイクロストリップ線路は、誘電体基板の一方の面に平面的な導電体層のグランド面を形成し、誘電体基板の他方の面に帯状の線路を形成して伝送線路を構成している。このマイクロストリップ線路の特性インピーダンスは、ストリップ線路の幅と厚さ、および誘電体基板の誘電率と厚さによって決定される。
 高周波回路に、例えば、ある一定のインピーダンスを有する負荷回路や信号源を接続する場合、接続部分で電力や信号を効率よく伝達させるために、高周波回路と負荷回路や信号源との特性インピーダンスを整合させる必要がある。このインピーダンス整合を行わせるため、マイクロストリップ線路の両端で特性インピーダンスが異なるように形成したインピーダンス変換器が用いられる(非特許文献1参照)。
 図9Aは従来のインピーダンス変換器の構造を示す平面図、図9Bは図9Aのインピーダンス変換器のA-A’線断面図、図9Cは図9Aのインピーダンス変換器のB-B’線断面図である。伝送線路によるインピーダンス変換器は、高周波帯での急激なインピーダンス変化による伝送特性の劣化を防ぐため、図9A~図9Cに示すように信号線路102の幅を徐々に変化させることにより、マイクロストリップ線路の特性インピーダンスを所望のインピーダンスに変換するようにしていた。図9A~図9Cにおける100は誘電体基板、101はグランド層である。
 近年、半導体高周波モジュールの高機能化のために半導体高周波モジュールから入出力される信号の数が増加している。これに対して、半導体高周波モジュールの高機能化・低コスト化のためにはモジュールの外形サイズを小さくする必要があるため、基板接続パッドとパッド間隔の微細化が進行している。このように、半導体高周波モジュールの信号数の増大と基板接続パッドの微細化とが進んでいる。その結果、半導体高周波モジュールと接続する配線基板において、高密度で多信号を引き回せる伝送線路や、伝送線路によって高周波特性を維持したままインピーダンス変換を行うインピーダンス変換器の実現が求められている。
 伝送線路によって高周波特性を維持したままインピーダンス変換を行う場合、従来技術では、線路幅をテーパー形状で徐々に変化させている。しかし、図10Aに示すように、信号線路102の間隔を十分に確保しようとすると、基板接続パッド103の間隔d1も大きくなって、インピーダンス変換器のサイズが大きくなるという問題点があった。また、図10Bに示すように、信号線路102の幅が大きくなって信号線路102の間隔d2が小さくなると、信号線路102間のクロストークノイズが大きくなるという問題点があった。
 信号線路102間のクロストークノイズは、一方の信号線路102によって信号パルスが伝送されたとき、他方の信号線路102の電子を変位させることにより生じるものである。このため、信号線路102の間隔が小さくなればなる程、他方の信号線路102の電子の変位量も大きくなり、クロストークノイズも大きくなっていく。以上のように、従来のインピーダンス変換器では、線路密度の向上と線路間のクロストークノイズの低減とを両立させることが難しく、高密度実装に適用することが困難であった。
P.Pramanick,et al.,"Tapered Microstrip Transmission Lines",IEEE MTT-S Int.Microw.Symp.Dig.,vol.1983,pp.242-244,1983
 本発明は、上記課題を解決するためになされたもので、線路密度の向上と線路間のクロストークノイズの低減とを両立させることができるインピーダンス変換器を提供することを目的とする。
 本発明のインピーダンス変換器は、誘電体基板と、前記誘電体基板の裏面に形成されたグランド層と、前記誘電体基板の内部から表面までの層に、信号伝搬方向に沿って前記グランド層との距離が徐々に変化するように形成された信号線路とを備えることを特徴とするものである。
 本発明によれば、誘電体基板の内部から表面までの層に、信号伝搬方向に沿ってグランド層との距離が徐々に変化するように信号線路を設けることにより、所望の特性インピーダンス値が設定可能で、かつ入力側の特性インピーダンスと出力側の特性インピーダンスとが異なるインピーダンス変換器を実現することができる。また、本発明では、線路間のクロストークノイズを低減することができる。その結果、本発明では、従来と同程度の量にクロストークノイズを抑えたまま、信号線路の間隔(隣接する基板接続パッドの間隔)を微細化することができ、線路密度の向上と線路間のクロストークノイズの低減とを両立させることができるので、高密度実装に適用可能なインピーダンス変換器を実現することができる。
図1A-図1Bは、本発明のインピーダンス変換器の平面図および断面図である。 図2A-図2Cは、本発明のインピーダンス変換器の断面図である。 図3は、本発明の実施例に係るインピーダンス変換器および従来のインピーダンス変換器の特性インピーダンスを示す図である。 図4は、本発明の実施例に係るインピーダンス変換器の信号線路とグランド層間の距離と、線路間距離について説明する断面図である。 図5は、本発明の実施例に係るインピーダンス変換器の特性インピーダンスと、信号線路とグランド層間の距離と、信号線路の厚さとの関係を示す図である。 図6A-図6Dは、電磁界シミュレータによるマイクロストリップ線路のモデルを示す図である。 図7は、本発明の実施例に係るインピーダンス変換器および従来のインピーダンス変換器のバックワード・クロストークのシミュレーション結果を示す図である。 図8は、本発明の実施例に係るインピーダンス変換器および従来のインピーダンス変換器のフォワード・クロストークのシミュレーション結果を示す図である。 図9A-図9Cは、従来のインピーダンス変換器の構造を示す平面図および断面図である。 図10A-図10Bは、従来のインピーダンス変換器の問題点を説明する平面図である。
[発明の原理]
 図1Aは本発明のインピーダンス変換器の平面図、図1Bは図1Aのインピーダンス変換器のA-A’線断面図である。図2Aは図1Aのインピーダンス変換器のB-B’線断面図、図2Bは図1Aのインピーダンス変換器のC-C’線断面図、図2Cは図1Aのインピーダンス変換器のD-D’線断面図である。
 本発明のマイクロストリップ線路は、誘電体基板10と、誘電体基板10の裏面に形成されたグランド層11と、誘電体基板10の内部から表面までの層に、信号伝搬方向(図1A、図1Bの左右方向)に沿ってグランド層11との距離が徐々に変化するように形成された複数本の信号線路20と、誘電体基板10の表面の信号線路20の端部と接続するように形成された基板接続パッド16,17とを備えている。
 各信号線路20は、信号伝搬方向と直交する方向に離間して配置されている。そして、各信号線路20は、誘電体基板10の内部から表面までの層に、信号伝搬方向に沿ってグランド層11との距離が徐々に変化するように積層された複数の線路12~15からなる。複数の線路12~15は、信号の入力側または出力側のいずれか一端(本実施例では出力側)が揃うように積層され、この一端から他端までの長さが互いに異なる。
 このように、本発明では、複数の線路12~15を順番に積層し、線路12~15の長さを変えることにより、信号線路20の厚さをa1,a2,a3(a1<a2<a3)というように徐々に変える形態をとる。図2A~図Cの例では、a1は線路15の厚さ、a2は線路14と15の合計の厚さ、a3は線路12~15の合計の厚さである。
 誘電体基板10の厚さが一定なので、本発明は、信号線路20とグランド層11間の距離をh1,h2,h3(h1>h2>h3)というように徐々に変える形態となる。図1B、図2A~図Cの例では、h1は線路15とグランド層11間の距離、h2は線路14とグランド層11間の距離、h3は線路12とグランド層11間の距離である。
 このように、本発明は、信号線路20とグランド層11間の距離を徐々に変えることにより、線路幅Wや線路間隔Iを維持したまま、特性インピーダンスを連続的に変化させることを可能にしたものである。
 マイクロストリップ線路においては、信号線路とグランド層との距離が小さくなると、特性インピーダンスが小さくなる。また、線路厚が大きくなると、特性インピーダンスが小さくなる。図9A~図9C、図10A、図10Bに示した従来構成で特性インピーダンスを小さくするためには、線路幅を大きくする必要があり、パッド間隔の微細化と線路密度の向上とを両立させる必要がある高密度実装に適応することが困難であった。これに対して、本発明では、線路幅Wを大きくすることなく、また上面から見た実質的な線路間距離(W+I)を大きくすることなく、マイクロストリップ線路の入力部分の特性インピーダンスと出力部分の特性インピーダンスとが異なるインピーダンス変換器を実現することができる。
 また、図9A~図9C、図10A、図10Bに示した従来構成では、線路幅が大きくなることにより、線路間隔が小さくなる。これに対して、本発明では、線路幅Wや線路間隔Iを変えずに特性インイーダンスを調整できるため、クロストークノイズを低減することができる。このように、本発明では、線路間のクロストークノイズを低減する効果を、インピーダンス変換機能と同時に、また線路密度を低下させることなく得ることができる。
 インピーダンス変換器において、信号線路とグランド層との距離を変化させる技術としては、例えば特開2013-251863号公報に記載のものが知られている。しかし、特開2013-251863号公報に記載のインピーダンス変換器は、グランド層を傾斜させる三次元構造であるため、製造プロセスが現実には難しく、実用化が困難であった。本発明のインピーダンス変換器においては、2次元的な構造の積層のみでインピーダンス変換を実現できることから、製造プロセスも簡単であり、実用化・低コスト化が可能となる。
 したがって、本発明によれば、ストリップ線路の幅を変化させずにマイクロストリップ線路の特性インピーダンスを調整することが可能になり、パッド間隔の微細化、線路密度の向上と線路間のクロストークノイズの低減とを両立する、高密度実装に適用可能なインピーダンス変換器を形成することができる。
[実施例]
 次に、本発明の実施例について説明する。本実施例のインピーダンス変換器は、発明の原理で説明した構成の具体例なので、本実施例においても図1A、図1B、図2A~図2Cを用いて説明する。
 図1A、図1B、図2A~図2Cにおいて、ベンゾシクロブテン(BCB)等からなる誘電体基板10の一方の面(裏面)には、Au等の導電体部材からなる板状のグランド層11が形成されている。誘電体基板10の内部から他方の面(表面)までの層には、信号伝搬方向に沿ってグランド層11との距離が徐々に変化するようにAu等の導電体部材からなる帯状の信号線路20が形成されている。上記のとおり、信号線路20は、積層された複数の線路12~15からなる。
 誘電体基板10の表面には、信号線路20の両端とそれぞれ電気的に接続するように形成されたAu等の導電体部材からなる基板接続パッド16,17が形成されている。
 本実施例では、複数の線路12~15を順番に積層しているため、誘電体基板10の表面の線路15と電気的に接続されるように基板接続パッド16,17を形成すれば、基板接続パッド16,17は線路12~14とも電気的に接続される。ただし、本実施例では、線路12~14と基板接続パッド16,17との接続をより確実にするため、線路12~14の側面と基板接続パッド16,17の下面とを電気的に接続するビア18,19を設けている。図1Bの例では、ビア19により線路12~14の側面と基板接続パッド17の下面とを電気的に接続している。ビア18,19は本発明において必須の構成要件ではなく、ビア18,19が無い構造でも構わない。
 本実施例のインピーダンス変換器の一端(入力側)は入力インピーダンスZiを有し、他端(出力側)は出力インピーダンスZoを有するものとする(Zi>Zo)。図1A、図1Bの例では左端が入力側、右端が出力側となっている。誘電体基板10の内部から誘電体基板10の表面まで複数の線路12~15を積層することにより、入力側から出力側に向かうに従って信号線路20(線路12~15)とグランド層11間の距離がh1,h2,h3(h1>h2>h3)というように徐々に小さくなっている。これにより、特性インピーダンスもZiからZoへと徐々に小さくなっていく。
 極板間隔が極板の一辺の長さに比べて極めて小さい平行板コンデンサーでは、極板間の電場(電界)が一様とみなすことができる。このとき並列静電容量Cは、極板面積Sに比例し、極板間隔dに反比例する。
Figure JPOXMLDOC01-appb-M000001
 式(1)におけるεは誘電率である。マイクロストリップ線路の信号線路とグランド層間の距離dが小さくなると、並列静電容量Cは式(1)で規定される値よりも大きくなる。また、導体の電気抵抗Rは、導体の断面積A[m2]に反比例し、導体の長さL[m]と抵抗率ρ[Ωm]とに比例する。
Figure JPOXMLDOC01-appb-M000002
 信号線路の厚さが大きくなると、信号線路の電気抵抗Rは式(2)で規定される値よりも小さくなる。また、マイクロストリップ線路の特性インピーダンスZ0は式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、Rは信号線路の単位長あたりの直列抵抗(Ω)、Lは信号線路の単位長あたりの直列インダクタンス(H)、Gは信号線路の単位長あたりの並列コンダクタンス(S)、Cは信号線路の単位長あたりの並列静電容量(F)である。式(1)~式(3)より、信号線路とグランド層間の距離が小さくなり、信号線路の厚さが大きくなると、特性インピーダンスが小さくなるので、本実施例によるマイクロストリップ線路は、入力側で特性インピーダンスが大きく、出力側で特性インピーダンスが小さくなるようなインピーダンス変換器を形成する。
 線路12~15とグランド層11の材料としてAu(金)を使用し、誘電体基板10としてベンゾシクロブテン(BCB)基板(誘電率εr=2.7)を用いた、線路長300μmのインピーダンス変換器の出力側の特性インピーダンスZ0を図3に示す。図3の300は図9A~図9C、図10A、図10Bに示した従来のインピーダンス変換器の出力側の特性インピーダンスZ0を示し、301は本実施例のインピーダンス変換器の出力側の特性インピーダンスZ0を示している。
 ここでは、従来のインピーダンス変換器の入力側の線路幅を4μmに固定し、出力側の線路幅をWμmとした。本実施例のインピーダンス変換器の信号線路20の幅は入力側、出力側共に4μmに固定し、線路間隔Iを4μmに固定した。また、従来のインピーダンス変換器の信号線路102とグランド層101間の距離を7μm、信号線路102の厚さを2μmとした。
 シミュレーションでは、図4に示すように本実施例のインピーダンス変換器の信号線路20とグランド層11間の距離hをパラメータとしている。また、線路幅Wと実質的な線路間距離W+Iとを効果の指標として、図3の縦軸に用いている。
 従来のインピーダンス変換器において、出力側の線路幅を4μmから14μm(線路間距離W+Iを8μmから18μm)まで大きくしていくと、出力側の特性インピーダンスは80Ωから48Ωまで小さくなる。一方、本実施例では、線路幅や線路間距離を変えることなく、出力側の特性インピーダンスを変えることができる。図3の本実施例のインピーダンス変換器の例では、特性インピーダンス値が80Ωのとき、距離h=7μm、信号線路20の厚さa=2μmであり、特性インピーダンス値が43Ωのとき、距離h=3μm、信号線路20の厚さa=6μmである。
 図5に本実施例のインピーダンス変換器の特性インピーダンスZ0と、信号線路20とグランド層11間の距離hと、信号線路20の厚さaとの関係を示す。図5より、距離hが7μmから3μmまで(信号線路20の厚さaが2μmから6μmまで)変化すると、インピーダンス変換器の特性インピーダンスZ0は80Ωから43Ωまで変化することが分かる。
 次に、従来のインピーダンス変換器と本実施例のインピーダンス変換器について、クロストーク量を比較してみる。図6A~図6Dは電磁界シミュレータSonnet(登録商標)によるマイクロストリップ線路のモデルを示す図である。図6Aは従来のインピーダンス変換器のモデルの断面図、図6Bは従来のインピーダンス変換器のモデルの斜視図、図6Cは本実施例のインピーダンス変換器のモデルの断面図、図6Dは本実施例のインピーダンス変換器のモデルの斜視図である。
 クロストーク量を比較するため、従来および本実施例共に実質的な線路間距離W+Iを11.5μmに固定し、特性インピーダンスZ0を48.5Ωに揃えた。図6A、図6Bに示した従来のインピーダンス変換器の信号線路102の幅Wを7.5μm、信号線路102の厚さaを1μm、線路間隔Iを4μm、信号線路102とグランド層101間の距離hを3μmとした。また、図6C、図6Dに示した本実施例のインピーダンス変換器の信号線路20の幅Wを2μm、信号線路20の厚さaを3μm、線路間隔Iを9.5μm、信号線路20とグランド層11間の距離hを1μmとした。なお、シミュレーションは、計算簡略化のため、インピーダンス変換器の線路数を2本にして実施している。
 図6B、図6Dのようにポート番号を設定したとき、Sパラメータの結果を調べることで、クロストーク量を直接評価できる。ポートp1は従来のインピーダンス変換器において平行に設けられた2本の信号線路102のうち、一方の信号線路102の入力ポート、ポートp2は一方の信号線路102の出力ポート、ポートp3は他方の信号線路102の入力ポート、ポートp4は他方の信号線路102の出力ポートである。本実施例のインピーダンス変換器において平行に設けられた2本の信号線路20についても、ポート番号の設定は同様である。
 S31は、ポートp1に信号を与えたときのポートp1とポートp3の電圧比であり、バックワード(近端)・クロストークを表す。また、S41は、ポートp1とポートp4の電圧比であり、フォワード(遠端)・クロストークを表す。図7、図8はそれぞれS31、S41のシミュレーション結果を示す図であり、差異を分かりやすくするため、デシベル表示にしている。図7の70は従来のインピーダンス変換器のバックワード・クロストークを示し、71は本実施例のインピーダンス変換器のバックワード・クロストークを示している。また、図8の80は従来のインピーダンス変換器のフォワード・クロストークを示し、81は本実施例のインピーダンス変換器のフォワード・クロストークを示している。
 図7によれば、本実施例のインピーダンス変換器のバックワード・クロストークは、従来のインピーダンス変換器のバックワード・クロストークよりも小さく、特に20GHz~100GHzの広範囲において15dB以上小さいことが分かる。また、図8によれば、本実施例のインピーダンス変換器のフォワード・クロストークは、従来のインピーダンス変換器のフォワード・クロストークよりも小さく、特に40GHz~100GHzの広範囲において15dB程度小さいことが分かる。
 以上のように、本実施例では、線路幅や線路間隔を変化させなくても、複数の線路12~15を徐々に重ね合わせていくことにより、信号線路20とグランド層11間の距離や信号線路20の厚さを徐々に変える形態をとる。これにより、本実施例では、信号線路20とグランド層11間の距離を徐々に変えることができるので、所望の特性インピーダンス値が設定可能で、かつ入力側の特性インピーダンスと出力側の特性インピーダンスとが異なるインピーダンス変換器を実現することができる。また、本実施例では、信号線路20をグランド層11に近づけることにより、線路間のクロストークノイズを低減することができる。
 したがって、本実施例によれば、従来と同程度の量にクロストークノイズを抑えたまま、信号線路の間隔(隣接する基板接続パッドの間隔)を微細化することができ、線路密度の向上と線路間のクロストークノイズの低減とを両立させることができるので、高密度実装に適用可能なインピーダンス変換器を実現することができる。
 なお、本実施例では、インピーダンス変換器の出力側の特性インピーダンスを小さくしているが、入力側の特性インピーダンスを小さくしたインピーダンス変換器を形成することもできる。入力側の特性インピーダンスを小さくするには、図1A、図1Bにおいて右端を入力側、左端を出力側とすればよい。
 また、本実施例では、積層する線路の数を4層としているが、これに限るものではなく、少なくとも2層の線路を積層すればよい。
 また、本実施例では、信号伝搬方向と垂直な方向(図2A~図Cの左右方向)の信号線路の断面形状を長方形としているが、断面形状を台形としてもよい。信号線路の断面形状を台形とする場合、上底が下底より短い台形状でもよいし、上底が下底より長い台形状でもよい。
 また、図1A、図1B、図2A~図2Cでは、平行に設ける信号線路20の本数が3本の場合について説明したが、これに限るものではなく、信号線路が2本、あるいは4本以上のマルチレーンであってもよいことは言うまでもない。
 本実施例は、半導体高周波モジュールにおいてインピーダンスを変換する技術に適用することができる。
 10…誘電体基板、11…グランド層、12~15…線路、16,17…基板接続パッド、18,19…ビア、20…信号線路。

Claims (4)

  1.  誘電体基板と、
     前記誘電体基板の裏面に形成されたグランド層と、
     前記誘電体基板の内部から表面までの層に、信号伝搬方向に沿って前記グランド層との距離が徐々に変化するように形成された信号線路とを備えることを特徴とするインピーダンス変換器。
  2.  請求項1記載のインピーダンス変換器において、
     前記信号線路は、前記誘電体基板の内部から表面までの層に、信号伝搬方向に沿って前記グランド層との距離が徐々に変化するように積層された複数の線路からなることを特徴とするインピーダンス変換器。
  3.  請求項2記載のインピーダンス変換器において、
     前記複数の線路は、信号の入力側または出力側のいずれか一端が揃うように積層され、この一端から他端までの長さが互いに異なることを特徴とするインピーダンス変換器。
  4.  請求項1乃至3のいずれか1項に記載のインピーダンス変換器において、
     前記信号伝搬方向と交差する方向に離間して配置された複数本の前記信号線路を備えることを特徴とするインピーダンス変換器。
PCT/JP2019/020251 2019-05-22 2019-05-22 インピーダンス変換器 WO2020235040A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021519973A JP7160191B2 (ja) 2019-05-22 2019-05-22 インピーダンス変換器
PCT/JP2019/020251 WO2020235040A1 (ja) 2019-05-22 2019-05-22 インピーダンス変換器
US17/611,820 US20220247059A1 (en) 2019-05-22 2019-05-22 Impedance Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020251 WO2020235040A1 (ja) 2019-05-22 2019-05-22 インピーダンス変換器

Publications (1)

Publication Number Publication Date
WO2020235040A1 true WO2020235040A1 (ja) 2020-11-26

Family

ID=73459297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020251 WO2020235040A1 (ja) 2019-05-22 2019-05-22 インピーダンス変換器

Country Status (3)

Country Link
US (1) US20220247059A1 (ja)
JP (1) JP7160191B2 (ja)
WO (1) WO2020235040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210249745A1 (en) * 2020-02-12 2021-08-12 Fujitsu Limited Impedance converter and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951209A (ja) * 1995-08-08 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> 誘電体基板および配線基板
JP2013251863A (ja) * 2012-06-04 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> インピーダンス変換器
JP2017098654A (ja) * 2015-11-19 2017-06-01 日本電信電話株式会社 インピーダンス変換器
US20170213634A1 (en) * 2016-01-22 2017-07-27 Raytheon Company Impedance transformer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140288A (en) * 1991-04-08 1992-08-18 Motorola, Inc. Wide band transmission line impedance matching transformer
US5184095A (en) * 1991-07-31 1993-02-02 Hughes Aircraft Company Constant impedance transition between transmission structures of different dimensions
JPH06291518A (ja) * 1993-03-31 1994-10-18 Nippon Chemicon Corp マイクロストリップラインによるインピーダンス変換器
JPH09213838A (ja) * 1996-01-31 1997-08-15 Sumitomo Electric Ind Ltd 半導体容器の端子及び半導体気密封止容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951209A (ja) * 1995-08-08 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> 誘電体基板および配線基板
JP2013251863A (ja) * 2012-06-04 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> インピーダンス変換器
JP2017098654A (ja) * 2015-11-19 2017-06-01 日本電信電話株式会社 インピーダンス変換器
US20170213634A1 (en) * 2016-01-22 2017-07-27 Raytheon Company Impedance transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210249745A1 (en) * 2020-02-12 2021-08-12 Fujitsu Limited Impedance converter and electronic device
US11688916B2 (en) * 2020-02-12 2023-06-27 Fujitsu Limited Impedance converter and electronic device

Also Published As

Publication number Publication date
US20220247059A1 (en) 2022-08-04
JPWO2020235040A1 (ja) 2020-11-26
JP7160191B2 (ja) 2022-10-25

Similar Documents

Publication Publication Date Title
JP3113153B2 (ja) 多層配線構造の半導体装置
DE69823591T2 (de) Geschichtete Aperturantenne und mehrschichtige Leiterplatte damit
US20070046393A1 (en) Power divider
US8106721B2 (en) Multilayer complementary-conducting-strip transmission line structure with plural interlaced signal lines and mesh ground planes
US9362603B2 (en) Via structures and compact three-dimensional filters with the extended low noise out-of-band area
DE112009001891T5 (de) Hochfrequenzsubstrat und Hochfrequenzmodul
JP6420226B2 (ja) インピーダンス変換器
WO2021214870A1 (ja) インピーダンス変換器とその製造方法
CN114025479A (zh) 电路板之间的垂直互连结构、封装器件、微系统及其方法
US7688164B2 (en) High frequency circuit board converting a transmission mode of high frequency signals
WO2020235040A1 (ja) インピーダンス変換器
JP3129506B2 (ja) マイクロ波遅波回路
US6292070B1 (en) Balun formed from symmetrical couplers and method for making same
DE112021006420T5 (de) Dual-polarisiertes magnetoelektrisches Antennenarray
US7002433B2 (en) Microwave coupler
JP5519328B2 (ja) 高周波用伝送線路基板
WO2021220460A1 (ja) インピーダンス変換器
WO2014157031A1 (ja) 高周波伝送線路、および電子機器
TWI394507B (zh) 互補式金屬耦合線
JP6309905B2 (ja) インピーダンス変換器
JP4197352B2 (ja) 幅の広い結合間隔を伴う、ストリップ導体技術における方向性結合器
JP6871138B2 (ja) インピーダンス変換器
WO2023238376A1 (ja) インピーダンス変換器
JP5454222B2 (ja) 低域通過フィルタ
TWI533500B (zh) 信號傳輸線結構及其應用之電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929872

Country of ref document: EP

Kind code of ref document: A1